
Executive Summary of the Thesis

Neural Architecture Search for Tiny Incremental On-Device Learning

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Marco Lacava

Advisor: Prof. Manuel Roveri

Co-advisors: Matteo Gambella, Massimo Pavan

Academic year: 2022-2023

1. Introduction
Traditional Machine Learning (ML) algorithms
often rely on high computational power and
memory resources to process and store the
data. While these requirements are feasible
in resource-rich environments, they pose sub-
stantial difficulties when applied to energy-
efficient solutions with constrained resources.
The field of Tiny Machine Learning (TinyML)
[5] focuses on deploying energy-efficient ML al-
gorithms on small, low-power microcontrollers
units (MCUs), which are commonly found in
tiny devices. One of the most promising research
fields in TinyML is incremental on-device learn-
ing, which consists in the ability of a TinyML
model to learn and adapt to new data directly
on the device itself, without constant reliance on
cloud connectivity or the need to retrain the en-
tire model offline. Given the limited resources
available in tiny devices, incremental on-device
learning presents a particularly challenging sub-
ject. A state-of-the-art solution that successfully
addresses this challenge is TyBox, a toolbox for
the automatic design and code-generation of in-
cremental on-device TinyML models [3].
Alongside Machine Learning, Automated Ma-
chine Learning (AutoML) has emerged as a pow-
erful technique that streamlines the ML pipeline

by enabling to automatically build ML appli-
cations without much requirement for statisti-
cal and ML knowledge. A powerful AutoML
approach is Neural Architecture Search (NAS),
which aims to automate the design of a neu-
ral architecture optimized on its accuracy and
computational requirements for a given task
and dataset. Constrained Neural Architecture
Search (CNAS) [2] is a novel NAS technique
that integrates TinyML inspired technological
constraints, enabling the development of mod-
els that can effectively operate on devices and
systems with limited computational power or
energy availability. However, the models pro-
duced by CNAS predominantly target mobile
devices, which possess significantly greater com-
putational resources compared to MCUs. As
CNAS was not designed to accommodate the
strict technological requirements of MCUs, the
technique is not suitable for deployment on tiny
devices. Moreover, the static networks designed
by CNAS are not suitable for incremental on-
device learning.
This work aims at addressing the aforemen-
tioned problems by combining CNAS with the
severe constraints of MCUs, in order to obtain
a model for tiny incremental on-device learning.
Our goal is to design a methodology to integrate
CNAS with the TyBox toolbox.

1



Executive summary Marco Lacava

In particular, the approach presented in this pa-
per consists of:

• the application of compression techniques
to reduce the computational load and mem-
ory demand of a CNAS designed neural net-
work;

• the implementation of an extended version
of the TyBox toolbox incorporating full-
integer quantization, to design an incremen-
tal on-device learning version of the reduced
network.

2. Background
2.1. Pruning and quantization
One of the key challenges in deploying ML mod-
els on tiny devices is the size of the models
themselves. Traditional deep learning models
tend to be large and memory-intensive, making
them unsuitable for deployment on constrained
devices. To address this issue, model size com-
pression techniques have emerged as effective so-
lutions, with pruning and quantization being at
the forefront.
Pruning is a technique that aims at remov-
ing weight connections from a neural network
model, without compromising its predictive ca-
pabilities. By eliminating these unnecessary
connections, pruning significantly reduces the
number of parameters in the model, resulting
in an efficiency and size improvement.
Quantization refers to the process of reducing
the precision of numerical representations used
in a ML model. Most models use 32-bit floating-
point numbers to represent weights and acti-
vations. Quantization involves approximating
these numerical values to lower bit-widths, thus
enabling smaller memory storage requirements
and faster computations while maintaining ac-
ceptable performance levels.
While pruning and quantization individually of-
fer substantial model size reductions, their com-
bination can achieve even greater compression,
allowing for highly compact models that are
well-suited for deployment on devices with lim-
ited resources.

2.2. TyBox
While compression techniques such as pruning
and quantization have made it feasible to deploy
compressed ML models on resource-constrained

devices, the training process itself poses unique
obstacles. Training requires a large computa-
tional load and memory demand that often ex-
ceed the capabilities of tiny devices. Most of the
solutions present in the literature assume that
devices only support the inference of ML mod-
els, while the training is carried out in the Cloud
where appropriate computing and memory re-
sources are available. This approach prevents
embedded systems and IoT units to incremen-
tally learn on the field as soon as new data arrive
to improve their accuracy over time or to adapt
to evolving working conditions.
The TyBox toolbox addresses this challenge by
providing a solution for the design and code-
generation of incremental on-device TinyML
models [3]. TyBox is designed to receive in in-
put a standard TinyML model y = Φ(I), where
I is the input and y is the output, and the tech-
nological constraint M on the on-device RAM
memory that must be satisfied by the designed
incremental TinyML solution (on both inference
and training phases). Ω(•), the incremental ver-
sion of Φ(•), is composed by a fixed feature ex-
traction block Φf (•), an incrementally learnable
classification block Φc(•) and a buffer B. The
buffer stores supervised samples coming from
the field. Its primary function is to mitigate the
“catastrophic forgetting" effect by retraining the
incremental model on all the samples in B every
time a new supervised sample becomes available.
The buffer is sized to maximize the amount of
stored data while respecting the constraint im-
posed by M. Φ(•) is partitioned in two compo-
nents: the feature extractor Φf (•) and the clas-
sifier Φc(•). This division allows for a reduction
in both memory usage and computational de-
mands, as only the classifier Φc(•) is retrained
on-device. Φf (•) and Φc(•) are assumed to be
separated by a Flatten layer, which is the point
of the model where Φf (•) is split. Moreover, B
only stores ψI , the features extracted by Φf (•),
and not the original input data I, hence reduc-
ing also the memory demand of the buffer. Once
Ω(•) has been designed, C++ codes and library
implementing the inference of Φc ◦ Φf and the
incremental on-device training of Φc(•) are au-
tomatically generated. Consistency in notation
has been maintained throughout this work to
reference the same components.

2



Executive summary Marco Lacava

2.3. Constrained NAS
NAS is the process of discovering the best archi-
tecture for a neural network for a specific need,
automating the design of the neural network.
NAS algorithms are categorized according to
three components: Search Space, which defines
the set of possible architectures to be consid-
ered, Search Strategy, which establishes how to
explore the search space, and Performance Es-
timation Strategy, which refers to the process
of estimating the performance to be optimized.
NAS methods explore a search space of possible
architectures and find the best one by optimizing
certain objective functions. The search process
involves training and evaluating multiple candi-
date architectures, updating the search strategy
based on the performance of these architectures,
and repeating the process until a satisfactory
architecture is found. Finally, the optimal ar-
chitecture performance is evaluated on the val-
idation set, and some methods to speed up the
performance estimation are usually applied.
A prominent family of NAS solutions is the so-
called One-Shot NAS, that relies upon a Once-
For-All (OFA) supernet, a network that en-
capsulates many possible architecture configura-
tions. The key advantage of OFA is the decou-
pling of the search and training phases: instead
of training each architecture individually, only
the supernet is trained once on a big dataset like
Imagenet and the networks are evaluated simply
by inference on a different dataset, without the
requirement of additional training.
Typically, NAS solutions based on OFAs aim
at optimizing only the classification accu-
racy of the designed neural networks. Dif-
ferently, Hardware-Aware NAS solutions take
into account other figures of merit such as
computational complexity or memory demand.
An example is Evolutionary Multi Objective
Surrogate-Assisted NAS (MSuNAS), an OFA
based NAS that adopts a bi-objective genetic
algorithm - NSGA-II - to simultaneously opti-
mize the model’s accuracy and an additional sec-
ondary objective, specifically the number of pa-
rameters, the number of MACs, or the latency
of the model. MSuNAS is a surrogate-assisted
NAS since it uses a surrogate accuracy predic-
tor, that significantly accelerates the evaluation
of each candidate architecture during the search
process avoiding its training.

CNAS is a NAS solution that extends MSuNAS
by imposing various types of constraints in the
search process. Specifically, CNAS is well suited
for TinyML applications because it accommo-
dates constraints related to the technological re-
quirements - memory and CPU clock - of the
device considered for the deployment. These
technological constraints are imposed in the sec-
ondary objective of the optimization that ac-
counts jointly for the number of parameters,
MACs and activations of a designed architec-
ture.
The CNAS constrained optimization problem
can be formulated as follows:

minimize G (Sf (x̃), ΦCNAS(x̃))

s.t. x̃ ∈ Ωx̃
(1)

where G is the bi-objective optimization func-
tion, x̃ and Ωx̃ represent a candidate neural net-
work and the search space of the search, re-
spectively, Sf is the accuracy of x̃ predicted
by the surrogate model, and ΦCNAS(x̃) is the
new secondary objective introduced by CNAS,
which accounts for the technological constraints
received in input by penalizing any architec-
ture not meeting the limitations imposed by the
target development device. At the end of the
search, CNAS returns the set of the k optimal
network architectures Xo = {xo1, . . . , xok}. These
resulting networks achieve the best trade-off be-
tween accuracy and the hardware requirements.

3. Proposed solution
NAS significantly advances the automatic devel-
opment of high-performing models. However,
the transition from a discovered architecture to
a deployable application involves manual coding
tasks, which can be time-consuming and limit
the reproducibility of research findings. By in-
tegrating NAS with automatic code-generation,
it is possible to bridge the gap between research
and deployment: after an architecture is discov-
ered by NAS, the corresponding code for that ar-
chitecture is generated automatically. This not
only accelerates the deployment of novel archi-
tectures but also ensures consistency and relia-
bility in the implementation process.
The focus of our work revolves around the inte-
gration of CNAS with TyBox, in order to intro-
duce a methodology for the automated design
and code generation of incremental on-device

3



Executive summary Marco Lacava

CNAS Structured
pruning

Static baseline
model 

Pruned baseline
model 

 

 

Full-integer
quantization

 

TyBox

   

Features
dequantization

adapt

I

y

Incremental 
model 

Figure 1: An overview of the proposed methodology. In yellow are highlighted the models and compo-
nents produced in the intermediate steps, in blue the techniques applied and in green the components
of the resulting incremental solution.

learning models that adhere to the strict con-
straints of MCUs. Specifically, our work ex-
pands the CNAS TinyML image multi-class clas-
sification case study, where the CNAS algorithm
has been applied on a supernet based on Mo-
bileNetV3, a state-of-the-art Convolutional Neu-
ral Network (CNN). The architecture selected
as the baseline Υ(•) for our experiments corre-
sponds to the smallest optimal model discovered
during the CNAS search process and is described
in Section 4.1. This architecture is composed
of multiple non-linear convolutional blocks fol-
lowed by a final Dense layer responsible for the
classification task. The connection between the
final layer and the preceding blocks is facilitated
through a Flatten layer.
The size of Υ(•) amounts to 8.72MB, a dimen-
sion which significantly exceeds the operational
capabilities of MCUs. To achieve a reduction in
model size, various compression techniques have
been explored. Among the considered meth-
ods, structured pruning and post-training full-
integer quantization have been selected as the
chosen approaches. In contrast to conventional
pruning techniques, which simply convert the
weights with smaller magnitudes to zeros, struc-
tured pruning involves the effective compres-
sion of model occupation by removing its non-
essential components. In our scenario, struc-
tured pruning has been applied to the Convolu-
tional layers to eliminate their least relevant fil-
ters. The filter’s relevance is estimated by com-
puting the L1-norm of the filter’s weights.
Pruning alone proves insufficient in achieving a
network that meets the restrictions of tiny de-
vices. Consequently, the TyBox toolbox has
been extended to incorporate full-integer quanti-

zation. Full-integer quantization has been iden-
tified as the optimal method in this scenario due
to its capability to convert model input, model
output, weights, activation outputs into 8-bit in-
teger data, compared to other quantization tech-
niques which may leave some amount of data in
floating-point. This allows to achieve up to a 4x
reduction in memory usage and up to a 3x im-
provement in latency. Once the static baseline
model Υ(•) has been pruned, resulting in Φ(•),
it undergoes a decoupling process within TyBox,
resulting in a feature extractor Φf (•) and a clas-
sifier Φc(•). Φf (•) is composed by all the con-
volutional blocks of Φ(•), while Φc(•) consists
solely of the final Dense layer. The primary ad-
vantage of TyBox lies in its incrementally learn-
able classifier, which constitutes a negligible por-
tion of the overall model size. Hence, quantiza-
tion is exclusively applied to Φf (•), producing
Φ̂f (•). Since Φ̂f (•) produces 8-bit outputs, while
Φc(•) is designed to receive 32-bit inputs, ψI(•)
undergoes a dequantization process before being
passed to Φc(•).
A visual representation of the described method-
ology is given in Figure 1. The techniques im-
plemented have been selected for their ability to
considerably reduce the model size while miti-
gating the drop in accuracy. A detailed account
of their effects is presented in Section 4.2. In
addition to reducing the memory occupation of
the model, the applied compression techniques
contribute to a decrease in the memory demand
of the TyBox buffer B. The samples stored in
B correspond to the features extracted from an
image by Φ̂f (•). By pruning the filters of the
last convolutional layer of Φf (•) and by imple-
menting full-integer quantization, the output ex-

4



Executive summary Marco Lacava

tracted from Φ̂f (•) is compressed, thus reduc-
ing the dimension of each latent representation.
During the incremental training, the quantized
buffer samples undergo dequantization in order
to match the resolution of Φc(•).

4. Experimental results
4.1. Baseline model conversion
The CNAS architecture used as the baseline
Υ for the following experiments has a size of
8.72MB, and is characterized by the following
configuration: params: 2.14M, macs: 6.85M,
activations: 0.23M, top1 accuracy : 89.9%. The
CNAS algorithm has been developed in Py-
Torch, while the TyBox toolbox has been de-
signed to receive in input a model in Ten-
sorFlow (TF) file format. Given the differ-
ent formats of the two solutions and the non-
linearity of the CNAS model, we opted to man-
ually convert the CNAS architecture and train
it from scratch in TF. To address the conver-
sion process, a different input image size has
been adopted. The CNAS supernet was initially
trained on Imagenet, which contains 256x256
color images, while the subnetworks were fine-
tuned on CIFAR-10, comprising 32x32 color im-
ages that have been resized to match the reso-
lution explored by the NAS. The PyTorch net-
work chosen as baseline for our experiment has
an input size of 40x40. Due to resource limita-
tions, conducting the supernet training on the
Imagenet dataset in TF was not feasible. Con-
sequently, only the training on CIFAR-10 has
been performed, using an input image size of
32x32. The network has been trained for 150
epochs using a custom configuration, with Adam
optimizer, a learning rate of 0.0015, and early
stopping (patience of 20 epochs), resulting in an
accuracy of 79.29%. The poorer performance of
the TF training has been attributed to the differ-
ences in training, the diverse data preprocessing
between the two ML libraries and the different
input image sizes required by the two networks.

4.2. Proposed methodology
This section details the results achieved by the
application of the proposed methodology de-
scribed in Section 3 and presented in Table
1. The target technological constraint M we
imposed on the on-device RAM memory, and

that must be satisfied by the final incremental
TinyML solution, is 1 MB.

Model Size (%) Accuracy
Υ 8.72MB (100%) 79.29%

Φ4.31MB 4.31MB (49.4%) 79.48%
Ω1.19MB 1.19MB (13.7%) 78.50%
Φ2.89MB 2.89MB (33.1%) 77.15%
Ω801kB 801kB (9.2%) 75.00%

Table 1: Structured pruning and full-integer
quantization results. The size of each model
represents the occupation of both weights and
activations.

By removing the least significant convolutional
filters of Υ, a compression of up to 49.4% of
the original size can be achieved without ex-
hibiting any significant accuracy drop. In accor-
dance with the established memory constraint
M, the primary model selected for deployment
is Φ2.89MB. An evaluation of the performance of
Φ4.31MB has also been conducted to assess the
impact of a more relaxed pruning. The imple-
mentation of full-integer quantization in TyBox
induces a substantial reduction in model size, ac-
companied by a concurrent decrease in accuracy,
that is influenced by the strictness of the previ-
ously performed pruning. Considering Φ2.89MB,
although experiencing a 2.15% drop in accuracy,
the resulting TyBox incremental model Ω801kB

achieves an occupation of 801kB, making it suit-
able for the deployment on a device with mem-
ory constraint M. The size reduction does not
correspond to exactly 75% because, as antici-
pated in Section 3, only the FE, which consti-
tutes the 98.8% of Ω801kB, has been quantized.

4.3. Application scenarios
The experimental setting concerns the image
classification on a multi-class problem. For
this purpose, the CIFAR-10 and Imagenette [1]
datasets have been considered. To validate the
performance of the incremental models, we con-
sidered the same application scenarios that have
been used for the validation of the TyBox multi-
class case study [3]. A description of the scenar-
ios is provided in the following subsections.
The incremental model used in this experimen-
tal setting is Ω801kB, since it is the one that
respects the target constraints imposed by M.
Considering that during the deployment some

5



Executive summary Marco Lacava

(a) Concept Drift. (b) Incremental Learning. (c) Transfer Learning.

Figure 2: Application scenarios results.

of the available 1MB memory is dedicated to
the storage of libraries and code, the memory
constraint imposed in the TyBox experiments is
830kB. This allows to have a buffer B of around
29kB. By applying structured pruning on the
last convolutional layer of Ωf and by implement-
ing full-integer quantization in TyBox, each in-
dividual buffer sample requires only 187 bytes
for storage, so B801kB achieves a capacity of 158
samples. In each experiment, the training set is
provided in an incremental manner during the
experiments, while 200 elements of the test set
are used to evaluate the classification accuracy
after each supervised sample is provided. Two
distinct solutions are considered for the compar-
ison: the non-quantized TyBox incremental ver-
sion of the original baseline model, ΩBaseline(•),
and TinyOL [4], an alternative incremental on-
device toolbox, which perform the incremental
training only on the latest supervised sample
received rather than all the samples stored in
B, equivalent to a quantized TyBox incremen-
tal model with buffer size equal to 1. The per-
formance of Ω1.19MB are also provided, to ana-
lyze the impact of a less strict pruning. To en-
sure comparable results, many different learning
rates have been tested for each model. Experi-
mental results are listed in Fig. 2. The results
represent the mean over 5 repetitions of the ex-
periments. For the sake of clarity, confidence in-
tervals have been omitted from the graphs, but
have been reported in the experiments descrip-
tion.

4.3.1 Concept drift

With concept drift, the distribution of the data
changes over time after the model has been

deployed on-device. This application scenario
measures the ability of the designed incremen-
tal model to recover from changes in the process
generating the data. We considered an abrupt
concept drift affecting the CIFAR-10 multi-class
classification problem where classes 4 and 6 are
swapped at sample 100. The total number of
training set samples is 800. The initial ad-
justment in accuracy antecedent to the concept
drift can be attributed to incremental learning.
Although both Ω801kB(•) (0.658 ± 0.019) and
Ω1.19MB(•) (0.663 ± 0.021) are able to gradu-
ally recover from the concept drift, they do not
manage to reach their initial level of accuracy.
This is reasonable considering the substantial
compression the models have been subjected to.
Notably, the TyBox Ω801kB(•) incremental so-
lutions display a superior recovery compared to
its TinyOL counterpart (0.613 ± 0.014). This is
certainly attributed to the increased buffer size.
As expected, ΩBaseline(•) is able to completely
recover from the effects of concept drift (0.778
± 0.007).

4.3.2 Incremental learning

With incremental learning, the task to be solved
is extended after the model has been deployed
on-device. This application scenario measures
the ability of the model to learn a new task
without forgetting the old one. More specifi-
cally, the classification problem on the CIFAR-
10 dataset is initially configured comprising only
classes from 0 to 7, while at sample 100, even
classes 8 and 9 are included in the classification
problem. 700 samples are used as incremental
training set, while the test set comprises 200
samples containing all the 10 classes.

6



Executive summary Marco Lacava

The models used in this experiment are different
from those of the other two scenarios. The base-
line CNAS architecture has been only trained
over the classes 0-7, achieving an accuracy of
61.42%. It is noteworthy that networks that un-
derwent a more substantial training are able to
achieve higher accuracies on classes 0-7, but ex-
hibites challenges when attempting to learn the
classes 8-9. The incremental models used for
the experiment have been derived from this par-
ticular baseline model ΥIL(•). Considering the
distinctions in the training dataset, the largest
compression achievable without introducing any
significant drop in accuracy provides an incre-
mental model ΩIL

954kB(•) of size 954kB. All the
models maintain acceptable performance in the
previously learned classes. ΩIL

954kB(•) is able to
partially learn the new classes (0.353 ± 0.047)
but struggles to reach a level of accuracy close
to the old classes (0.502 ± 0.008). On the
other hand, both ΩIL

1.19MB(•), benefitting from a
more relaxed pruning, and ΩIL

Baseline(•), manage
to achieve classification accuracies on the new
classes (0.464 ± 0.047, 0.518 ± 0.089) compa-
rable to those of the old classes (0.452 ± 0.022,
0.422 ± 0.021). In contrast, the TinyOL solu-
tion is only able to partially learn the new classes
(0.243 ± 0.240) due to its limited buffer size.

4.3.3 Transfer learning

With Transfer Learning the static CNAS model
is initially trained to solve a given task and,
once compressed and deployed, it is incremen-
tally re-trained on-device to address a different
task. This application scenario measures the
ability of the designed algorithm to transfer pre-
viously acquired knowledge to a different classi-
fication task. To test the incremental learning
ability of the proposed solution, we trained Υ(•)
on CIFAR-10 and we applied the incremental
learning procedure on Imagenette. This dataset
has been divided into training (700 samples)
and testing (200 samples). ΩBaseline(•) (0.505
± 0.092), as well as Ω801kB(•) (0.320 ± 0.041)
and Ω1.19MB (0.381 ± 0.047), is able to learn
the Imagenette dataset over time, although the
two TyBox incremental models do not manage
to attain results comparable to those achieved by
ΩBaseline(•). This degradation in performance
is undeniably related to the severity of the
compression executed. Lastly, given their con-

strained buffer size, the TinyOL solution fail to
effectively learn the new dataset (0.021 ± 0.020).

5. Conclusions
The aim of this work was to design a method-
ology to integrate CNAS with tiny incremen-
tal on-device learning making use of the Ty-
Box toolbox, in order to provide an incremental
version of a CNAS subnetwork that conforms
with the restrictions of tiny devices. This was
achieved by applying structured pruning and
by extending TyBox with full-integer quanti-
zation. The effectiveness and efficiency of the
proposed methodology were evaluated across di-
verse application scenarios. Comparative anal-
yses were conducted against the original CNAS
model and an alternate incremental on-device
toolbox. Measurements showed that solutions
designed with our methodology achieve perfor-
mance comparable to those of the original CNAS
model, and consistently outperforms the incre-
mental models produced by the alternative tool-
box. Future directions involve addressing the ac-
curacy drop caused by the baseline model con-
version, exploring the impacts of other com-
pression techniques, and their integration in the
CNAS framework.

References
[1] Fast.ai. Imagenette. https://github.com/

fastai/imagenette, 2022.

[2] Matteo Gambella and Manuel Roveri.
Searching neural architectures with con-
straints, 2021.

[3] Massimo Pavan, Eugeniu Ostrovan, Ar-
mando Caltabiano, and Manuel Roveri.
Tybox: An automatic design and code-
generation toolbox for tinyml incremental
on-device learning. ACM Trans. Embed.
Comput. Syst., jun 2023.

[4] Haoyu Ren, Darko Anicic, and Thomas A.
Runkler. Tinyol: Tinyml with online-
learning on microcontrollers. In 2021 In-
ternational Joint Conference on Neural Net-
works (IJCNN), pages 1–8, 2021.

[5] Pete Warden and Daniel Situnayake.
Tinyml: Machine learning with tensor-
flow lite on arduino and ultra-low-power
microcontrollers. O’Reilly Media, 2019.

7

https://github.com/fastai/imagenette
https://github.com/fastai/imagenette

	Introduction
	Background
	Pruning and quantization
	TyBox
	Constrained NAS

	Proposed solution
	Experimental results
	Baseline model conversion
	Proposed methodology
	Application scenarios
	Concept drift
	Incremental learning
	Transfer learning


	Conclusions

