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Abstract

The recent development of CubeSats equipped with low-thrust propulsion for deep-space
exploration brought the need to improve their autonomy. In particular, an essential aspect
is their capacity to compute their trajectory onboard (and thus solving an optimal con-
trol problem in real-time), with very few computational resources. Convex optimization
is a good candidate to perform this task thanks to its robustness and computational effi-
ciency. However, due to the linearization required by the method to model the dynamics,
the latter is not precisely accounted for, causing reliability issues. This thesis proposes
to use Taylor series expansion to include the dynamics in a more accurate fashion inside
convex optimization algorithms, where the classic formulation of the former is modified
to fit the convex frame. Two methods are developed. Both are able to solve the low-
thrust trajectory problem but grant different performances. The first one improves the
accuracy in most cases but is computationally heavier and has convergence issues. The
second one solves the convergence issues of the former and is faster, but is very inaccurate
with respect to state-of-the-art methods. Perspectives of improvement are presented and
an alternative method involving difference of convex functions is given to extend the work.

Keywords: convex optimization, deep-space guidance, low-thrust trajectory, Taylor se-
ries expansion, nonlinear dynamics





Abstract in lingua italiana

Il recente sviluppo di CubeSats dotati di propulsione a bassa spinta per l’esplorazione
dello spazio profondo ha portato alla necessità di migliorarne l’autonomia. In particolare,
un aspetto essenziale è la capacità di calcolare la traiettoria a bordo (e quindi di risolvere
un problema di controllo ottimale in tempo reale), con pochissime risorse computazionali.
L’ottimizzazione convessa è un buon candidato per svolgere questo compito grazie alla sua
robustezza ed efficienza computazionale. Tuttavia, a causa della linearizzazione richiesta
dal metodo per modellare la dinamica, quest’ultima non viene considerata con precisione,
causando problemi di affidabilità. Questa tesi propone di utilizzare l’espansione in se-
rie di Taylor per includere la dinamica in modo più accurato all’interno degli algoritmi di
ottimizzazione convessi, dove la formulazione classica del primo viene modificata per adat-
tarsi alla struttura convessa. Vengono sviluppati due metodi. Entrambi sono in grado di
risolvere il problema della traiettoria a bassa spinta, ma garantiscono prestazioni diverse.
Il primo migliora l’accuratezza nella maggior parte dei casi, ma è computazionalmente più
pesante e presenta problemi di convergenza. Il secondo risolve i problemi di convergenza
del primo ed è più veloce, ma è molto impreciso rispetto ai metodi classici. Vengono pre-
sentate prospettive di miglioramento e viene fornito un metodo alternativo che coinvolge
la differenza di funzioni convesse per estendere il lavoro.

Parole chiave: ottimizzazione convessa, guida nello spazio profondo, traiettoria a bassa
spinta, espansione in serie di Taylor, dinamiche non lineari
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Introduction

In the last few years, a new trend arose in the space industry: the "New Space" [1].
Historical space actors (ESA, NASA, Arianespace, CNES, ASI, etc) as well as young
companies are participating to develop this new economy by working on a growing num-
ber of innovative concepts. In the next decade, it is estimated that more and more objects
(especially reduced-size spacecraft like NanoSats and CubeSats) will fly and thus the ac-
cess to space will be broaden to more actors. Usually, CubeSats are launched as secondary
payloads, assisting the main spacecraft. But recent developments in research and technol-
ogy allowed the former to be more and more efficient and powerful, and ready to perform
their own missions. CubeSats are interesting from many points of view: they are light,
allowing one launch to bring several in space, and their production requires less resources
with respect to state-of-the-art spacecraft. Thus, their use are necessary to improve the
sustainability of the space industry. Furthermore, their short size and their (relative)
simplicity make their use and manufacturing available to entities with less economic and
technical resources than the usual actors but that have projects requiring access to space
(modest research laboratories, start-ups, student associations, etc).

In this new framework, several miniaturized probes equipped with low-thrust propulsion,
instead of one big spacecraft, are the main trend of development regarding space activities.
Indeed, low-thrust propulsion offers an advantage with respect to chemical engines in
terms of fuel consumption, and thus of mission’s economic cost. To minimize the required
workforce on ground to operate a growing number of spacecraft, their autonomy is key. In
particular, current spacecraft need to receive instructions from the guidance, navigation
and control (GNC) engineers to maintain and follow a nominal trajectory. It is a complex
task when considering a swarm of dozens of NanoSats, or a CubeSat exploring Deep-space
and operating with very limited resources. Hence, the need for miniaturized spacecraft
to compute their trajectory autonomously with few computational resources has never
been higher. Nevertheless, the computation of the trajectory is an optimization problem,
that can become difficult when no powerful computer is available. Hence, one has to
develop methods that are accurate (the CubeSat shall follow the nominal path), robust (an
algorithm failure isn’t allowed in space) and efficient (for the reasons mentioned before).
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Convex optimization is a suitable candidate to solve the aforementioned problem. It is
a method that uses the convexity theory to solve the low-thrust trajectory optimization
problem in a fast, efficient and robust fashion, and is thus interesting for onboard use.
However, the classical way to deal with non-linearities induced by the spacecraft’s dynam-
ics relies on a local linearization with respect to a reference trajectory to comply with the
convex programming framework. The error of the linearization process with respect to
the true dynamics causes reliability concerns. A lot of work successfully dealing with this
issue has been proposed in the literature, but as convex programming is a quite recent
breakthrough (especially when applied to trajectory optimization in space), there are still
some room for improvement concerning those algorithms: this is where this thesis fits.

The main goal of this thesis is to investigate novel methods to include non-linearities
related to the dynamics in convex optimization algorithms. Instead of linearizing, the
proposed solution to be developed is to employ Taylor Series Expansion (TSE) where
the high-order terms are modified to fit the convex framework (we will use the word
"convexify" from now on). To do so, methods will be developed theoretically based on
the literature and implemented to get numerical evidences that they are valid.

The choice of exploring the convexified TSE has been made by selecting, adapting, imple-
menting and comparing a few promising methods (not explicitly related to our aim), taken
from the literature, that could be customized to better take into account the non-linear
dynamics with respect to a pure linearization. The one that brought the most novelty and
on which most expectations were placed was the TSE, because to the best of the team’s
knowledge, it has never been investigated before to reach our purpose.

This thesis raises expectations about its outcomes in short, mid and long terms. The
former will be considered successful if, in a short-term, novel methods are developed
which are able to solve the low-thrust trajectory optimization problem in particular cases
(from the field of deep-space guidance). It would be a great achievement if, for two
convex optimization algorithms of the same kind (meaning that their comparison is fair),
the one that uses the methods developed in that project accounts better for the non-linear
dynamics than the one using classical approaches, granting a better accuracy and thus
a greater reliability. In a mid-term, if the work of this thesis is interesting and effort
is put to deepen it, it could serve to make a step towards the successful demonstration
of convex optimization in a realistic spacecraft simulator, or better, in a technological
demonstration mission (in the ESA mission M-ARGO for instance). Finally, the long-term
aim of this work is to participate (by an infinitesimal contribution) to enable autonomous
miniaturized probes to explore our universe.
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The research questions that are asked in this thesis are:

• Does the convexified Taylor Series Expansion methods to model the dynamics im-
prove the reliability of the optimization solution ?

• How does it compare to state-of-the-art methods ?

This Master Thesis is part of the study at Politecnico di Milano, and is concluding the
Master’s degree "Space Engineering". It has been done within the Deep-space Astro-
dynamics Research & Technology (DART) Group and in particular in the frame of the
ERC-funded project EXTREMA [2]. The thesis is supervised by Prof. Francesco Topputo
and co-supervised by Christian Hofmann and Andrea Carlo Morelli.
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1| Literature Review

The low-thrust trajectory optimization problem has been historically studied as an Op-
timal Control Problem (OCP) [3]. To solve the former, two main classes of methods are
available: the indirect and direct methods [4]. Indirect methods are based on Pontrya-
gin’s maximum principle [5] and the calculus of variations (in [6] an optimum low-thrust
transfer between two elliptic orbits is computed using such method). Once the necessary
conditions are derived, a two-point boundary value problem is solved. Although indirect
methods are precise, they are complicated to initialize and thus not robust enough for
onboard, real-time, implementation. Instead, direct methods discretize the trajectory to
solve a finite parameter optimization problem using for instance Non-Linear Programming
(NLP) techniques [7], but not exclusively. The main direct methods for low-thrust space
trajectory optimization are gathered in [8].

Convex Optimization (CO) falls into the last category. An optimization problem can
be solved by CO when minimizing convex functions over convex sets. Several other
optimization categories are particular cases of convex programming problems (e.g. linear,
quadratic, second-order cone, semi-definite and cone programming). CO theoretical [9]
and practical [10] features are well known but, for aerospace applications, naturally convex
functions are very rare. Considering the two-body problem’s equations of motion for
example, it can be seen that the term 1/r3 will be a source of non-convexity. Thus,
scientists and engineers employ several techniques to convexify those functions, while
keeping the solution of the convex problem feasible and optimal (or sub-optimal) for the
original nonconvex one [11].

Before the solution process can occur, the original nonconvex problem has to be con-
vexified. The first convexification technique implemented in this work is called lossless
convexification. Its usual role is to handle nonconvex control constraints. It consists in
relaxing the latter, switching from an equality to an inequality. Açıkmeşe and Blackmore
proved in [12] that an optimal solution for the relaxed problem is also optimal for the orig-
inal one, demonstrating that the former and the new constraints are exactly equivalent.
Therefore, lossless convexification is a simple, yet very powerful technique. However, it
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can only be applied to particular constraints. In general, every constraint can not benefit
from the performances of lossless convexification. The latter is nowadays systematically
performed in the large majority of CO algorithm. The method is illustrated by solving
a Mars landing problem in [13]. In our case, the process is required to convexify the
constraint enforcing the thrust vector’s norm to be equal to the thrust magnitude. It is
illustrated for instance in [14–16]. For an application in the aeronautic military field, the
reader can refer to [17] (aerodynamically controlled missile).

The second one is the Successive Convexification (SCvx) framework. Its principle is
to linearize nonlinear constraints (that can not benefit from lossless convexification for
instance) at a reference solution, which is usually the previous iteration’s one, to convexify
them. In [18], Mao et al. demonstrated strong convergence results regarding methods
employing SCvx with respect to other numerical optimization methods. They showed
that under some weak assumptions, the algorithm presents a superlinear convergence
rate, making it faster than most of the NLP techniques. It is thus widely used in the
aerospace field thanks to those properties. In such algorithms, the dynamical constraints
are expressed as linear equalities and are thus affine (hence convex) with respect to the
problem’s variables.

The type of algorithm using SCvx is part of a large class called Sequential Convex Pro-
gramming (SCP), which is the state-of-the-art way of dealing with nonconvex constraints
due to nonlinear dynamics. SCP consists in solving a sequence of convex optimal control
subproblems to converge towards a locally optimal solution for the nonconvex original
one. Algorithms employing this process can have various features. Malyuta et al. [19]
proposed a comprehensive tutorial on convex optimization in general and SCP in partic-
ular. SCP often employs SCvx but not exclusively. The GuSTO algorithm [20] possesses
for example novel features with respect to previous SCP methods granting for some cases
better convergence and optimality performances.

Once the convex sub-problem is properly stated, it can be solved using Interior-Point
Methods (IPM) [21] that are, depending on the application, either generic or purposely
designed. For example, the Embedded Conic Solver (ECOS) [22] is able to solve a wide
variety of Second-Order Cone Program (SOCP) and is powerful for small to medium-sized
problems. However, when the performances of generic solvers like ECOS are insufficient,
one can develop their own IPM to better fit their particular problem. In [23], Dueri
and Açıkmeşe developed a tuned method to fit their powered descent guidance algorithm
for planetary pinpoint landing. The method was "flight-tested by NASA Jet Propulsion
Laboratory and the NASA Flight Opportunities Program in 2013", proving that CO
associated to an adapted IPM is a promising technology for the aerospace industry and,
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in our case, deep-space exploration.

Once the problem has been convexified, the continuous OCP shall be transformed into a
finite parameter optimization (discretization) and the differential dynamical constraints
into algebraic ones (collocation). To do so, the integral equations of the dynamics must be
approximated (by numerical integration) and the points where the dynamical constraints
are enforced (collocation points) must be chosen. Several methods exist to perform this
discretization step [24] with various performances [25]. The convergence rate of a collo-
cation method is for instance an important feature regarding the latter as it is directly
linked with the speed and the computational efficiency of the algorithm. Several meth-
ods have been theoretically studied under that angle as the Gauss collocation method
for respectively unconstrained [26] and constrained [27] OCPs, or the Radau collocation
method for unconstrained OCP [28].

In this paragraph, examples of collocation and discretization methods for astrodynamics
will be under focus. The most simple one is the trapezoidal discretization. It relies on
the trapezoidal rule to approximate integrals. Its simplicity makes it easy to manipu-
late in order to try new approaches or for relatively low-complexity problems such as the
Earth-Mars transfer [16]. However, advanced algorithms don’t use this method due to
its poor accuracy. A good solution to improve precision without highly increasing the
complexity is the Hermite-Simpson discretization scheme [8]. It consists in using Hermite
interpolation [29] to approximate the dynamics, and to evaluate the integral with the
Simpson’s rule [30]. The advantage of the method with respect to trapezoidal discretiza-
tion is, for a given time interval, to impose the dynamical constraints at both boundaries
(called nodes) and at the collocation point that lies in the center of the interval, whereas
the former only imposes the dynamics at the nodes. In this work, the two previous
techniques are employed, but the end of the paragraph will mention two other methods
that are tremendously important in the field of astrodynamics. For advanced algorithm,
where high-accuracy is needed, one can extend the Hermite-Simpson scheme to arbitrary
order interpolating polynomials. It is called arbitrary-order Gauss-Lobatto collocation
method [31]. The collocation points are computed by finding the roots of the derivative
of a well-chosen Legendre polynomial and are thus named Legendre-Gauss-Lobatto (LGL)
collocation points [32]. In [15], Morelli et al. solved an Earth-Dionysus low-thrust trajec-
tory problem using LGL. The method shows a higher convergence rate and accuracy of
the results with respect to Hermite-Simpson. An other method worth to mention is the
adaptive Flipped Radau Pseudospectral Discretization (FRPD) studied in [33]. In [34],
the differences with the LGL method is explained and the two methods are compared.
FRPD also showed good performances for space-based practical applications [35, 36].



8 1| Literature Review

In the last decade, the interests for CO algorithms (and SCP in particular) have quickly
grown within the aerospace engineering community for its broad set of potential applica-
tions. First, both minimum-time [37] and minimum-fuel [14] problems have been solved.
Furthermore, the method dealt with a wide set of aerospace problems [38]. Indeed, CO
can be used for both military or civil, aeronautic and space fields. In [17] Liu et al.
proposed an algorithm to deal with the terminal guidance of aerodynamically controlled
missiles, where the constraints on the final angle and dynamical pressure are taken into
account (and thus convexified). Multi-rotor aerial vehicles motion planning problems have
also been treated by Mao et al. [39], and the performances of their practical onboard im-
plementation have been assessed. Concerning the space field, every stage of the mission
is covered by CO algorithms. From the launchers point of view, a multistage launcher
ascent trajectory optimization is solved in [40] and the descent of a reusable launcher
(reusability being one of the most studied topic in the field nowadays) with a convex ap-
proach is discussed in [41]. The planetary entry [42] and landing [13] are also one of many
applications. For our topic in particular, deep-space guidance, a lot of work have already
been cited in the previous lines. However, two more applications are worth mentioning
because of their novelty and the high expectations they raise. First, planetary ballistic
capture is a way of being captured in orbit without having to spend fuel (or with minor
orbit corrections) making possible an orbit insertion with low-thrust technology. It has
been first performed by the Japanese spacecraft Hiten in 1991 [43], and the BepiColombo
mission is also supposed to use this orbit insertion strategy around Mercury in the next
years [44]. In [45], Morelli et al. developed a convex guidance approach to target the cor-
ridors where this capture is feasible, which is a big challenge because of the very narrow
conditions to meet in order to perform such a manoeuvre. Then, with the development
of new missions targeting asteroids (for science, planetary protection or mining for in-
stance), guidance and navigation around these bodies are key. For instance, the NASA
mission OSIRIS-REx [46] launched in 2016 will return asteroid samples on Earth in 2023.
Thanks to their exponential development, CubeSats will soon be able to perform those
missions, in a more and more autonomous fashion. The ESA mission M-ARGO (that
could be launched between 2023 and 2025) has for objective to demonstrate autonomous
navigation around its target [47]. Following this trend, autonomous guidance around as-
teroids is an important topic as it would represent a leap towards missions’ full autonomy.
CO algorithm have also been proposed to cover the latter, and in particular, the landing
problem have been addressed for irregularly-shaped asteroids [48].

Nevertheless, when developing a CO algorithm, one has to comply with a set of conditions.
The one followed classically is the Disciplined Convex Programming (DCP) framework
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[49]. DCP is a list of rules and guidelines to obey when writing a CO algorithm, which
ensures that the compiling of the code will go smoothly. Following those ensures that all
the functions called are convex, as well as all the constraints. In this thesis, a MatLab
software called CVX [50, 51] will be used to perform numerical simulations to check that
the DCP framework is respected. However, in the general case, it is the operator’s role
to verify that the right conditions for convex programming are satisfied.

Consequently, in state-of-the-art CO algorithms for aerospace applications, the standard
way of dealing with nonlinear (and nonconvex) dynamics is to linearize it (to get affine
equality constraints, which is one of the DCP rules). The linearization process leads to
an error with respect to the true dynamics that increases fast when deviating from the
reference solution, which causes reliability issues. Precise collocation methods to account
for the dynamics (LGL for instance) improve this aspect but don’t prevent the deviation
from the reference. This problem is usually dealt with by employing a trust region to
force the algorithm to stay close to it [35, 52]. It is a powerful method that possesses a lot
of variations [25] and also have some weaknesses, like the oscillation phenomenon occur-
ring when the current solution is close to a local optimum [53]. Previous work attempted
other methods in addition of the trust-region to take a better care of non-linearities: in
[54], Foust, Chung and Hadaegh proposed a nonlinear dynamics correction to the classical
SCP algorithm using Lipschitz coefficients to correct the constraints, applied to Unmanned
Aerial Vehicles’ (UAV) motion planning. In [55], non-linearities (not the dynamical ones
but those induced by physical inequality constraints, like obstacles avoidance) are coped
with using convexified Taylor Series Expansion (TSE) to obtain a convex approximation
of the constraints. In this last paper, a method is given to convexify the terms up to
an arbitrary order, and thus obtaining an Inner-Convex Approximation (ICA) [55]. The
latter is a very interesting way of approximating a function because first, as the name sug-
gests, it is convex and thus can be integrated into CO algorithms by definition. However,
adapting it to our purpose requires efforts. Additionally, the original function and its ICA
coincide when evaluated on the reference solution. It is also the case for their gradients.
Finally, ICAs are enjoying some very interesting mathematical properties of convergence
and recursive feasibility [56], that could be exploited to reach the goal of this thesis by
adapting the method presented in [55] to model the dynamical equality constraint.
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2| Classic Problem Statement

In this chapter, the OCP is stated and convexified with state-of-the-art methods and a
simple algorithm is proposed to solve it.

2.1. Equations of Motion

2.1.1. Two-Body Problem

We consider a spacecraft of mass m, powered by a low-thrust engine, moving in a two-body
environment with the Sun as primary body and no other perturbation. We denote:

• µ the Sun’s planetary constant

• r = [rx, ry, rz]
⊤ the spacecraft’s position vector in cartesian coordinates

• v = [vx, vy, vz]
⊤ the spacecraft’s velocity vector in cartesian coordinates

• T = [Tx, Ty, Tz]
⊤ the thrust’s vector

• T = ||T||2 the thrust’s magnitude

• ve = Isp g0 the engine’s exhaust velocity, with Isp the engine’s specific impulse and
g0 the gravitational acceleration at sea level

• x = [r, v, m]⊤ the state variable

The equations of motion (EoM) are:

ẋ = f(x,T) =



ṙ = v

v̇ =
−µ

r3
r+

T

m

ṁ =
−T
ve

(2.1)
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2.1.2. Normalization

For numerical reasons, all the quantities that appear in the equations of motion are
normalized. The reference values are gathered in table 2.1.

Table 2.1: Normalization quantities

Quantity Value Description

Distance R0 1AU = 1.49597870.108 km Astronomical unit

Velocity V0

√
µ/R0 = 29.78469190 km.s−1 Earth’s circular velocity

Time T0 R0/V0 = 5.02264286.106 s Ratio between distance and velocity

Mass m0 Problem-dependent Spacecraft’s initial mass

Thrust Tmax Problem-dependent Maximum thrust available onboard

The normalized EoM are:

ẋ = f(x,T) =



ṙ = v

v̇ =
−r

r3
+

cT

m

ṁ =
−cT
ve

where c =
TmaxR0

m0V 2
0

(2.2)

Remark 1: ve has been normalized with V0.

Remark 2: For conciseness, the quantities in eq. (2.1) and their normalized versions in
eq. (2.2) have been given the same name. From now on, we will always refer to the
adimensional variables. If not, it will be mentioned.

2.1.3. Decoupling States and Controls

We define: τ = T/m, τ = T/m and z = log(m). The new state variable is thus
x = [r, v, z]⊤ (we keep the same name for conciseness and we will refer to this definition
from now on) and the control variable is: u = [τ , τ ]⊤. The decoupled EoM are:
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ẋ = f(x,u) =


v
−r

r3

0

+Bu where B =


03×4

c 0 0 0

0 c 0 0

0 0 c 0

0 0 0 −c/ve

 (2.3)

2.2. Formulation and Convexification

In this section, the OCP is stated and convexified. Then, the convex sub-problem to be
solved iteratively [18] is formulated.

2.2.1. Original Problem

The low-thrust trajectory optimization problem is formulated as the following OCP:

min
u

J0 := −mf (2.4)

Such that:



ẋ = f(x,u)

τ 2x + τ 2y + τ 2z = τ 2

0 ≤ τ ≤ e−z

x(t0) = x0, x(tf ) = xf

xl ≤ x ≤ xu, ul ≤ u ≤ uu

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2.5e)

where mf is the spacecraft’s final mass (J0 is called Mayer performance index), t0 and tf

are respectively the initial and final times of the problem, x0 and xf are the boundary
conditions to be satisfied and parameters with (·)l and (·)u subscripts are respectively
lower and upper boundaries. The constraints 2.5b and 2.5c translate respectively the
relations ||T||2 = T and 0 ≤ T ≤ 1 (normalized) with the decoupling variables τ , τ and
z defined before.

In the frame of this thesis, only fixed final times will be considered, thus the time of flight
tf is constant in all the following.
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2.2.2. Lossless Convexification

The first convexification step is to relax eq. (2.5b) into a second-order cone constraint by
lossless convexification as studied in [11] and done in [13]. The relaxed constraint is:

τ 2x + τ 2y + τ 2z ≤ τ 2 (2.6)

By doing so, the feasible set is extended but the original equality constraint will be
respected once the solution found [12].

2.2.3. SCvx Framework

Linearization

In the SCvx framework, the dynamics and the nonlinear constraints are linearized around
a reference solution (x∗,u∗). Let p(x) be the natural part of the dynamics’ function
f(x,u) :

p(x) =

[
v,

−r

r3
, 0

]⊤
(2.7)

The (partially) linearized dynamics is obtained by taking the first order Taylor Series
Expansion (TSE) of p(x) with respect to x:

ẋ = f(x,u) ≃ p(x∗,u∗) +A(x∗) (x− x∗) +Bu (2.8)

where A is the Jacobian of p. For the normalized two-body problem:

A(x) =
∂p(x)

∂x
=


03×3 I3

3

r5

 r2x rxry rxrz

ryrx r2y ryrz

rzrx rzry r2z

− I3
r3

03×3

 (2.9)

Furthermore, eq. (2.5c) is linearized to become:

0 ≤ τ ≤ e−z∗ (1− (z − z∗)) (2.10)
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Trust Region

An additional constraint called "trust-region" can be enforced (depending on the problem)
to keep the solution of the current iteration close to the reference one [25, 52]. It is
formulated as:

||x− x∗|| ≤ Rtr (2.11)

The type of norm and Rtr are set according to the problem.

Artificial Infeasibility

Within the framework described before, one may encounter additional issues such as
artificial infeasibility [52]. This phenomenon appears when a feasible non-convex problem
is linearized, leading to an unfeasible convex sub-problem. The standard way of solving
the issue is to add an unconstrained control variable ν to the linearized constraint in order
to always reach feasibility [14]:

ẋ = f(x∗,u∗) +A(x∗) (x− x∗) +Bu+ ν (2.12)

To make sure that artificial infeasibility is tackled only when strictly necessary, a penalty
is added in the cost function. The new convex sub-problem is:

min
u

J = J0 + w||ν||1 (2.13)

Such that:



ẋ = f(x∗,u∗) +A(x∗) (x− x∗) +Bu+ ν

τ 2x + τ 2y + τ 2z ≤ τ 2

0 ≤ τ ≤ e−z∗ (1− (z − z∗))

||x− x∗|| ≤ Rtr

x(t0) = x0, x(tf ) = xf

xl ≤ x ≤ xu, ul ≤ u ≤ uu

(2.14a)

(2.14b)

(2.14c)

(2.14d)

(2.14e)

(2.14f)

where w is a sufficiently large penalty weight. Artificial infeasibility could have been
tackled also in eq. (2.14c) but it wasn’t necessary in our frame. Another issue of the same
type exists, called artificial unboundedness [52]. It is also linked with the linearization
but isn’t adressed here.
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2.3. Summary

Finally we can change the objective function into an integrated control cost to highlight
better the dependence from the control variables:

J0 =

∫ tf

t0

τ(t)dt (2.15)

The two cost functions eq. (2.4) and eq. (2.15) are proved to be equivalent by Wang and
Grant in [16]. To sum up, the convexified sub-problem is:

min
u

J = J0 + w||ν||1 (2.16)

Such that:



ẋ = f(x∗,u∗) +A(x∗) (x− x∗) +Bu+ ν

τ 2x + τ 2y + τ 2z ≤ τ 2

0 ≤ τ ≤ e−z∗ (1− (z − z∗))

||x− x∗|| ≤ Rtr

x(t0) = x0, x(tf ) = xf

xl ≤ x ≤ xu, ul ≤ u ≤ uu

(2.17a)

(2.17b)

(2.17c)

(2.17d)

(2.17e)

(2.17f)

2.4. The SCP Algorithm

Various versions of the SCP algorithm have been abundantly used and studied in the
literature, thus the reader is invited to refer to chapter 1 to have a wider overview of the
topic. This section will briefly describe a simple version of the SCP algorithm that will
be used as a comparison for the methods that are developed in this work.

Let J (i), (x(i),u(i)) and Rtr,i be, respectively, at iteration i, the cost function, the solution
of the convex sub-problem 2.16 and the trust-region radius. Let δ be the tolerance value
to check the convergence criterion, which is:

∆J = |J (i) − J (i−1)| < δ (2.18)
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Algorithm 2.1 SCP Algorithm for comparison purposes

1: Generate initial guess (x(0),u(0)) and initial trust-region radius Rtr,1

2: (x∗,u∗) = (x(0),u(0))

3: i = 1, J (0) = 100, J (1) = 10

4: while |J (i) − J (i−1)| ≥ δ do
5: Evaluate the required natural dynamics and the Jacobians with (x∗,u∗)

6: Solve problem 2.16 for (x(i),u(i))

7: (x∗,u∗) = (x(i),u(i))

8: J (i−1) = J (i)

9: J (i) = J(x(i),u(i))

10: i = i+ 1

11: Update trust-region radius Rtr,i with the chosen strategy
12: end while
13: The solution is (x∗,u∗)

2.5. Initial Guess Generation

When possible, the initial guess is an integrated trajectory with a given control. The
advantage of this method is that it is dynamically accurate. However, when several revo-
lutions around the primary body are involved, integrating a prescribed control is inefficient
because there are few chances that the final boundary conditions are met (even roughly),
making the search of a feasible solution while respecting the trust-region unsuccessful.
To solve this issue, first, the cartesian boundary conditions are converted into cylindrical

coordinates
(
r0, θ0, z0, ṙ0, θ̇0, ż0

)⊤
and

(
rf , θf , zf , ṙf , θ̇f , żf

)⊤
. To the final azimuthal co-

ordinate θf is added the desired number of revolutions Nrev. From [57] (appendix C), a
cubic polynomial function can be used to approximate each state:

f(t) = at3 + bt2 + ct+ d (2.19)

The boundary conditions
(
r0, θ0, z0, ṙ0, θ̇0, ż0

)⊤
and

(
rf , θf + 2πNrev, zf , ṙf , θ̇f , żf

)⊤
are

then used to get (a, b, c, d) for each state (see [57]), and thus the full polynomial ap-
proximation for all time instants. Converting back into cartesian coordinates, we have
our multi-revolution initial guess that is now respecting exactly the boundary conditions.
However, the guess is dynamically inaccurate and thus poor in terms of quality with
respect to other methods as the Finite Fourier Series also studied in [57]. It is a good
opportunity to test the robustness of our algorithm though.
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Expansion Method

The main theoretical development and novelties of this work are explained through this
chapter, where two new methods to include non-linear dynamics are developed.

3.1. Introduction

This section gathers useful definitions and builds the basis of the theoretical development
for the following sections. The definition of an inner-convex approximation is recalled,
and a convexification method for a multi-variate TSE of a scalar function is presented.

Let f : E −→ R be a function of a variable x = (x1, x2, x3, . . . , xd)
⊤ with E ⊂ Rd (d

represents the length of the states vector. It is arbitrary for now but will be equal to 7 in
practice). Let x∗ ∈ E , x∗ = (x∗

1, x
∗
2, x

∗
3, . . . , x

∗
d)

⊤ be a reference point and δx = x− x∗.

3.1.1. Inner-Convex Approximation

In this subsection, a definition of an Inner-Convex Approximation (ICA) is given. An
ICA of f around x∗ is a function f

(x∗)
ica verifying [55]:


f
(x∗)
ica is convex

∀x ∈ E , f
(x∗)
ica (x) ≥ f(x)

f
(x∗)
ica (x∗) = f(x∗)

∇f
(x∗)
ica (x∗) = ∇f(x∗)

(3.1a)

(3.1b)

(3.1c)

(3.1d)

3.1.2. Convexification

The TSE of f up to order 2 (see eq. (B.4) in appendix B) yields:

f(x) ≃ f(x∗) + δx⊤∇f(x∗) + δx⊤H(x∗)δx (3.2)
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For eq. (3.2) to be convex, one has to convexify the Hessian term δx⊤H(x∗)δx. Indeed,
the linear part is convex and a sum of two convex functions is also convex. Hence, the
second-order TSE’s convexity depends only on δx⊤Hδx (which is a quadratic form that
is convex if and only if H is positive semi-definite [9, 55]). In our case, we must modify
this term to convexify it. Hence, we write [58]:

H = H+ + H− (3.3)

where H+ and H− are respectively positive semi-definite and negative semi-definite. With
V the eigenvectors matrix of H and Λ+ the eigenvalues matrix containing only the positive
ones, H+ yields [55]:

H+ = VΛ+V⊤ (3.4)

The convex version of eq. (3.2) (and an ICA of f) is:

f(x) ≃ f(x∗) + δx⊤∇f(x∗) + δx⊤H+(x∗)δx = f
(x∗)
ica (x) (3.5)

To convexify higher-order terms, we can follow the same procedure with the tensors Tf,m

(see eq. (B.2) for a definition of Tf,m). But according to [55], the computational cost is
high and an other method, towards which the reader is referred, is proposed to avoid this
burden.

3.2. Formulation

Usually, as previously said, the dynamics is convexified by linearizing the terms with
respect to a reference solution (see eq. (2.8)). However, this is an inaccurate way of ap-
proximating a function, making the algorithm’s reliability drop fast when highly deviating
from the reference. The goal of this section is to introduce new methods of approximating
and including the dynamics in a CO algorithm, using ICAs.
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3.2.1. First Approach

Ideally, our purpose is to solve the OCP 2.16, imposing eq. (3.5) instead of eq. (2.17a) for
the nonlinear terms. In eq. (3.6), the EoM are recalled.

ẋ = f(x,u) =


v
−r

r3

0

+Bu =

 v

pr(x)

0

+Bu (3.6)

And pr(x) is defined as:

pr(x) =

 −rx/r
3

−ry/r
3

−rz/r
3

 =

 prx

pry

prz

 (3.7)

Only the terms involving pr(x) are nonlinear. They are approximated by their convexified
TSE up to order 2 (for sake of clarity). We would like to impose for the dynamics:



ṙ = v

v̇x = prx(x
∗) + δx⊤∇prx(x

∗) + δx⊤H+
rx(x

∗)δx+ cτx

v̇y = pry(x
∗) + δx⊤∇pry(x

∗) + δx⊤H+
ry(x

∗)δx+ cτy

v̇z = prz(x
∗) + δx⊤∇prz(x

∗) + δx⊤H+
rz(x

∗)δx+ cτz

ż = −cτ/ve

(3.8a)

(3.8b)

(3.8c)

(3.8d)

(3.8e)

where ∇prx(x
∗) and H+

rx(x
∗) are the gradient and the convexified Hessian of prx. Similar

notations are used for pry and prz. However, according to the DCP rules [49], in CO, each
side of an equality constraint shall be affine. It is not the case for eq. (3.8b), eq. (3.8c)
and eq. (3.8d) because the right-hand side is convex. Thus, this approach is not valid, we
have to adapt it.

3.2.2. Second Approach

If we can not impose directly the equality constraints, we can try to include them into the
cost function by strongly penalizing when the latter isn’t respected [59]. The quantity we
would like to add in the cost (with λd a sufficiently large penalty weight) is:

λd|| − v̇k + prk(x
∗) + δx⊤∇prk(x

∗) + δx⊤H+
rk(x

∗)δx+ cτk|| with k ∈ {x, y, z}
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Again, this is not feasible because DCP rules set prevents the use of a convex expression
inside a norm. Hence we can transform the cost into:

J = J0 + λd (∆x +∆y +∆z) (3.9)

where:

∆x := −v̇x + prx(x
∗) + δx⊤∇prx(x

∗) + δx⊤H+
rx(x

∗)δx+ cτx

∆y := −v̇y + pry(x
∗) + δx⊤∇pry(x

∗) + δx⊤H+
ry(x

∗)δx+ cτy

∆z := −v̇z + prz(x
∗) + δx⊤∇prz(x

∗) + δx⊤H+
rz(x

∗)δx+ cτz

are the dynamical defects relative to each coordinate x, y, z. Only the linear dynamics is
remaining as a constraint: {

ṙ = v

ż = −cτ/ve

(3.10a)

(3.10b)

This formulation satisfies the DCP rules but, during simulation, the term λd (∆x +∆y +∆z)

takes negative values (to minimize J) which doesn’t match our aim because we want the
latter to be zero.

3.2.3. Final Approach

From the last paragraph, we want to find a way to prevent the dynamical defects to take
highly negative values. First, we know that the convexified Hessian H+(x∗) is positive
semi-definite, hence:

∀v ∈ R7, v⊤H+(x∗)v ≥ 0 (3.11)

Thus, by definition of the defects ∆:

∀k ∈ {x, y, z}, ∆k ≤ 0 =⇒ −v̇k + prk(x
∗) + δx⊤∇prk(x

∗) + cτk ≤ 0 (3.12)

In other words, if the defects are negative, the linear part is necessarily negative too.
Hence, if we prevent the linear part to be negative, our problem is solved. However,
imposing:

∀k ∈ {x, y, z}, −v̇k + prk(x
∗) + δx⊤∇prk(x

∗) + cτk ≥ 0

is not a good solution because in that case, due to eq. (3.11), we would miss the chance
to obtain:

−v̇k + prk(x
∗) + δx⊤∇prk(x

∗) + cτk + δx⊤H+
rk(x

∗)δx = 0
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We could impose :

−v̇k + prk(x
∗) + δx⊤∇prk(x

∗) + cτk + δx⊤H+
rk(x

∗)δx ≥ 0 (3.13)

But a constraint involving a convex expression to be greater or equal to zero is forbidden
by DCP rules. Let Xi−1 be the quantity X at the iteration i− 1. We impose finally, with
S an unconstrained slack variable:

−v̇k + prk(x
∗) + δx⊤∇prk(x

∗) + cτk + δxi−1
⊤H+

rk(xi−1
∗)δxi−1 + Sk ≥ 0 (3.14)

Where δxi−1
⊤H+

rk(xi−1
∗)δxi−1 is a constant computed with the previous iteration to pre-

vent the situation explained before. This formulation allows the linear part to be slightly
negative and compensated with the constant Hessian term. We expect that, along the
iterations, this constant term gets closer and closer to the actual one. The slack variable
prevents the linear part to take highly negative values by including a penalty into the cost
function (λs is the slack variable penalty weight):

J = J0 + λd (∆x +∆y +∆z) + λs (max (Sx, 0) + max (Sy, 0) + max (Sz, 0)) (3.15)

Remark: there is no need to tackle artificial infeasibility directly here because the non-linear
dynamics’ approximation is now included in the cost and isn’t a constraint anymore. The
feasibility of an iteration will thus never be altered by a poor dynamics’ approximation im-
posed as a constraint. However, the aforementioned method is directly inspired of the one
used to tackle artificial infeasibility, especially the use of a slack variable (see eq. (2.12)).

3.2.4. Summary

The final formulation, which we will refer to as Convexified Taylor Series Expansion
(CTSE) method is summed up here:

min
u

J = J0 + λd (∆x +∆y +∆z) + λs (max (Sx, 0) + max (Sy, 0) + max (Sz, 0)) (3.16)
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Such that (with k ∈ {x, y, z}):



ṙ = v

ż = −cτ/ve

− v̇k + prk(x
∗) + δx⊤∇prk(x

∗) + cτk + δxi−1
⊤H+

rk(xi−1
∗)δxi−1 + Sk ≥ 0

τ 2x + τ 2y + τ 2z ≤ τ 2

0 ≤ τ ≤ e−z∗ (1− (z − z∗))

||x− x∗|| ≤ Rtr

x(t0) = x0, x(tf ) = xf

xl ≤ x ≤ xu, ul ≤ u ≤ uu

(3.17a)

(3.17b)

(3.17c)

(3.17d)

(3.17e)

(3.17f)

(3.17g)

(3.17h)

3.3. Alternative Method

In the CTSE method, the formulation is quite complex and causes some numerical is-
sues (cf next chapter). Hence, another method has been developed, whose purpose is to
be simpler and to improve some features of the CTSE. The new method, that we call
Alternative CTSE (ACTSE), still relies on ICA to model the spacecraft’s dynamics.

3.3.1. Main Idea

We define squared defects for the nonlinear dynamical constraints with s = [x,u]⊤:
Dx(s) := (v̇x − prx(x)− cτx)

2

Dy(s) := (v̇y − pry(x)− cτy)
2

Dz(s) := (v̇z − prz(x)− cτz)
2

(3.18)

By definition:

∀k ∈ {x, y, z}, ∀s ∈ R11 \ 011×1, Dk(s) ≥ 0 (3.19)

Their convexified TSE up to order 2 (for conciseness) are:


Dica

x (s, s∗) = Dx(s
∗) + δs⊤∇Dx(s

∗) + δs⊤H+
x (s

∗)δs

Dica
y (s, s∗) = Dy(s

∗) + δs⊤∇Dy(s
∗) + δs⊤H+

y (s
∗)δs

Dica
z (s, s∗) = Dz(s

∗) + δs⊤∇Dz(s
∗) + δs⊤H+

z (s
∗)δs

(3.20)
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The previous approximation is an ICA of the defects Dk. By definition of an ICA
(eq. (3.1b)) and eq. (3.19), we have:

∀k ∈ {x, y, z}, ∀s ∈ R11 \ 011×1, ∀s∗ ∈ R11 \ 011×1, Dica
k (s, s∗) ≥ Dk(s) ≥ 0 (3.21)

From now on, we will refer to Dica
k (s, s∗) by Dk(s) for clarity.

With the assertion eq. (3.21), we know that the convexified defects are always positive,
meaning that we can include them directly in the objective function without having to
tackle negative values during minimization.

3.3.2. Formulation

The ACTSE method is formulated as:

min
s

J = J0 + λd (Dx +Dy +Dz) (3.22)

Such that: 

ṙ = v

ż = −cτ/ve

τ 2x + τ 2y + τ 2z ≤ τ 2

0 ≤ τ ≤ e−z∗ (1− (z − z∗))

||x− x∗|| ≤ Rtr

x(t0) = x0, x(tf ) = xf

xl ≤ x ≤ xu, ul ≤ u ≤ uu

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.23e)

(3.23f)

(3.23g)

This problem is now simpler with respect to CTSE because we removed 3 constraints
(eq. (3.17c)) and we don’t use the slack variable. Furthermore, there is no need to use the
previous iterations’ information. The problem is also less constrained than the classical
SCvx formulation eq. (2.16) because only the linear dynamics is imposed. Again there is
no need to tackle artificial infeasibility for the same reason explained in subsection 3.2.4.

3.4. A Few Remarks

The theory presented here has been developed by trial and errors using numerical tools.
Once an idea to improve the ongoing formulation was found, it was implemented, tested,
and its performances were assessed with respect to previous versions of the methods.
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Several ideas that are presented in the previous pages are combinations and adaptations
of pieces of work found in the literature (mainly [11, 55, 59]). Effort was put in this thesis
to stay close to the current science that is developed nowadays in the field of Convex
Optimization.

We acknowledge that theoretical developments sustained by rigorous mathematical proofs
are lacking in this work but the choice was made, in agreement with the supervising team,
to seek for numerical evidences first.

To the best of the author’s knowledge, those methods are original and weren’t mentioned
in the literature.

3.5. Algorithms

The algorithms’ principles are explained in this section. As in algorithm 2.1, they start by
generating an initial guess and the initial values of the required parameters (cost functions,
number of iteration, trust-region radius, etc). While the convergence condition isn’t met,
the convex sub-problem is solved and the reference solution is updated as well as the
trust-region radius. Note that in CTSE, one SCP iteration has to be done before because
information about two trajectories (here the initial guess and the first SCvx solution) are
required to run a CTSE iteration (because of eq. (3.14)). It is not necessary with ACTSE.
The initial guesses are generated like explained in section 2.5.
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Algorithm 3.1 CTSE algorithm

1: Generate initial guess (x(0),u(0)) and initial trust-region radius Rtr,1

2: (x∗,u∗) = (x(0),u(0))
3: J (0) = 100, J (1) = 10
4: Solve problem 2.16 for (x(1),u(1))
5: (x∗,u∗) = (x(1),u(1))
6: i = 1
7: Update trust-region radius Rtr,2 with the chosen strategy
8: while |J (i) − J (i−1)| ≥ δ do
9: Evaluate the required natural dynamics, gradients and Hessians with (x∗,u∗)

10: Solve problem 3.16 for (x(i),u(i))
11: (x(i−1),u(i−1)) = (x∗,u∗)
12: (x∗,u∗) = (x(i),u(i))
13: J (i−1) = J (i)

14: J (i) = J(x(i),u(i))
15: i = i+ 1
16: Update trust-region radius Rtr,i

17: end while
18: The solution is (x∗,u∗)

Algorithm 3.2 ACTSE algorithm

1: Generate initial guess (x(0),u(0)) and initial trust-region radius Rtr,1

2: (x∗,u∗) = (x(0),u(0))
3: i = 1, J (0) = 100, J (1) = 10
4: while |J (i) − J (i−1)| ≥ δ do
5: Evaluate the required natural dynamics, gradients and Hessians with (x∗,u∗)
6: Solve problem 3.22 for (x(i),u(i))
7: (x∗,u∗) = (x(i),u(i))
8: J (i−1) = J (i)

9: J (i) = J(x(i),u(i))
10: i = i+ 1
11: Update trust-region radius Rtr,i with the chosen strategy
12: end while
13: The solution is (x∗,u∗)
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4| Simulations and Results

In this chapter, numerical simulations will be performed to assess the performances of the
previous part’s theoretical development.

4.1. Discretization Techniques

First, the two discretization methods used in this chapter will be described. The goal is
to discretize the integral equation eq. (4.1) and to transform differential constraints into
algebraic ones. By doing so, the OCP becomes a finite-parameter optimization problem.

∫ tk+1

tk

ẋ(t)dt =

∫ tk+1

tk

f(x,u)dt (4.1)

In our framework, the time segment [0, tf ] (with tf the time of flight) on which the trajec-
tory must be performed is divided into N−1 intervals [tk, tk+1], where k ∈ {1, · · · , N−1}.
N is the number of discretization points, called nodes. In other words, nodes are the
boundaries of the N − 1 time intervals. A different type of points will be mentioned in
this work: the collocation points. They represent the time instants where the dynami-
cal constraints are enforced, meaning where the dynamics (approximated or not) will be
respected in the obtained solution. Nodes and collocation points can coincide in some
discretization techniques but it is not a generality.

Choosing the right discretization method for our purpose is important because it has a
direct impact on the accuracy and the speed of the algorithm. In chapter 1, some of them
were described but two will be particularly under focus: the trapezoidal discretization
and the Hermite-Simpson scheme.

For the following subsections, we define Xk = X(tk) the quantity X evaluated at the
instant tk, and h = tk+1 − tk the length of the time sub-intervals. The left-hand side of
eq. (4.1) yields: ∫ tk+1

tk

ẋ(t)dt = xk+1 − xk (4.2)
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Hence, the discretization techniques are applied to the right-hand side.

4.1.1. Trapezoidal Discretization

The trapezoidal rule approximates the integral by the area of a trapezoid. It yields for
the right-hand side of eq. (4.1):∫ tk+1

tk

f(x,u)dt ≃ h

2
(f(xk+1,uk+1) + f(xk,uk)) (4.3)

The corresponding constraint as used by Wang in [42] is:

xk+1 − xk =
h

2
(f(xk+1,uk+1) + f(xk,uk)) (4.4)

In this method, the nodes and the collocation points coincide.

4.1.2. Hermite-Simpson Scheme

The second one is the Hermite-Simpson scheme (see [24] for details). Let tc = (tk + tk+1) /2

be the center of the time interval. The integral is approximated using Simpson’s rule [30],
yielding for the right-hand side of eq. (4.1):∫ tk+1

tk

f(x,u)dt ≃ h

6
(f(xk+1,uk+1) + 4f(xc,uc) + f(xk,uk)) (4.5)

where (xc,uc) = (x(tc),u(tc)). A cubic and a linear interpolations are respectively used
to evaluate xc and uc. The details of the derivation are available in [24]. We have:

xc =
1

2
(xk + xk+1) +

h

8
(f(xk,uk)− f(xk+1,uk+1))

uc =
1

2
(uk+1 + uk)

(4.6a)

(4.6b)

The dynamical constraint to impose is finally:

xk+1 − xk =
h

6
(f(xk+1,uk+1) + 4f(xc,uc) + f(xk,uk)) (4.7)

In that case, the collocation points are located on the nodes and at the center of the time
intervals. Hence, they don’t coincide.
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4.2. Earth-Mars Transfer

In this section, a simple Earth-Mars Transfer (EMT) will be solved using the previous
methods to check if they are valid. The reference data are found in [16].

4.2.1. Parameters

The trust-region constraint is, with i > 1 the current iteration (xi−1 = x∗):

||xi − xi−1||2 ≤ γ||xi−1 − xi−2||2 (4.8)

The initial guess is an integrated constant control uguess = [0, 0.6, 0.4,
√
0.52]⊤ (dynam-

ically accurate) and the algorithms’ numerical parameters are available in table 4.1.

Table 4.1: Numerical parameters for the Earth-Mars transfer

Parameter Value
Time of flight tf 253 days

Initial position r0 [1, 0, 0]⊤

Initial velocity v0 [0, 1, 0]⊤

Initial mass m0 659.3kg

Final position rf [−1.5229, 0, 0.0492]⊤

Final velocity vf [0, −0.8101, 0]⊤

Final mass mf free

Maximum thrust Tmax 0.55N

Specific impulse Isp 3300s

Number of nodes N 100

w (artificial infeasibility) 102

λd, λs (see eq. (3.15)) 102, 104

Convergence criterion δ 10−4

Initial trust region radius Rtr,0 1

4.2.2. Reference Solution

In this subsection, we compute a reference solution with the SCP method described in
algorithm 2.1, trapezoidal discretization and γ = 0.9 (see eq. (4.8)) to validate the new
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methods. The outcomes are:

Table 4.2: Results for the EMT (classic SCP, trapezoidal discretization)

Final mass [kg] Iterations Running time [s]
530.59 4 4.84

The algorithm needs 4 iterations to converge and 4.84s to operate. The solution, rep-
resented on fig. 4.1, is similar to the one of [16], validating our simple algorithm 2.1.
Note that the thrust magnitude is expressed as a percentage of Tmax and that the time
is normalized according to table 2.1 (every figure will use those units).

(a) Trajectory seen from above (b) Thrust profile

Figure 4.1: Earth-Mars transfer, Classic SCP, trapezoidal discretization

4.2.3. New Methods Testing

Everything is now ready to test the performances of the CTSE and ACTSE methods for
this specific problem. Here γ = 0.8 (eq. (4.8)). The outcomes of the algorithms 3.1 and
3.2 are gathered in appendix A. Only the necessary ones for our discussion will appear in
the next pages. Please note that in those algorithms, only the convexified quadratic term
has been included in the dynamics enforcement (see eq. (3.5), eq. (3.8) and eq. (3.20)). A
dedicated section on high-order terms inclusion will follow. The goal of this subsection is
to obtain numerical evidences that the two methods developed earlier are valid, the study
of their accuracy and speed are kept for later.
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CTSE, Trapezoidal Discretization

First, we test the CTSE method with trapezoidal discretization, same initial guess and
trust-region strategy as the reference solution (that we will call ’Classic SCP’ in the
following). The results are:

Table 4.3: Results for the EMT (CTSE, trapezoidal discretization)

Final mass [kg] Iterations Running time [s]
530.54 8 138.76

And the thrust profile is:

Figure 4.2: Thrust profile, EMT, CTSE, trapezoidal discretization

On the figure above, we notice that the thrust profiles of the Classic SCP (fig. 4.1b) and
of the CTSE are matching, giving a first proof of validity for the latter. The final masses
are also similar. However, the number of iterations is doubled with respect to the previous
case and the running time is multiplied by a factor 29. Those issues will be addressed
later.

The trajectory’s plot isn’t given here but is available on fig. A.2. In all the following, the
trajectories will be provided only if needed for the current discussion. If not, they are
available in appendix A for any simulation.
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CTSE, Hermite-Simpson Scheme

In this paragraph, we follow the same procedure but changing the type of discretization.
We use now a Hermite-Simpson scheme (eq. (4.7)). The results are:

Table 4.4: Results for the EMT (CTSE, Hermite-Simpson scheme)

Final mass [kg] Iterations Running time [s]
530.49 8 221.91

The running time is longer with respect to the previous simulation. It is understandable by
considering the amount of supplementary information (Gradient, Hessian, convexification,
etc) needed for this scheme due to the additional collocation point with respect to the
trapezoidal discretization. The thrust profile is:

Figure 4.3: Thrust profile, EMT, CTSE, Hermite-Simpson scheme

Again, the thrust profiles and the final masses are matching with the classic SCP, vali-
dating our algorithm with this other discretization type.



4| Simulations and Results 35

ACTSE, Trapezoidal Discretization

We run now the algorithm employing ACTSE to observe its behavior. In that case only,
λd = 10000. The other parameters are the same as table 4.1. The algorithm yields :

Table 4.5: Results for the EMT (ACTSE, trapezoidal discretization)

Final mass [kg] Iterations Running time [s]
547.96 13 108.29

Figure 4.4: Thrust profiles, EMT, ACTSE

The outcomes are surprising (and thus interesting). First, the final mass is greater than
the previous ones, granting a better solution in theory (even if the accuracy of the method
is poor, as discussed later) because our final aim is to minimize the fuel spent and thus,
equivalently, maximize the final mass. Then, the ACTSE needs more iterations to con-
verge but is time-wise faster than CTSE for this problem, which is consistent because
it contains less constraints in its formulation (see eq. (3.16) and eq. (3.22)). Finally, in
theory, solving a minimum fuel problem such as eq. (2.16) should yields for the thrust
magnitude a "bang-off-bang" profile as proved in [60]. It means that the thrust magni-
tude should be either 100% of Tmax or 0 along the trajectory. This effect is illustrated on
fig. 4.1b for instance (the central peak isn’t worth completely 100% for numerical reasons,
but this value is reached when more nodes are used). It is not perfectly the case on fig. 4.4
but it is close: we observe on the alternative plot that the line representing the ACTSE’s
thrust magnitude is slightly curved at the normalized switching times 0.7 and 3.6 while
they are expected to be perfectly straight. Hence, ACTSE raises several interrogations
concerning its behavior that will be partially addressed later.
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Summary

To sum up, we got numerical evidences of the CTSE method’s validity: the final masses are
similar and the thrust profiles matches well for both discretization techniques. However, a
higher computation time and more iterations to reach convergence with respect to classic
SCP lower our expectations.

Regarding the ACTSE, interesting results have been found. A perfect bang-off-bang
control isn’t obtained but the thrust profile shows a close behavior to this phenomenon.
Furthermore, the final mass differs by circa 17.5kg with respect to the Classic SCP and
the CTSE. Hence, doubts are raising about the validity of the method. Consequently,
ACTSE with Hermite-Simpson haven’t been implemented yet because more proofs of the
method’s validity are desirable.

The relative simplicity of the Earth-Mars transfer was of good help to try those new
approaches but isn’t sufficient to assess their performances. Solving a multi-revolution
problem with longer propagation time will thus be the next step to test our methods’
capacities.

A classic and abundantly studied problem is thus chosen to take further our work: the
Earth-Venus transfer with 1000 days of time-of-flight [14]. 2,3,4-revolutions solutions exist
in the literature. We will restrain our study to the 2 and 3-revolutions problem. The
challenge here is to test our approaches against dynamically inaccurate initial guesses. In
all the following, we will use multi-revolution cubic approximations for the trajectory (see
subsection 2.5).
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4.3. Earth-Venus Transfer

The reference data for the Earth-Venus Transfer (EVT) are found in [14]. In that section,
we will solve 2 and 3-revolutions EVT and we will refer to those as respectively EVT2r
and EVT3r.

4.3.1. Parameters

In table 4.6 are gathered all the main numerical parameters used for this section’s simula-
tions. Again, the trust-region constraint is, with i > 1 the current iteration (xi−1 = x∗):

||xi − xi−1||2 ≤ γ||xi−1 − xi−2||2 (4.9)

Table 4.6: Numerical parameters for the Earth-Venus transfer

Parameter Value
Time of flight tf 1000 days

Initial position r0 [0.9708, 0.2376, −1.6711× 10−6]⊤

Initial velocity v0 [−0.2545, 0.9687, 1.5040× 10−5]⊤

Initial mass m0 1500kg

Final position rf [−0.3277, 0.6389, 0.0277]⊤

Final velocity vf [−1.0509, −0.5436, 0.0532]⊤

Final mass mf free

Maximum thrust Tmax 0.33N

Specific impulse Isp 3800s

Number of nodes N 200

w (artificial infeasibility) 102

λd (see eq. (3.15)) 102

λs (see eq. (3.15)) 104

Convergence criterion δ 5× 10−3
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4.3.2. Reference Solution with Trapezoidal Discretization

In that subsection, we compute a reference solution with SCP, trapezoidal discretization,
γ = 0.98 and Rtr,0 = 3. The outcomes are not close to those obtained in [14], but it is not
surprising when comparing the simplicity of algorithm 2.1 to the performance-oriented
features of the cited work.

Table 4.7: Results for the EVT (classic SCP, trapezoidal discretization)

Nrev (see section 2.5) Final mass [kg] Iterations Running time [s]
2 1047.09 21 70.85

3 1305.31 23 76.72

(a) 3D Trajectory, 2 revolutions (b) 3D Trajectory, 3 revolutions

(c) Thrust profile, 2 revolutions (d) Thrust profile, 3 revolutions

Figure 4.5: Earth-Venus transfer, Classic SCP, trapezoidal discretization
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4.3.3. Assessment of CTSE Performances with Trapezoidal Dis-

cretization

Convergence Issue

During the process of tuning the CTSE algorithm’s parameters to find a set that solves
efficiently the problem using the multi-revolution cubic approximation initial guess, an
issue was met: the algorithm never converged. Several sets of parameters were tried, and
an other trust region strategy (the Hard Trust Region with Constant Rates, see [25]) was
implemented to reach convergence: none of these attempts was successful. Considering
the high running time and number of iterations performed until algorithm failure (more
than 50min and 80 iterations), we concluded that the computational effort was not worth
it, especially when no satisfying results were obtained.

Keeping in mind our goal, we decided to use the solution of the classic SCP as the initial
guess, sticking with the same trust-region strategy eq. (4.9) with γ = 0.8 and Rtr,0 = 1.
The trajectories and the thrust profiles for 2 and 3-revolutions are available on fig. 4.6,
the numerical results are given in table 4.8.

First Discussion

To start, it can be seen on fig. 4.6 and table 4.8 that the trajectory, the final mass
and the thrust profile of the CTSE stay close to the SCP solution for 2 revolutions
(even if some slight differences are noticeable), whereas it is not the case for 3. The
bang-off-bang behavior of the thrust magnitude is still present for both. 6 iterations are
necessary to reach convergence, with circa 210s of running time. Those numbers show
the computational burden of including convexified Hessians in our algorithm (we recall
that only the quadratic term is included in the dynamics’ TSE).

Finally, to check the accuracy of the method, the EoM are integrated from node to
node using the obtained control and the final state is compared to the 6 final boundary
conditions. The absolute value of the differences are represented on fig. 4.7. We observe
a slight improvement of the solution’s accuracy for both cases, that seems to be more
effective on the 3-revolution problem. However, the improvement is worth less than an
order of magnitude, which doesn’t allow us to conclude that CTSE completely outperforms
the classic SCP in terms of accuracy. To push further our analysis, we can upgrade the
algorithms with the Hermite-Simpson scheme and perform the same comparison to see if
CTSE is still interesting against a more accurate classic SCP.



40 4| Simulations and Results

Table 4.8: Results for the EVT (CTSE, trapezoidal discretization)

Nrev (see section 2.5) Final mass [kg] Iterations Running time [s]
2 1046.23 6 211.63

3 1263.16 6 210.42

(a) 2D Trajectory, 2 revolutions (b) 2D Trajectory, 3 revolutions

(c) Thrust profile, 2 revolutions (d) Thrust profile, 3 revolutions

Figure 4.6: Earth-Venus transfer, CTSE, trapezoidal discretization
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(a) 2 revolutions

(b) 3 revolutions

Figure 4.7: Error on the final boundary conditions with respect to the integrated solution,
trapezoidal discretization

Remark: it can be observed that the error’s order of magnitude for the 2 and 3-revolutions
problems are varying a lot. It is due to the fact that the same number of nodes are used
for the two problems, but the traveled distance within one time interval is higher in the
3-revolutions case, decreasing the accuracy.
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4.3.4. Reference Solution with Hermite-Simpson Scheme

A new reference solution is computed to ensure a fair comparison with the updated CTSE.

Table 4.9: Results for the EVT (classic SCP, Hermite-Simpson scheme)

Nrev (see section 2.5) Final mass [kg] Iterations Running time [s]
2 1041.27 26 118.19

3 1290.35 25 116.59

(a) 3D Trajectory, 2 revolutions (b) 3D Trajectory, 3 revolutions

(c) Thrust profile, 2 revolutions (d) Thrust profile, 3 revolutions

Figure 4.8: Earth-Venus transfer, Classic SCP, Hermite-Simpson scheme
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4.3.5. Assessment of CTSE Performances with Hermite-Simpson

Scheme

Convergence Issue

The same amount of time as in subsection 4.3.3 has been spent trying to make this
algorithm converge (which is basically the same algorithm as previously but with Hermite-
Simpson scheme instead of trapezoidal discretization) without giving much more positive
results. Hence, we used the same method as before: the initial guess is the solution of the
classic SCP, and the trust-region is the simplest one (eq. (4.9)) with γ = 0.8 and Rtr,0 = 1.
The trajectories and the thrust profiles for 2 and 3-revolutions are available on fig. 4.9,
the numerical results are given in table 4.10.

Second Discussion

Again, the 2-revolution CTSE solution is comparable to the SCP’s. It takes 2 iterations
less than the CTSE with trapezoidal discretization to converge and thus is 20s faster.
On the contrary, the 3-revolution solution differs from the reference and needs the same
number of iterations as CTSE with trapezoidal discretization. It is 110s slower, which is
consistent due to the additional data (collocation point) to compute for Hermite-Simpson.

Concerning the accuracy, the same method is employed as earlier: the results are available
on fig. 4.10. With respect to fig. 4.7, we can read on the y-axis that the error’s order
of magnitude is lower with Hermite-Simpson than with the trapezoidal rule. This fact
argues in favor of our results’ reliability (indeed, we switched the discretization method
to improve the accuracy). From these figures, it can be seen that CTSE improve the 2-
revolutions case’s accuracy but hinder the latter for the 3-revolutions’. Hence, the CTSE
isn’t, for the moment, reliable for our purpose: it is able to improve the accuracy in some
cases but could also decrease it. Our evolution perspectives are discussed in the next
lines.

First, an alternative is available to solve the convergence issue, that will be discussed in
the next subsection. Then, a hypothetical solution to improve the accuracy could be to
specifically design a trust-region strategy adapted to our formulation: those available in
the literature [25] were thought to fit the state-of-the-art SCvx or more generally the SCP
methods, but ours are a bit borderline with those framework (cf section 3.2). Unsuccessful
attempts have been done, that do not appear in this report. This part is thus left to a
future work. Finally, the inclusion of convexified higher-order terms will be treated in the
next section.
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Table 4.10: Results for the EVT (CTSE, Hermite-Simpson scheme)

Nrev (see section 2.5) Final mass [kg] Iterations Running time [s]
2 1039.79 4 192.06

3 1288.57 6 319.42

(a) 2D Trajectory, 2 revolutions (b) 2D Trajectory, 3 revolutions

(c) Thrust profile, 2 revolutions (d) Thrust profile, 3 revolutions

Figure 4.9: Earth-Venus transfer, CTSE, Hermite-Simpson scheme
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(a) 2 revolutions

(b) 3 revolutions

Figure 4.10: Error on the final boundary conditions with respect to the integrated solution,
CTSE, Hermite-Simpson scheme

Remark: it can be observed that the error’s order of magnitude for the 2 and 3-revolutions
problems are varying a lot. It is due to the fact that the same number of nodes are used
for the two problems, but the traveled distance within one time interval is higher in the
3-revolutions case, decreasing the accuracy.
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4.3.6. Numerical Simulations with ACTSE Method

As mentioned before, the CTSE method doesn’t converge with the cubic interpolation
initial guess of section 2.5, which brings us to the reason why the ACTSE method has
been developed originally. We thought that, by simplifying our formulation and still using
inner-convex approximations (staying in the frame of our work), we could get a chance of
obtaining a more robust algorithm with respect to CTSE. To run the ACTSE, we changed
some parameters with respect to table 4.6:

Table 4.11: New parameters with respect to table 4.6

Nrev N γ λd Rtr,0

2 200 0.95 50000 5

3 250 0.97 50000 5

All the others are kept the same. It is important to note that, now, we use the initial
guess described in section 2.5. Trapezoidal discretization is employed. When running
the algorithm 3.2 with those parameters, the former converges, which is a great achieve-
ment with respect to CTSE. The results are gathered in table 4.12. The corresponding
trajectories and thrust profiles are available on fig. A.13 and fig. A.14.

Table 4.12: Results for the EVT (ACTSE, trapezoidal discretization)

Nrev (see section 2.5) Final mass [kg] Iterations Running time [s]
2 1104.16 37 720.21

3 1029.38 93 2145.01

However, looking at the aforementioned table and comparing it to table 4.7, the very high
running times of the ACTSE have to be evoked. As a matter of fact, those are 10 to 28
times higher depending on the number of revolutions (see table 4.7). The algorithm needs
16 and 70 iterations more to converge than the classic SCP for 2 and 3 revolutions respec-
tively. Even if ACTSE converges, it is heavier computationally, and thus not interesting
in terms of speed with respect to state-of-the-art method. From fig. A.13c and fig. A.14c,
the bang-off-bang behavior [60] of the thrust magnitude is still not present, but the curve
is close.
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Concerning the accuracy of the method, fig. 4.11 shows that the error of the integrated
control’s final state with respect to the final boundary condition is at least one order
of magnitude higher than the classic SCP (with trapezoidal discretization and for the
2-revolutions problem). The approach is thus not interesting in that sense because those
errors are excessively high (the first two are of the order of half an astronomical unit).

Figure 4.11: Error on the final boundary conditions with respect to the integrated solution,
EVT2r, ACTSE, trapezoidal discretization

Finally, the main advantage of the ACTSE method compared to the CTSE is its robust-
ness. Combining the two methods would allow us to propose an approach fully employing
the convexification of TSE to model the dynamics, without having to use the classic
SCP to generate an initial guess for the CTSE technique. The principle would be to use
ACTSE to generate the latter, and then plug the solution in the CTSE algorithm 3.1.
However, the computational cost of this idea quickly dissuaded us of implementing such
combination.
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4.4. High-Order Terms Inclusion

We recall that only the convexified second-order term of the TSE (Hessian) has been
included in all our simulations since the beginning. Therefore, a natural development of
our work would be to use higher-order terms in our algorithms. This section proposes
some insights to understand if it is indeed an interesting perspective or not. To begin with,
table 4.13 gathers all the running times for every simulation performed so far. Those are
sorted by increasing values for each problem (Earth-Mars, 2-revolutions and 3-revolutions
Earth-Venus) and the methods and discretization types are given.

Table 4.13: Running times for different cases

Problem Method Discretization Running time [s]
Earth-Mars Classical SCP Trapezoidal 4.84

ACTSE Trapezoidal 108.29

CTSE Trapezoidal 138.76

CTSE Hermite-Simpson 221.91

Earth-Venus, 2 rev.(1) Classic SCP Trapezoidal 70.85

Classic SCP Hermite-Simpson 118.19

CTSE(2) Hermite-Simpson 192.06

CTSE(2) Trapezoidal 211.63

ACTSE Trapezoidal 720.21

Earth-Venus, 3 rev. Classic SCP Trapezoidal 76.72

Classic SCP Hermite-Simpson 116.59

CTSE(2) Trapezoidal 210.42

CTSE(2) Hermite-Simpson 319.42

ACTSE Trapezoidal 2145.01

(1): rev. : revolutions
(2): with very good initial guess (solution of Classical SCP)

Several conclusions can be drawn from these data. First, the classic SCP is always faster
by a factor 2 minimum for equivalent problems and discretization types. It is worth
mentioning that the former is 20 to 44 times faster than any other method for the Earth-
Mars transfer. Thus, our 2 new methods are computationally heavier with respect to the
state-of-the-art algorithm. Indeed, CTSE and ACTSE require Hessians to be computed
and convexified for each node, for all iterations.
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Then, ACTSE is faster for the EMT than CTSE, but it is the contrary for the EVT. It
is due to the fact that CTSE is provided with a good initial guess (the solution of the
classic SCP), thus the convergence is reached faster. It is worth recalling that without it,
CTSE doesn’t converge at all.

Finally, in most cases, the algorithms based on trapezoidal discretization are faster than
those using the Hermite-Simpson scheme. As already explained, the additional collocation
point needed for Hermite-Simpson might be a reason for this extra time. It is not the case
for the EVT2r with CTSE because Hermite-Simpson’s algorithm required 4 iterations to
converge while 6 were needed with the trapezoidal technique.

The inclusion of higher-order terms is now discussed. As said in the previous lines, com-
puting the convexified quadratic term requires a lot of extra time with respect to a simple
linearization. For orders greater than 2, the corresponding tensor is of an higher dimen-
sion (m-dimensional for an order m, see appendix B), meaning that the computational
effort to compute it (without convexification) is higher than for the 2nd order. We are
pushing open doors here but it is necessary to mention it for our following discussion.

Furthermore, in [55], a "computationally efficient route" is used to convexify higher-order
tensors. The said technique overestimates the higher-order terms to make them convex.
But in subsection 3.1.2 and specifically in eq. (3.5), we obtained an Inner-Convex Approx-
imation (ICA) of the dynamics that already overestimates the function by definition of an
ICA (eq. (3.1b)). A legitimate question (that will remain unanswered here) is to under-
stand if we can improve the accuracy of an approximation by adding over-estimations to
an already overestimated quantity. It is obvious that those terms are smaller and smaller
along the growing orders, hence their impacts on the estimation decrease fast. But still,
a deeper analysis is needed.

To conclude this part, it is necessary to get further guarantees that adding the higher-
order terms will actually improve the algorithm’s accuracy because, surely, it will add a
computational burden (as witnessed when adding the quadratic term). However, the way
of computing the higher-order tensors has been developed in appendix B and implemented
in numerical functions.
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4.5. Final Discussion and Improvement Directions

To sum up, CTSE converges for dynamically accurate initial guesses (integrated control
or solution of a classic SCP). When it does, the error on the final boundary condition
usually decreases but it is not a certainty with the simple trust-region strategy we used.
The method is computationally heavier than the classic SCP for all cases because the
high-order terms’ computation and convexification are expensive with respect to a simple
linearization.

The ACTSE method converges for any initial guess which is a great achievement with
respect to CTSE. However, the price to pay is a high computational cost and a poor
accuracy. Combining it with the CTSE would result in an algorithm employing fully
the convexification of high-order TSE to model the dynamics, but some improvements
regarding the speed are needed before implementing this.

The improvement directions for these methods are, in that order:

1. Working on a trust-region strategy purposely designed for those, to make sure that
the accuracy is improved with respect to classic SCP (it could also result in a
decreased number of iteration to reach convergence).

2. Understanding why CTSE does not converge with the multi-revolution cubic ap-
proximation initial guess.

3. Answering the following question: is it worth it to include higher-order terms in the
CTSE (greater than 2) ?

4. Getting more knowledge about the behavior of ACTSE: why the bang-off-bang
profile isn’t found although the solution is so close ? What are the performances
if other discretization techniques are used ? Is the inclusion of higher-order terms
interesting ?

5. Starting to do some theoretical work to understand deeper those methods in a
mathematical point of view, if all the previous directions have been successfully
explored.
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5.1. Review of the Work Performed in this Thesis

To conclude, two interesting methods employing convexified Taylor Series Expansion to
model the dynamics of a spacecraft have been developed and studied in this thesis.

First, the CTSE converges with dynamically accurate initial guesses or for simple prob-
lems, but meets some troubles for harder ones. Better quality guesses can be employed in
that case. In terms of accuracy, the CTSE often improves the solution of the classic SCP.
It is an achievement and a very interesting result to see that CTSE have the potential to
reach the initial goal (improving reliability with respect to state-of-the-art techniques),
although its computational weight and convergence issues are burdens to be taken into
account if future developments are considered.

The ACTSE is also a novelty worth of interests. The method is very poor in terms of
accuracy but has better convergence properties and computational efficiency than CTSE.
It is still heavy with respect to classic SCP but that is the price to pay when computing and
convexifying high-order terms. ACTSE generates solutions that are unexpected (related
to the bang-off-bang behavior) and thus worth studying.

To the research questions stated in the introduction, it can be answered that the CTSE
improves the reliability of the optimization solution but only in some cases, while the
ACTSE does not. With respect to state-of-the-art methods, both techniques are slower
and less efficient, and the CTSE has convergence issues.

Finally, several interesting development directions are available for both methods, and
thus expectations could be raised concerning their futures. They are able to solve the
low-thrust trajectory problem for deep-space guidance, and they can sometimes increase
the reliability of the classical methods solution. Hence, this thesis is successful by means
of the short-term goals defined in the introduction.
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5.2. Differences of Convex Functions to Obtain Inner-

Convex Approximations

To extend our work, a novel idea that could fit our purposes is presented in that section.
It comes from the same formulation as the ACTSE method, and uses also principles that
are explained in [55]. The method that will be mentioned here hasn’t been implemented
because it doesn’t employ TSE and is thus out of this work’s frame. It is a different
theoretical concept that has the potential to help reaching this thesis’ goal.

We start by defining the defects for the non-linear dynamical constraints as we did for
the ACTSE method. We recall s = [x,u]⊤.

Dx(s) := (v̇x − prx(x)− cτx)
2

Dy(s) := (v̇y − pry(x)− cτy)
2

Dz(s) := (v̇z − prz(x)− cτz)
2

(5.1)

We could also define, with ||.|| any norm:
Dx(s) := ||v̇x − prx(x)− cτx||

Dy(s) := ||v̇y − pry(x)− cτy||

Dz(s) := ||v̇z − prz(x)− cτz||

(5.2)

The definition of a so-called d.c. function is given in the following lines (d.c. stands for
difference of convex functions). Let f : E −→ R be a function of a variable x with E ⊂ Rd,
d ∈ N and E convex. f represents in practice Dx, Dy or Dz. From [55, 61], f is d.c. if it
exists convex functions c1, c2 : E −→ R such that:

f = c1 − c2 (5.3)

From [55], an inner-convex approximation (ICA) of f is obtained if the concave component
−c2 of the above equality is linearized, and the said approximation can then be included
in the cost function as done in the theoretical development of this work. It is an other
way of obtaining an ICA for f , different from the one used in this thesis (see eq. (3.20) for
instance), but equally interesting. The main issue (a mathematical one) is to find c1 and
c2 because they are not unique and can thus grant various performances. Several ways of
solving the former are explained in [55] depending on the features of f .
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The aforementioned idea is interesting in many ways. First, the d.c. property is the topic
of several articles in the literature [61, 62], thus their theoretical features are well known.
Then the convex-concave procedure, meaning the linearization of the component −c2 to
obtain a convex expression, has already been studied and employed [63, 64]. Also, the use
of d.c. functions in optimization is not a complete novelty and is itself a widely developed
programming method called DC Programming [65] that has already been applied to real-
world problems [66]. It shows that the method explained before could be relevant, even
if the application seems new. The main problem is hence finding c1 and c2, but it has
already been done in particular cases like non-convex polynomial functions [67].
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A| Appendix: Graphs & Figures

This Appendix gathers all the graphs and figures that have been generated during this
thesis. Several are in the main text but all of them couldn’t fit for sake of conciseness.
The reader is referred to the list of acronyms for any doubts about those used in the next
pages.
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A.1. EMT, Classic SCP, trapezoidal discretization

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.1: Earth-Mars transfer, Classic SCP, trapezoidal discretization
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A.2. EMT, CTSE, trapezoidal discretization

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.2: Earth-Mars transfer, CTSE, trapezoidal discretization
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A.3. EMT, CTSE, Hermite-Simpson scheme

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.3: Earth-Mars transfer, CTSE, Hermite-Simpson scheme
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A.4. EMT, ACTSE, trapezoidal discretization

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile (d) Alternative thrust profile

Figure A.4: Earth-Mars transfer, ACTSE, trapezoidal discretization
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A.5. EVT2r, Classic SCP, trapezoidal discretization

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.5: 2-revolutions Earth-Venus transfer, Classic SCP, trapezoidal discretization
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A.6. EVT3r, Classic SCP, trapezoidal discretization

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.6: 3-revolutions Earth-Venus transfer, Classic SCP, trapezoidal discretization
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A.7. EVT2r, CTSE, trapezoidal discretization

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.7: 2-revolutions Earth-Venus transfer, CTSE, trapezoidal discretization
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A.8. EVT3r, CTSE, trapezoidal discretization

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.8: 3-revolutions Earth-Venus transfer, CTSE, trapezoidal discretization
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A.9. EVT2r, Classic SCP, Hermite-Simpson scheme

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.9: 2-revolutions Earth-Venus transfer, Classic SCP, Hermite-Simpson scheme
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A.10. EVT3r, Classic SCP, Hermite-Simpson scheme

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.10: 3-revolutions Earth-Venus transfer, Classic SCP, Hermite-Simpson scheme
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A.11. EVT2r, CTSE, Hermite-Simpson scheme

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.11: 2-revolutions Earth-Venus transfer, CTSE, Hermite-Simpson scheme
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A.12. EVT3r, CTSE, Hermite-Simpson scheme

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.12: 3-revolutions Earth-Venus transfer, CTSE, Hermite-Simpson scheme
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A.13. EVT2r, ACTSE, trapezoidal discretization

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.13: 2-revolutions Earth-Venus transfer, ACTSE, trapezoidal discretization
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A.14. EVT3r, ACTSE, trapezoidal discretization

(a) 3D Trajectory (b) 2D Trajectory

(c) Thrust profile

Figure A.14: 3-revolutions Earth-Venus transfer, ACTSE, trapezoidal discretization
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B| Appendix - Analytic &
Numerical Computation of
Multivariate TSE

Let f : E −→ R be a function of a variable x = (x1, x2, x3, . . . , xd)
⊤ with E ⊂ Rd and

d ∈ N. Let x∗ ∈ E , x∗ = (x∗
1, x

∗
2, x

∗
3, . . . , x

∗
d)

⊤ be a reference point and δx = x − x∗. f

represents in practice any component prx, pry, prz in eq. (3.7) or Dx, Dy, Dz in eq. (3.18).
f is a multivariate scalar function.

B.1. Multivariate TSE

We define here some notations to discuss about the TSE of a multivariate scalar function.
First we recall the TSE of f at x∗ up to order m [68, 69]:

f(x) ≃f(x∗)

+
d∑

j1=1

∂f(x∗)

∂xj1

(
xj1 − x∗

j1

)
+

d∑
j1=1

d∑
j2=1

1

2!

∂2f(x∗)

∂xj1∂xj2

(
xj1 − x∗

j1

) (
xj2 − x∗

j2

)
+

d∑
j1=1

d∑
j2=1

d∑
j3=1

1

3!

∂3f(x∗)

∂xj1∂xj2∂xj3

(
xj1 − x∗

j1

) (
xj2 − x∗

j2

) (
xj3 − x∗

j3

)
+ . . .

+
d∑

j1=1

d∑
j2=1

· · ·
d∑

jm=1

1

m!

∂mf(x∗)

∂xj1∂xj2 . . . ∂xjm

(
xj1 − x∗

j1

) (
xj2 − x∗

j2

)
. . .

(
xjm − x∗

jm

)

(B.1)
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Let Tf,m ∈ Rd×d×···×d be the tensor gathering the mth order derivatives of f evaluated on
the reference x∗:

Tf,m(j1, j2, . . . , jm) =
∂mf(x∗)

∂xj1∂xj2 . . . ∂xjm

(B.2)

Tf,m is supersymmetric, hence any permutation of two indices jp, jq for p, q ∈ {1, 2, . . . ,m}
leaves the quantity Tf,m(j1, j2, . . . , jm) invariant. Then, we denote (similarly to [55]):

Tf,mδx
m :=

d∑
j1=1

· · ·
d∑

jm=1

1

m!

∂mf(x∗)

∂xj1∂xj2 . . . ∂xjm

(
xj1 − x∗

j1

)
. . .

(
xjm − x∗

jm

)
(B.3)

Compactly, eq. (B.1) is written:

f(x) ≃
m∑
i=1

Tf,iδx
i (B.4)

In particular, we have: 
Tf,0 = f(x∗) the 0th order

Tf,1 = ∇f(x∗) the gradient

Tf,2 = H(x∗) the Hessian

B.2. Analytic

The goal of this section is to find a strategy to compute Tf,m for arbitrary m ∈ N in
a clever way. The idea is to exploit the supersymmetric property to avoid computing
Tf,m(j1, j2, . . . , jm) for all (j1, j2, . . . , jm) ∈ Nm. To do so, we perform a preliminary
sorting work on the tensor’s indices. First we store all the possible indices in the rows
of an array. For example, for a second-order tensor (Hessian) with d = 3, we have:

Array(1) :

1 1
2 1
3 1
1 2
2 2
3 2
1 3
2 3
3 3

because the Hessian can be written H =

 H11 H12 H13

H21 H22 H23

H31 H32 H33
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Then, we sort each row:

Array(2) :

1 1
1 2
1 3
1 2
2 2
2 3
1 3
2 3
3 3

We convert them into numbers in a first column and add a linear index on a second one:

Array(3) :

11 1
12 2
13 3
12 4
22 5
23 6
13 7
23 8
33 9

And we select only the unique numbers in the Array(3)’s first column (that is why we
sorted the rows before) to avoid repetitions and to obtain a unique denomination:

Array(4) :

11
12
13
22
23
33

By combining the last 4 arrays, we can obtain all the information we need for the next
step. We can store those in a cell, which first column represents the unique indices
of Array(4). The second one informs about the variables by which f is derived (from
Array(1)). And the last one accounts for the linear indices of the similar terms in the
tensor (from Array(3)). In the second row for example, the doublet [1, 2] in the second
column means that we shall derive f with respect to x1 and x2, and the doublet [2, 4] gives
the linear coordinates of the terms H12 and H21 respectively (because they are equal).



82 B| Appendix - Analytic & Numerical Computation of Multivariate TSE

The cell for m = 2 and d = 3 is:

Unique index Variable indices Linear indices
11 [1,1] [1]
12 [1,2] [2,4]
13 [1,3] [3,7]
22 [2,2] [5]
23 [2,3] [6,8]
33 [3,3] [9]

The cell for m = 3 and d = 3 is:

Unique index Variable indices Linear indices
111 [1,1,1] [1]
112 [1,1,2] [2,4,10]
113 [1,1,3] [3,7,19]
122 [1,2,2] [5,11,13]
123 [1,2,3] [6,8,12,16,20,22]
133 [1,3,3] [9,21,25]
222 [2,2,2] [14]
223 [2,2,3] [15,17,23]
233 [2,3,3] [18,24,26]
333 [3,3,3] [27]

With this preliminary work, we can derive analytically all the different terms of the tensor
Tf,m, and fill an empty d×d · · ·×d array using the linear indices for the similar ones. This
preliminary work avoids unnecessary derivations. Indeed, if we compute all the terms of
the tensors naively, we would have to perform dm analytical computations. With this
method, it is interesting to understand how many derivations we need and to compare it
to the naive way.

The number of different terms in a supersymmetric tensor is equivalent to the counting
problem of possible combinations with repetition: we must choose m elements in a set of
d possibilities (where m is the order and d is the dimension of the x variable) allowing
repetitions. In facts, it can be seen in the previous tables that the terms 123, 321 or 213

are equal and correspond to the term:
∂3f

∂x1∂x2∂x3

The number of possible combination of m elements within a set of d choices with repetition
is: (

d+m− 1

m

)
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For d = 3, the number of necessary analytical derivations are given in table B.1 for several
values of m (derivation order). The numbers speak for themselves: it is very interesting
to consider the supersymmetric properties while computing those tensors.

Table B.1: Number of necessary analytical derivations to fill a TSE tensor for d = 3

Method m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

Naive 9 27 81 243 729 2187 6561 19683 59049

Smart 6 10 15 21 28 36 45 55 66

B.3. Numerical

In practice, the tensors are analytically derived using MatLab’s ’Symbolic Math Toolbox’
and the method explained before. Functions taking the state variable as input and re-
turning the numerical tensors are created with the MatLab’s function ’matlabFunction’.
The convexification of the arrays can be done using the techniques explained in [55] but
haven’t been implemented for the reasons explained in the main text.
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C| Computational Performances

This appendix gathers the performances of the computer used for all the computations
presented in this work. The latter have been performed using MatLab’s version R2021b
with the software CVX [50, 51].

Table C.1: Computational Performances

Processor Intel Core i7
Generation 10th

Model 10510U
Cores 4
Max turbo frequency 4.90 GHz
Processor frequency 1.80 GHz
RAM 16 Go
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List of Symbols

Preliminary remarks:

• n.a. means not applicable (usually because several different units are inside the same
vector, or because normalized quantities are summed)

• the "SI unit" column isn’t representative of the units used in practice because the
dynamics equations are adimensionalized from the very beginning

Variable Description SI unit Dimension

A Jacobian matrix n.a. [7× 7]

B Control matrix n.a. [7× 4]

c Normalization coefficient N/(kg.s2) [1× 1]

d Length of the state’s vector 1 [1× 1]

D Dynamical defect n.a. [1× 1]

δ Convergence criterion 1 [1× 1]

δx Difference between state and reference n.a. [7× 1]

∆ Convex dynamical defect n.a. [1× 1]

g0 Gravitational acceleration at sea level m/s [1× 1]

γ Shrinking trust-region parameter 1 [1× 1]

H Hessian matrix n.a [d× d]

In Identity matrix of dimension n n.a. [n× n]

Isp Engine’s specific impulse s [1× 1]

J Modified cost function n.a. [1× 1]

J0 Standard cost function m/s2 [1× 1]

λd Dynamical penalty weight 1 [1× 1]

λs Slack variable penalty weight 1 [1× 1]

m Spacecraft’s mass kg [1× 1]

m0 Spacecraft’s initial mass kg [1× 1]
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Variable Description SI unit Dimension

mf Spacecraft’s final mass kg [1× 1]

µ Gravitational constant km3/s2 [1× 1]

N Number of nodes 1 [1× 1]

Nrev Number of revolutions 1 [1× 1]

ν Slack variable to tackle artificial infeasibility 1 [1× 1]

p Natural dynamics vector n.a. [7× 1]

pr nonlinear part of p n.a. [3× 1]

r Position vector km [3× 1]

R0 Distance normalization quantity km [1× 1]

Rtr Radius of the trust-region n.a. [1× 1]

s Concatenated state and control n.a. [11× 1]

S Slack variable for CTSE method n.a. [1× 1]

tf Time of Flight s [1× 1]

T Thrust magnitude N [1× 1]

T Thrust vector N [3× 1]

T0 Time normalization quantity s [1× 1]

Tf,m Tensor of mth order derivatives of f n.a. [7× · · · × 7]

Tmax Maximum thrust available N [1× 1]

τ Modified thrust magnitude m/s2 [1× 1]

τ Modified thrust vector N/kg [3× 1]

u Control variable m/s2 [4× 1]

ul Lower boundary of u m/s2 [4× 1]

uu Upper boundary of u m/s2 [4× 1]

v Velocity vector km/s [3× 1]

V0 Velocity normalization quantity km/s [3× 1]

ve Exhaust velocity km/s [1× 1]

w Penalty weight (artificial infeasibility) 1 [1× 1]

x State variable n.a. [7× 1]

x∗ Reference solution n.a. [7× 1]

x0 Initial condition n.a. [7× 1]

xf Final condition n.a. [7× 1]

xl Lower boundary of x n.a. [7× 1]

xu Upper boundary of x n.a. [7× 1]

z Natural logarithm of the mass 1 [1× 1]
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List of Acronyms

Remark: Some acronyms are provided with reference(s) to enable a deeper understanding.

Acronym Meaning Reference

ACTSE Alternative CTSE eq. (3.22)

AU Astronomical Unit

CO Convex Optimization [9, 10]

CTSE Convexified Taylor Series Expansion eq. (3.16)

DCP Disciplined Convex Programming [49–51]

EMT Earth-Mars Transfer section 4.2

EoM Equations of Motion

EVT Earth-Venus Transfer section 4.3

EVT2r EVT with 2 revolutions section 4.3

EVT3r EVT with 3 revolutions section 4.3

FRPD Flipped Radau Pseudospectral Discretization [33, 34]

GNC Guidance, Navigation and Control

ICA Inner-Convex Approximation [55, 56]

IPM Interior-Point Method [21, 23]

LGL Legendre-Gauss-Lobatto [15, 31]

NLP Non-Linear Programming [7]

OC Optimal Control [3]

OCP Optimal Control Problem [3]

SCP Sequential Convex Programming [11]

SCvx Successive Convexification [18, 52]

SOCP Second-Order Cone Program [22]

TSE Taylor Series Expansion
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