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1. Introduction 

Increasing rates of greenhouse gas emissions as a 

result of human activity have led to a lifeline 

problem that requires joint global effort. By the end 

of current century, the world is on track for 2.4 °C 

of warming.  

In 2020, the world's total carbon dioxide (CO2) 

emissions reached 31.5 Gt, representing an increase 

of almost 50% since 2000. Of this, the share of 

China is the biggest, being the world’s largest 

energy consumer and carbon emitter (IEA, 2021). 

For this reason, the role of China is vital to meet the 

emission reductions targets to limit the global 

temperature rise to 1.5 °C.  

Peaking the emissions requires progress in 

energy efficiency, renewables and reducing fossil 

fuels use, and while the first two are progressively 

developing, the latter may be the hardest due to the 

still high dependency of many countries on 

traditional energy. Consequently, Carbon Capture 

and Storage is considered a crucial strategy for 

meeting CO2 emission reduction targets (Leung et 

al., 2014), with the CO2 injected in a supercritical 

state. 

The most suitable formations are deep saline 

aquifers and depleted oil and gas reservoirs, being 

able to offer the largest capacity (Energy 

Technology Perspectives, 2020). Storage capacity is 

the main parameter for assessing the quantity of 

CO2 that can be held by the formation (Bachu et al., 

2007). For its estimation, we rely on pressure build-

up techniques, which provide conservative results. 

We assess the capacity of the 10 most suitable 

basins in China. Cumulative storage capacity over 

such 10 basins can reasonably represent the global 

capacity of onshore geological CO2 storage in 

China. Moreover, we perform an uncertainty 

assessment and Global Sensitivity Analysis (GSA) 

to address the solidity of the evaluated storage 

capacity and understand the most influential 

model input parameters. 
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2. Energy Sector and CO2 

Emission in China 

2.1 Energy Sector 

China is heavily dependent on fossil fuels, with 

coal (the most carbon intensive) accounting for 60 

% of its energy needs (CEC, 2021). Table 1 provides 

the amount of emissions per sector and the number 

of units, in China. Clearly, the energy sector is the 

leading emitters among the industrial activities. 

Thus, CCS is expected to (potentially) be able to 

provide great supports in reducing emissions 

effects. 

 

Sources 

CO2 

emissions 

(Mt/y) 

Number of 

units 

Power and heat 

generation 
5000 450 

Chemicals 600 60 

Iron and steel 1390 650 

Cement 1210 800 

Fuel refining 270 120 

Total 8470 2080 

Table 1: Evaluation of CO2 emissions in China 

divided by source types and the related number 

of units (IEA, 2020). 

Recently, IEA (2021) reported an Energy Sector 

Roadmap to Carbon Neutrality in China and 

proposed different scenarios which evaluate the 

share of CCS necessary to meet emissions targets. 

In the Announced Pledges Scenario (APS), it 

estimates a total of 2.6 Gt of CO2 to be stored in 

2060, in China. We assume a worst-case scenario 

when the required injection is constant and fixed at 

this value and not increasing in the years as 

proposed in the APS. In this work, we propose 30 

years target (of 80 Gt in total) to meet the 

requirements of the APS. 

2.2 CCS in China 

The development of CCS in China is still on the 

early stages. Currently, 21 pilot (mostly injecting 

CO2 for enhanced oil recovery, EOR, purposes), 

demonstration or commercial project are in 

operation.  

CCS is set to be an indispensable technology for 

carbon neutrality in China, as a result of the large 

role of coal in its energy mix. CCS retrofits are the 

only way to avoid the early disruption of recently 

built plants running on coal and still meeting the 

emissions targets.  

Figure 1 is a map of the main CO2 emitter points 

in China, together with some potential geological 

storage formations and pipelines which are 

already present in the territory. The combination of 

the emission points with the suitable basins is 

fundamental for its economic feasibility and 

success. 

 

 

Figure 1: Map of (a) CO2 sources and (b) potential 

geological storage basins (B1-B10) selected for the 

analysis of storage CO2 capacity in China (IEA, 

2021). 

3. Material and Methods 

We rely on the methodology developed by De 

Simone and Krevor (2021). This technique embeds 

constraints associated with the increase of 

reservoir pore pressure due to injection of CO2 in 

the presence of resident brine so that an excessive 

pressure build-up must be limited to avoid 
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reactivation of faults, failure of caprock, and/or 

possible leakage (Bachu, 2008).  

The tool used to estimate the largest viable 

injection rate and reservoir storage capacity is the 

open-source software CO2BLOCK (De Simone and 

Krevor, 2021). It builds different scenarios in terms 

of number of injection wells and inter-well spacing 

through which it selects the one with maximum 

storage capacity. Karvounis and Blunt (2021) has 

been recently used this approach to assess storage 

capacity in the North Sea. 

For simplicity purposes, and to be consistent 

with the aim of performing a global storage 

capacity assessment of the kind we consider, we 

assume: (i) the reservoir to be conceptualized as a 

homogeneous system and (ii) number of n vertical 

injection wells to be placed across the domain, with 

uniform spacing and operating at the same 

(constant) volumetric injection rate. 

3.1.1 Pressure build-up due to CO2 

injection 

The pressure buildup following CO2 injection 

from a single well into a homogeneous reservoir 

with open boundaries and under the assumption 

of no pre-existing fractures and negligible trapping 

can be evaluated according to Nordbotten et al. 

(2005). Additionally, the action of multiple wells 

can then be expressed through superposition and, 

assuming no interference in CO2 plumes associated 

with each of the injection wells, the overpressure at 

a location 𝒙𝑖 of well 𝑖 can be evaluated as (De 

Simone and Krevor, 2021): 

where Δ𝑝(𝑟, 𝑡) is overpressure at time 𝑡 and radial 

distance 𝑟 from the injection well operating at 

volumetric flow rate 𝑄; 𝑘, 𝜙, and 𝐻 are absolute 

permeability, porosity, and average thickness of 

the reservoir, respectively; 𝜇𝑤 and 𝜇𝑐 are brine and 

CO2 dynamic viscosity, respectively; 𝜓 represents 

the radius of a fictitious equivalent advancing 

vertical sharp interface between the injected plume 

and the resident fluid, which can be expressed as 

𝜓 = exp(𝜔)𝜉 (where 𝜔 =
𝜇𝑐+𝜇𝑤

𝜇𝑐−𝜇𝑤
ln √

𝜇𝑐

𝜇𝑤
− 1; 𝜉 =

√
𝑄𝑡

𝜋𝜙𝐻
); 𝑟0 is the well radius, 𝑑𝑖𝑗  is the distance 

between wells at (vector) locations 𝒙𝑖 and 𝒙𝑗 (𝒙𝑖 

denoting the vector of spatial coordinates of well 𝑖) 

and 𝑅 corresponds to the well radius of influence. 

3.1.2 Constraints to pressure build-

up 

Pressure build-up must be kept below a critical 

value corresponding to the largest pressure, ∆𝑝𝑀, 

sustainable by the system. Jaeger et al. (2009) show 

that formation failure may occur in either a tensile 

or a shear mode. Accordingly, the largest 

sustainable overpressure (Δ𝑝𝑀) is then evaluated as 

the lowest between tensile- and shear-related 

failure pressure values. 

3.1.3 Constraints to the maximum 

flowrate 

Starting from Equation (1), we evaluate the 

overpressure, ∆𝑝𝑟 , due to a preliminary value of 

CO2 injection rate (𝑄𝑟) at a well, which is taken as 

reference and is maintained constant across a given 

temporal window. We build several scenarios 

considering different numbers of wells and inter-

well spacing for a given total injection rate into the 

reservoir unit.  

Once the maximum sustainable overpressure 

Δ𝑝𝑀  is assessed and the overpressure, ∆𝑝𝑟, 

associated with the reference injection rate, 𝑄𝑟 , is 

evaluated, one can then evaluate the largest 

sustainable injection flowrate (𝑄𝑀) into each well. 

In this context, De Simone and Krevor (2021) 

suggest the following formulation to evaluate the 

maximum flow rate, 𝑄𝑀, given the response (in 

terms of overpressure) for a reference scenario: 

 𝑄𝑀(𝑡) = −
𝑄𝑟∆𝑝𝑀̃

𝑊(−∆𝑝𝑀̃𝑒−∆𝑝𝑟(𝑡)̃ )
 (2) 

where 𝑊 denotes the Lambert function (e.g., 

Corless et al., 1996) for −∆𝑝𝑀̃𝑒−∆𝑝𝑟(𝑡)̃
< 0;   ∆𝑝𝑀̃ =

∆𝑝𝑀

𝑏𝑄𝑟
  and  ∆𝑝𝑟̃ =  

∆𝑝𝑟

𝑏𝑄𝑟
  with 𝑏 = 

𝜇𝑤−𝜇𝑐

4𝜋𝜅𝐻𝜌𝑐
, 𝜌𝑐 being CO2 

density. It is recalled that both the reference and 

the maximum sustainable flow rates correspond to 

mass injection into each well. 

Calculations of the storage capacity for a given 

time 𝑡, 𝑉𝑀 = 𝑛𝑡𝑄𝑀, is then straightforward.  

Finally, we calculate values of 𝑉𝑀 for different 

scenarios encompassing various numbers of wells 

Δ𝑝𝑠𝑢𝑝(𝒙𝑖 , 𝑡) =
𝑄𝜇𝑤

2𝜋𝑘𝐻
[

𝜇𝑐

𝜇𝑤

ln (
𝜓

𝑟0

) + ln (
𝑅

𝜓
)

+ ∑ ln (
𝑅

𝑑𝑖𝑗

)

𝑛

𝑗=2

] 

(1) 
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and inter-well distances to select the maximum 

possible overall capacity of the reservoir. 

3.2 Global Sensitivity Analysis 

and Uncertainty Assessment 

Quantifying the way uncertainties associated 

with the parameters embedded in the model 

propagate to its outputs can help identifying the 

most influential model parameters with respect to 

the target model response.  

We consider parameters A, H, 𝜙, k, c included in 

the mathematical formulations presented in 

Section 3.1 as uncertain.  For the purpose of our 

application, we neglect uncertainties linked to 

CO2/brine properties (e.g., density and viscosity). 

We introduce vector 𝜽 whose entries 𝜃𝑖 (i = 1, …, 

NP) correspond to the values of these NP = 5 

uncertain model parameters. 

We rely on modern Global Sensitivity Analysis 

(GSA) approaches and focus on the maximum CO2 

storage capacity of a target reservoir, 𝑌 = 𝑉𝐶𝑂2
, and 

quantify the contribution of each uncertain model 

parameter to its uncertainty. 

To do so, we take advantage of the recent 

moment-based global sensitivity metrics 

introduced by Dell’Oca et al. (2017), denoted as 

𝐴𝑀𝐴 indices.  

𝐴𝑀𝐴𝐸𝜃𝑖

𝑌 , 𝐴𝑀𝐴𝑉𝜃𝑖

𝑌  and 𝐴𝑀𝐴𝛾𝜃𝑖

𝑌  represent the 

sensitivity indices associated with the mean, 

variance, and skewness of 𝑌(𝜽), respectively 

(𝐸(•) denotes expected value, 𝑉(•) denotes 

variance and 𝛾(•) being skewness). They quantify 

the expected change of mean, variance, and 

skewness of 𝑌 due to variations of 𝜃𝑖, respectively. 

The combined use of these indices enables one to 

perform a comprehensive GSA of the target model 

response, 𝑌(𝜽), quantifying the impact of each 

entry of 𝜽 on the variability of 𝑌. 

These indices allow for a comprehensive 

description of how the structure of the pdf of 𝑌 is 

affected by variations of uncertain model 

parameters. 

4. Results 

4.1 Characteristics of the Analyzed 

Basins 

Basins introduced in Figure 1 are analyzed 

(preliminarily) here for the assessment of 

suitability for CO2 storage. We follow Wei et al. 

(2012) GIS-based framework of analysis, which 

reports that the basins in Figure 1b are potentially 

suitable for CO2 storage. The objectives considered 

are 4: (i) storage capacity and injectivity; (ii) risk 

minimization and storage security; (iii) 

environmental restrictions, and (iv) economic 

considerations.  

Authors show that 90% of CO2 sources are 

(within a maximum of) 160 km from one of selected 

CO2 storage reservoir; this allows to justify the total 

costs and needed technology for geological storage 

of CO2, on commercial scale in China (Dahowski et 

al., 2009). 

4.2 Uncertainty assessment  

Following the definition of a list of uncertain 

model parameters 𝜃𝑖 (with i= {1, …,5}). We refer to 

the information reported in the literature (Zeng et 

al., 2013; Diao et al., 2017; Fan et al., 2014; Wang et 

al., 2018; Jin et al., 2017) and assign relatively broad 

ranges of support to the values of 𝜃𝑖 uncertain 

variables. 

We assume values of the uncertain parameter 

being uniformly distributed. For  𝜃1 = 𝐻, we 

decide a ± 50 % range of support around the mean 

values reported in the literature; uncertainty in  

𝜃2 = 𝐴 of ± 20%; the variation of  𝜃3 = 𝑙𝑜𝑔10(k) is in 

the range of ± 1. Porosity is correlated to 

permeability as 𝜙 = 𝑎 𝑙𝑜𝑔10(k), such that the 

porosity and permeability of the sampling 

simulation parameters matches. We impose a 

support range of ± 0.03 to the values of a 𝜃4 = 𝑎. 

Therefore, for every value of permeability 

generated a corresponding value of porosity is 

quasi-randomly created. Accordingly, uncertainty 

in values of 𝜙 arises from the product of 

uncertainties in values of 𝜃3 and 𝜃4. Sample values 

of 𝜃5 = 𝑙𝑜𝑔2(c) are uniformly generated in a 

support range of ± 1 around mean value reported 

in the literature. 

Values of each 𝜃𝑖 parameter is then reflected 

into the values of the mathematical model (see 

Section 3.1) parameter of 𝐴, 𝐻, 𝜙, 𝑘 and 𝑐 as 

represented in Figure 2. As clearly illustrated, the 

sample pdfs of the values of mathematical model 

parameter do not necessarily follow uniform 

distributions, Figure 2 reports its distributions. 
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Figure 2: Distribution of sample realizations of 

uncertain parameters (𝜙, 𝑘, 𝑐). Sample realizations   

𝐴, and 𝐻 (not shown here) are uniformly 

distributed 

An ensemble of realizations is generated by 

sampling from supporting range of uncertain 

parameters and the storage capacity of each j 

reservoirs, 𝑉(𝐵𝑗), is evaluated. The total number of 

realizations generated is 104. Total capacity, 

𝑉(𝐵𝑡𝑜𝑡), is evaluated for the sum of realization 

values calculated over 10 studied basins.  

Figure 3 and Figure 4 provide the stability of 

mean, variance, skewness, and standard deviation 

(over mean) of the values of storage capacity with 

respect to the number of realizations. All graphs 

illustrate stability of MC simulation results (in 

terms of CO2 storage capacity) is achieved after 

almost 5000 realizations.  

 
Figure 3: Stability of Mean and Skewness of 

the storage capacity of the studied basins of our 

study 

 

 

Figure 4: Stability of Variance and Standard 

Deviation (over Mean) of the storage capacity of 

the studied basins of our study. 

 We quantify the degree of similarity between 

two different pdfs of the storage capacity 

increasing number of realizations in terms of the 

changes in Kullback - Leibler divergence, KLD 

(Kullback and Leibler, 1951). Small values of the 

KLD confirm that the MC simulations can reliably 

reproduce the distribution of storage capacity. 

Figure 5 shows that pdfs converge when we 

consider 6000 or more realizations. 

 

 

Figure 5: Values of KLD reported for sampled pdf 

of 𝑉(𝐵𝑡𝑜𝑡) values generated for selected 

subsequent sets  
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4.3 Sensitivity Analysis 

We quantify the sensitivity of the simulation 

model outputs (i.e., 𝑌 = 𝑉(𝐵𝑖)) with respect to the 

variations in the values of uncertain parameters, 𝜃𝑖, 

referring to the approach introduced in Section 3.2. 

We obtain that uncertainty in rock/fluid 

properties, as well as reservoir size all influence 

estimations of CO2 storage capacity of the 

relatively large basins, with small values of 

permeability; otherwise, for small basins with 

intermediate values of permeability, rock 

properties (i.e., 𝜙 and 𝑘) appear to be the most 

important parameters. Fluid properties and height 

of the reservoir are mainly influence simulation 

results of very large basins with relatively high 

values of porosity/permeability. 

4.4 Estimation of Storage Capacity 

Simulation results illustrate that sample pdfs of 

the potential storage capacity are different for the 

different basins. More precisely, we can see how 

sampled pdf of 𝑉(𝐵𝑗) for large basins with high 

permeability (i.e., B1-B2-B10) produce more normal 

kind distributions. Small basins of B3, B5 (even with 

high permeability) show some skewness to the 

high values of 𝑉(𝐵𝑗). The combination of large 

basins and small permeability (B4-B6-B7) produces 

some skewness to the small values. The sampled 

pdfs of the very large basins (B8-B9) show skewness 

to high values.  

Left skewed distributions can be related to the 

constraint imposed to the simulations by the 

minimum interwell distance (i.e., 3 km), which for 

small reservoir becomes restrictive accumulating 

most of the sustainable scenarios to the left of the 

mode. Otherwise, a right skewed distribution is 

due to the engineering constraints assumed (i.e., 𝑄𝑠 

= 5 Mt/y per well) which limit the storage capacity 

achievable by a given number of wells.  

To summarize simulation results, Figure 6 

reports the sample pdf of 𝑉(𝐵𝑡𝑜𝑡) in conjunction 

with the boxplot reporting the median, located 

around 1400 Gt (red line), and the range of third 

quantiles (25% to 75%) in 1100-1700 Gt. We have 

some outliers in the tail to the high values 

confirming that distribution of the 𝑉(𝐵𝑡𝑜𝑡) values 

do not follow a normal distribution. As we 

reported in section 2.2, CO2 emissions to be abated 

in China for the next 30 years, are expected to be 80 

Gt (according to APS). This can be so far behind the 

supporting range of the third quintile of 𝑉(𝐵𝑡𝑜𝑡), as 

reported in Figure 6. Accordingly, the storage 

capacity of China seems to be robust and able to 

meet the needs of most of the CO2 emissions 

around the territory, with multiple possibilities to 

pair emission sources to the storage sites. 

 

  

Figure 6: Sample pdf of total CO2 storage capacity, 

𝑉(𝐵𝑡𝑜𝑡), in 10 selected basins of China. 

5. Conclusions 

Carbon capture and storage is fundamental to 

reach net-zero purposes. This study aimed to 

estimate the total geological storage capacity of 

some main basins in China. A total of 10 reservoirs 

are analyzed preliminarily and selected following 

suitable economic, environmental, and 

geophysical characteristics. We performed 

simulation of the onshore CO2 storage capacity in 

China.  

Our study confirms an average of 1400 Gt 

(within a support range of [1100-1700] Gt) of CO2 

that can be stored in geological formations during 

30 years in China. Present work confirms that CCS 

technology can fully sustain the required needs of 

CO2 capture in China.  

The uncertainty assessment and sensitivity 

analysis provided an important insight into the 

most influencing parameters and the behavioral 

anomalies of the reservoirs due to their 

characteristics.  

Results provided in this work can be used as a 

first step for further decision making, detailed 

investigations, and developments of CCS projects. 
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Performed uncertainty assessment offers 

important insights on the most influencing 

parameters and on the behavioral anomalies of the 

reservoirs due to their characteristics. This 

information can be used as a guideline for 

investigative and decision-making purposes. 

Furthermore, a source-sink matching (e.g., Wei et 

al., 2013) analysis, can assure an economical and 

feasible implementation of the technology, which 

may encounter substantial costs in case of long-

range CO2 transport needs.  
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