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Abstract

State estimation (SE) is an important method used in the control operations of modern
power systems. The SE method relies on an overabundance of data with a power system
model which associates the unknown state variables to them. As the set of measurement
data is typically characterized by a degree of uncertainty, SE is capable of utilizing its
overabundance to further narrow the error caused in the final estimated state. However,
the classical weight least squared method takes only the uncertainty present in the data
provided by measurement instruments while neglecting the possible impact of uncertain
parameters. To address this particular problem, a WLS approach is proposed in [6],
specifically the extended WLS (EWLS) approach .

In this thesis, a complex system model with artificially controlled uncertainty is adopted
to extensively test the proposed method and a detailed comparison with the classical
WLS is provided. With IEEE14 bus system served as an example, a Monte Carlo trial is
performed to verify the effectiveness and robustness of aforementioned method. Results
are then analyzed both graphically and numerically.

Keywords: state estimation, least squared method, power system monitoring, power
system simulation, uncertain systems





Sommario

La stima dello stato (SE) è un metodo importante utilizzato nelle operazioni di controllo
dei moderni sistemi di potenza. Il metodo SE si basa su una sovrabbondanza di dati con
un modello di sistema elettrico che associa ad essi le variabili di stato sconosciute. Poiché
l’insieme dei dati di misura è tipicamente caratterizzato da un certo grado di incertezza,
il metodo SE è in grado di utilizzare la sua sovrabbondanza per ridurre ulteriormente
l’errore causato dallo stato finale stimato. Tuttavia, il classico metodo dei minimi quadrati
ponderati considera solo l’incertezza presente nei dati forniti dagli strumenti di misura,
trascurando il possibile impatto dei parametri incerti. Per affrontare questo particolare
problema, è stato proposto un nuovo approccio WLS, in particolare l’approccio WLS
esteso (EWLS) [6].

In questa tesi, viene adottato un modello di sistema complesso con incertezza controllata
artificialmente per testare estensivamente il metodo proposto e viene fornito un confronto
dettagliato con il WLS classico. Prendendo come esempio il sistema di bus IEEE14, si
esegue una prova Monte Carlo per verificare l’efficacia e la robustezza di questo metodo.
I risultati sono analizzati sia graficamente che numericamente.

Keywords: Stima dello stato, metodo dei minimi quadrati, monitoraggio del sistema
elettrico, simulazione del sistema elettrico, sistemi incerti
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Introduction

Electric power system control relies heavily on an accurate evaluation of system states to
maintain the reliability and continuity of the service. Specifically, the state consists of a set
of variables: the voltage magnitude and according phase of each bus, which are necessary
for the system operators to dictate security plans, evaluate possible contingencies, and
perform various control actions. Therefore, a way to obtain such sets of variable, both
quickly and with suitable accuracy, is vital to help keep a modern power system in check.

In the planning phase of a network, a load-flow (LF) study is typically performed. LF
method involves computing state variables from active and reactive in-line power flowing,
in addition to parameters of the lines, all of which are known through choices made in
designation of the system. Thus, state variables obtained this way can be considered
perfect for the ideal system in a given condition.

However, the LF approach possesses several problems: Firstly, it requires a complete
set of power flow measurements, which may not be available in practice. Moreover,
measurements in reality will inevitably contain errors, but LF is incapable of taking those
into account. Most importantly, it is not possible for LF method to process additional
redundant data in order to reduce the impact of inaccuracy in measurement. Therefore,
to evaluate the actual state of a working electric power system, a State Estimation (SE)
approach is necessary. [11]

SE is based on a redundant set of data, often characterized by a certain degree of uncer-
tainty, which the method then proceed to address through links between available data
and state variables, derived from the given model itself. In this way, the redundancy of
the data can be exploited to reduce the impact of its inaccuracy on the computed state.

Typically, the data given to an SE algorithm are either measurements directly from teleme-
ters installed on the network, or pseudo-measurements from prior knowledge. Regarding
the power system model, however, generally only the latter are available, as they come
from a quasi-static mathematical model of the system, rather than from on-site measur-
ing. Still, uncertainty affects those network parameters also, as in practice there are many
issues in a power system that could lead to inaccuracy, such as the geometrical placement
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of power lines, temperature deviation due to weather or loading conditions, or even po-
tential unbalance in the system that were overlooked by the mathematical model. In any
case, obtained parameters in such way are far from accurate.

In electric power systems, the Weighted Least Squares (WLS) approach is the most well-
known technique employed in SE method, first proposed in the early 1970s [16] [11] [9].
This approach gives an uncertain analysis of the measurement data based on a static
power system model assumed to be exact (as in perfectly certain).

This assumption, however, while it allows for a simpler approach on the problem, risks a
significant bias on the state. As is mentioned before, network parameters are uncertain as
well. In fact, often those parameters are even considered less accurate than measurements
[2] [17], giving a considerable contribution to the uncertainty of the state. It may be also
worth noting that such risks rise further as the accuracy of measurement improves, as the
proportion of parameters’ contribution will increase.

To address this concern, many effective network parameter estimation (PE) methods are
proposed. Some of them rely on a residual sensitivities analysis, while others utilise the
normal equation or adopt a Kalman filter [13] [19] [20]. Although those PE methods are
capable of improving SE performance, they still do not directly account for the problem
of including uncertain parameters in an SE method.

In this thesis, a detailed system model based on MATLAB for a generalization of the
classic WLS and then a novel extended WLS method [6], accounting for uncertainty in
both measurements and network parameters, is established. Using IEEE14 bus system
as an example, a Monte Carlo trial is then performed to verify the effectiveness and
robustness of aforementioned methods under various circumstances. Finally, results drawn
from different case are extensively studied, along with both graphical analysis as well as
numerical tests.

0.1. Thesis overview

Chapter 1: Provides the basic modelling of the system. How transmission lines, shunts,
tap-changing transformers and various network components are accounted for in the sim-
ulation are explained in this chapter. The classical WLS method for state estimation is
also introduced.

Chapter 2: Proposed WLS methods to be tested on, specifically, GWLS and EWLS are
introduced. The difference between them, the potential advantages and disadvantages are
explained.
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Chapter 3: The framework of the simulation is established. A flowchart of the test process
is shown and parts of the algorithm are explained in detail.

Chapter 4: Four different cases are tested with the above simulation based on MATLAB.
For each case, results are plotted and numerically analyzed. Considerations on the used
methods are given.

Chapter 5: A summary of the thesis work is provided, with some discussions about future
work included.
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1.1. System Modelling

In this chapter, the modelling and associated definitions of power systems used in the
following discussion and simulation tests are provided. The classical WLS state estimation
method is also briefly discussed.

1.1.1. Transmission Lines

Transmission lines are represented by a two-port π-model as shown in figure 1.1 [7].
Parameters of a line correspond to the equivalent circuit of its positive sequence, composed
of a series impedance R + jX and the total line charging susceptance j2B.

Figure 1.1: Transmission line model [5]

1.1.2. Tap-changing Transformers

Tap-changing transformers are modelled as impedance in series with ideal transformers
as shown in figure 1.2. [5]

The nodal equation of the 2-port circuit excluding the tap-changer transformer [5] is:

[
Ip

Ik

]
=

[
y −y

−y y

] [
V p

V k

]
(1.1)
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Figure 1.2: Tap-changing transformer in a transmission line model [5]

in which:

Ip = a · I i
V p = V i/a

(1.2)

where a is the tap ratio.

Thus obtaining:

[
Ip

Ik

]
=

[
y/a2 −y/a

−y/a y

] [
V p

V k

]
(1.3)

Rearranging the form to adapt the π-model introduced in the beginning of the chapter,
the following can be obtained:

Y ik =
y

a

Y i =
1− a

a2
y

Y k =
a− 1

a
y

(1.4)

Therefore, the equivalent transformer π-model would be:

Figure 1.3: π-model of the Tap-changing Transformer
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1.2. State and Measurement Formulation

In this section, the notation conventions used in the following pages will be introduced.

1.2.1. Network Parameters and Topology

A P -vector π contains the values of various network parameters (resistance, reactance,
charging susceptance, transformer tap ratio and other potential factors regarding certain
properties of the network), while a K-vector k represents the topology of the network:

π ∈ RM×1, k ∈ ZK×1 (1.5)

1.2.2. State

An N -vector x contains the static-state of the system.

x ∈ RN×1 (1.6)

For a power system with a bus number of n,

N = 2n− 1 (1.7)

which corresponds to the voltage magnitude and phase of each bus (minus the slack for
phases).

1.2.3. Measurement Data

The measurement and pseudo-measurement data are stored in a M -vector y, which is
related to the state by the following relationship expressing the power system model:

y = f(xt; πt, kt) ∈ RM×1 (1.8)

in which the subscript t represents true value.

However, since measurements, pseudo-measurements, network parameters and topology
are all affected by some degrees of uncertainty, in general it is not possible to find a general
solution x:
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y ̸= f(xt; π, k) (1.9)

with

y = yt +∆y

π = πt +∆π, k = kt +∆k
(1.10)

in which ∆y,∆π,∆k are respective errors incurred in the modelling or measuring.

Therefore, in a real power system the following equation must be used:

y −∆y = f(xt; π −∆π, k −∆k) (1.11)

For the sake of simplicity, information about network topology is considered perfect in
this thesis. Thus, the vector k will be dropped from the arguments:

y −∆y = f(xt; π −∆π) (1.12)

Performing a Taylor Series expansion of 1.12 with respect to vector π yields:

y −∆y ≈ f(xt; π)−
∂f

∂πT

∣∣∣∣
xt,π

·∆π (1.13)

In order to reach a more compact form, the vector d is introduced:

d =

[
y

π

]
∈ R(M+P )×1 (1.14)

refining 1.13:

r(xt; d) ≈ A(xt; π) ·∆d (1.15)

in which r is the misfit:

r(xt; d) = y − f(xt; π) (1.16)



1| Classical Modelling 9

∆d is the error of data:

∆d =

[
∆y

∆π

]
(1.17)

and A is the matrix:

A(xt; π) = [IM − ∂f

∂πT
] ∈ RM×(M+P ) (1.18)

1.3. Weighted Least Square (WLS) Approach

In the classical WLS approach, the assumption that only measurements y are affected
by errors is made, while the uncertainty of parameters π is ignored. Therefore, the data
error is:

∆d =

[
∆y

0P × 1

]
(1.19)

Consequently, only the measurement errors have an impact on the misfit:

r(xt; d) = ∆y (1.20)

From here, as long as we have enough measurement data to ensure M > N , the state
estimation can be defined as an overdetermined problem and may be formalized in the
following way:

argmin
x,∆y

|∆y|2Σy

s.t.∆y = y − f(x; π)

(1.21)

where Σy is the variance-covariance matrix of the random measurement errors, signalling
the uncertainty of the measurements. The norm weighted by the covariance matrix in
1.21 is then expressed as:

|∆y|2Σy = rT · Σ−1
y · r (1.22)

Now, to solve the minimum problem, Newton-Gauss method can be applied to form an
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iterative solution:

∆x̃k = G−1
x̃k

(
∂f

∂x̃T
)x̃k,π Σ−1

y r̃ (1.23)

where G−1
x̃k

is the gain matrix:

Gx̃k
= (

∂f

∂x̃T
)Tx̃k,π

Σ−1
y (

∂f

∂x̃T
)x̃k,π

(1.24)

The algorithm can then perform the state estimation by iterating x̃k:

x̃k+1 = x̃k +∆x̃k (1.25)
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The WLS approach treats parameters to be certain in its evaluation of the state. However,
this is far from true and could lead to vast underestimation of the errors presented in the
final calculated state.

In reality, many factors affect the working parameter of an electric network, especially
when concerning the transmission lines [18] [1]. Despite often treated by the system
operators according to a constant, pre-defined value, the real properties of a line, in
addition to its length, type of conductor material, may also be affected by:

• Actual geometry of the line;

• Weather, in which the change of temperature can lead to vast variation of line
resistance;

• Loading conditions, which can lead to overheating of the lines.

In this chapter, two novel WLS methods proposed in [6] and this thesis meant to test on
will be introduced.

Firstly a generalization of the classical WLS (GWLS) method will be presented. This
method considers the effect of parameter errors as an addition to the existing WLS
method, addressing the problem without changing too much of the original structure.
However this method lacks the ability to distinguish the source of uncertainty contribu-
tion due to the same simplification.

Then, on the basis of GWLS, a further enhanced extended WLS method which this
thesis mainly focuses on is also shown. This method, on the other hand, takes a more
straightforward approach, taking uncertainty on measurements and parameters in its
computation. With EWLS it is possible to do further bad data analysis on the results.
In addition, EWLS also has a higher endurance to bad initial state than GWLS does.



12 2| Proposed WLS Methods

2.1. Generalized WLS

In this generalization of the old WLS approach (GWLS), the uncertainty of the network
parameters is dealt with by considering it an artificial error set upon the already existing
measurement errors ∆ỹ.

∆y′ = y − f(x, π) ≈ ∆y − ∂f

∂πT

∣∣∣∣
xt,π

·∆π (2.1)

However, since in practice the true state x̃t is unknown, 2.1 should be rewritten as:

∆y′ ≈ ∆y − ∂f

∂πT

∣∣∣∣
x0,π

·∆π − ∂

∂xT

(
∂f

∂πT
∆π

)
x0,π

·∆x0 (2.2)

where x̃0 represents the initial guess of the true state x̃t.

The added measurement error can then lead to an updated version of the variance-
covariance matrix Σy:

Σ′
y ≈ Σy +

(
∂f

∂πT

)
x0,π

Σπ

(
∂f

∂πT

)T

x0,π

+

(
∂2f

∂πT∂xT

)
x0,π

(Σx0 ⊗ Σπ)

(
∂2f

∂πT∂xT

)T

x0,π

(2.3)

The new Σ′
y now takes the errors related to measurements, parameters and the initial state

guess into consideration, while also considers them all uncorrelated to each other. In the
case where some of them do correlate to others (e.g. some of the network parameter data
are derived from on-line measurements), however, Σ′

y needs to be worked upon further by
handling the uncertainty propagation properly.

Anyhow, the WLS estimation problem can now be redefined as:

argmin
x,∆y

|∆y|2Σy′

s.t.∆y = y − f(x; π)

(2.4)

whose solution is obtained by simply replacing Σy with Σ′
y.

|∆y|2Σy′ = rT · Σ−1
y′ · r (2.5)
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If the initial guess of the state is accurate enough, the GWLS method is capable of
providing better estimates for the static-state vector.

2.2. Extended WLS

One major limitation of the GWLS method is that while it is able to take parameter
uncertainty into account, it cannot identify the influence of each error causing on the final
state, since in 2.3 the uncertainties of all three kinds of contribution are mixed together.

Therefore, in this section in order to further improve the effectiveness of SE, an extended
WLS method (EWLS) will be considered. In this extended approach, the minimization
is applied to the whole data error vector Σd rather than only the misfit r, which is the
case in WLS and GWLS methods. Thus, the estimate problem becomes:

argmin
x,∆d

|∆d|2Σd

s.t.r = A(x; π)∆d

(2.6)

Though not strictly necessary, in the EWLS scenario we also assume the parameter and
measurement errors are entirely uncorrelated, like in the previous case. Thus, the variance-
covariance matrix of the data vector Σd will be:

Σd =

[
Σy 0M×P

0P×M Σπ

]
∈ R(M+P )×(M+P ) (2.7)

It is now possible to solve the constrained problem in 2.6, in which the unknown ∆d is:

∆d = ΣdA
T [AΣdA

T ]−1r (2.8)

Note that since 2.8 expresses the data error δd as a function of x, the EWLS estimate of
x can be found through the minimization of 2.6, which is the weighted squared norm of
2.8:

|∆d|2Σd = rT · [AΣdA
T ]−1 · r (2.9)

Considering how the matrix A is defined and the structure of the data variance-covariance
matrix Σd, it can be seen that it will give an evaluation of the state identical to that
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provided by GWLS, if using a same initial guess x0.

However, the EWLS method is different from GWLS in that it recursively evaluates the
matrix A with the newly-found kth state xk. Thus, the previous approximated augmented
measurement error 2.2 instead becomes:

∆y′ ≈ ∆y − ∂f

∂πT

∣∣∣∣
xk,π

·∆π − ∂

∂xT

(
∂f

∂πT
∆π

)
xk,π

·∆xk (2.10)

As it uses an iterative state in the expression, the EWLS method will be more accurate
than GWLS, especially in the case of a grossly wrong initial guess.
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Bus System

In this chapter, a MATLAB test simulating the aforementioned SE methods is conducted.
In this simulation, a detailed and adaptive power system model is established, which
allows a flexible and suitably complex testing environment. Measurements involved in the
simulation are generated synthetically with additional artificial errors. A Monte Carlo trial
[4] is performed to test the effectiveness and robustness of the algorithms by introducing
a large quantity of random samplings.

The trial can be broken down into the following parts:

• Input of true parameters πt;

• Input of data uncertainty σy, σπ, both for parameters and measurements;

• Input of an initial state guess x0;

• True state of the system xt, which is obtained through a traditional loadflow;

• True measurement set yt, which is generated synthetically through links established
between data and the state; A group of nominal parameters π̃ as well as measure-
ments ỹ meant for the Monte Carlo trial, which are generated through an artificial
perturbation related to the given uncertainty;

• Three estimators introduced in the previous chapters that are meant to be tested;

• Output of a group of resulting SE error δx̃ = x̃ − xt, which can then be processed
and analyzed.
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A flowchart of the process is shown in 3.1.

Figure 3.1: Simulation Process

3.1. IEEE14 Bus System

In this simulation, the IEEE14 bus system is chosen to represent the system in testing
with its suitable complexity in mind, though the same algorithm may be easily extended
to other similar power systems.

The IEEE14 bus system [15] [3] is an approximation of one portion of the American
Electric Power System as of Feburary 1962, commonly used in power system testing. The
system consists of 14 buses, to which 5 generators and 11 loads are connected, as shown
in figure 3.2. Tap-changing transformers as well as shunt capacitors are also present in
the network.

Network topology and corresponding parameter data provided by IEEE official data base



3| Simulation Based on IEEE14 Bus System 17

Figure 3.2: IEEE14 Bus System [15]

are considered "true" data π̃t and kt of the actual system, while the later perturbed
parameter data are considered nominal ones (i.e. the known parameter), for the sake of
a simpler and less computationally expensive approach.

A total of 27 state variables are established in the 14 bus system:

x1 to 14: Voltage magnitude on 14 buses

θ1 to 13: phase on 13 buses (excluding bus 1)
(3.1)

Reading from the data of 20 transmission lines composing the system and excluding those
with a value of 0 (assuming the 0 in the datasheet means the lack of this specific property
and is thus certain), a total of 42 parameter data that are subject to uncertainty can be
extracted from the 14 bus system:

R1 to 20: Resistance on 15 lines

X1 to 20: Reactance on 20 lines

B1 to 20: Half-line capacity on 7 lines

(3.2)

As mentioned before, the topology k itself is taken as absolute. Also note that while tap-
changing transformer values a and shunt capacitors may also possess an uncertain nature,
they are considered perfect here in order to give a more evident and straightforward
analysis.

For a full report on the data of the network, see appendix C.
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3.2. Newton-Rapson Loadflow

In order to obtain the state of the simulated system, a loadflow must be performed.
Newton-Rapson method is chosen for its decent robustness and widespread use.

Considering this:

f(xt) = f(x+∆x) = 0 (3.3)

In which f(x) is the "measurement set" function of the state, though in a loadflow the
only measurements available are the given real as well as reactive power, obtained through
the knowledge of generators and loads installed in the system.

Using Taylor’s expansion to isolate the part contributed by error ∆x:

f(x+∆x) ≈ f(x) +

(
∂f

∂xT

)
∆x = 0 (3.4)

This equation can then be used in an iterative form:

∆xk = −
(

∂f

∂xT

)−1

xk

f(xk) (3.5)

Where

xk+1 = xk +∆xk (3.6)

The iteration will be repeated until ∆x is lower than a pre-defined threshold, after which
the state obtained can be considered a very good reflection of the given system data. Since
the system data is treated as perfect, this obtained result would be considered the true
state of the system x̃t, which will then be used to calculate the synthetic measurements,
as well as serve as a indicator for the evaluation of the final results.

xt1 to 14: Voltage magnitude on 14 buses

θt1 to 13: phase on 13 buses (excluding bus 1)
(3.7)
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3.3. Synthetic Measurements

After the true state of the system is established, a certain measurement set must be chosen
in order to feed the estimator its required information. The specific measurement set must
be chosen in a way such that the observability [14] [10] [21] of every state variable can be
assured. In addition, a level of redundancy must be available as SE method relies on it
to be effective. Moreover, as the IEEE14 bus system is meant to approximately represent
a real-life power system, the actual availability of the chosen "synthetic" measurements
should also be taken into consideration.

To achieve those goals, seven types of different measured data are used in the test, which
are obtained in the following ways:

• Voltage magnitude squared:

A1 =
∣∣Vi

∣∣2 = ViVi
∗
= xie

jθi ∗ xie
−jθi = x2

i (3.8)

• Magnitude squared of current flow in-line:

A2 =
∣∣Iij

∣∣2 = IijIij
∗ (3.9)

Where the current flow in-line Iij would be:

Iij =
Vi − Vj

Rk + jXk
+ jBkVi =

xie
jθi − xje

jθj

Rk + jXk
+ jBkxie

jθi (3.10)

• Magnitude squared of current injected on buses:

A3 =

∣∣∣∣∣
n∑

j=1

Iij

∣∣∣∣∣
2

=
n∑

j=1

Iij

n∑
j=1

Iij
∗ (3.11)

• Active power flow in-line:

A4 = Pij = Real(Sij) = Real(ViI∗ij) (3.12)

• Reactive power flow in-line:
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A5 = Qij = Imag(Sij) = Imag(ViI∗ij) (3.13)

• Active power injected on buses:

A6 = Pk =
n∑

j=1

Pkj (3.14)

• Reactive power injected on buses:

A7 = Qk =
n∑

j=1

Qkj (3.15)

Lists of different measurement sets concerning types, locations as well as the significance
of their data uncertainty can then be made to accommodate the needs of various cases.

3.4. Uncertainty Generation

Knowing the true parameter and measurement data, it is then possible to perturb them
randomly by a given standard deviation σy to obtain "known" data, which include an
artificial error the SE method is meant to eliminate.

y = yt +∆y

π = πt +∆π
(3.16)

Though not necessarily true, errors in the data are considered jointly independent, thus
obtaining a variance-covariance matrix with all covariance equal to zero:

Σy =


σ2
y1 0 0 0

0 σ2
y2

0 ...

0 σ2
ym

 (3.17)

The variance-covariance matrix for parameters can be obtained in a similar way:
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Σπ =


σ2
π1 0 0 0

0 σ2
π2

0 ...

0 σ2
πn

 (3.18)

3.5. Jacobian Matrices

Jacobian matrices on measurement data with respect to their uncertain components are
necessary for the SE methods to deduce how uncertain the resulting state will be. For
the classical WLS estimator, a Jacobian matrix with respect to state variables is enough:

H1 =


∂f1
∂x1

... ∂f1
∂xn

∂f1
∂θ1

... ∂f1
∂θn−1

... ...
∂fm
∂x1

... ∂fm
∂θn−1

 (3.19)

On the other hand, an additional Jacobian matrix with respect to the uncertain param-
eters must be made for GWLS and EWLS estimators, as they need to evaluate their
influence on the state:

H2 =


∂f1
∂R1

... ∂f1
∂Rn

∂f1
∂X1

... ∂f1
∂Xn

∂f1
∂B1

... ∂f1
∂Bn

...
∂fm
∂R1

... ∂fm
∂Bn

 (3.20)

For a full report on derivatives covering all types of measurements with respect to state
variables as well as parameters, see appendix A and B.

3.6. WLS Estimator

WLS estimator can then use an iterative procedure to estimate the true state using only
the "known" data and parameters. Each iteration includes the following steps:

Recalculating the data Jacobian with respect to state variables using the latest state
estimate:
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H1 =


∂f1
∂x1

... ∂f1
∂xn

∂f1
∂θ1

... ∂f1
∂θn−1

... ...
∂fm
∂x1

... ∂fm
∂θn−1


x̃k,π̃

(3.21)

Where k is the iterating times. Note that since WLS does not take parameters into
consideration, it always uses the given π thinking it is perfect.

Calculating the gain matrix:

Gx̃k
=

(
∂f

∂x̃

)T

x̃k,π

Σ−1
y

(
∂f

∂x̃

)
x̃k,π

(3.22)

Obtaining the iterative modifier to the state:

∆x̃k = G−1
x̃k

(
∂f

∂x̃

)
x̃k,π

Σ−1
y r̃k (3.23)

Where the residue r̃ is obtained by comparing the inaccurate data ỹ and an iterating yk

derived from the existing state estimate:

r̃k = ỹ − f(xk; π) (3.24)

Finally, adding the modifier to the state obtained in the last iteration:

x̃k+1 = x̃k +∆x̃k (3.25)

3.7. GWLS Estimator

The GWLS method is different to WLS only in that instead of directly using the variance-
covariance matrix Σy it uses a modified Σy′ , which also considers the impact of parameter
uncertainty:

Σ′
y = Σy +

(
∂f

∂π

)
x0,π

Σπ

(
∂f

∂π

)T

x0,π

(3.26)

Where the derivatives with respect to π need to be computed in addition to state Jacobian:
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H2 =


∂f1
∂R1

... ∂f1
∂Rn

∂f1
∂X1

... ∂f1
∂Xn

∂f1
∂B1

... ∂f1
∂Bn

...
∂fm
∂R1

... ∂fm
∂Bn

 (3.27)

It is worth noting that this modified matrix is only calculated once at the beginning of the
algorithm. Therefore, the Jacobian with respect to parameters are only computed with
the initial guess x̃0. Should a terrible guess be given initially the robustness of GWLS
can be heavily impacted.

3.8. EWLS Estimator

In the extended approach the Jacobian with respect to parameters is computed each
iteration. In the place of Σy an intermediate matrix Q is calculated:

Q = AΣdA
T (3.28)

Where

A = [IM −
(
∂f

∂π

)
xk,π

] (3.29)

And

Σd =

[
Σy 0M×P

0P×M Σπ

]
∈ R(M+P )×(M+P ) (3.30)

In this way, the impact of parameter uncertainty on the state is revised at each iteration,
minimizing the possible bias.

3.9. Finishing Criteria

A minimum modifier x̃min is set for each estimator. Should the resulting x̃k is less than it,
the iteration is immediately dropped and the final state is seen as the resulting estimate.

Following the completion of a Monte Carlo trial, a very large number of obtained results
will form a group to be analyzed in detail.
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4| Case Studies

In this chapter, various cases are tested to verify the effectiveness and robustness between
WLS, GWLS as well EWLS methods, each under a specific circumstance. Both graphs
and statistical tests are used to analyze the obtained results further.

A total of 4 cases are reported:

• Case 1: An "ideal" system model with only measurement data error is used. In this
case both WLS and EWLS provide the same result;

• Case 2: A parameter uncertainties are introduced, where WLS provides an incon-
sistent estimate while EWLS is correct;

• Case 3: A different measurement set with worse network observability is adopted,
which WLS produces awful results, but EWLS can still keep up;

• Case 4: GWLS and EWLS methods are compared to show how a bad initial guess
can affect GWLS greatly. The pros and cons of both methods are also briefly
discussed.

All cases are based on the IEEE14 bus system.
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4.1. Case 1

In the first case, only a realistically small error is present in the measurement data, while
parameters are considered almost perfect.

• Measurement standard deviation σy = 0.01 p.u.

• Parameter standard deviation σπ = 10−6 πT

Considering the estimators requires a good observability of the entire system to work
properly [8] [12], a set of 41 different measurements is carefully chosen in a way that they
may fully cover the information need of all 27 variables, while still be able to reflect clearly
the differences between estimator methods.

Measurement Type Measurements used
Voltage magnitude 1
Active power injection 8
Reactive power injection 8
Active power flow 12
Reactive power flow 12

Table 4.1: Measurement Set, Case 1

A sufficiently good initial guess x̃0 is important for evaluating the effectiveness of estima-
tors since:

• They take less time to converge;

• A grossly bad guess may stop the algorithm from converging definitely;

• GWLS suffers greatly from the inaccuracy of the initial guess, which will be demon-
strated in case 4.
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Assuming firstly:

• Voltage magnitude x1 to 14 = 1

• Voltage phase θ1 to 13 = 0

Under this assumption, one single WLS iteration is performed to obtain the following
result:

x1 to 14 θ1 to 13

1.0379
1.0222 -0.1006
0.9818 -0.2496
0.9835 -0.2017
0.9853 -0.172
1.026 -0.2871
1.024 -0.2524
1.056 -0.2521
1.0173 -0.2821
1.0109 -0.2891
1.0142 -0.292
1.01 -0.3055
1.003 -0.3088
0.9921 -0.3136

Table 4.2: Initial State Guess x̃0, Case 1

This obtained state is used as the input for the estimator test below, in order to ensure
the algorithm can work in converging state.

A 1000-time Monte Carlo trial is performed for WLS and EWLS methods, assuming zero
mean and variance defined above.



28 4| Case Studies

The results are shown in figure 4.1 using the magnitude and phase of bus 2 as an example.

Figure 4.1: Voltage-phase Error of Bus 2 -Case 1

A scatter plot is drawn to show the statistical distribution of the errors of estimated
state variables in the 1000-time trial. The red ellipses indicate the predicted variance of
the state variable provided by the corresponding estimator in its 1st trial, with a 0.95
confidence level.

It can be observed that with a near-perfect knowledge of parameters both methods are
able to obtain a good prediction on the results, with most of the estimates landing within
the variance zones.
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Sampling Computed Sampling Computed

std. dev. std. dev. std. dev. std. dev.

sx̃WLS σx̃WLS sx̃EWLS σx̃EWLS

0.0016 0.0016 0.0016 0.0016

0.0042 0.0040 0.0042 0.0040

0.0035 0.0033 0.0035 0.0033

0.0030 0.0029 0.0030 0.0029

0.0051 0.0049 0.0051 0.0049

0.0046 0.0045 0.0046 0.0045

0.0049 0.0048 0.0049 0.0048

0.0053 0.0050 0.0053 0.0050

0.0052 0.0050 0.0052 0.0050

0.0052 0.0050 0.0052 0.0050

0.0055 0.0053 0.0055 0.0053

0.0055 0.0053 0.0055 0.0053

0.0057 0.0054 0.0057 0.0054

0.0093 0.0092 0.0093 0.0092

0.0094 0.0093 0.0094 0.0093

0.0097 0.0096 0.0097 0.0096

0.0095 0.0094 0.0095 0.0094

0.0095 0.0094 0.0095 0.0094

0.0104 0.0091 0.0104 0.0091

0.0097 0.0092 0.0097 0.0092

0.0096 0.0091 0.0096 0.0091

0.0098 0.0093 0.0098 0.0093

0.0100 0.0093 0.0100 0.0093

0.0104 0.0092 0.0104 0.0092

0.0107 0.0093 0.0107 0.0093

0.0107 0.0094 0.0107 0.0094

0.0104 0.0095 0.0104 0.0095

Table 4.3: Sampling and Computed Standard Deviation, WLS/EWLS, Case 1

Figure 4.3 shows the sampling and computed standard deviations sx̃, σx̃ of all 27 state
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variables obtained in case 1, for both WLS and EWLS methods. Since the statically
and analytically obtained results are largely consistent with each other, it may be said
that with only measurement errors present in the observation both WLS and EWLS can
provide unbiased results.

4.2. Case 2

Case 2 includes a parameter error with a standard deviation σπ = 0.15/
√
3 πT , while the

measurement error is kept the same with case 1.

• Measurement standard deviation σy = 0.01 p.u.

• Parameter standard deviation σπ = 0.0866 πT

The measurement set ỹ, initial state guess x̃0 and times of Monte Carlo trial are also the
same as are used in case 1 in order to be comparative.
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The resulting scatter plots as well as estimated variance are reported in figure 4.2, again
using bus 2 as an example.

Figure 4.2: Voltage-phase Error of Bus 2 -Case 2

This time there is a drastic difference between the two methods. While EWLS retains the
ability to identify the error contribution to the state from data uncertainty, WLS method
gives a gross underestimate of the state variance. Actually, in the case of WLS, most of
the state variable errors land outside the region of the algorithm’s designation.

Another interesting thing to point out is that the variance prediction on the phase θ2

is even more terrible than on the magnitude x2. The cause of this phenomenon is that
phases’ sensitivities on parameter error are often higher than those of magnitudes, as
there are no direct measurements on them included in this case.
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A more extreme contrast can be observed using the phase error of bus 5 as an example.

Figure 4.3: Phase Error PDF of Bus 6 -Case 2

Figure 4.3 shows the PDF of the phase error produced in the Monte Carlo trial. The
gray curve indicates the computed standard deviation σθ of the estimators with a 0.95
confidence level.

Clearly, in the case of WLS, variance of the state is significantly underestimated. Instead,
the variance provided by EWLS well aligns with the pdf of its errors produced in the
trial. EWLS also has a thinner spread out than WLS, showing it has a better capability
handling the uncertainty.
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Sampling Computed Sampling Computed

std. dev. std. dev. std. dev. std. dev.

sx̃WLS σx̃WLS sx̃EWLS σx̃EWLS

0.0072 0.0015 0.0067 0.0066

0.0104 0.0039 0.0087 0.0084

0.0087 0.0030 0.0081 0.0079

0.0087 0.0026 0.0080 0.0079

0.0115 0.0045 0.0098 0.0097

0.0096 0.0042 0.0089 0.0088

0.0098 0.0046 0.0091 0.0090

0.0099 0.0048 0.0093 0.0091

0.0098 0.0048 0.0092 0.0091

0.0105 0.0047 0.0094 0.0094

0.0118 0.0050 0.0100 0.0100

0.0117 0.0049 0.0100 0.0101

0.0103 0.0052 0.0096 0.0095

0.0098 0.0092 0.0094 0.0095

0.0105 0.0094 0.0100 0.0102

0.0112 0.0097 0.0107 0.0107

0.0106 0.0095 0.0102 0.0104

0.0106 0.0095 0.0102 0.0104

0.0117 0.0092 0.0111 0.0101

0.0109 0.0094 0.0105 0.0103

0.0110 0.0092 0.0107 0.0104

0.0110 0.0094 0.0106 0.0103

0.0112 0.0094 0.0108 0.0103

0.0116 0.0093 0.0111 0.0102

0.0120 0.0094 0.0114 0.0104

0.0121 0.0095 0.0115 0.0104

0.0117 0.0096 0.0112 0.0106

Table 4.4: Sampling and Computed Standard Deviation, WLS/EWLS, Case 2

Again, figure 4.4 shows the sampling and computed standard deviations sx̃, σx̃ of all 27
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state variables obtained in case 2. Now, with uncertain paramter as input, it can be seen
that the computed standard deviations of WLS are very terrible reflections of the actual
sampling deviations. In fact, with regard to phases, WLS’s estimate often only account
for less than 0.3 of the actual values.

On the other hand, EWLS provides results quite close to the sampling values, confirming
the results previously concluded by the plots.
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4.3. Case 3

Case 3 uses the same data uncertainty set as case 2.

• Measurement standard deviation σy = 0.01 p.u.

• Parameter standard deviation σπ = 0.0866 πT

Instead case 3 uses a different measurement set as the input. This time, a total of 49
measurements.

Measurement Type Measurements used
Voltage magnitude 5
Current flow 5
Current injection 5
Active power injection 6
Reactive power injection 6
Active power flow 11
Reactive power flow 11

Table 4.5: Measurement Set, Case 3

The voltage and phase of bus 2 are used again as an example, drawing an 2D scatter plot
as is shown in 4.4.

Figure 4.4: Voltage-phase Error of Bus 2 -Case 2

It can be observed that despite the increase of measurement number, the performance of
WLS has reduced. The error distribution from Monte Carlo trial has a larger spread out
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than in the previous case. The red ellipse indicating the estimator’s predicted variance
only contains a small portion of the estimates, showing a very high inaccuracy. There are
also a few gross errors that lie very far from the group, which are outright unusable.

On the other hand, EWLS method still performs admirably. Looking at the axis scales it
can be observed that the error spread out of EWLS are actually several decimals ahead of
WLS. The estimated variance with a 0.95 confidence level also includes most of the trial
results, indicating a good prediction. Further more, large errors are fewer both in number
and gravity compared to WLS method.

The causes of this phenomenon are several:

• Firstly, the choice of location for this measurement set gives a worse observability of
the state than the previous case, for which WLS method has a hard time exploiting
the abundance of data;

• Current measurements are heavily impacted by parameter uncertainty. The inclu-
sion of them makes WLS very terrible at utilizing the data. Actually, in a few
cases the addition of current measurements can negatively affect the performance
of WLS. EWLS, however, does not have this problem since it already account for
the parameter errors.

4.4. Case 4

Case 4 uses the same inputs of case 2, but instead gives a comparison between GWLS
and EWLS methods.

• Measurement standard deviation σy = 0.01

• Parameter standard deviation σπ = 0.0866
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If the previous initial guess is used, the following result can be obtained:

Figure 4.5: Voltage-phase Error of Bus 2 -Case 4

Since the estimate is based on a relatively good guess, the difference is not immediately
obvious as shown in figure 4.5. In either case, most of the errors land in the predicted
variance ellipse, and the spread out is similar. It would appear that GWLS and EWLS
both have good handling on the parameter uncertainty.
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In fact, if we compare the standard deviations obtained in the trial:

Sampling Computed Sampling Computed

std. dev. std. dev. std. dev. std. dev.

sx̃GWLS σx̃GWLS sx̃EWLS σx̃EWLS

0.0066 0.0067 0.0066 0.0065

0.0083 0.0090 0.0083 0.0084

0.0077 0.0083 0.0078 0.0078

0.0077 0.0082 0.0078 0.0077

0.0097 0.0102 0.0098 0.0097

0.0086 0.0092 0.0086 0.0088

0.0087 0.0094 0.0087 0.0090

0.0089 0.0095 0.0089 0.0091

0.0090 0.0095 0.0090 0.0091

0.0093 0.0098 0.0094 0.0094

0.0100 0.0105 0.0100 0.0100

0.0101 0.0105 0.0101 0.0101

0.0094 0.0100 0.0095 0.0095

0.0097 0.0095 0.0097 0.0095

0.0103 0.0100 0.0103 0.0100

0.0109 0.0107 0.0109 0.0106

0.0105 0.0103 0.0105 0.0103

0.0105 0.0103 0.0105 0.0103

0.0114 0.0100 0.0114 0.0099

0.0108 0.0101 0.0108 0.0101

0.0110 0.0103 0.0110 0.0102

0.0109 0.0102 0.0109 0.0102

0.0111 0.0102 0.0111 0.0101

0.0113 0.0101 0.0113 0.0100

0.0116 0.0103 0.0116 0.0102

0.0118 0.0103 0.0118 0.0102

0.0114 0.0104 0.0114 0.0104

Table 4.6: Sampling and Computed Standard Deviation, GWLS/EWLS, Case 4
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Table 4.6 shows that despite some differences between GWLS and EWLS estimates can
be observed, the computed standard deviations σx̃ from both methods still cling relatively
close to the actual sampling values, unlike WLS in the previous cases which performed
terribly.

However, if we perform the Monte Carlo trial instead with a relatively bad initial state
as the following:

x1 to 14 θ1 to 13

1.061
1.062 0
1.063 -0.01
1.064 -0.02
1.065 -0.03
1.066 -0.04
1.067 -0.05
1.068 -0.06
1.069 -0.07
1.07 -0.08
1.071 -0.09
1.072 -0.1
1.073 -0.11
1.074 -0.12

Table 4.7: Bad Initial Guess x̃0
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Plotting again the scatter graph for bus 2 from the results:

Figure 4.6: Voltage-phase Error of Bus 2, with Bad Initial Guess -Case 4

From figure 4.6 it can be seen that GWLS is heavily biased just like WLS was, with its
computed variance heavily underestimated. As is mentioned in the previous chapters,
GWLS algorithm calculates the impact of parameter uncertainty only with regard to the
initial state guess. This means the effectiveness of GWLS will degrade with large initial
guess deviates off the actual state.



4| Case Studies 41

Sampling Computed Sampling Computed

std. dev. std. dev. std. dev. std. dev.

sx̃GWLS σx̃GWLS sx̃EWLS σx̃EWLS

0.0075 0.0015 0.0068 0.0063

0.0103 0.0042 0.0083 0.0084

0.0088 0.0035 0.0080 0.0077

0.0087 0.0031 0.0078 0.0076

0.0118 0.0052 0.0097 0.0099

0.0101 0.0051 0.0090 0.0088

0.0102 0.0055 0.0091 0.0090

0.0102 0.0057 0.0093 0.0092

0.0102 0.0057 0.0093 0.0092

0.0106 0.0058 0.0094 0.0095

0.0120 0.0065 0.0100 0.0101

0.0122 0.0069 0.0101 0.0102

0.0108 0.0064 0.0097 0.0096

0.0094 0.0093 0.0094 0.0094

0.0100 0.0094 0.0100 0.0100

0.0108 0.0098 0.0107 0.0106

0.0103 0.0095 0.0102 0.0102

0.0103 0.0095 0.0102 0.0102

0.0110 0.0102 0.0112 0.0098

0.0106 0.0094 0.0105 0.0101

0.0107 0.0093 0.0106 0.0102

0.0108 0.0095 0.0107 0.0101

0.0108 0.0096 0.0109 0.0101

0.0110 0.0099 0.0111 0.0100

0.0114 0.0108 0.0115 0.0101

0.0114 0.0110 0.0116 0.0101

0.0111 0.0102 0.0112 0.0103

Table 4.8: Sampling and Computed Standard Deviation with Bad Initial Guess,
GWLS/EWLS, Case 4
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As is shown in table 4.8, many of the computed deviations from GWLS are no longer in
line, sometimes at around only 0.5 of the actual values. However, even with a relatively
awful initial guess, EWLS is still capable of containing the parameter uncertainty and
provides reasonable estimates, though more iteration times are required.

On the other hand, it may be said that GWLS is still a valid option when the deviance
between the given and true state is small. Since GWLS only computes state derivatives
with respect to parameter data only in the beginning of the algorithm while EWLS will
repeatedly renew them according to the iterating state, a significant amount of compu-
tational efforts can be saved if a greater accuracy isn’t necessary. It is also possible to
switch to GWLS when the state is believed to be converging closely to its true values to
save computing time should it be a concern.

However, since GWLS merges the impact of parameter errors into the variance-covariance
matrix of measurements Σy, further analysis on the error contribution as well as bad data
will not be possible, in which case EWLS must be used.
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5| Conclusions and Future

Developments

5.1. Conclusions

In this thesis, novel WLS approaches in power system state estimation, meant to account
for uncertain parameters which are not present in the classical model, are examined by
both theoretical analysis and simulation tests.

A complex bus system model is first established, able to simulate generators, loads, tap-
changing transformers, shunt capacitors as well as other components presented in a typical
test network. Various types of measurements are also modelled to reflect a more practical
environment. For this thesis’ purpose, IEEE14 bus system is chosen for the simulation,
though similar systems may be modelled in without much efforts.

Monte Carlo trials are deployed to give a deeper and statistical analysis to the afore-
mentioned methods. Using a large number of trials it is possible to obtain the statistical
distribution of estimate errors, reflecting the effectiveness and robustness of used algo-
rithms.

It can then be proven that while the classical WLS method has the advantage of giving a
more straightforward model and requiring less computational efforts, it does not perform
well under circumstances where the given parameter data are inaccurate. Considering how
measurement instruments are evolving quickly nowadays, this particular flaw may become
even more problematic due to the rising relative contribution of parameter uncertainty to
the final state estimate.

In order to solve this problem, a generalization of the classical WLS method is given to
merge parameter uncertainty into the existing variance-covariance matrix. This method
is relatively simple and requires little computational efforts to be added, however, it still
has two major issues:

• GWLS relies on an accurate initial state to gain good estimates
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• GWLS does not distinguish parameter uncertainty contribution from measurement,
thus make it impossible to further analyze the data obtained.

EWLS is introduced to help with those issues. Rather than merging the uncertainty,
EWLS instead takes those two uncertainty separately and re-computes their contribution
for each iteration. It is proven to be capable of better utilizing the overabundance of data
as SE methods originally intended, significantly outperforming WLS in several scenarios.
Furthermore, EWLS is also able to properly formulate the error contributions from those
two sources which GWLS cannot, providing an opportunity to examine bad data within
even further.

5.2. Future Developments

While the ending results show a good indication of the effectiveness of the proposed
methods, certain aspects of the work merit further investigations:

• Both the effectiveness and the computational efforts required varies depending on
the measurement set chosen. Different types, location group, as well as numbers of
measurements can all affect EWLS’ capabilities on identifying the contribution of
parameter uncertainty.

• Though EWLS provides opportunity for further analysis of the data, specific details
of bad data detection requires future work to be done.
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A| Appendix A State Variable

Jacobian

This appendix deals with how to compute the Jacobian matrix H1 concerning state vari-
ables for each type of measurement.

H1 =


∂f1
∂x1

... ∂f1
∂xn

∂f1
∂θ1

... ∂f1
∂θn−1

... ...
∂fm
∂x1

... ∂fm
∂θn−1


x̃k,π̃

(A.1)

A.1. Voltage Magnitude

Measurement A1 shows the voltage magnitude squared:

A1,k =
∣∣Vk

∣∣2 = VkVk
∗
= xke

jθk ∗ xke
−jθk = x2

k (A.2)

Corresponding derivatives concerning state variables x, θ are:

∂A1,k

∂xk

=2xk

∂A1,k

∂θk
=0

(A.3)
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A.2. Current Flow

Measurement A2 shows the magnitude squared of current flow in-line:

A2 =
∣∣Iij

∣∣2 = IijIij
∗ (A.4)

Where the current flow in-line Iij would be:

Iij =
Vi − Vj

R + jX
+ jBVi =

xie
jθi − xje

jθj

R + jX
+ jBxie

jθi (A.5)

Corresponding derivatives concerning state variables x, θ are:

∂A2,ij

∂xi

=

(
e−iθi

R− iX
− iBe−iθi

)(
iBxie

iθi +
xie

iθi − xje
iθj

R + iX

)
+

(
iBeiθi +

eiθi

R + iX

)(
xie

−iθi − xje
−iθj

R− iX
− iBxie

−iθi

)

∂A2,ij

∂xj

=−
e−iθj

(
iBxie

iθi +
xie

iθi−xje
iθj

R+iX

)
R− iX

−
eiθj

(
xie

−iθi−xje
−iθj

R−iX
− iBxie

−iθi

)
R + iX

∂A2,ij

∂θi
=

(
ixie

iθi

R + iX
−Bxie

iθi

)(
xie

−iθi − xje
−iθj

R− iX
− iBxie

−iθi

)
+

(
−Bxie

−iθi − ixie
−iθi

R− iX

)(
iBxie

iθi +
xie

iθi − xje
iθj

R + iX

)

∂A2,ij

∂θj
=
ixje

−iθj

(
iBxie

iθi +
xie

iθi−xje
iθj

R+iX

)
R− iX

−
ixje

iθj

(
xie

−iθi−xje
−iθj

R−iX
− iBxie

−iθi

)
R + iX

(A.6)
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A.3. Injected Current

Measurement A3 shows the magnitude squared of current injected on buses:

A3,k =

∣∣∣∣∣
n∑

m=1

Ikm

∣∣∣∣∣
2

=
∑
m=1

Ikm

∑
m=1

Ikm
∗

=
∑
n=1

∑
m=1

IknIkm
∗

(A.7)

Corresponding derivatives concerning state variables x, θ are:

∂A3,k

∂xi, θi
=
∑
n=1

∑
m=1

∂IknIkm
∗

∂xi, θi

=
∑
n=1

∑
m=1

∂Ikn

∂xi, θi
Ikm

∗
+
∑
n=1

∑
m=1

∂Ikm
∗

∂xi, θi
Ikn

(A.8)

In which ∂I
∂xi,θi

, I
∗
, ∂I

∗

∂xi,θi
, I can then be separately computed.

The current and conjugated current are:

Iij = iBxie
iθi +

xie
iθi − xne

iθj

R + iX
(A.9)

Iij
∗
= −iBxie

−iθi +
xie

−iθi − xme
−iθj

R− iX
(A.10)
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And the partial derivatives with respect to state variables x, θ are:

∂Iij

∂xi

=iBeiθi +
eiθi

R + iX

∂Iij

∂xj

=− eiθj

R + iX

∂Iij

∂θi
=

ixie
iθi

R + iX
−Bxie

iθi

∂Iij

∂θj
=− ixje

iθj

R + iX

∂Iij
∗

∂xi

=
e−iθi

R− iX
− iBe−iθi

∂Iij
∗

∂xj

=− e−iθj

R− iX

∂Iij
∗

∂θi
=−Bxie

−iθi − ixie
−iθi

R− iX

∂Iij
∗

∂θj
=
ixje

−iθj

R− iX

(A.11)
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A.4. Active Power Flow

Measurement A4 shows the active power flow in-line:

A4,ij = Pij = Real(Sij) = Real(ViI∗ij)

=
Rx2

i sin
2(θi)

R2 +X2
+

Rx2
i cos

2(θi)

R2 +X2
− Rxixj sin(θi) sin(θj)

R2 +X2

− Rxixj cos(θi) cos(θj)

R2 +X2
− Xxixj cos(θi) sin(θj)

R2 +X2
+

Xxixj sin(θi) cos(θj)

R2 +X2

(A.12)

Corresponding derivatives concerning state variables x, θ are:

∂A4,ij

∂xi

=
2Rxi sin

2(θi)

R2 +X2
+

2Rxi cos
2(θi)

R2 +X2
− Rxj sin(θi) sin(θj)

R2 +X2

− Rxj cos(θi) cos(θj)

R2 +X2
− Xxj cos(θi) sin(θj)

R2 +X2
+

Xxj sin(θi) cos(θj)

R2 +X2

∂A4,ij

∂xj

=− Rxi sin(θi) sin(θj)

R2 +X2
− Rxi cos(θi) cos(θj)

R2 +X2
+

Xxi sin(θi) cos(θj)

R2 +X2

− Xxi cos(θi) sin(θj)

R2 +X2

∂A4,ij

∂θi
=
Xxixj sin(θi) sin(θj)

R2 +X2
+

Xxixj cos(θi) cos(θj)

R2 +X2

+
Rxixj sin(θi) cos(θj)

R2 +X2
− Rxixj cos(θi) sin(θj)

R2 +X2

∂A4,ij

∂θj
=− Xxixj sin(θi) sin(θj)

R2 +X2
− Xxixj cos(θi) cos(θj)

R2 +X2
− Rxixj sin(θi) cos(θj)

R2 +X2

+
Rxixj cos(θi) sin(θj)

R2 +X2

(A.13)
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A.5. Reactive Power Flow

Measurement A5 shows the reactive power flow in-line:

A5,ij = Qij = Imag(Sij) = Imag(ViI∗ij)

= −Bx2
i sin

2(θi)−Bx2
i cos

2(θi) +
Xx2

i sin
2(θi)

R2 +X2
+

Xx2
i cos

2(θi)

R2 +X2

− Xxixj sin(θi) sin(θj)

R2 +X2
− Xxixj cos(θi) cos(θj)

R2 +X2
+

Rxixj cos(θi) sin(θj)

R2 +X2

− Rxixj sin(θi) cos(θj)

R2 +X2

(A.14)

Corresponding derivatives concerning state variables x, θ are:

∂A5,ij

∂xi

=− 2Bxi sin
2(θi)− 2Bxi cos

2(θi) +
2Xxi sin

2(θi)

R2 +X2

+
2Xxi cos

2(θi)

R2 +X2
− Xxj sin(θi) sin(θj)

R2 +X2
− Xxj cos(θi) cos(θj)

R2 +X2

+
Rxj cos(θi) sin(θj)

R2 +X2
− Rxj sin(θi) cos(θj)

R2 +X2

∂A5,ij

∂xj

=− Xxi sin(θi) sin(θj)

R2 +X2
− Xxi cos(θi) cos(θj)

R2 +X2
− Rxi sin(θi) cos(θj)

R2 +X2

Rxi cos(θi) sin(θj)

R2 +X2

∂A5,ij

∂θi
=− Rxixj sin(θi) sin(θj)

R2 +X2
− Rxixj cos(θi) cos(θj)

R2 +X2
+

Xxixj sin(θi) cos(θj)

R2 +X2

− Xxixj cos(θi) sin(θj)

R2 +X2

∂A5,ij

∂θj
=
Rxixj sin(θi) sin(θj)

R2 +X2
+

Rxixj cos(θi) cos(θj)

R2 +X2
− Xxixj sin(θi) cos(θj)

R2 +X2

+
Xxixj cos(θi) sin(θj)

R2 +X2

(A.15)
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A.6. Active Injected Power

Measurement A6 shows the active injected power:

A6,k = Pk =
n∑

j=1

Pkj =
n∑

j=1

A4,kj (A.16)

Corresponding derivatives concerning state variables x, θ can be derived from the in-line
power flow formulae:

∂A6,k

∂xi, θi
=

n∑
j=1

∂A4,kj

∂xi, θi
(A.17)

A.7. Reactive Injected Power

Measurement A7 shows the reactive injected power:

A7,k = Qk =
n∑

j=1

Qkj =
n∑

j=1

A5,kj (A.18)

Corresponding derivatives concerning state variables x, θ can be derived from the in-line
power flow formulae:

∂A6,k

∂xi, θi
=

n∑
j=1

∂A6,kj

∂xi, θi
(A.19)
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Jacobian

This appendix deals with how to compute the Jacobian matrix H1 concerning parameter
data for each type of measurement, for the use of GWLS and EWLS.

H2 =


∂f1
∂R1

... ∂f1
∂Rn

∂f1
∂X1

... ∂f1
∂Xn

∂f1
∂B1

... ∂f1
∂Bn

...
∂fm
∂R1

... ∂fm
∂Bn

 (B.1)

B.1. Voltage Magnitude

Measurement A1 shows the voltage magnitude squared:

A1,k =
∣∣Vk

∣∣2 = VkVk
∗
= xke

jθk ∗ xke
−jθk = x2

k (B.2)

Corresponding derivatives concerning parameter R,X,B are:

∂A1,k

∂R
=0

∂A1,k

∂X
=0

∂A1,k

∂B
=0

(B.3)
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B.2. Current Flow

Measurement A2 shows the magnitude squared of current flow in-line:

A2 =
∣∣Iij

∣∣2 = IijIij
∗ (B.4)

Where the current flow in-line Iij would be:

Iij =
Vi − Vj

Rk + jXk
+ jBkVi =

xie
jθi − xje

jθj

Rk + jXk
+ jBkxie

jθi (B.5)

Corresponding derivatives concerning parameter R,X,B are:

∂A4,ij

∂R
=−

(
xie

−iθi − xje
−iθj

) (
iBxie

iθi +
xie

iθi−xje
iθj

R+iX

)
(R− iX)2

−

(
xie

iθi − xje
iθj
) (xie

−iθi−xje
−iθj

R−iX
− iBxie

−iθi

)
(R + iX)2

∂A4,ij

∂X
=
i
(
xie

−iθi − xje
−iθj

) (
iBxie

iθi +
xie

iθi−xje
iθj

R+iX

)
(R− iX)2

−
i
(
xie

iθi − xje
iθj
) (xie

−iθi−xje
−iθj

R−iX
− iBxie

−iθi

)
(R + iX)2

∂A4,ij

∂B
=ixie

iθi

(
xie

−iθi − xje
−iθj

R− iX
− iBxie

−iθi

)
− ixie

−iθi

(
iBxie

iθi +
xie

iθi − xje
iθj

R + iX

)

(B.6)



B| Appendix B parameter Jacobian 59

B.3. Injected Current

Measurement A3 shows the magnitude squared of current injected on buses:

A3,k =

∣∣∣∣∣
n∑

m=1

Ikm

∣∣∣∣∣
2

=
∑
m=1

Ikm

∑
m=1

Ikm
∗

=
∑
n=1

∑
m=1

IknIkm
∗

(B.7)

Corresponding derivatives concerning parameter R,X,B are:

∂A3,k

∂xi, θi
=
∑
n=1

∑
m=1

∂IknIkm
∗

∂xi, θi

=
∑
n=1

∑
m=1

∂Ikn

∂xi, θi
Ikm

∗
+
∑
n=1

∑
m=1

∂Ikm
∗

∂xi, θi
Ikn

(B.8)

In which ∂I
∂xi,θi

, I
∗
, ∂I

∗

∂xi,θi
, I can then be separately computed.

The current and conjugated current are:

Iij = iBxie
iθi +

xie
iθi − xne

iθj

R + iX
(B.9)

Iij
∗
= −iBxie

−iθi +
xie

−iθi − xme
−iθj

R− iX
(B.10)
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And the partial derivatives with respect to parameter R,X,B, θ are:

∂Iij

∂R
=− xie

iθi − xje
iθj

(R + iX)2

∂Iij

∂X
=−

i
(
xie

iθi − xje
iθj
)

(R + iX)2

∂Iij

∂B
= ixie

iθi

∂Iij
∗

∂R
=− xie

−iθi − xje
−iθj

(R− iX)2

∂Iij
∗

∂X
=
i
(
xie

−iθi − xje
−iθj

)
(R− iX)2

∂Iij
∗

∂B
=
xie

−iθi − xje
−iθj

R− iX
− iBxie

−iθi

(B.11)
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B.4. Active Power Flow

Measurement A4 shows the active power flow in-line:

A4,ij = Pij = Real(Sij) = Real(ViI∗ij)

=
Rx2

i sin
2(θi)

R2 +X2
+

Rx2
i cos

2(θi)

R2 +X2
− Rxixj sin(θi) sin(θj)

R2 +X2

− Rxixj cos(θi) cos(θj)

R2 +X2
− Xxixj cos(θi) sin(θj)

R2 +X2
+

Xxixj sin(θi) cos(θj)

R2 +X2

(B.12)

Corresponding derivatives concerning parameter R,X,B are:

∂A4

∂R
=− 2R2x2

i sin
2(θi)

(R2 +X2)2
+

x2
i sin

2(θi)

R2 +X2
− 2R2x2

i cos
2(θi)

(R2 +X2)2

+
x2
i cos

2(θi)

R2 +X2
+

2R2xixj sin(θi) sin(θj)

(R2 +X2)2
− xixj sin(θi) sin(θj)

R2 +X2

+
2R2xixj cos(θi) cos(θj)

(R2 +X2)2
− xixj cos(θi) cos(θj)

R2 +X2

+
2RXxixj cos(θi) sin(θj)

(R2 +X2)2
− 2RXxixj sin(θi) cos(θj)

(R2 +X2)2

∂A4

∂X
=− 2RXx2

i sin
2(θi)

(R2 +X2)2
− 2RXx2

i cos
2(θi)

(R2 +X2)2
+

2RXxixj sin(θi) sin(θj)

(R2 +X2)2

+
2RXxixj cos(θi) cos(θj)

(R2 +X2)2
+

2X2xixj cos(θi) sin(θj)

(R2 +X2)2

− 2X2xixj sin(θi) cos(θj)

(R2 +X2)2
+

xixj sin(θi) cos(θj)

R2 +X2

− xixj cos(θi) sin(θj)

R2 +X2

∂A4

∂B
=0

(B.13)
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B.5. Reactive Power Flow

Measurement A5 shows the reactive power flow in-line:

A5,ij = Qij = Imag(Sij) = Imag(ViI∗ij)

= −Bx2
i sin

2(θi)−Bx2
i cos

2(θi) +
Xx2

i sin
2(θi)

R2 +X2
+

Xx2
i cos

2(θi)

R2 +X2

− Xxixj sin(θi) sin(θj)

R2 +X2
− Xxixj cos(θi) cos(θj)

R2 +X2
+

Rxixj cos(θi) sin(θj)

R2 +X2

− Rxixj sin(θi) cos(θj)

R2 +X2

(B.14)

Corresponding derivatives concerning parameter R,X,B are:

∂A5

∂R
=− 2RXx2

i sin
2(θi)

(R2 +X2)2
− 2RXx2

i cos
2(θi)

(R2 +X2)2
+

2RXxixj sin(θi) sin(θj)

(R2 +X2)2

+
2RXxixj cos(θi) cos(θj)

(R2 +X2)2
+

2R2xixj sin(θi) cos(θj)

(R2 +X2)2

− 2R2xixj cos(θi) sin(θj)

(R2 +X2)2
+

xixj cos(θi) sin(θj)

R2 +X2

− xixj sin(θi) cos(θj)

R2 +X2

∂A5

∂X
=− 2X2x2

i sin
2(θi)

(R2 +X2)2
+

x2
i sin

2(θi)

R2 +X2
− 2X2x2

i cos
2(θi)

(R2 +X2)2

+
x2
i cos

2(θi)

R2 +X2
+

2X2xixj sin(θi) sin(θj)

(R2 +X2)2
− xixj sin(θi) sin(θj)

R2 +X2

+
2X2xixj cos(θi) cos(θj)

(R2 +X2)2
− xixj cos(θi) cos(θj)

R2 +X2

+
2RXxixj sin(θi) cos(θj)

(R2 +X2)2
− 2RXxixj cos(θi) sin(θj)

(R2 +X2)2

∂A5

∂B
=− x2

i sin
2(θi)− x2

i cos
2(θi)

(B.15)



B| Appendix B parameter Jacobian 63

B.6. Active Injected Power

Measurement A6 shows the active injected power:

A6,k = Pk =
n∑

j=1

Pkj =
n∑

j=1

A4,kj (B.16)

Corresponding derivatives concerning parameter R,X,B can be derived from the in-line
power flow formulae:

∂A6,k

∂xi, θi
=

n∑
j=1

∂A4,kj

∂xi, θi
(B.17)

B.7. Reactive Injected Power

Measurement A7 shows the reactive injected power:

A7,k = Qk =
n∑

j=1

Qkj =
n∑

j=1

A5,kj (B.18)

Corresponding derivatives concerning parameter R,X,B can be derived from the in-line
power flow formulae:

∂A6,k

∂xi, θi
=

n∑
j=1

∂A6,kj

∂xi, θi
(B.19)
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System

IEEE14 bus system is a simple representation of a portion of the American power grid in
1962. This classical test system has 5 generators, 11 loads and as its name indicates, 14
buses.[15]

It declares its base values as follows:

• Base power = 10 kVA

• Base Voltage = 230 V

All units of data given in the following are in p.u. unless otherwise specified.

Figure C.1: IEEE14 Bus System [15]
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The system consists of 20 lines, with their parameter data (line resistance, line reactance,
half-line charging susceptance) shown in table C.1:

Line From To Line Line Half

Numb. Bus Bus Res. Rea. Sus.

1 1 2 0.01938 0.05917 0.0264
2 1 5 0.05403 0.22304 0.0246
3 2 3 0.04699 0.19797 0.0219
4 2 4 0.05811 0.17632 0.017
5 2 5 0.05695 0.17388 0.0173
6 3 4 0.06701 0.17103 0.0064
7 4 5 0.01335 0.04211 0
8 4 7 0 0.20912 0
9 4 9 0 0.55618 0
10 5 6 0 0.25202 0
11 6 11 0.09498 0.1989 0
12 6 12 0.12291 0.25581 0
13 6 13 0.06615 0.13027 0
14 7 8 0 0.17615 0
15 7 9 0 0.11001 0
16 9 10 0.03181 0.0845 0
17 9 14 0.12711 0.27038 0
18 10 11 0.08205 0.19207 0
19 12 13 0.22092 0.19988 0
20 13 14 0.17093 0.34802 0

Table C.1: IEEE14 Bus System Parameter Data
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Tap-changing transformer data are shown in C.2:

Tap From To Tap

Numb. Bus Bus Set.

1 4 7 0.978
2 4 9 0.969
3 5 6 0.932

Table C.2: IEEE14 Bus System Tap-changing Transformer Data

Shunt capacitors data are shown in C.3

Bus Sus.

Numb.

9 0.19

Table C.3: IEEE14 Bus System Shunt Capacitor Data
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Bus data concerning generators, loads are shown in C.4:

Bus Mag. Pha. Gen. Gen. Load Load Qmin Qmax

Numb. Real Reac. Real Reac. (Mvar) (Mvar)

1 1.06 0 114.17 -16.9 0 0 0 10
2 1.045 0 40 0 21.7 12.7 -42 50
3 1.01 0 0 0 94.2 19.1 23.4 40
4 1 0 0 0 47.8 -3.9 - -
5 1 0 0 0 7.6 1.6 - -
6 1 0 0 0 11.2 7.5 - -
7 1 0 0 0 0 0 - -
8 1 0 0 0 0 0 - -
9 1 0 0 0 29.5 16.6 - -
10 1 0 0 0 9 5.8 - -
11 1 0 0 0 3.5 1.8 - -
12 1 0 0 0 6.1 1.6 - -
13 1 0 0 0 13.8 5.8 - -
14 1 0 0 0 14.9 5 - -

Table C.4: IEEE14 Bus System Data
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