
Executive Summary of the Thesis

Building reactive processing rules for knowledge graphs

Laurea Magistrale in Computer Science and Engineering

Author: Alessia Gagliardi

Advisor: Prof. Stefano Ceri

Co-advisor: Dr. Anna Bernasconi

Academic year: 2021-2022

1. Introduction
In this thesis, we present a proposal for in-
corporating reactive rules into property graphs.
Our approach involves a feasibility study on the
spread of the COVID-19 virus which allowed the
implementation of Reactive Knowledge Rules in
Neo4j and its querying language, Cypher. Our
study builds on the existing work in the field of
active databases and draws on the established
use of database triggers. We also consider how
knowledge is currently managed and how con-
cepts such as old and new state, which are in-
tegral to database triggers, can be applied to
reactive knowledge rules. The purpose of this
executive summary is to provide an overview of
the key findings of our research on these topics.

2. State of Art of Active
Databases and Knowledge
Graphs

The interest in active databases began in the
1970s and 1980s, and eventually, in the 1990s,
active databases in traditional database sys-
tems were developed and finalized [3]. Active
databases automatically respond to events that
occur in the database if certain conditions are
satisfied. These mechanisms are called rules

or triggers. Within the SQL3 standard, trig-
gers typically consist of Event-Action-Condition
(ECA) rules. The ECA paradigm states that
"whenever an event e occurs, if a condition c is
true, then an action a is executed"
However, with the rise of the internet as a tool
for the general public, data began to increase
both in volume and interconnectedness, and
SQL-based relational databases were no longer
considered the best choice.
The NoSQL ("Not only SQL") space brings to-
gether many interesting solutions offering dif-
ferent data models and database systems. In
this study, we will focus on graph technologies,
a topic that has gained recognition from the IT
community but has yet to garner large-scale aca-
demic study. Graph database models took off in
the 1980s and early 1990s.
The rise in popularity of NoSQL’s graph
databases can be attributed to three main prop-
erties of these types of data models: perfor-
mance, flexibility, and agility. The large partic-
ipation and attention on graphs databases led
also to the start of the ongoing ISO standard-
ization effort, aiming at defining a new stan-
dard Graph Query Language (GQL). A few arti-
cle aimed at incentives the development of GQL
have been drafted. Specifically, the articles on
PG-Keys[1] and PG-Schema[2] provide a formal-

1



Executive summary Alessia Gagliardi

ization of two important concepts for property
graphs.

3. Knowledge Graph
Knowledge Graphs are flexible, reusable data
layers used for answering complex queries across
different data domains by creating connections
between contextualized data, represented and
organized in the form of graphs. They are built
with the aim to represent the fluctuating nature
of knowledge.
A Knowledge Graph model comprises two ele-
ments: nodes and edges. Nodes can be resources
with unique identifiers, or they can be values
with literal strings, integers, or whatever. The
edges (also called predicates or properties) are
the directed links between nodes. The “from
node” of an edge is called the subject. The “to
node” is called the object. Thus, a Knowledge
Graph is a directed graph of triple statements.

4. Reactive Knowledge Rules
The main contribution of this thesis is to extend
the theory and concepts of active databases in
order to build reactive knowledge bases, which
respond to the need of reacting to knowledge
changes.
With the same approach used for Active
Databases, we define a Reactive Knowledge Rule
as triple (Event, Condition, Action). The event
captures the data modifications e.g., the cre-
ation and deletion of nodes or relationships. For
the Condition and Action parts we introduce two
new components: Guards and Alerts.
• The Guard is an existential predicate that

reveals situations that can be considered in-
teresting and deserve further investigation

• The Alert is a program that further ana-
lyzes the situation in order to understand
if it is critical. If this happens, the Alert
produces a new node, labeled Alert, which
includes all the information that is neces-
sary to manage the knowledge change. If,
instead, the situation is not considered crit-
ical, then the Alert has no side effects.

As reactive rules are designed to respond to
changes in the graph data structure, each of
them typically reference a particular knowledge
hub.Knowledge Hubs are areas of interest
united by the knowledge they share forming an
interaction knowledge graph.

We also classify different types of reactive rule
through some orthogonal properties. Firstly
we distinguish intra-hub and inter-hub rules
which differ in the scope. The former’s scope is
confined within a single knowledge hub. While
the scope of the latter spans over multiple hubs.
However it is also crucial for reactive rules to
have a temporal reference about the knowledge.
Reactive processes are actually equipped with
variables denoted by keywords OLD and NEW
however those variable are not available in the
context of graph database. To distinguish these
types of reactive rules we introduced other two
properties: a rule whose Alert part can be ex-
pressed on the current state takes the name of
single-state, while a rule whose Alert part re-
quires comparing several states of the knowledge
base can be defined as multi-state.

5. The COVID-19 Example
Since the outbreak of the COVID-19 virus, the
evolution of the virus has been constantly moni-
tored. Given the many milestones reached in the
research of property graphs, it is evident that
modeling the COVID-19 knowledge as a graph
could potentially have an important impact to
get a deeper insight into new outbreaks of the
virus or simply to monitor the spreading of the
mutations. The example that we present in our
study, allowed us to better understand what are
the current challenges in building active process-
ing rules in these types of scenarios.
The example proposed in the thesis monitors
of the spreading of the COVID-19 virus over a
geographical region. As shown in Figure 1 we
consider nine types of nodes: the collected Se-
quences of the virus, the Variants classified by
the scientific community, the Laboratories in
which the virus is being analyzed, the Muta-
tions that are found in the sequences, the even-
tual Critical Effect a new mutation can bring,
the Patients affected by the virus and admitted
to Hospitals including the eventuality in which
they are cured in Intensive Care Unit. Fi-
nally, we have some Region nodes which confine
a geographical region with its Labs and Hospi-
tals.
To better understand the distribution of those
nodes we can map a partition of the domain
of applications as we envision four knowledge
hubs. The Experimental Hub that studies

2



Executive summary Alessia Gagliardi

Figure 1: Representation of the graph nodes,
relationships and knowledge hubs.

mutational effects. Analysis hub that asso-
ciates sequences produced at a given location
with known variants. Clinical hub at a given
hospital. And Regional hub at a given region,
possibly hosting many hospitals.

5.1. Reactive Knowledge Rules ex-
ample

As reactive rules are designed to respond to
changes in the graph data structure, each of
them typically reference a particular knowledge
hub. Each reactive rule refers to the knowledge
hub that contains nodes sharing the same label
as the "new-node" referenced in the rule.
In our example we propose four reactive rule dis-
tributed as follows: one for the Experimental
hub, two for the Analysis Hub and one for the
Clinical Hub. While proposing those reactive
rules we tried to create rules of different types
as Table 1 shows.

Reactive rule on
Experimental
Hub

Single-state Intra-hub

Reactive rules
on Analysis
Hub

Single-state Inter-hub

Reactive rule on
Clinical Hub

Multi-states Inter-hub

Table 1: Classification of Reactive Knowledge
Rules proposed in the COVID-19 example.

6. Periods of observation
Before seeing the actual implementation of the
example rules in Neo4j we are going to discuss
about periods of observation. Focusing on the

multi-state reactive rules, it is clear that we need
to be able to distinguish different state of the
knowledge. But since graph databases do not
exist a concept of OLD state of the graph we
need to think of an out-of-the-box solution. In
our study we propose two models: the Total
Replication model and the Essential Sum-
mary model.
The Total Replication approach periodically
replicates the graph. To differentiate the various
graphs we need a reference to the corresponding
period to which they are linked. Thus, when a
copy of the graph is created, each node of that
replication will be connected to a special node
that has a reference to the date and time of
the creation of the replica. What we are going
to have is a graph that we are going to call
"Current" and other "Version" graphs referred
to each replica. By following this procedure we
can ensure a comprehensive representation of
the graph, encompassing the nodes and their
relationships. By querying every aspect of the
graph, users can obtain a comprehensive view
of the data and identify patterns and trends.

In the Essential Summary model we in-
stead keep track of the events and not of
the entire graph. The Essential Summary
corresponds to a specific data structure created
at each execution of the periodic query. Since
this approach does not store the entire version
of the graph at a specific instant, nodes of the
Essential Summary type may need to store
additional properties. For instance it may be
useful to store a specif value needed for a future
comparison with that day.

While a Total Replication allows to obtain
a comprehensive view of the data, it presents
some downsides. There are drawbacks in the
storage due to the large space required to main-
tain all the replicas. But another issue that this
approach can have is towards performance since
maintaining consistency across multiple replicas
can be challenging and may lead to an increased
latency. Therefore it may be beneficial to follow
the approach of the Essential Summary model.

7. Neo4j and Cypher
In order to deploy our use case into a concrete
example we decided to use the Neo4j, a graph

3



Executive summary Alessia Gagliardi

database management system. Implemented
in Java, Neo4j can be accessed from software
written in other languages using the Cypher
query language via a transactional HTTP
endpoint or the binary "Bolt" protocol.

Neo4j belongs to the so called Labeled Property
Graph Models. A labeled property graph is
composed by nodes that are the entities in
the graph, relationships that connect two node
entities, properties that are key-value pairs
containing relevant information about a node
and labels which distinguish their different roles
and groups entities together.

Its querying language, Cypher, a new ex-
pressive (yet compact) graph database query
language to create, manipulate, and query data.
Cypher is designed to be easily read and un-
derstood by developers, database professionals,
and business stakeholders; it enables users to
ask the database to find data that matches a
specific pattern. However, as we will see later,
Cypher has limited functionalities. In order to
fulfil this need Neo4j and Cypher have opted for
the possibility to extend their functions through
User Defined Procedures and Functions. Some
libraries provide some functionalities to further
extend Cypher. In our study we will make use of
the APOC library which has become a standard
in Neo4j thanks to how well-supported and easy
it is to run it through separate functions or
to include it in Cypher queries. Two relevant
APOC’s procedures used in this thesis are
apoc.do and apoc.trigger which we are going
to present in the following section.

8. Proof-of-Concept
In this section we are going to discuss proce-
dures and functionalities developed in our study
to demonstrate the feasibility of our proposal.

In order to import the data into the Neo4j
database server we created some CSV file. This
files has a specific structure where each column
will be interpreted in our Java application to
populate the graph database. For instance, the
first column specifies the type of operation to
perform (e.g., creation or deletion of nodes).
The second column will instead specify the
label, and therefore the type, of node on which

the operation will be performed. The other
columns will instead contain the values of the
properties of the node itself or other reference
to the node it has a relationship with.

The CSV file will be read by a Java appli-
cation that we called NodeGenerator.java
which connects to the Neo4j server through a
Bolt protocol. This application takes care of
the queries that are going to create or delete
the node from the database. For each row read
from the CSV file, it interprets the values of
each column and fills correctly the query to
performed.

8.1. Reactive Knowledge Rules in
Neo4j

In this thesis we replicated the Reactive Knowl-
edge Rules in Neo4j through the triggering
procedures offered by the APOC library. The
apoc.trigger procedure collection allows the
registration of Cypher statements that are going
to be run in the database on the happening
of a relevant event. APOC triggers do not
distinguish the type of event occurred. In order
to capture the correct type of event, these
procedures provide a set of parameters to select.
The transaction data from Neo4j is turned into
appropriate data structures to be consumed as
parameters to a statement.

Focusing on the Guard and Alert compo-
nents we could consider them as a simple
if-then-else structure. If the Guard re-
sponds with TRUE, we move into the Action
part, which communicates a significant situa-
tion if the target nodes meet certain criteria.
Otherwise, a response of the Guard with
FALSE indicates that the event did not cause
a critical situation and therefore we can move
on. This conditional part of the reactive rule is
replicated with a conditional query using the
apoc.do.when procedure.

The actual implementation of Guard and
Alert of our use case was done by creating
custom functions, which can be crafted for
expressing complex Guards and Alerts. These
user-defined functions are then called into the
apoc.do.when procedure inside the trigger. The
result is the definition of a number of functions

4



Executive summary Alessia Gagliardi

dedicated to Guards and Alerts, all of which
can be directly called in Neo4j as an extension
of Cypher.

9. Conclusions
The aim of this thesis was to model reactive
rules providing a way to trigger actions based
on changes to the graph database. We define a
reactive rule as a triple (Event, Condition, Ac-
tion) represents an effective solution to moni-
tor changes in graph databases, allowing us to
model expressive conditions of arbitrary com-
plexity to best fit the use cases at hand con-
sidering all the limitation posed by the querying
language used. In conclusion, the modeled trig-
gering system has enabled us to create a mon-
itoring mechanism that is both expressive and
powerful. This mechanism serves as a starting
foundation for future research, as there are still
many aspects that needs further investigation.

References
[1] Renzo Angles, Angela Bonifati, Stefania

Dumbrava, George Fletcher, Keith W Hare,
Jan Hidders, Victor E Lee, Bei Li, Leonid
Libkin, Wim Martens, et al. Pg-keys: Keys
for property graphs. In Proceedings of the
2021 International Conference on Manage-
ment of Data, pages 2423–2436, 2021.

[2] Angela Bonifati, Stefania Dumbrava, George
Fletcher, Jan Hidders, Bei Li, Leonid Libkin,
Wim Martens, Filip Murlak, Stefan Plan-
tikow, Ognjen Savković, et al. Pg-schema:
Schemas for property graphs. arXiv preprint
arXiv:2211.10962, 2022.

[3] Jennifer Widom and Stefano Ceri. Active
database systems: Triggers and rules for ad-
vanced database processing. Morgan Kauf-
mann, 1995.

5


	Introduction
	State of Art of Active Databases and Knowledge Graphs
	Knowledge Graph
	Reactive Knowledge Rules
	The COVID-19 Example
	Reactive Knowledge Rules example

	Periods of observation
	Neo4j and Cypher
	Proof-of-Concept
	Reactive Knowledge Rules in Neo4j

	Conclusions

