
MILANO, MAGGIO 2015

School of Industrial and Information Engineering
Department of Aerospace Science and Technology

Master of Science in
Space Engineering

Deep Learning-Based Monocular
Relative Pose Estimation

of Uncooperative Spacecraft

Advisor: Candidate:
Pierluigi Di Lizia Massimo Piazza

(ID: 919920)

Co-advisor:
Michele Maestrini November 25, 2020

Abstract

The aim of this dissertation is to present the design and validation of a deep learning-
based pipeline for estimating the pose of an uncooperative target spacecraft, from a single
grayscale monocular image.

The possibility of enabling autonomous vision-based relative navigation, in close
proximity to a non-cooperative space object, has recently gained remarkable interest in
the space industry. In particular, such a technology would be especially appealing in an
on-orbit servicing scenario as well as for Active Debris Removal (ADR) missions.

The use of a simple camera, compared to more complex sensors such as a LiDAR, has
numerous advantages in terms of lower mass, volume and power requirements. This would
clearly translate into a substantially cheaper chaser spacecraft, at the expense of increased
complexity of the image processing algorithms.

The Relative Pose Estimation Pipeline (RPEP) proposed in this work leverages state-
of-the art Convolutional Neural Network (CNN) architectures to detect the features of
the target spacecraft from a single monocular image. Specifically, the overall pipeline is
composed of three main subsystems. The input image is first of all processed using an
object detection CNN that localizes the portion of the image enclosing our target, i.e. the
Bounding Box. This is followed by a second CNN that regresses the location of semantic
keypoints of the spacecraft. Eventually, a geometric optimization algorithm exploits the
detected keypoint locations to solve for the final relative pose, based on the knowledge of
camera intrinsics and of a wireframe model of the target satellite.

The Spacecraft PosE Estimation Dataset (SPEED), a collection of 15300 images of the
Tango spacecraft released by the Space rendezvous LABoratory (SLAB), has been used for
training the Artificial Neural Networks employed in our pipeline, as well as for evaluating
performance and estimation uncertainty.

The RPEP presented in this dissertation guarantees on SPEED a centimeter-level
position accuracy and degree-level attitude accuracy, along with considerable robustness
to changes in lighting conditions and in the background. In addition, our architecture also
showed to generalize well to actual images, despite having exclusively been exposed to
synthetic imagery during the training of CNNs.

i

Abstract (Italian version)

L’obiettivo di questa tesi è di illustrare il processo di sviluppo e validazione di una
pipeline basata su tecniche di deep learning, per la stima della posa di un satellite
non-cooperativo, a partire da una semplice immagine monoculare in scala di grigi.

La possibilità di implementare un sistema autonomo di navigazione relativa basato su
input visivi, in prossimità di un oggetto spaziale non-cooperativo, ha recentemente suscitato
un interesse degno di nota nell’industria spaziale. In particolare, una simile tecnologia
diverrebbe di particolare importanza in scenari quali ad esempio la manutenzione di un
satellite già in orbita o in missioni per la rimozione attiva dei detriti spaziali (ADR).

L’utilizzo di una fotocamera, rispetto a sensori di maggiore complessità come i LiDAR,
presenta diversi vantaggi in termini di riduzione di massa, volume e potenza richiesta.
Tutto ciò si traduce chiaramente in un notevole risparmio economico per il satellite “chaser”,
che tuttavia si contrappone ad una maggiore complessità degli algoritmi impiegati per
processare la sequenza di immagini raccolte da un sensore visivo.

La pipeline per la stima della posa relativa qui proposta è in grado di identificare i
punti caratteristici del satellite “target” da una singola immagine monoculare, sfruttando
dei Convolutional Neural Networks (CNNs) che rappresentano l’attuale stato dell’arte nel
campo della computer vision. Nello specifico, l’architettura complessiva è costituita da
tre sottosistemi principali. Il primo step è affidato ad un CNN che identifica la porzione
di immagine che racchiude al suo interno il target di interesse, ossia, identificando la
cosiddetta Bounding Box. A questo punto, segue un secondo CNN addestrato a rilevare
nella Bounding Box la posizione di alcuni punti caratteristici del satellite. Infine, un
algoritmo di ottimizzazione geometrica sfrutta i punti appena identificati per convergere
alla posa che meglio riflette tale posizionamento, tutto ciò basandosi sulla conoscenza delle
caratteristiche del nostro sensore visivo e del modello 3D del satellite target.

Lo Spacecraft PosE Estimation Dataset (SPEED), una raccolta di 15300 immagini del
satellite Tango rilasciata dallo Space rendezvous LABoratory (SLAB), è stata utilizzata per
l’addestramento delle reti neurali impiegate nella nostra pipeline, ma anche per valutare
la performance e l’incertezza della stima che ne risulta.

L’architettura proposta in questa tesi ha dimostrato un livello di precisione centimetrica
per quanto riguarda la posizione relativa ed un errore di assetto nell’ordine del grado,
insieme ad una considerevole robustezza a variazioni delle condizioni di illuminazione e
dello sfondo dell’immagine. Inoltre, è stato provato che simili prestazioni sono garantite
anche su immagini reali, benché l’addestramento dei CNN sia stato eseguito processando
esclusivamente immagini sintetiche.

ii

Acknowledgements

First and foremost, I would like to express my gratitude to my advisor Pierluigi Di
Lizia and to my co-advisor Michele Maestrini, for their constant support, trust and interest
for the work I carried out during the last four months. I would describe this time as the
most motivating period of my academic career, yet one of the most challenging. It was
both a privilege and an opportunity to rely on your knowledge and willingness to help me
out.

I would also like to thank OHB Sweden for providing me with real data from the
Prisma mission, that will allow me to further research the topics here presented, also after
my graduation.

Among the people who should be credited for helping me get to where I am now,
graduating as a Space Engineer, I must surely mention all my fellow classmates, starting
from the ones who have been there since the very first day. Francesca, Gregorio, Gustavo,
Matteo, thank you all. And thank you to all the ones that followed: Giorgio, Cesare,
Valerio, Chiara, the rest of the Padova-crew, Marzio, the MARS-PENGUIN team and all
the ones I did not explicitly mention, you are part of this too.

Thank you Milan for making me feel home since the very beginning of this journey
which is now coming to an end, for all the experiences, opportunities and new people I
came across during these years, both inside and outside university. I will miss all of this
and all of you.

And last but not least, I clearly have to thank my family for their constant presence,
albeit away from my hometown, and for their immense support during the five years that
brought me here.

We become the people we decide to surround ourselves with, again, thank you all.

I could either watch it happen
or be a part of it.

iii

Contents

1 Introduction 1
1.1 Problem statement & motivation . 1
1.2 State-of-the-art . 2

1.2.1 Feature-based pose estimation . 2
1.2.2 Deep learning-based pose estimation 4

1.3 Spacecraft Pose Estimation Dataset . 7
1.3.1 Synthetic images . 7
1.3.2 Actual mock-up images . 8
1.3.3 SLAB/ESA challenge . 9
1.3.4 Dataset re-partitioning . 10

1.4 Outline . 10

2 Mathematical background 11
2.1 Convolutional Neural Networks . 11

2.1.1 Architecture of a CNN . 11
2.1.2 Gradient-based learning . 14
2.1.3 Object detection . 16
2.1.4 Landmark regression . 20

2.2 Perspective-n-Point problem . 22
2.2.1 Iterative solvers . 24
2.2.2 Efficient PnP solver . 25

3 Relative Pose Estimation Pipeline 27
3.1 Spacecraft Localization Network . 28

3.1.1 Training . 29
3.1.2 Performance evaluation . 31

3.2 Landmark Regression Network . 33
3.2.1 Training . 34
3.2.2 Performance evaluation . 35

3.3 Pose solver . 36
3.3.1 Keypoint selection . 36
3.3.2 Initial pose estimation and refinement 37
3.3.3 Outlier identification & translation correction 37

4 Results 40
4.1 Error metrics . 40

4.1.1 Translation error . 40
4.1.2 Rotation error . 41
4.1.3 Pose error . 42

iv

v

4.2 Optimal keypoint rejection . 43
4.3 Performance evaluation . 44

4.3.1 Estimation uncertainty . 46
4.4 Error distribution . 48

4.4.1 Effect of relative distance . 49
4.4.2 Effect of the image background . 52

4.5 Benefit from iterative pose refinement . 53
4.6 Runtime . 54
4.7 Prediction visualization . 55

5 Conclusions & future work 60
5.1 Conclusions . 60
5.2 Future work . 61

List of Figures

1.1 Image processing subsystem of the SVD method (credits to: [Sha18b]) 4
1.2 Pose estimation subsystem of the SVD method (credits to: [Sha18b]) 4
1.3 Architecture of SLAB’s pose estimation pipeline (credits to: [Par19]) 5
1.4 Architecture of University of Adelaide’s pose estimation pipeline (credits to:

[Che19]) . 6
1.5 Relative distance distribution of SPEED (credits to: [Kis20]) 8
1.6 Relative attitude distribution of SPEED, parametrized using Euler angles (credits

to: [Kis20]) . 8

2.1 Graphical representation of the 2D convolution with a volume 12
2.2 AlexNet architecture . 13
2.3 Main body of the HRNet architecture . 21
2.4 Reference frames . 23

3.1 Architecture of the pose estimation pipeline at inference time 27
3.2 Wireframe model of the Tango spacecraft . 29
3.3 Bounding box label of the img001971.jpg training image 30
3.4 Precision-recall curves, in correspondence of different IoU thresholds 31
3.5 SLN prediction on 6 test images with black background 32
3.6 SLN prediction on 9 test images with Earth background 32
3.7 SLN prediction on 6 test images of the mock-up spacecraft 33
3.8 Precision-recall curves, in correspondence of different OKS thresholds 35
3.9 Examples of regressed heatmaps . 36
3.10 Reference frames and RoI . 38

4.1 Pinhole camera model . 42
4.2 Optimization of the keypoint rejection process 43
4.3 Top 5 participants of the post-mortem competition 44
4.4 Top 5 participants of the original competition (Feb - Jul 2019) 45
4.5 Absolute error distribution . 47
4.6 Relative error distribution . 47
4.7 Translation error distribution across the test set 48
4.8 Euler angle error distribution across the test set 49
4.9 Effect of inter-spacecraft distance upon absolute errors Et and Eq 49
4.10 Effect of inter-spacecraft distance upon absolute error components 50
4.11 Effect of inter-spacecraft distance upon SLAB score and Normalized Pose Error 51
4.12 SLAB error components of all test set images 51
4.13 Effect of the image background upon SLAB score 52
4.14 Effect of pose refinement upon the normalized pose error 53
4.15 Runtime breakdown, across the entire dataset 54
4.16 Mid-range test image with black background 55

vi

vii

4.17 Mid-range test image with Earth background 56
4.18 Prediction visualization mosaic of test images with black background and

increasing inter-spacecraft distance . 57
4.19 Prediction visualization mosaic of test images with Earth background and

increasing inter-spacecraft distance . 58
4.20 Prediction visualization of 6 out of 13 pose outliers 59

List of Tables

1.1 SPEED camera model . 7
1.2 Leaderboard of the top 10 teams . 9

3.1 Performance comparison of the four YOLOv5 architectures with YOLOv3 28
3.2 Performance comparison of SLN with other state of the art RoI detection

subsystems . 31
3.3 Performance of HRNet32 and HRNet48 on the MS COCO test set [Sun19a] . . . 34

4.1 Global end-to-end performance of the RPEP 46
4.2 Main performance metrics of the pipeline, with and without pose refinement . 54

viii

Acronyms

AB Anchor Box 18, 19
ADAM ADAptive Momentum 6, 15, 16, 34
ADR Active Debris Removal i, ii, 2
ANN Artificial Neural Network i, 11, 15, 17, 54
AP Average Precision 19, 20, 22, 28, 31, 34, 35, 60

BB Bounding Box i, ii, 16–20, 22, 28–30, 33, 36–38, 41, 42
BGD Batch Gradient Descent 15

CNN Convolutional Neural Network i, ii, 4–6, 10–14, 16–18, 20, 30,
32, 33, 35, 52, 60, 62

CPU Central Processing Unit 53

EPnP Efficient Perspective-n-Point 4, 6, 24, 25, 28, 37–39, 43, 53,
54, 58, 60

ESA European Space Agency 5, 7, 9, 44, 60

FLOP FLoating-Point Operation 28, 34
FN False Negative 20
FoV Field of View 7, 33, 41, 42
FP False Positive 20
FPS Frames Per Second 28, 54

GDM Gradient Descent Method 15, 25
GNM Gauss-Newton Method 4, 24, 25
GPU Graphics Processing Unit 14, 34, 54
GT Ground Truth 9, 22, 30, 34, 40, 41, 52, 56

HRNet High-Resolution Network vi, viii, 6, 21, 33, 34, 60

IoU Intersection over Union vi, 18–20, 22, 31, 60

LiDAR Light Detection And Ranging i, ii, 1
LMM Levenberg-Marquardt Method 7, 25, 28, 37, 53, 54, 60
LRN Landmark Regression Network 10, 28, 29, 33–37, 43, 52–56,

58, 60

mAP mean Average Precision 20

ix

x

MEV-1 Mission Extension Vehicle-1 2
ML Machine Learning 7, 11, 12, 14, 45, 61
MNPE Median Normalized Pose Error 43, 46, 50, 53, 54, 61

NRM Newton-Raphson Method 24

OKS Object Keypoint Similarity vi, 22, 35, 60

PnP Perspective-n-Point 7, 10, 22, 24, 25, 60

RANSAC RANdom SAmple Consensus 7
ReLU Rectified Linear Unit 13
RMSProp Root Mean Square Propagation 15, 16
RoI Region of Interest vi, viii, 6, 7, 28–34, 37–39, 41, 45, 50, 56,

58, 60, 61
RPEP Relative Pose Estimation Pipeline i, viii, 10, 27, 28, 36, 40, 44,

46, 49, 60, 61

S/C SpaceCraft 1, 2, 5, 16, 22, 28, 29, 33, 37, 38, 40, 46, 52, 60, 62
SGD Stochastic Gradient Descent 15, 30
SLAB Space rendezvous LABoratory i, ii, vi, 5–7, 9, 29, 31, 41, 42,

44, 46, 50–52, 54, 60, 61
SLN Spacecraft Localization Network vi, viii, 10, 28, 31–33, 36, 37,

52–56, 60
SPEED Spacecraft PosE Estimation Dataset i, ii, vi, viii, 2, 7, 8, 10,

29, 34, 40, 44, 45, 60, 61
SSD Single Shot Detector 17
SVD Sharma-Ventura-D’Amico vi, 3, 4
SVM Support Vector Machine 17

TP True Positive 19, 20
TRON Testbed for Rendezvous and Optical Navigation 7, 8

WGE Weak Gradient Elimination 3

YOLO You Only Look Once viii, 5, 6, 17–19, 28, 31, 33, 60

1Chapter

Introduction

1.1 Problem statement & motivation

The problem that will be tackled in this dissertation is that of estimating the relative
pose of an uncooperative spacecraft (S/C) from a single grayscale monocular image, in
a close-proximity operations scenario. The term “uncooperative” is here referred to a
situation in which the target S/C is not equipped with supportive means (e.g. light-
emitting markers) nor is capable of establishing a communication link. The satellite is
modeled as a rigid body, which means that its six-dimensional pose space is defined in
terms of 3 translation components and 3 attitude components, relative to the chaser S/C.

For estimating the pose of an uncooperative spacecraft relative to another satellite,
two main approaches are possible. The motion of a space object might be in principle
estimated using ground-based radar facilities. However, such an estimate would be affected
by significant uncertainty and its availability would depend on the target’s visibility from
ground. This is clearly unsuitable for close-proximity operations between two spacecrafts.
The second approach consists in estimating the pose of the target directly onboard the
chaser S/C, by exclusively relying on the sensors available on the latter. This currently
represents the only strategy that is suitable for close-proximity operations.

A possible choice to achieve onboard pose estimation may be the use of LiDAR and/or
stereo camera sensors, which, nevertheless, can be extremely expensive and represent a
substantial contribution to the mass and power budgets of the S/C. In contrast, monocular
cameras are characterized by a lower complexity and their use for autonomous relative
navigation would translate into significant savings in terms of cost, mass and power
requirements. All these benefits come at the expense of very high complexity of the image
processing algorithms. In addition, monocular sensors are characterized by a weaker
robustness to lighting conditions and variable backgrounds, compared to a LiDAR. This
aspect is particularly challenging, given the low signal-to-noise ratio that characterizes
spaceborne optical images.

The estimation of the relative pose by means of a cheap, low-mass and low-power
monocular camera is an appealing possibility, especially within the framework of on-orbit
servicing missions. Among the missions of this kind, that are slated for launch during the
next few years, an example might be NASA’s Restore-L mission [Ree16], whose launch
date is currently set for December 2023, along with the commercial servicing programs
proposed by companies like Infinite Orbits and Astroscale. In addition, the first ever

1

https://www.infiniteorbits.io
https://astroscale.com

2 Chapter 1. Introduction

Active Debris Removal (ADR) mission, ClearSpace-1 [ESAa], is expected to launch in
2025.

It is then clear that the ability to accurately estimate the pose of an uncooperative S/C,
by relying on hardware with minimal complexity, represents a key enabling technology
in all the aforementioned scenarios. For instance, a life-extension mission in which the
servicer spacecraft has the only purpose of re-fueling an old satellite, would be economically
viable only by making the mission extremely cheap, thus allowing a profit margin to the
service provider while still being advantageous for the customer.

The feasibility of a life-extension mission has also been recently demonstrated by the
Mission Extension Vehicle-1 (MEV-1), which, in February 2020, rendezvoused with the
Intelsat 901 satellite. The latter is a telecommunications satellite, launched in 2001, that
was nearing the end of its mission due to fuel consumption. After the docking between
the two spacecrafts, MEV-1 started performing station-keeping with its own thrusters for
the old satellite, thus extending the operational lifetime of Intelsat 901 by five more years
[Red20].

We will now continue our discussion by presenting the state-of-the-art techniques for
S/C pose estimation, in Section 1.2. In Section 1.3, we will successively introduce the
Spacecraft PosE Estimation Dataset (SPEED), which has been used for validating the
pose estimation algorithms proposed in this dissertation. And ultimately, at the end of
this introductory chapter, we will provide the outline of the remainder of this work, in
Section 1.4.

1.2 State-of-the-art

In this section we will present a brief survey of the state-of-the-art techniques used for
estimating the pose of a spacecraft from a monocular image.

Typically, all these techniques make use of an image-processing subsystem that identifies
the position in the image frame of certain semantic features of the S/C. This is followed
by a pose solver consisting in a geometric optimization subsystem, that fits a known 3D
model of the target S/C to the features matched in the image.

The aforementioned routine shall then be embedded in a navigation filter, in order
to be used in an actual rendezvous scenario, during which the inter-spacecraft distance
ranges from tens of meters to a few centimeters.

Depending on the approach adopted for image processing, two main classes of monocular
pose estimation methods may be identified. Feature-based methods seek for correspon-
dences between edges detected in the image and line segments of the known wireframe
model of the spacecraft. Deep learning-based approaches, instead, make use of deep neural
networks to either regress the location of semantic keypoints or directly estimate the pose.

1.2.1 Feature-based pose estimation

The traditional computer vision techniques for estimating the pose of an object (from
a single perspective view) resort to feature-based methods.

M. Dhome is among the pioneers in this field and in 1989 he proposed one of the first

1.2 State-of-the-art 3

feature-based solutions to the pose estimation problem [Dho89]. The underlying idea is
that of trying to match all possible sets of linear-ridge triplets of the object model with
the triplets of edges detected in the image, in order to find the attitude that is consistent
with the perspective projection of a triplet of edges. The geometrical transformation
corresponding to a given choice of triplets in the image is computed by solving an 8th
degree equation.

In 2014, S. D’Amico proposed a monocular vision-based navigation system [DAm14]
that, for the first time, enabled proximity navigation with respect to a completely un-
cooperative space object. Indeed, unlike previous work, neither supportive means (e.g.
light-emitting markers) nor a-priori knowledge of the target’s pose are required. The
pipeline consists of four main subsystems, whose key steps are reported here below.

i) The image processing stage is aimed at extracting straight-line segments and consists
of three main steps: a.) low pass filtering; b.) Canny-edge detection [Can86]; c.)
Hough transform [Dud72]. This stage also involves the tuning of several hyper-
parameters.

ii) Perceptual grouping [Low12] is a technique inspired by human vision and is applied
for organizing the detected segments into higher-level perceptually relevant structures,
that are known to be part of the model.

iii) Pose initialization is required in order to obtain a rough estimate of the pose to be
used as the initial guess. The adopted approach is the one described in [Low87].

iv) Pose refinement, consisting in: a.) Newton-Raphson optimization,(1) starting from
the previously computed initial guess; b.) model matching; c.) least-squares fitting,
which yields the final pose.

The method has been successfully tested on actual flight imagery captured during the
PRISMA mission [Bod12]. However, two fundamental limitations are highlighted in
[DAm14]: the excessive computational cost, that prevents real-time usage on spaceborne
hardware, and the lack of robustness to changes in lighting conditions and in the back-
ground.

In 2018, S. Sharma, J. Ventura and S. D’Amico proposed their Sharma-Ventura-
D’Amico (SVD) feature-based method [Sha18b]. The method has been tested on actual
flight imagery from the PRISMA mission and, compared to previous work, it proved
enhanced computational efficiency and superior robustness to the background. The latter
is achieved thanks to the fusion of the Weak Gradient Elimination (WGE) technique(2)

with state-of-the-art edge detectors.
The SVD method is composed of two subsystems, which are briefly described here

below.

i) Image processing. As it can be seen from Figure 1.1, after applying a Gaussian filter
to attenuate noise, the image undergoes processing along two parallel streams, whose
outputs are then merged. In the first stream, WGE is employed, followed by the

(1)the objective is that of iteratively minimizing the fit error between the projection of the 3D model
onto the image plane (according to the estimated pose) and the detected features in the image frame

(2)it basically eliminates gradients where they are weak and highlights regions where gradients are
strong: this is of particular importance whenever Earth is present in the background

4 Chapter 1. Introduction

Hough transform. In the second stream, the Sobel edge detector is applied [Sob68],
again followed by a Hough transform. After merging the results of the two streams,
duplicate detections will have to be discarded. Eventually, the detected segments
are organized into higher-level features, which allows to drastically reduce the search
space of possible correspondences, thus translating into reduced computational
burden.

Figure 1.1: Image processing subsystem of the SVD method (credits to: [Sha18b])

ii) Pose estimation. For each combination of possible feature correspondences, the
3D-2D perspective projection equations are initially solved for the pose using the
EPnP method [Lep09]. The pose candidates with the lowest reprojection error are
then iteratively refined using the Gauss-Newton Method (GNM).

CHAPTER 3. FEATURE-BASED POSE ESTIMATION 54

and Newton-Raphson algorithm along with other state-of-the-art PnP solvers were

characterized in Section 2.1. That characterization concluded that the EPnP was the

fastest PnP solver while the Newton-Raphson method was the most accurate. Fig-

ure 3.10 presents the pose determination subsystem while the following subsections

discuss its main steps in detail.

Image
Processing Feature Groups

Match matrix
using point

correspondences

PnP Problem
using EPnP

Reprojection
Error

Pose Refinement
with NRM

Spacecraft
3D Model Feature Groups

Figure 3.10: Main steps of the pose determination subsystem with feature groups
from the image and the 3D model as input and a single pose solution as the output.

3.3.1 Feature Correspondence

The correspondences between the image points and the 3D model points are obtained

by pairing each feature group detected in the image with each analogous group of

the 3D model of the target spacecraft. For each matching feature group pair, the

endpoints of the line segments in the image are hypothesized to correspond with

the endpoints of the 3D model’s lines through simple combinations. For instance,

a closed polygon identified in the image is coupled with every closed polygon of

the model. This provides eight di↵erent combinations of the point correspondences

between closed polygon detected in the image and the closed polygon of the 3D model.

This approach is applied to all the feature groups considered in the feature synthesis

in Section 3.2.2.

The point correspondences between the image and the 3D model are stored in

the so-called match matrix, which is then input to the EPnP method [36]. The rows

of the matrix represent the di↵erent hypotheses for feature correspondence while the

columns store the corresponding 3D model and 2D image points. EPnP requires at

least six point correspondences to guarantee a unique pose solution from Eqs. 3.1-

3.2 [23] while a single feature group typically provides less than six (see Table 3.1).

Therefore, the point correspondences from the feature groups are combined with the

Figure 1.2: Pose estimation subsystem of the SVD method (credits to: [Sha18b])

1.2.2 Deep learning-based pose estimation

Deep learning-based methods make use of a Convolutional Neural Network (CNN)
pipeline whose job, depending on the approach, may either consist in:

• regressing the position in the image frame of predefined keypoints, that later become
the input of a pose solver [Par19; Che19]

• directly estimating the pose, according to one of the following formulations of the
pose estimation problem:

1.2 State-of-the-art 5

– regression problem [Pro20]

– classification problem, which requires a sufficiently dense discretization of the
pose space [Sha18a; Sha17]

– hybrid classification-regression problem [Sha20]

We will now present the architecture of two of the most promising deep learning-based
pose estimation pipelines to date, that have been developed in 2019, within the context of
the SLAB/ESA Pose Estimation Challenge [ESAb]. They are of particular importance,
since the architecture proposed in this work has been mainly inspired by these two pipelines,
and shares several features with both of them.

SLAB baseline (Pose Estimation Challenge) - Park et al.
The Space rendezvous LABoratory (SLAB), besides organizing the competition and

releasing the related dataset, also proposed their own baseline solution [Par19], which
eventually scored 4th place.

The proposed architecture is depicted in Figure 1.3 and consists of three main subsys-
tems.

Figure 1.3: Architecture of SLAB’s pose estimation pipeline (credits to: [Par19])

i) Object Detection Network. A CNN based on the YOLOv3 [Red18] architecture is
trained to detect the bounding box enclosing the S/C, from a 416× 416 input image.
In order to reduce the number of parameters in the network and thus allow real-time
inference, two fundamental changes are applied to the original YOLO architecture.
First of all, the Darknet-53 backbone has been replaced by MobileNetv2 [San18].
Secondly, conventional convolution operations have been replaced by depth-wise sep-
arable convolutions, i.e. depth-wise convolutions followed by point-wise convolutions.

ii) Keypoint Regression Network. The network is trained to regress the location in the
image of semantic keypoints of the satellite. It exploits an architecture quite similar

6 Chapter 1. Introduction

to the one previously described, except for the fact that YOLOv2 is used instead of
v3. In order to maintain a reasonable number of parameters MobileNetv2 is still
used, together with depth-wise separable convolutions.
The RoI detected by the Object Detection Network is resized to 214× 214 and fed
into this network.

iii) Pose Estimation. It receives as input the 2D locations of the keypoints detected by
the previous CNN and, using the EPnP algorithm [Lep09], this subsystem outputs
the final pose estimate of the spacecraft.

Both neural networks of the pipeline are trained for 200 epochs. The initial learning
rate is set to 5× 10−4 and it is scheduled to halve every 50 epochs. ADAM optimization
is used, with momentum equal to 0.9 and a weight decay of 5× 10−5.

A key aspect of the training procedure is that the original dataset of synthetic spacecraft
imagery is augmented by randomizing the texture of the satellite’s surface, by making use
of the Neural Style Transfer technique. The underlying idea behind this choice is that of
forcing the network to learn the global shape of the satellite, rather than focusing on local
texture. As a result, the pose estimation pipeline trained on a synthetic dataset improves
its capability to generalize to spaceborne images, despite having never been exposed to
actual flight imagery during training.

UniAdelaide solution (Pose Estimation Challenge) - Chan et al.
The pose estimation pipeline proposed by the team from University of Adelaide [Che19]

scored 1st place in the competition. The key concept behind their superior performance
is the use of the HRNet architecture [Sun19a] which, in contrast to conventional CNNs,
connects high-to-low resolution subnetworks in parallel rather than in series. This means
that the initial high-resolution representation is maintained throughout the whole inference
process, thus resulting into extremely high accuracy of the regressed landmark positions.

The global architecture of the pipeline is structured into three main subsystems and is
similar to that of SLAB’s baseline, as it can be seen from Figure 1.4.

Figure 1.4: Architecture of University of Adelaide’s pose estimation pipeline (credits to: [Che19])

i) Object Detection Network. It is based on a region-proposal approach, using
HRNet18(3) as backbone in the Faster R-CNN framework [Ren15]. The network
outputs the bounding box corresponding to the spacecraft’s location.

(3)the number 18 indicates the version of the network having 18 channels in the highest-resolution
subnetworks in the last three stages

1.3 Spacecraft Pose Estimation Dataset 7

ii) Landmark Regression Network. The cropped RoI is resized to 768× 768 and fed into
the HRNet32 network, which regresses a separate heatmap for each of the selected
landmarks to detect.

iii) Pose Estimation. The best pose fit is iteratively computed by solving a non-linear
least-squares problem, using the Levenberg-Marquardt Method (LMM). In addition,
the LMM iterations are coupled with a Simulated Annealing scheme to progressively
remove outliers. The initial pose guess is computed using a RANSAC-fashion PnP
solver implemented in Matlab.

1.3 Spacecraft Pose Estimation
Dataset

The Spacecraft PosE Estimation Dataset (SPEED) consists of 15300 grayscale images of
the Tango spacecraft, along with the corresponding pose labels. 15000 of these images have
been generated synthetically, while the remaining 300 are actual images of a 1:1 mock-up,
captured under high-fidelity illumination conditions at the TRON facility. SPEED is the
first and only publicly available ML dataset for spacecraft pose estimation and has been
released in February 2019, with the start of the Pose Estimation Challenge organized by
SLAB in collaboration with ESA (Feb-Jul 2019). The camera model used for rendering
the synthetic images is that of the actual camera employed for capturing the 300 images
of the mock-up. The related parameters are reported in Table 1.1.

Table 1.1: SPEED camera model

Parameter Value

Resolution (Nu ×Nv) 1920× 1200 px
Focal length (fx ≡ fy) 17.6 mm
Pixel pitch (ρu ≡ ρv) 5.86 µm/px
Horizontal FoV 35.452◦
Vertical FoV 22.595◦

1.3.1 Synthetic images

All the photo-realistic renderings of Tango are generated using an OpenGL-based
pipeline. In half of these 15k images, random Earth images are inserted in the background
of the satellite. The Earth backgrounds are obtained by cropping actual images captured
by the Himawari-8 geostationary weather satellite: a distribution of 72 images taken over
12 hours (10 minutes apart from each other). In all images with Earth background, the
illumination conditions used for rendering Tango are consistent with those in the image of
the Earth disk.
In addition, Gaussian blurring (σ = 1) and Gaussian white noise (σ2 = 0.0022) are
eventually superimposed to all images.

https://kelvins.esa.int/satellite-pose-estimation-challenge/

8 Chapter 1. Introduction

The relative position vector for each generated image is obtained by separately sampling
the total distance and the bearing angles, resulting in the distribution in Figure 1.5:

• total distance ∼ N (µ = 3, σ = 10) m (any value either < 3 m or > 50 m is rejected)

• bearing angles ∼ N (µ = [u0, v0], σ = [5u0, 5v0]) px (where u0 = Nu
2
, v0 = Nv

2
denote

the camera principal point)

Figure 1.5: Relative distance distribution of SPEED (credits to: [Kis20])

The attitude distribution corresponds to uniformly distributed random rotations, as it
can be seen from Figure 1.6.

Figure 1.6: Relative attitude distribution of SPEED, parametrized using Euler angles (credits to:
[Kis20])

1.3.2 Actual mock-up images

Given the physical constraints of the TRON facility, the distance distribution of real
images is very limited compared to synthetic ones and ranges between 2.8 and 4.7 m.
In addition, unlike the synthetic image source (for which pose labels are automatically
annotated), the accurate determination of “ground truth” relative poses of the mock-up
requires a complex calibrated motion capture system. The facility includes 10 Vicon Vero
v1.3x cameras that track several infrared reflective markers placed onto Tango’s body and
in the robotic arm that holds the camera (the one that collects the 300 images in the
dataset). High accuracy light sources are present in order to mimic sunlight and Earth’s
albedo.

1.3 Spacecraft Pose Estimation Dataset 9

1.3.3 SLAB/ESA challenge

The SLAB/ESA Pose Estimation Challenge ended in July 2019 and its leaderboard
is based on the evaluation of a single scalar error metric. For convenience, we will refer
to it as the “SLAB score”. Although this metric is separately computed for both the real
and synthetic datasets, participants are exclusively ranked based on the performance on
synthetic images.

The SLAB score of each individual image is determined as the sum of a translation
error and a rotation error, as defined in Equation (1.1). The translation error is computed
as the norm of the difference between the Ground Truth (GT) relative distance vector r
and the estimated one r̂, normalized with respect to the GT distance. The rotation error
is defined as the quaternion error between the GT relative attitude and the corresponding
estimate.

e(i)SLAB =

∥∥r(i) − r̂(i)
∥∥

‖r(i)‖︸ ︷︷ ︸
e(i)t

+ 2 · arccos |q(i) · q̂(i)|︸ ︷︷ ︸
E(i)

q

(1.1)

The overall score is then just the average over all the N test images.

eSLAB =
1

N

N∑
i=1

e(i)SLAB (1.2)

A total of 48 teams participated in the competition and three of them succeeded at
outperforming SLAB’s baseline. UniAdelaide obtained the best score on the synthetic
test set, hence winning the competition. EPFL_cvlab scored a second place, yet achieving
the highest score on the real test set.

The overall outcome of the competition is described in [Kis20] and summarized in
Table 1.2.

Table 1.2: Leaderboard of the top 10 teams

Team name Synthetic
images score

Real images
score

Translation
error [m]
(µ± σ)

Quaternion
error [deg]

(µ± σ)

1. UniAdelaide 0.0094 0.3752 0.032± 0.095 0.41± 1.50
2. EPFL_cvlab 0.0215 0.1140 0.073± 0.587 0.91± 1.29
3. pedro_fairspace 0.0571 0.1555 0.145± 0.239 2.49± 3.02
4. stanford_slab 0.0626 0.3951 0.209± 1.133 2.62± 2.90
5. Team_Platypus 0.0703 1.7201 0.221± 0.530 3.11± 4.31
6. motokimura1 0.0758 0.6011 0.259± 0.598 3.28± 3.56
7. Magpies 0.1393 1.2659 0.314± 0.568 6.25± 13.21
8. GabrielA 0.2423 2.6209 0.318± 0.323 12.03± 12.87
9. stainsby 0.3711 5.0004 0.714± 1.012 17.75± 22.01
10. VSI_Feeney 0.4658 1.5993 0.734± 1.273 23.42± 33.57

https://kelvins.esa.int/satellite-pose-estimation-challenge/

10 Chapter 1. Introduction

1.3.4 Dataset re-partitioning
As of November 2020, the Pose Estimation Challenge is still virtually running in

post-mortem mode, with a separate leaderboard for all the results submitted after July
2019. For this reason, in order to maintain the integrity of the post-mortem competition,
the ground truth labels of the test set have not been publicly disclosed.

Given the purposes of this dissertation, which include a detailed evaluation of both
performance and uncertainty of our pose estimation pipeline, it was clearly of paramount
importance to be provided with test labels. It was therefore decided to perform a re-
partitioning of the original training set (for which pose labels are publicly available) into
three new training, validation and test sets.

In particular, the original 12k training examples were first of all randomly shuffled and
then divided into:

• 7680 training images (64%)

• 1920 validation images (16%)

• 4800 test images (24%)

1.4 Outline

This dissertation is divided into 5 chapters.
In Chapter 2, which follows here below, we will introduce the underlying mathematical

preliminaries that are necessary to understand the architecture of the Relative Pose
Estimation Pipeline (RPEP) proposed in this work. In particular, since we will resort
to a deep learning-based image processing, the fundamentals of Convolutional Neural
Networks (CNNs) are first of all introduced, with a particular focus on the state-of-the-art
architectures developed for object detection and landmark regression. In addition, the
Perspective-n-Point (PnP) problem is introduced right after, along with the available
approaches for its solution.

In Chapter 3, the architecture of our RPEP is described in detail, with a separate
section for each of the three subsystems composing the pipeline. In particular: Section 3.1
presents our Spacecraft Localization Network (SLN), which is the first subsystem that
analyzes the input image; Section 3.2 introduces the Landmark Regression Network (LRN);
Section 3.3 describes the third and last subsystem of the pipeline, which is the pose solver.

In Chapter 4 we analyzed the performance achieved by the architecture presented
in Chapter 3 on our synthetic test set of SPEED images. Besides evaluating errors and
uncertainty, we identified the most important characteristics of the input image that
correlate with estimation accuracy. In addition, an intuitive visualization of the pose
estimate, along with intermediate processing steps, is provided at the end of the chapter.

In Chapter 5, we summarized the results of the present work and issued some recom-
mendations for future research in this field.

2Chapter

Mathematical background

2.1 Convolutional Neural Networks

Machine Learning (ML) is a field of Artificial Intelligence, whose techniques give a
computer program the ability to learn from data, thus building a mathematical model
based on such “training data”, that is capable of making predictions without being explicitly
programmed to do so.

Any ML algorithm requires building a model to train on data. Nowadays, the most
common family of models for ML applications is represented by Artificial Neural Networks
(ANNs), whose working principle vaguely mimics the human brain.(1)

Among ANNs, Convolutional Neural Networks (CNNs) constitute a class of models
that is particularly suited for computer vision applications, i.e. for processing image
data. The advantage of CNNs is that they allow to drastically reduce the computational
resources required for processing an image, compared to traditional ANNs. In particular,
this is achieved by leveraging on two fundamental operations: convolution and pooling.

2.1.1 Architecture of a CNN
The overall architecture of a basic CNN can be described in terms of three fundamental

building blocks:

• convolutional layers

• pooling layers, which typically follow a convolutional layer

• fully connected(2) layers, which are basically the layers of a traditional ANN, and
are also encountered in the last few layers of a CNN

Convolution operation
For deep learning applications, convolutions will typically involve multi-dimensional

inputs/outputs. The input is convolved with one or more multi-dimensional filters (or
“kernels”), which are basically weighting functions.

(1)in particular, ANNs resemble to some extent the way brain neurons process the information coming
from “dendrites” and output it into “axons”

(2)in the sense that all neurons in adjacent layers are mutually connected

11

12 Chapter 2. Mathematical background

The convolution operation can be thought of as having a filter sliding through the
input volume with a given stride. Each new entry of the output is computed as the sum
of all entries resulting from the element-wise multiplication between the corresponding
sub-volume of the input and the filter, as depicted in Figure 2.1. For image processing
applications, the filter shall have the same depth as the input, while the depth of the
output corresponds to the number of filters employed.(3) In other words, we are interested
in 2D convolutions(4) of an input volume with arbitrary depth.

In signal processing literature, the operation described here above is actually referred
to as “cross correlation”. Indeed, the rigorous mathematical definition of 2D convolution
would actually require to flip the filter both vertically and horizontally, prior to performing
the element-wise multiplication. It is nevertheless much more common in ML literature to
refer to the operation here presented simply as “convolution”.

Filter W

Input X

Output Y

(a)

64x64x3
48x48x8

(b)

Figure 2.1: Graphical representation of the 2D convolution with a volume

The entries of the output tensor Y, resulting from the discrete 2D convolution between
an input volume X and a kernel W may then be computed as

Yij = (X ∗W)ij

=
∑
m

∑
n

XmnW(i−m),(j−n)
(2.1)

The purpose of the filter is to act as a feature detector. For instance, considering a
simple image processing application of a grayscale image (i.e. 2D input) convolved with a
filter matrix, one may perform horizontal/vertical edge detection using a Sobel filter:

Wvert =

1 0 −1
2 0 −2
1 0 −1

 Whoriz =

 1 2 1
0 0 0
−1 −2 −1

A CNN will instead learn the parameters of such filters, in order to detect edges,

corners, blobs, textures or higher-level features in the input image. Any convolutional layer

(3)i.e. the individual outputs of each filter are stacked along the depth direction
(4)in the sense that the filter is only slid horizontally and vertically

2.1 Convolutional Neural Networks 13

will include a collection of learnable filters, with the addition of a bias b to be learned as
well and a given non-linear activation function g(·):

output = g
(
(input ∗ filter) + b

)
Typical activation functions are:

• hyperbolic tangent, g(z) = tanh(z)

• sigmoid, g(z) = 1
1+e−z (its use is typically limited to the final output layer only)

• ReLU, g(z) = max(0, z)

• leaky ReLU, g(z) = max(ε
↓

e.g. = 0.01

z, z)

Pooling operation
Convolutional layers are typically followed by a pooling layer, which in principle might

be of two kinds: max-pooling or average-pooling (much less common).
Similarly to convolutions, pooling can be visualized by considering a sliding cube

through the input volume, but the operation is carried out independently over each
channel. Pooling consists in either taking the maximum or the average of the elements
enclosed in each square slice of the sliding cube. The size of the pooling window is usually
2-3 pixels.

It is then clear that the purpose of the aforementioned operation is to condense input
information, hence speeding up both training and inference. In other words, the number of
parameters of successive layers becomes progressively lower, as the size of the intermediate
representations of the input image is reduced.

As it could be intuitively expected, pooling also has the effect of increasing the
robustness of a CNN to translations in the image frame of a given object.

Overall architecture
The general rule of thumb for a typical CNN architecture is to follow two simple

principles: to progressively decrease the image size and to progressively increase the
number of channels.

This translates into an architecture in which the shallowest layers are responsible for
detecting very basic low-level features (e.g. edges, corners, etc.), while, as we go deeper in
the network, the layers tend to focus on increasingly more sophisticated high-level features.

An example of early architecture that reflects these principles and has been widely
employed for various purposes is AlexNet [Kri12], which is depicted in Figure 2.2.

227x227x3

CONV
11x11
s=4

MAX-POOL
3x3
s=2

MAX-POOL
3x3
s=2 MAX-POOL

3x3
s=2

UNROLL FC FC

SOFTMAX

CONV
3x3
same

CONV
5x5
same

CONV
3x3
same

CONV
3x3
same

55x55x96
27x27x96

27x27x256
13x13x256

13x13x384
13x13x384

13x13x256
6x6x256

9216
4096 4096

1000

Figure 2.2: AlexNet architecture

14 Chapter 2. Mathematical background

In a typical CNN architecture, just as in AlexNet, the last output volume is unrolled
into a vector, which is followed by one or more fully connected (FC) layers and eventually
a softmax classifier. This allows classifying an input image according to an arbitrary
number of classes that may be present in the dataset and to output the corresponding
confidence level of that prediction.

It can happen that an architecture built for a very specific application may perform
extremely well also on completely different computer vision tasks, if properly trained.

Transfer learning A concept of paramount importance in deep learning-based
computer vision is that of “transfer learning”. Training an accurate computer vision
network from scratch would typically take a very long time and huge computational
resources. Nowadays, thanks to the huge ML open source community, it is actually quite
easy to retrieve the values of weights for a given architecture that has been pre-trained on
extremely large computer vision datasets(5) for weeks, using many high-end GPUs. These
huge datasets contain images of terrestrial objects, animals, people, etc. and although
it might appear a completely different domain compared to spaceborne applications, it
actually turns out that very basic low-level features detected by the shallowest layers of a
CNN are the same across disparate domains, including spaceborne imagery.

We may hence conclude that, whenever pre-trained weights are available, it always
makes sense to use them for initializing the parameters before training on our own dataset.
Indeed, this saves a large number of training epochs, given that the neural network has
“already learned” to detect low-level features once we start training it.

In addition, since a very large dataset may not always be available, it would be
convenient in these situations to exclusively train the deepest layers of the CNN, while
the first layers are kept frozen (i.e. same weights of the pre-trained architecture). In the
event of a very small dataset, it is suggested to train the softmax classifier only.

2.1.2 Gradient-based learning
The learning process during the training of an ML algorithm occurs via minimization

of a cost function, computed as the sum between a loss function cost and a regularization
cost. Let m be the number of training examples and L be the number of layers in a generic
network.

J =
1

m

m∑
i=1

L(Yi, Ŷi)︸ ︷︷ ︸
loss function cost

+
λ

2m

L∑
l=1

∥∥∥W[l]
∥∥∥
F︸ ︷︷ ︸

regularization cost

(2.2)

The loss function in Equation (2.2) indicates the average deviation of the predictions
Ŷi from the corresponding ground truths Yi. L2-regularization is instead the standard
technique to prevent the model from overfitting the training set(6) and ‖W[l]‖F indicates
the Frobenius norm of the weights at layer l.

The iterative minimization of the cost function requires to compute the gradients of
J with respect to the learned parameters, i.e. dW[l] := ∂J

∂W[l] and db[l] := ∂J

∂b[l] . Such

(5)such as ImageNet, MS COCO, PASCAL VOC, etc.
(6)this is intuitively achieved by penalizing all trained parameters, which are multiplied with a scalar

value λ, called the regularization hyper-parameter, that requires tuning

2.1 Convolutional Neural Networks 15

gradients are computed by means of the backpropagation algorithm [Cha95].
The most basic fashion for iteratively converging towards a minimum of the cost

function is by means of the Gradient Descent Method (GDM), which consists in updating
the learned parameters by taking small steps along the direction opposite to the computed
gradient values:

W[l] = W[l] − α dW[l]

b[l] = b[l] − α db[l]
(2.3)

where the hyper-parameter α is called the learning rate, which is a scalar value that rules
the speed of convergence. α requires proper tuning: an excessively high value may cause
the algorithm to diverge or to continuously overshoot the minimum of the cost function;
on the contrary, a very small learning rate would result into a very slow training.

Gradient-based methods are actually never guaranteed to converge to the global
optimum of the objective function, which is in general non-convex. Indeed, these method
have been in use since late 50’s, but they were initially limited to linear systems until it
was realized that the presence of local minima did not represent a major issue in practice
[LeC98]. It is conjectured that, if a generic ANN is oversized for the task,(7) which is
usually the case, then the presence of extra-dimensions in a very high-dimensional space
translates into a very low risk of unattainable regions.

Stochastic Gradient Descent
In the deep-learning era it is not untypical to deal with extremely large datasets, in

which the number of training examples may be as high as m = 107÷8. In order to speed up
training, instead of processing the entire dataset before updating the learned parameters,
a very common strategy is that of partitioning the dataset into several “mini-batches”. In
this way, the gradient-based optimization only has to be executed on a small subset of
training examples prior to performing the parameter update. This results into noisier yet
much faster convergence.

This new framework is called Stochastic Gradient Descent (SGD), as opposed to Batch
Gradient Descent (BGD) for which the processed batch corresponds to the entire dataset.

ADAM optimization
Other gradient-based algorithms that are more sophisticated than the basic GDM are

nowadays in use.
For instance, GDM with momentum term [Qia99] is particularly helpful for acceler-

ating convergence whenever mini-batches are used. Instead of updating the parameters
proportionally to the gradients theirselves, it uses their exponentially-weighted(8) moving
average. This intuitively translates into smoother convergence, which in turn also allows
setting larger learning rates.

An additional method to speed up mini-batch learning is represented by RMSProp
[Tie12]. The method damps the oscillating behavior in directions of the vector-space with
high curvature, while speeding up convergence along directions with soft and consistent
gradients.

(7)in the sense that it has many extra-dimensions more than the minimal parametrization of the model
would require

(8)exponential weighting is an approximation of the actual moving average, but turns out to be much
computationally cheaper

16 Chapter 2. Mathematical background

The underlying idea of ADAptive Momentum (ADAM) optimization [Kin14] is that
of combining the momentum update with RMSProp, along with the implementation of
bias correction. Specifically, ADAM computes an adaptive learning rate based on the
normalized approximate first and second moments(9) of the gradients. The approximations
are computed using the exponentially-weighted average of past gradients. The importance
of normalization stems from the fact that, since the moments will undergo zero-initialization,
they tend to be biased towards zero, especially during the initial iterations. The resulting
algorithm is reported in Equation (2.4).

zero-initialization: vdW, SdW, vdb, Sdb

for t in mini-batches:
compute: dW, db (backpropagation)

vdW =
1

1− βt1

[
β1vdW + (1− β1) dW

]
vdb =

1

1− βt1

[
β1vdb + (1− β1) db

]
SdW =

1

1− βt2

[
β2SdW + (1− β2) dW2

]
Sdb =

1

1− βt2

[
β2Sdb + (1− β2) db2

]
update:

W = W − α vdW√
SdW + ε

b = b− α vdb√
Sdb + ε

(2.4)

ε denotes a small number that is summed with the denominator to prevent from
dividing by zero, usually set to ε = 10−8. The learning rate is now adaptive, but the
hyper-parameter α still requires tuning. The remaining hyper-parameters β1, β2 might in
principle be tuned as well, although they are typically set to the default values proposed
by the authors of [Kin14], namely β1 = 0.9, β2 = 0.999.

2.1.3 Object detection
The object localization problem consists in an extension of the image classification

problem: besides identifying the presence of one of the dataset classes, the CNN is also
required to predict the portion of the image in which the object lies in, by drawing a
Bounding Box (BB) that encloses it.

The object detection task is a further generalization of the problem and implies the
capability of detecting multiple objects within the same image. In our discussion we will
always refer to a relative navigation scenario between two S/Cs only, which means that
the task of interest is indeed object localization. On the other hand, all current state
of the art algorithms in this field were actually developed in the more general object
detection framework: for this reason, object detection algorithms were considered in our

(9)i.e. mean and uncentered variance, respectively

2.1 Convolutional Neural Networks 17

pose estimation pipeline, taking into account all possible simplifications that may be
introduced in the code under the assumption of a single spacecraft in the image frame.

Early approaches to object detection made use of a sliding window implementation.
The sliding window successively crops overlapping regions of the input image and then a
classifier is run individually on each of them. In the pre-ANN era, when much simpler linear
classifiers were still in use, the computational cost of such an approach was acceptable.
With the advent of deep neural networks characterized by millions of parameters, the need
for a different approach that avoids redundant computation became immediately clear.
Indeed, if we were to run a CNN on image crops with substantial overlap, many redundant
calculations would take place, entailing drastic consequences for real-time execution.

Current state-of-the-art methods for object detection can be classified into two main
categories: region proposal methods (such as R-CNN [Gir14], Fast R-CNN [Gir15] and
Faster R-CNN [Ren15]) and one-stage methods (such as YOLO [Red16], SSD [Dai16] and
EfficientDet [Tan20]).

Region proposal detectors
The underlying idea that pushed the development of these methods is to avoid wasting

computations on regions that are not of interest, i.e. those for which it can be easily
excluded that any of the dataset classes are present. This translates into a common feature
of all these methods: they always pre-process the image in order to propose candidate
regions where to look for objects.

R-CNN (2013) The algorithm [Gir14] is composed of three subsystems:

i) selective search [Uij13] is run on the input image to propose candidate regions

ii) all candidate regions are individually processed by a CNN to extract a feature map
for each of them

iii) based on the computed feature maps, class-specific Support Vector Machines (SVMs)
classify each region and output the final BB

The algorithm is nevertheless quite computationally inefficient, making it unsuitable for
real-time execution. Indeed, the selective search algorithm ends up performing many
redundant computations. The same goes for feature extraction and object classification,
which are run multiple times on several overlapping portions of the proposed regions.

Fast R-CNN (April 2015) This new architecture [Gir15] tackles the main
issue of R-CNN, i.e. its inefficient redundant computations. While the original R-CNN
individually computed feature maps on as many as 2000 proposed regions, here the image
is initially pre-processed by running a CNN once on the whole image. Like its predecessor,
Fast R-CNN also uses selective search for region proposal.

Faster R-CNN (June 2015) Although the Fast R-CNN method significantly
improved the computational efficiency of the original R-CNN, the former is still characterized
by an evident computational bottleneck: the selective search algorithm, which represents
most of the total runtime. In the Faster R-CNN architecture [Ren15], region proposal is
integrated into the CNN itself, no longer needing to run selective search.

18 Chapter 2. Mathematical background

One-stage detectors
One-stage detectors exhibit superior computational efficiency compared to state-of-

the-art region proposal architectures, while maintaining high detection accuracy. We will
now focus on the You Only Look Once (YOLO) architecture. Which is currently the
most popular object detection algorithm and has been implemented in the pose estimation
pipeline proposed in this dissertation.

YOLO architecture The YOLO architecture went through various official and
unofficial revisions since the original version, YOLOv1, was proposed in 2016 by Redmon et
al. [Red16]. As the name may suggest, the basic idea is to make use of a convolutional
implementation that directly processes the entire image. In other words, unlike all
previous work, object detection is reframed as a single regression problem.

In the first iteration of the architecture, YOLOv1, the image is resized to a fixed 448×448
size and divided into grid squares. At this point the image is fed to a CNN that detects
whether any of the cells contains the center of an object, while also computing the
confidence probability of such prediction.

One of the main limitations of this approach is that, since the method corresponds to
running object localization over each cell (although convolutionally, i.e. all at once), only
a single object per cell can be detected. In fact, a 19× 19 grid is often used, which usually
guarantees that no more than one object’s center falls within the same cell.

Eventually, the raw predictions are refined by means of thresholding and non-max
suppression, which respectively reject low-confidence predictions(10) and eliminate duplicate
detections of the very same object. Non-max suppression is an iterative procedure based
on the following workflow:

i) initialize:
P = list of proposed BBs (after thresholding)
F = [empty]

ii) while P is not empty:
Pick the BB with the largest pc, remove
from P all BBs having IoU ≥ 0.5 with the
former, add the selected BB to F

iii) return: F ← final predictions

YOLOv2 (2017) [Red17] substantially improved detection accuracy compared to its
predecessor.

A key difference from the previous iteration is the introduction of multi-scale training,
which consists in changing the size of the input image every 10 training epochs: this makes
the network robust to processing images of different sizes.

This version also introduced the use of Anchor Boxes (ABs), which are pre-defined
shapes(11) representative of the BB aspect ratios that we are most likely to find in a test
image. The most sophisticated fashion for choosing anchor boxes is to run K-means
clustering [Mac67] on the dataset. If an S × S grid is used, then the dimensionality of the

(10)typical threshold: pc ≤ 0.6
(11)5÷ 10 different ones are typically assigned

2.1 Convolutional Neural Networks 19

output will be S × S ×
(
#ABs · (#classes + 5)

)
, which means that for each grid cell the

neural network will output a prediction encoded in a vector of the following kind:

Yij =
[
pc bx by bh bw C1 . . . CN︸ ︷︷ ︸

AB1

| pc bx by bh bw C1 . . . CN︸ ︷︷ ︸
AB2

| . . .
]T

in which the predictions for each of the ABs are vertically stacked. pc indicates the
confidence score; bx, by denote the center of the BB and bh, bw its height and width;[
C1 C2 . . . CN

]
is a boolean vector that encodes the predicted class.

Combining ABs with non-max suppression yields an extremely powerful and accurate
algorithm, that allows identifying multiple objects within the same grid cell.

YOLOv3 (2018) [Red18] is characterized by a more complex structure, hence trading
speed for higher accuracy, compared to its predecessor. This new architecture features
multi-scale prediction: during inference the image is scaled to three different sizes, which
proved particularly helpful at increasing the detection accuracy for small objects. The
new architecture, called Darknet-53, as the name suggests, is made up of 53 convolutional
layers, compared to only 19 convolutional layers that were present in YOLOv2.

Right after J. Redmon announced in February 2020 that he was stepping away from
computer vision research, two unofficial revisions of YOLO (from two different authors)
followed in the upcoming months.

YOLOv4 [Boc20] was released in April 2020, which introduced significant accuracy
improvements compared to the latest official release.

A few weeks later, in June 2020, a second unofficial release referred to as YOLOv5
[Ult] further outperformed all its predecessors. In particular, 5 different versions of the
model with different sizes were implemented, and the smallest one (YOLOv5s) still achieves
outstanding accuracy while being extremely light to run (only 7.5M parameters). Compared
to the latest official release, this new architecture replaced the Darknet backbone with
Cross Stage Partial Networks (CSPNet)[Wan20], which recently proved substantial runtime
improvements in deep network architectures. The second fundamental difference of YOLOv5
is that it generates feature pyramids using the Path Aggregation Network (PANet) [Liu18].
Feature pyramids make the model robust to object scaling, i.e. they help the network
generalize to previously unseen scales of the same object.

Performance metrics: IoU and AP
The simplest way to evaluate the degree of overlap between the predicted bounding

box and the corresponding ground truth is by measuring the area ratio between their
intersection and their union, namely

IoU :=
BB1 ∩ BB2

BB1 ∪ BB2

= (2.5)

Before introducing some global evaluation metrics that measure the performance of an
object detection algorithm on the entire dataset, we should first define some quantities. A
given prediction, depending on its correctness, may either be classified as a True Positive

20 Chapter 2. Mathematical background

(TP), False Positive (FP) or False Negative (FN). We may at this point define Precision
and Recall, which are respectively computed as

P =
TP

TP + FP

R =
TP

TP + FN

(2.6)

The AP is individually computed for each class in the dataset as the area under the
precision-recall curve

AP :=

ˆ 1

0

P (R) dR (2.7)

The various precision-recall pairs that define the curve are obtained by gradually
increasing the prediction confidence cutoff used for thresholding raw predictions. Missed
detections resulting from a low confidence score are clearly treated as FNs. The precision-
recall curve should be in principle monotonically decreasing. It nevertheless may happen
that P (R) locally deviates from a purely monotonically decreasing behavior, which is
usually corrected by considering the so called “interpolated precision”, in the integral in
Equation (2.7). This is simply achieved by defining:

Pinterp(R) =

{
P (R) if P (R) ≤ P (R) ∀R > R

max
(
P (R > R)

)
else

(2.8)

In an object detection scenario, since a perfect match of the BB is almost never achieved,
identifying a prediction as a TP requires setting a threshold that defines the minimum
required degree of overlap. Three typical metrics are defined accordingly:

• AP50, for which the threshold is set to IoUmin = 0.5

• AP75, for which IoUmin = 0.75

• AP50:5:95, that is simply the average of the 10 values AP50, AP55, AP60, . . . ,AP95

Although it is not of interest under the assumptions in this work, in a multi-class
framework, a global performance metric for the whole dataset would be computed as the
mean of the AP values over all categories and is called the mean Average Precision (mAP).
We may hence define accordingly the mAP50, mAP75 and mAP50:5:95 metrics.

2.1.4 Landmark regression
CNNs that regress the location of semantic keypoints have been extensively developed

in the fields of human/object pose estimation and face expression recognition. There are
basically two deep-learning based approaches to the problem: either directly regressing the
keypoints’ position or regressing a heatmap(12) that indicates the probability, at a given
position in the image, of locating the landmark of interest.

We will now describe the details of a state-of-the-art architecture that follows the latter
approach. This model has been developed for human pose estimation and has been proved

(12)the keypoint location is clearly estimated to be in correspondence of the peak in each individual
heatmap

2.1 Convolutional Neural Networks 21

to outperform all previous work in this field, both in terms of accuracy and computational
efficiency. The same architecture is also employed in the pose estimation pipeline proposed
in this dissertation.

HRNet architecture
The strength of the High-Resolution Network (HRNet) architecture [Sun19a] lies in

two main distinctive aspects.

• Most previous architectures recover high resolution representations by performing
an upsampling process downstream of a high-to-low resolution network. In contrast,
HRNet maintains the initial high-resolution representation throughout the entire
network. This clearly eliminates the loss of information associated with traditional
approaches, resulting in more accurate heatmaps, which is of paramount importance
in a spaceborne relative navigation scenario.
In particular, the network starts with a high-resolution subnetwork whose resolution
is kept unaltered up to the last layer. As it is depicted in Figure 2.3, lower-resolution
subnetworks are gradually stacked in parallel as we go deeper in the network.

• Instead of aggregating high- and low-resolution representations, HRNet performs
repeated multi-scale fusions to boost the low-level representations with the aid of
high-level representations, and vice-versa.

channel
maps

conv.
block

strided
conv.

upsample

2x

4x
8x

Stage 1 Stage 2 Stage 3 Stage 4

Figure 2.3: Main body of the HRNet architecture

The overall pipeline consists of a 4-stage main body that outputs feature maps having
the same resolution as its input. This followed by a regressor which estimates the heatmaps.
There will be as many heatmaps as the number of landmarks, and each of them has the
same size of the input image.

At each new stage, one additional lower-resolution subnetwork is stacked in paral-
lel. Downsampling factors are successive powers of 2, while the number of channels is
accordingly doubled every time.

Multi-scale fusions Each stage is divided into exchange blocks: specifically, the
2nd, 3rd and 4th stages contain 1, 4, 3 exchange blocks, respectively.
Let s = stage #, r = rth resolution, b = bth exchange block. Each block will hence
contain s parallel convolution units Cb

sr, with an exchange unit εbs across the parallel units.
Without loss of generality, let us consider the 3rd stage, just for visualizing the multi-scale
fusion process:

C1
31 ↘ ↗ C2

31 ↘ ↗ C3
31 ↘ ↗ C4

31 ↘
C1

32 → ε13 → C2
32 → ε23 → C3

32 → ε33 → C4
32 → ε43

C1
33 ↗ ↘ C2

33 ↗ ↘ C3
33 ↗ ↘ C4

33 ↗

22 Chapter 2. Mathematical background

Each successive output is computed as an aggregation of input maps, i.e. Yk =∑s
i=1 resampling(Xi, k) where the resampling() function may either indicate downsam-

pling or upsampling, from the ith resolution to the kth. One or more strided 3 × 3
convolutions are used for downsampling; upsampling, instead, is achieved by means of
nearest-neighbor interpolation followed by a 1× 1 convolution.

Heatmap regression Heatmaps are regressed from the high-resolution output
of the final exchange unit. We recall that such a representation is actually enriched by
the high-level features detected in lower-resolution subnetworks. For training this type
of network, the GT heatmaps are labeled as 2D Gaussian distributions with a standard
deviation of 1× 1 pixel, centered in correspondence of the GT position of each landmark.
The loss function for a given image is defined as the mean squared error (in terms of pixel
distance) over all keypoints.

Performance metrics: OKS and AP
The typical evaluation metrics in a keypoint detection framework are based on the

Object Keypoint Similarity (OKS).

OKS :=
n∑
i=1

vi · exp

(
−d2i

2s2k2i

)
(2.9)

In Equation (2.9), di denotes the Euclidean distance in pixels between the estimated
keypoint and the corresponding GT; vi is a boolean visibility flag that indicates whether
or not the ith GT landmark lies inside the image frame; s indicates the object scale;(13) ki
is a keypoint-specific constant that controls falloff.(14)

Similarly to the IoU in an object detection framework, the OKS indicates the average
degree of overlap between detected landmarks and their actual location. We may therefore
set an OKS threshold to distinguish between correct and incorrect detections and likewise
define AP50, AP75 and AP50:5:95.

2.2 Perspective-n-Point problem

The Perspective-n-Point (PnP) problem consists in estimating the pose of an object,
given a set of n points of the object itself with known (or estimated) 3D model coordinates,
and given the corresponding 2D projections detected in the image. Pose estimation
methods also leverage the knowledge of the camera intrinsics, so as to seek for the pose
that yields the best fit between the resulting projection of the object’s points and the
corresponding detected keypoints in the image frame.

Let C be the camera-fixed frame, while P indicates the image frame and B is the
body-fixed frame, which in our case is representative of the S/C to rendezvous with. In the
camera frame, Cz is the axis aligned with the boresight direction, while Cx, Cy are parallel
to the Px, Py image axes, respectively. These reference frames are depicted in Figure 2.4.

(13)defined as the fraction of the total image occupied by the BB
(14)e.g. in a human pose estimation scenario, one would set larger ki coefficients for hips and shoulders

than for nose and ears

2.2 Perspective-n-Point problem 23

The coordinates in the camera frame of a generic point rB of the target spacecraft can
be expressed as

rC ≡

xC

yC

zC

 = RB/Cr
B + tC/B (2.10)

where tC/B is the translation vector from the camera to the origin of the body frame and
RB/C represents the direction cosine matrix expressing the rotation that aligns the body
axes with the camera axes.

Bx

Body frame

By

Bz

Px

Py

Image frame

Camera frame

Cx

Cy

Cz

tC/B

Figure 2.4: Reference frames

Using the so called “pinhole” camera model, one may easily compute the projection of
rC onto the image plane, based on the knowledge of camera intrinsics:

p ≡
{
u
v

}
=

xC

zC
fx + u0

yC

zC
fy + v0

 (2.11)

Specifically, fx and fy are the horizontal and vertical focal lengths (which may in
general differ), while (u0, v0) are the coordinates of the camera principal point.

Combining Equations (2.10) and (2.11), and rewriting using homogeneous coordinates,
eventually yields the perspective projection equations:

24 Chapter 2. Mathematical background

ũ
ṽ
w̃

 =

fx/ρu 0 u0
0 fy/ρv v0
0 0 1

︸ ︷︷ ︸

:= K

[
RB/C | tC/B

]︸ ︷︷ ︸
:= P

(3 × 4)

xB

yB

zB

1

 (2.12)

The actual coordinates in the image frame are then retrieved as

p ≡
{
u
v

}
=

{
ũ/w̃
ṽ/w̃

}
Note that the matrix P, which is the unknown of our problem, has 6 degrees of freedom.

Three parameters are required to describe the relative attitude (e.g. 3 Euler angles) and
three more to describe the relative translation.

State-of-the-art PnP solvers are basically divided into two categories. Iterative solvers
minimize a measure of the fit error between the projected model points and the image
points. Multi-stage analytical approaches (e.g. EPnP) will instead leverage a linearized
form of the projection equations.

2.2.1 Iterative solvers
Iterative solvers require a sufficiently close initial guess and n ≥ 3 point correspon-

dences. If on the one hand they are characterized by longer runtimes, compared to
multi-stage analytical approaches, on the other hand they exhibit superior accuracy after
a few iterations and higher robustness to the presence of outliers in the model-image
correspondences.

The basic idea of these methods is to iteratively minimize the reprojection error, which
is defined as the mean over all keypoints of the squared Euclidean distances (in pixels)
between the projected model points and the detected image points:

Erepr =
1

n

n∑
i=1

‖pmodel

i − pimage

i ‖ (2.13)

Gauss-Newton optimization
The Gauss-Newton Method (GNM) is a modification of the Newton-Raphson Method

(NRM). While the latter is an iterative method for computing the roots of a differentiable
function f(x) written in the form f(x) = 0, the GNM has been developed to minimize the
sum of squared function values.

We may express the estimated pose as a 6-variable state vector, composed of three
translation components and three Euler angles: x =

[
tT θT

]T.
Just as NRM, GNM is based on a first order Taylor expansion: in our case, at each

iteration, we will linearize the fit error about the current pose estimate. Considering the
ith point correspondence:

Ei =
∂pi
∂ri

∂ri
∂t

∆t +
∂pi
∂ri

∂ri
∂θ

∆θ (2.14)

The partial derivatives can be easily computed from Equation (2.12) (see [DAm14])
and are eventually rearranged in the form of a 2n× 6 Jacobian matrix

2.2 Perspective-n-Point problem 25

Ji =
[
∂pi
∂ri

∂ri
∂t

∆t ∂pi
∂ri

∂ri
∂θ

∆θ
]

=⇒ J =

J1

J2

...
Jn

 (2.15)

At this point we may update the state vector at each kth iteration as x(k+1) =
x(k) + ∆x(k), where the update vector is computed by solving the linear system

(JTJ)∆x = JTE
↓

2n× 1

(2.16)

The typical stopping criterion is either a maximum number of iterations or whenever
the norm of the computed update vector falls below a given threshold (e.g. 10−10). As it
is observed in [DAm14], pixel-level accuracy is achieved after 3÷ 4 iterations, provided
that the initial pose guess is within ∼ ±40◦ of error.

Levenberg–Marquardt optimization
The Levenberg-Marquardt Method (LMM) is another non-linear least squares fitting

method that can be used to find a local minimum of a function.
The algorithm can be seen as an interpolated version between GNM and the Gradient

Descent Method (GDM) described in Section 2.1.2. In particular, GDM performs parameter
update by moving along the direction of steepest descent (i.e. the one parallel and opposite
to the gradient). GNM will instead update parameters by assuming that the error function
is locally quadratic in the parameters, hence finding the minimum of this quadratic. LMM
combines these two algorithms and it tends to GDM when parameters are still far from
the optimal value, while it is more similar to GNM once we approach the minimum.

Even though the method is substantially more robust to initial guesses that are far off
the minimum, compared to GNM, this comes at the expense of the speed of convergence,
which is slightly slower.

LMM solves a regularized least-squares problem, from which the state vector update
may be eventually derived as the solution of the linear system

(JTJ + λIII)∆x = JTE (2.17)

where λ is the regularization parameter (sometimes also indicated as the “damping param-
eter”). Without going into the details of how λ is adaptively tuned iteration by iteration,
let us just provide some intuition about how this is done. The parameter is initialized to
be sufficiently large, so as to perform updates along a direction closely aligned with the
gradient, during the first few iterations. If any iteration results in a better approximation
compared to the previous one, then λ is decreased (i.e. the algorithm approaches GNM);
if on the contrary the approximation gets worse, λ is increased.

2.2.2 Efficient PnP solver

The Efficient Perspective-n-Point (EPnP) method [Lep09] is a closed-form solution to
the PnP problem, characterized by complexity of order O(n) and little loss of accuracy
compared to iterative solvers. EPnP requires n ≥ 4 point correspondences and its

26 Chapter 2. Mathematical background

underlying idea is that of expressing the n points as the weighted sum of 4 virtual control
points c1, c2, c3, c4 that become the unknowns of this formulation.

ri =
4∑
j=1

αijcj (i = 1, 2, . . . , n)

We may then rewrite Equation (2.12) for a generic landmark i in terms of the 4 control
points, each of which is described by 3 coordinates, which means that we end up with
12 control point coordinates cj =

[
cxj cyj czj

]T (where j = 1, 2, 3, 4) in our projection
equations:

ũi
ṽi
w̃i

 = K
4∑
j=1

αij

cxj
cyj
czj

 (2.18)

Plugging the third row of Equation (2.18) into the first two rows yields two linear
equations for each model-point/image-point pair:

4∑
j=1

αijfxc
x
j + αij(u0 − ũi)czj = 0

4∑
j=1

αijfyc
y
j + αij(v0 − ṽi)czj = 0

(2.19)

2n equations are obtained from Equation (2.19), which can be rearranged in matrix
form as

A
↓

2n× 12

x
↓
12× 1

= 0

where the unknown vector x contains the 12 control point coordinates. Since the image
points are estimated by another subsystem, i.e. they are not the perfect projections of the
true model points, they matrix A may have up to 4 linearly dependent columns. This
means that there could be as much as four possible solutions, among which, the one having
the lowest reprojection error is selected.

3Chapter

Relative Pose Estimation
Pipeline

In this chapter we will present the architecture of the Relative Pose Estimation Pipeline
proposed in this dissertation. Our algorithms require the knowledge of camera intrinsics
and of the 3D model of the target spacecraft to rendezvous with. Based on this, the
architecture that has been developed is capable of estimating the pose of the target
spacecraft, from a single monocular grayscale image given as input.

Input image

Keypoints
Heatmaps

resize to
416 x 416

outlier
detection

reject
low-confidence

 keypoints
RoI-based

correction of
transl. vector

resize to
416 x 416

SLN
(YOLOv5)

LRN
(HRNet32)

Pose refinement
(LMM)

EPnP Pose

RoI

Wireframe
model

if pose outlier

if consistent
pose

Figure 3.1: Architecture of the pose estimation pipeline at inference time

27

28 Chapter 3. Relative Pose Estimation Pipeline

The outline of our architecture is represented in Figure 3.1 and it consists of three
main subsystems.

The first subsystem, called the Spacecraft Localization Network (SLN) and described
in Section 3.1, is responsible for identifying the Region of Interest (RoI) in the image.

This is followed in the pipeline by the Landmark Regression Network (LRN), that we
detailed in Section 3.2, whose role is to detect semantic keypoints of the target S/C in the
RoI.

The third and last subsystem is the pose solver, which, given the landmarks identified
by LRN, seeks for the corresponding best pose fit. It will first run the EPnP algorithm to
obtain an initial estimate of the pose and, in a nominal situation (i.e. if no pose outlier is
detected), it will successively refine the initial solution using the Levenberg-Marquardt
Method.

3.1 Spacecraft Localization Network

The Spacecraft Localization Network (SLN) is the first image processing subsystem of
the Relative Pose Estimation Pipeline (RPEP) proposed in this dissertation. The SLN
receives as input a grayscale image, that is properly resized to match the input size of
416 × 416 of our YOLOv5 architecture. This subsystem outputs the so called Region of
Interest (RoI), namely the Bounding Box (BB) coordinates associated with the portion
of the image containing the S/C. Based on this, further processing of the image will
exclusively focus on the identified RoI.

First of all, a one-stage detection approach was chosen over region proposal networks,
given the clear superiority in terms of computational efficiency of the former class of
methods. This is of paramount importance in a spaceborne navigation scenario, where
the computing power constraints always make it necessary to opt for efficient yet robust
algorithms. In this sense, the smallest model-size version of YOLOv5 [Ult], named YOLOv5s,
proved particularly interesting for our purposes and has been eventually selected.

In Table 3.1 the four YOLOv5 available versions, characterized by four different model
sizes, are compared [Ult] with the performance metrics achieved by YOLOv3,(1) on the MS
COCO dataset, using one single NVIDIA Tesla V100 GPU. YOLOv5, with 7.5M parameters
and 191 layers, appears as an excellent trade-off between speed and accuracy and is almost
twice as fast as v3.

Table 3.1: Performance comparison of the four YOLOv5 architectures with YOLOv3

Model APval APtest AP50 tGPU
inference FPSGPU # parameters FLOPs

yolov5s 37.0 37.0 56.2 2.4 ms 416 7.5M 13.2B
yolov5m 44.3 44.3 63.2 3.4 ms 294 21.8M 39.4B
yolov5l 47.7 47.7 66.5 4.4 ms 227 47.8M 88.1B
yolov5x 49.2 49.2 67.7 6.9 ms 145 89.0M 166.4B

yolov3 45.6 45.5 65.2 4.5 ms 222 63.0M 118.0B

(1)which is the latest “official” YOLO release

3.1 Spacecraft Localization Network 29

3.1.1 Training
The SPEED training labels released by SLAB only include the pose of the Tango

spacecraft, provided in terms of translation vector and attitude quaternion for each image.
This means that any further label that might be used for intermediate processing steps
will have to be annotated.

The minimum rectangle enclosing the S/C in the image frame can be obtained by
projecting a simple wireframe model of Tango using Equation (2.12) and the known pose.
We may at this point annotate the BB of each image by taking the minimum and maximum
values of the (Px, Py) coordinates of the small amount of points in this simplified 3D model.

Figure 3.2: Wireframe model of the Tango spacecraft

The wireframe model used in our work is depicted in Figure 3.2. In particular, the
model is composed of 11 semantic keypoints:

• points B1 to B4 are the edges of the bottom surface

• points S1 to S4 are the edges of the solar panel

• points A1 to A3 indicate the tips of the Formation Flying Radio Frequency (FFRF)
antennas

The very same keypoints are actually those that are detected by the successive sub-
system, the Landmark Regression Network (LRN), which we will soon introduce. The
reason behind this choice is that these landmarks represent strong visual features of the
spacecraft, and, independently of the pose, most of them will not be occluded by other
surfaces.

In order to avoid unintentionally cropping out portions of the S/C from the detected
RoI during inference, we will slightly relax the minimum rectangle enclosing the projected

30 Chapter 3. Relative Pose Estimation Pipeline

wireframe model. Specifically, the BB labels are enlarged by the 10% of the average side
between width and height of the minimum rectangle. In so doing, the CNN is indeed
trained to predict a relaxed bounding box. In Figure 3.3, the dashed yellow line indicates
the minimum rectangle, while the continuous line is the actual BB label.

0 250 500 750 1000 1250 1500 1750
Px [px]

0

200

400

600

800

1000

1200

P y
 [p

x]

x

y

z

Figure 3.3: Bounding box label of the img001971.jpg training image

The network was trained for 125 epochs using SGD, with a mini-batch size of 48 images,
learning rate α = 10−3, momentum equal to 0.9 and a weight decay of 5 × 10−5. The
binary cross-entropy loss is used during training, which, for a mini-batch of size m, is
computed as

Lcross-entr = − 1

m

m∑
i=1

[
yi ln(ŷi) + (1− yi) ln(1− ŷi)

]
(3.1)

where yi and the ŷi are the GT and estimated values, respectively, of a given scalar entry
of the output tensor.

In addition, given the assumption of single-class/single-object in the image, a few
simplifications in the algorithm were introduced. In so doing, we are able to get rid of some
unnecessary computation, also making sure that the algorithm outputs one single RoI,
provided that the prediction confidence is at least 60%. In other words, we can directly
output the prediction with the highest objectness score, with no need to process the raw
results using the non-max suppression algorithm.

3.1 Spacecraft Localization Network 31

3.1.2 Performance evaluation
The performance of SLN has been evaluated using the standard metrics defined in

Section 2.1.3. The 10 precision-recall curves in correspondence of the IoU thresholds 0.5,
0.55, 0.6, 0.65, . . . , 0.95 are reported in Figure 3.4. The curves are specifically computed
considering the interpolated precision, as defined in Equation (2.8).

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

AP95
50 = 98.51 %

IoUmean = 95.38 %
IoUmedian = 96.50 %

Test set performance

IoUmin
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Figure 3.4: Precision-recall curves, in correspondence of different IoU thresholds

The YOLOv5 architecture achieves an excellent accuracy, with AP95
50 = 98.49%, after

only 125 training epochs.
Indeed, by comparing the mean and median IoU metrics in Table 3.2, our spacecraft

localization subsystem outperformed at this task both the SLAB baseline and the archi-
tecture proposed by the UniAdelaide team, which respectively ranked 4th and 1st in the
Pose Estimation Challenge.

Table 3.2: Performance comparison of SLN with other state of the art RoI detection subsystems

stanford_slab
[Par19]

UniAdelaide
[Che19] Our SLN

Mean IoU 91.9% 95.34% 95.38%
Median IoU 93.6% 96.34% 96.50%

Let us now visualize the prediction results of our SLN subsystem, on a few randomly
chosen test images.

In Figure 3.5 the predicted bounding box is drawn in each of the 6 corresponding
synthetic test images and the corresponding confidence is also reported. It can be seen

32 Chapter 3. Relative Pose Estimation Pipeline

that our CNN performs extremely well at identifying a very tight RoI, independently of
distance and illumination conditions.

Figure 3.5: SLN prediction on 6 test images with black background

Figure 3.6: SLN prediction on 9 test images with Earth background

In Figure 3.6 inference was run on images characterized by the presence of Earth in

3.2 Landmark Regression Network 33

the background (a few of these images were rendered in eclipse condition). The excellent
robustness to the Earth’s presence in the FoV appears evident. This is true in a wide
variety of lighting conditions, even in cases in which the S/C is very distant (∼ 30 m) and
poorly illuminated. In some cases Tango appears hard to distinguish from the patterns in
our planet, also to the human eye.

Although the test labels of real images are not available, it was decided to run YOLOv5
on this distribution as well, to figure out from simple visual inspection how well the model
generalizes to actual imagery. The experiment was successful and the CNN appeared to
identify correctly the RoI in the entire set of images, with very high confidence scores.
In Figure 3.7 the results obtained for 6 random images are reported. As it can be seen,
the detection performed nominally also in cases in which part of the S/C is outside of
the image frame. Looking at the top-right image in Figure 3.7, one may point out that a
portion of the inter-satellite link antenna pointing rightward lies slightly outside of the
detected BB. Indeed, this very slender antenna, unlike the three larger ones, is not part
of the wireframe model. It was decided not to include the tip of this antenna in the set
of keypoints, because it is not in general a strong visual feature and it would be hard
to detect at large distances. This means that our neural network was trained to ignore
the fact this tiny antenna may in some cases contain an extremal point, that should in
principle further extend the BB.

Figure 3.7: SLN prediction on 6 test images of the mock-up spacecraft

3.2 Landmark Regression Network

The Landmark Regression Network (LRN), which is the second image processing
subsystem in our pipeline, receives as input the grayscale RoI detected by SLN. The input
size of LRN is again 416× 416, which means that RoIs whose largest side is greater than
416 pixels will undergo downscaling.

The unprecedented accuracy demonstrated by HRNet in the field of human pose
estimation led to the implementation of this model in our architecture. The CNN has been
trained to regress 11 heatmaps with a size of 416× 416, corresponding to the 11 semantic
keypoints specified in Figure 3.2. The final predicted landmark locations are then obtained

34 Chapter 3. Relative Pose Estimation Pipeline

as the individual peaks in each heatmap, which will appear as 2D pseudo-Gaussians.
In [Sun19a] two different versions of the HRNet model are presented, which were named

HRNet32 and HRNet48. The numbers 32 and 48 indicate versions of the network having
respectively 32 and 48 channels in the highest-resolution subnetworks in the last three
stages. The performance metrics achieved by these two versions on the MS COCO test set
are compared in Table 3.3.

Table 3.3: Performance of HRNet32 and HRNet48 on the MS COCO test set [Sun19a]

Model # parameters FLOPs AP95
50 AP50 AP75

HRNet32 28.5M 16.0B 74.9 92.5 82.8
HRNet48 63.6M 32.9B 75.5 92.5 83.3

It was decided to implement the HRNet32 version, given a performance level quite close
to the larger version of the network. The latter appears slightly superior, but this comes
at the expense of more than twice the number of FLoating-Point Operations compared to
the smaller model.

A major difference with respect to the implementation of HRNet in the pose estimation
pipeline proposed by the UniAdelaide team is that the latter makes use of a very large
768×768 size of the input window.(2) Such a choice was clearly aimed at achieving the best
possible score in the competition, but currently appears unrealistic for real-time spaceborne
execution. In addition, it can be observed that a size of 416 pixels of the non-resized
RoI, given our camera intrinsics and the size of Tango, corresponds to a distance of about
8 ÷ 10 m. On the contrary, a 768 pixel size is achieved at 4 ÷ 5 m, which means that
only a small fraction of the SPEED images would benefit from this very high resolution
processing, i.e. those at distances ≤ 5 m.

Due to the above mentioned motivations, a more reasonable 416× 416 input window
was selected for LRN. Indeed, as we will later discuss in Chapter 4, this already guarantees
centimeter-level and sub-degree accuracy in the pose estimated on close-to-mid range
images of SPEED.

3.2.1 Training
The Ground Truth labels have been annotated by projecting onto the image frame the

11 keypoints defined in the 3D wireframe model of Tango, based on the known training
poses and using Equation (2.12). The corresponding GT training heatmaps are then set
to 2D Gaussians with 1-pixel standard deviation and mean value in correspondence of the
projected landmark coordinates.

Despite the use of high-end GPUs on the Google Colab platform, the training of this
architecture turned out to be very expensive and has only been carried out for 80 epochs.
ADAM optimization has been used, with a batch-size of 16 images, β1 = 0.9, β2 = 0.99,
learning rate equal to 10−3 and a weight decay of 10−4.

The loss function for the ith image is defined as the mean squared error between
the regressed heatmap Ĥ and the corresponding Ground Truth H, averaged over all the
landmarks lying inside the image frame:

(2)i.e. 3.4 times the number of pixels compared to our pipeline

https://colab.research.google.com

3.2 Landmark Regression Network 35

L(i)

MSE =
1

n

n∑
j=1

v(i)

j ·
[
Ĥ

(i)

j −H(p(i)

j)
]2 (3.2)

The loss computed for an entire mini-batch is simply the average over all images in the
batch, namely LMSE = 1

m

∑m
i=1 L

(i)
MSE.

3.2.2 Performance evaluation

The performance of our LRN has been evaluated in terms of the standard metrics
introduced in Section 2.1.4. The 10 precision-recall curves in Figure 3.8 are computed in
correspondence of the 10 equally spaced Object Keypoint Similarity (OKS) thresholds, from
0.5 to 0.95. The Average Precision is then calculated for each of these curves, according to
Equation (2.7), from which we eventually obtain the global metric AP95

50 = 98.97%. This
indeed indicates an excellent regression accuracy, obtained after only 80 training epochs.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

AP95
50 = 98.97 %

AP50 = 99.74 %
AP75 = 99.53 %

Test set performance

OKSmin

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Figure 3.8: Precision-recall curves, in correspondence of different OKS thresholds

In Figure 3.9 we reported the 11 regressed heatmaps in correspondence each of the two
randomly picked input images. All the heatmaps in this figure are characterized by a very
sharp peak in correspondence of the landmark location.

It is worth highlighting that the capabilities of our CNN are not limited to locating a
landmark by identifying in the image the feature associated to it (e.g. a specific edge).
Indeed, the network is also able to accurately estimate the position of a keypoint, whenever
the related semantic feature is occluded by some other portion of the spacecraft itself: this
is the case, for instance, of point B3 in the bottom image or point S2 in the top image of
Figure 3.9.

36 Chapter 3. Relative Pose Estimation Pipeline

Figure 3.9: Examples of regressed heatmaps

3.3 Pose solver

The pose solver is the third and last subsystem of our Relative Pose Estimation Pipeline,
that identifies the best pose fit, based on the keypoints detected by LRN. The pose solver
also leverages Bounding Box information (i.e. the output of SLN) to identify the presence
of outliers among the considered keypoints, and partially correct the resulting wrong pose
estimate.

3.3.1 Keypoint selection

The availability of a heatmap that provides a confidence score for a given detected
landmark can be leveraged to filter out potential outliers, which may cause a pose solver
to diverge or to output a completely wrong pose. In particular, two hyper-parameters
have been tuned, in order to find a good compromise between rejecting potential outliers
and retaining a sufficient number of points. Regarding this last goal, it is clearly beneficial

3.3 Pose solver 37

in terms of accuracy to over-constrain the 3D model, as long as we keep adding precise
keypoint detections. The hyper-parameters that have been consequently selected are:

• # landmarksmin: size of the minimal set of landmarks, i.e. the minimum number of
the highest-confidence detected landmarks to be always retained, independently of
their associated scores

• confidencemin: minimum confidence required to retain any landmark in addition to
the minimal set

This means that, in general, only a subset of the 11 keypoints will be effectively fed to
the pose solver.

The optimal tuning of the two above mentioned hyper-parameters will be discussed in
Chapter 4.

3.3.2 Initial pose estimation and refinement
After discarding low-confidence landmarks, the remaining ones are fed to the EPnP

algorithm (Section 2.2.2), which computes a first pose estimate and does not require any
initial guess. EPnP is characterized by a weak robustness to the presence of outliers among
the input keypoints. However, if no outliers are present, the resulting pose estimate turns
out to be quite accurate.

At this point, our algorithm checks whether or not the estimated pose is consistent
with the BB detected by SLN. Indeed, it was concluded that, after proper training, we
can “trust” SLN more than LRN, just because the former actually performs a simpler task.
Thus, whenever an inconsistency is found between the two subsystems, it is reasonable
to believe that LRN is to blame. In other words, whenever the projection of Tango’s 3D
model (based on the initial pose estimate) is inconsistent with the detected BB, this is
very likely due to the presence of one or more outliers among the retained landmarks,
which translates into a completely wrong pose computed by EPnP.

If no inconsistency is found in the output of EPnP and the reprojection error is accept-
able, this initial pose is refined using the Levenberg-Marquardt Method (Section 2.2.1),
that iteratively minimizes the reprojection error.

3.3.3 Outlier identification & translation correction
If, on the contrary to what previously described, a pose outlier is flagged by our

algorithm, we will then partially correct the pose by replacing the translation vector output
by EPnP with an approximate yet robust estimation.

In order to identify a possible pose outlier, an approximate translation vector t̃C/B

is first of all computed, by exploiting a RoI-based estimation. This method leverages
the knowledge of the characteristic length LC of the spacecraft, along with the BB’s
center (P BB

x , P BB
y) and diagonal length dBB that are detected by SLN. The aforementioned

dimensions and coordinates are indicated in Figure 3.10.
Given our camera intrinsics, we are able to relate the size of our real-world S/C to the

corresponding size in the image frame, hence obtaining the following expression for the
distance between the camera-fixed and the body-fixed frames

t̃C/B =
fx + fy

2
· LC
dBB

(3.3)

38 Chapter 3. Relative Pose Estimation Pipeline

Bx

Body frame

By

Bz

LC

dBB

Px

Py

Image frame

Camera frame

Cx

Cy

Cz

tC/B

Figure 3.10: Reference frames and RoI

We may similarly compute also the azimuth and elevation angles, α and β, as

α = arctan

(
P BB
x − u0
fx

)
β = arctan

(
P BB
y − v0
fy

) (3.4)

At this point, a coarse estimate of the camera-to-body translation vector may be
derived as

t̃C/B =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

1 0 0
0 cos β sin β
0 − sin β cos β

0
0
t̃C/B

 (3.5)

An outlier will be flagged whenever any of the following conditions is encountered.

• The projected geometric center of the S/C, according to the pose estimated by EPnP,
has a > 50% offset(3) from the BB center

|p̂c
x − P BB

x |
wBB

> 0.5 or
|p̂c
y − P BB

y |
hBB

> 0.5

(3)the pixel offset is normalized with respect to the BB width and height

3.3 Pose solver 39

• Large mismatch between the distance estimated by EPnP, t̂, and the one obtained
from the RoI-based approximation, t̃∣∣∣∣ t̂− t̃t̃

∣∣∣∣ > 75%

• Medium distance mismatch and low average confidence of the retained landmarks∣∣∣∣ t̂− t̃t̃
∣∣∣∣ > 15% and confidenceavg < 50%

• Medium distance mismatch and high relative reprojection error∣∣∣∣ t̂− t̃t̃
∣∣∣∣ > 15% and

Erepr

dBB
> 10%

Whenever a pose outlier is flagged by our algorithm, the initial estimate of the
translation vector will be replaced by the corresponding RoI-based approximation t̃C/B.

Chapter4
Results

4.1 Error metrics

Prior to presenting the results achieved by our Relative Pose Estimation Pipeline, we
will dwell on the definition of the error metrics that allow us to evaluate the performance
of our architecture on the Spacecraft PosE Estimation Dataset (SPEED).

In particular, both translation and rotation errors can be classified based on two main
features.

• Absolute vs. normalized.

Absolute error: we will denote it with the capital E and it simply indicates the
difference between the estimated translation/rotation and the corresponding Ground
Truth (GT).

Normalized (or relative) error: we will denote it with the lowercase e and it is
normalized based on the GT distance and angular size of the S/C in a given image.

• Mean vs. Median.

Mean error: in order to evaluate the performance on the entire dataset, we simply
compute the average of a given metric over all images; this value will be strongly
influenced by the presence of outliers.

Median error: global performance on the whole dataset is evaluated by computing
the median over all images of the error. In our case, median error is actually
more representative of the accuracy as compared to mean: the reason is that we
experienced the presence of very few outliers, which are nevertheless characterized
by an error that is orders of magnitude larger than nominal detections.

4.1.1 Translation error

The absolute translation error for a given image is obtained as

Et =
∥∥t̂C/B − tC/B

∥∥ (4.1)

40

4.1 Error metrics 41

which can be easily normalized if we divide it by the GT distance:

et =
Et∥∥tC/B
∥∥ (4.2)

4.1.2 Rotation error

Absolute error

The absolute rotation error might be measured in two different fashions.

In terms of quaternion error, which represents the overall attitude error with a single
scalar metric, it will be computed as

Eq = 2 · arccos |q · q̂| (4.3)

In terms of Euler angles, the error will be obtained as the difference between a given
estimated Euler angle and the corresponding GT

Eθx = |θ̂x − θx|, Eθy = |θ̂y − θy|, Eθz = |θ̂z − θz| (4.4)

Normalized error

The main weakness of the SLAB score defined in Equation (1.1) is that, although it
accounts for distance-normalization in its translation component, it does not account for
normalization of the rotation error component. This means that the same absolute angular
error has the same exact effect upon measured performance, independently of whether
that occurs in correspondence of a close-range image or at a distance in which the RoI is
just a very small fraction of the entire image area.

This led us to introduce a normalized version of the quaternion error defined in
Equation (4.3), which accounts for the angular size of the object relative to the FoV of the
camera. In particular, an object’s angular size is defined as the angle measured between
the two lines of sight corresponding to opposite sides of the object. In our case, we will
consider the angle associated with the diagonal size of each GT Bounding Box.

If we resort to the pinhole camera model, which is represented in Figure 4.1, the
diagonal angular size associated with the spacecraft can be computed as

42 Chapter 4. Results

α

f

Object

stC/B

d

Camera body

Lens

Image
plane

Figure 4.1: Pinhole camera model

α = 2 · arctan
ρ · dBB

2s
where s =

f · tC/B

tC/B − f
(4.5)

However, we may approximate the distance between the lens and the image plane as
s ≈ f . In particular, this relation becomes exact whenever the lens is set for infinity focus.
In Equation (4.5), ρ ≡ ρu ≡ ρv is the pixel pitch [µm/px], dBB is the diagonal length of
the BB [px], while f ≡ fx ≡ fy is the focal length [mm].

Note that, in order to normalize the rotation error, we need to divide it by a quantity
that increases as the attitude gets harder to estimate. We will therefore divide the
quaternion error defined in Equation (4.3) by the portion of the diagonal FoV of the
camera that is not occupied by the spacecraft, which reads

eq =
Eq

FoVdiag − α
(4.6)

where, considering an Nu ×Nv image, the diagonal FoV can be obtained as

FoVdiag = 2 · arctan
ρ ·
√
N2
u +N2

v

2f

4.1.3 Pose error
The overall pose error is simply measured as the sum of the translation and rotation

errors.
The SLAB score, which has already been defined in Equation (1.1), measures the total

error as the mean of
(
e(i)t + E(i)

q

)
computed over all the N test images.

4.2 Optimal keypoint rejection 43

After having highlighted the weaknesses the aforementioned metric, we are hereby
proposing an alternative performance index that we deem to be more relevant. It has been
called the Median Normalized Pose Error (MNPE):

eMNP =
N

median
i=1

(
e(i)t + e(i)q

)
(4.7)

where et and eq are defined in Equations (4.2) and (4.6), respectively.

4.2 Optimal keypoint rejection

Grid-search optimization was run to seek for the combination of the two hyper-
parameters defined in Section 3.3.1 that yields the lowest possible MNPE. Recall that these
two thresholds determine which of the keypoints detected by the Landmark Regression
Network (LRN) will be discarded and which ones will instead become the input of the
pose solver. The obtained results are given in Figure 4.2.

0.0 0.2 0.4 0.6 0.8
Landmark threshold confidence

4

6

8

10

M

in
im

um
 re

ta
in

ed
 la

nd
m

ar
k

Optimal rejection:
confidencemin = 0.80 #landmarksmin = 7

score: 0.006482

Landmark rejection optimization

0.00650

0.00675

0.00700

0.00725

0.00750

0.00775

0.00800

0.00825

0.00850
MNPE

Figure 4.2: Optimization of the keypoint rejection process

As it can be noted from the plot, the minimal set of landmarks shall contain at least 4
points. This due to the fact that the EPnP algorithm requires n ≥ 4 points to compute
a solution. In addition, although the total number of keypoints in the wireframe model
amounts to 11, the corresponding hyper-parameter that defines the size of the minimal set
of landmarks is only varied between 4 and 10: this is because the condition in which we
retain all the 11 landmarks is already included in the case of zero threshold confidence.

The beneficial effect of filtering out low-confidence landmarks is evident from Figure 4.2.
The threshold confidence alone allows a 24% reduction of the MNPE, compared to retaining

44 Chapter 4. Results

all predicted keypoints. In particular, we experienced that accuracy increases monotonically
as we increase the threshold confidence up to 0.8, but larger values of such threshold
become too restrictive, which causes many precise keypoint detections to be discarded.
Introducing a second hyper-parameter that defines the minimal size of the set of retained
keypoints allows to further reduce the error, although the effect is less evident.

All the results presented in the remainder of this discussion have been obtained in
correspondence of the optimal values: confidencemin = 0.8 and #landmarksmin = 7.

4.3 Performance evaluation

Our Relative Pose Estimation Pipeline, achieved a SLAB score of 0.04627 on our test
set. This means that, based on the official leaderboard of the SLAB/ESA Pose Estimation
Challenge reported in Table 1.2, our architecture would virtually score 3rd place, hence
outperforming the SLAB baseline.

Indeed, this performance level has been confirmed by participating in the post-mortem
competition, which is still running on the ESA website. Figure 4.3 has been printed from
the website of the post-mortem competition(1) and reports the score achieved by the 5 top
teams, as of November 24th 2020.

The competition is in progress.

Timeline

Leaderboard

Name Submissions Last Submission Best Submission Real Image Score Best Score

competition winner UniAdelaide 0.36340645622528017 0.00864899489025079

arunkumar04 5 June 11, 2020,
2:09 p.m.

June 11, 2020,
3:22 a.m.

0.2897316198709755 0.00965354346853769

UT-TSL 1 July 29, 2020,
8:46 p.m.

July 29, 2020,
8:46 p.m.

0.29182320619186036 0.040888808313561543

massimo.piazza 1 Nov. 20, 2020,
4:55 p.m.

Nov. 20, 2020,
4:55 p.m.

0.12725700558317155 0.046734132793689716

haoranhuang 45 Nov. 23, 2020, 9
a.m.

Sept. 28, 2020,
8:29 a.m.

0.2340254300626748 0.05931408717012119

julien_poly 5 Nov. 10, 2020,
8:46 p.m.

Oct. 10, 2020,
12:28 a.m.

0.14404709940008242 0.06703709707262259

Figure 4.3: Top 5 participants of the post-mortem competition

It can be noted that our architecture attained a SLAB score, on the synthetic original
test set of SPEED, equal to 0.04673. This corresponds to a performance level that is
practically identical to the one estimated on our test set. The score on the synthetic
distribution is here labeled as “best score”, while the “real image score” indicates the
accuracy achieved on the 300 real images of a mockup of the Tango spacecraft.

(1)https://kelvins.esa.int/pose-estimation-challenge-post-mortem/leaderboard/

https://kelvins.esa.int/pose-estimation-challenge-post-mortem/leaderboard/

4.3 Performance evaluation 45

The competition is over.

Feb. 1, 2019, 5 a.m. UTC July 1, 2019, 4 a.m. UTCTimeline

Results

Rank Name Real Image Score Best Score

1 UniAdelaide 0.3752442418711471 0.009449622064660844

2 EPFL_cvlab 0.11397767001637173 0.02153775817984222

3 pedro_fairspace 0.1554876108763784 0.057050185272129426

4 stanford_slab 0.3950914435276558 0.06262229611857424

5 Team_Platypus 1.7201238117705309 0.07028457489821285

Virtual placement of
our architecture

Figure 4.4: Top 5 participants of the original competition (Feb - Jul 2019)

Figure 4.4 reports instead the top 5 participants (out of 48 individuals/teams) of the
original competition.(2) By comparing the results it can be seen that, in terms of synthetic
score, only two of these 48 participants outperformed our architecture. In addition, if we
were to merge the leaderboards of the two competitions (59 overall participants), only the
EPFL_cvlab team would achieve a better score on the real dataset (0.11398 vs. 0.12726).

We should recall that our synthetic test set is obtained by re-partitioning the original
training set of SPEED. If we were to train our architecture on the full original training
set and evaluate performance on the original test set, we should in principle expect a
slight increase in performance. According to the so called “large data rationale”, which is a
common paradigm in the ML framework, we are supposed to obtain an improvement in
accuracy as we increase the number of training examples.(3) In our case, if the labels of
the original test set were available, we would no longer need to re-partition the original
training set: this would translate into a performance improvement, despite making training
more expensive.

In Table 4.1 we reported the most important performance metrics attained by our
architecture on our test set.

It can be immediately noticed that there is a substantial difference between mean and
median error. In particular, the latter is typically ∼ 3 times smaller, both in terms of
translation and rotation errors. This immediately highlights the presence of pose outliers,
which are small in number yet with an error that is orders of magnitude larger compared
to the extremely accurate detections that nominally take place.

This difference between mean and median error is less pronounced for the tx, ty
translation components. As we will analyze more in detail in the following sections, this
behavior has been traced back to the successful RoI-based correction of the translation
vector, at least in terms of (x, y) components. The correction of the relative distance
component along the boresight direction proved extremely beneficial when completely
wrong poses were detected, although there still exist a significant degree of uncertainty
due to the fact that this approximate estimation of tz is based on measuring the size of
the detected RoI. At a given distance, the latter may nevertheless vary in a relatively wide

(2)https://kelvins.esa.int/satellite-pose-estimation-challenge/results/
(3)this is intuitively due to the fact that the larger the training set, the less likely to overfit it

https://kelvins.esa.int/satellite-pose-estimation-challenge/results/

46 Chapter 4. Results

range, depending on the S/C’s attitude.

Table 4.1: Global end-to-end performance of the RPEP

Absolute error
Mean Median

Et 10.36 cm 3.58 cm
Et [0.52 0.56 10.25] cm [0.24 0.27 3.50] cm
Eq 2.24◦ 0.81◦

Eθ [1.57◦ 0.84◦ 1.72◦] [0.52◦ 0.33◦ 0.34◦]

SLAB score = 0.04627 MNPE = 0.00648
Standard deviation of the error

σEt [1.62 1.71 30.44] cm
σEθ [8.92◦ 5.11◦ 10.82◦]
σet [0.001157 0.001093 0.014890]
σeθ [0.022179 0.012689 0.026854]

For what concerns rotation errors, the estimation of the Euler angle about the y-axis
appears to be more accurate compared to the two other components. On the contrary,
the θz rotation is the one affected by the largest degree of uncertainty and is also the one
for which the gap between mean and median performance is most evident. It has been
conjectured that this effect is closely related to the distribution of the chosen keypoints,
relative to the geometric center of the S/C. Indeed, one may compute a quantity that is
analogous to the moment of inertia of a set of points:(4) to each keypoint we assign a weight
equal to its mean detection confidence across the entire dataset, while the square distance
is computed with respect to an (x, y, z) frame having its origin at the geometric center of
the S/C. This leads to the definition of the corresponding three quantities, whose values
are Ixx = 1.518 m2, Iyy = 1.589 m2, Izz = 2.736 m2. It can be seen that Izz is almost
twice as larger as the two other “inertias”. In addition note that, in correspondence of
the same angular error, the reprojection error (measured in pixels) is higher for keypoints
that are farther from the center of the S/C. Since the pose fit is chosen based on the
minimization of the reprojection error, this translates into a pose that is more prone to
satisfy a wrong constraint imposed by a wrong keypoint detection that is far from the
center. In other words, whenever an outlier is present among the detected keypoints,(5)

the estimated Euler angle about the axis associated with the highest keypoint-inertia will
be particularly biased towards that outlier.

Table 4.1 also reports the 1-σ uncertainty of both absolute (Et, Eθ) and relative (et, eθ)
error components.

4.3.1 Estimation uncertainty
A fundamental part of our analysis is the quantification of the uncertainty affecting our

estimation, given the ultimate goal of this work of proposing a Relative Pose Estimation

(4)Iii =
∑Npoints

l=1 m(l)
[
(d(l)

j)2 + (d(l)

k)2
]
where i, j, k = (1, 2, 3), (2, 3, 1), (3, 1, 2)

(5)e.g. a certain feature is mistaken for a different one, which is visually similar

4.3 Performance evaluation 47

Pipeline that can be embedded in a navigation filter. In Figures 4.5 and 4.6 we plotted
the distribution of absolute and relative errors, respectively, over a [−3σ, +3σ] range.

4 2 0 2 4
Ex [cm]

0.0%

4.2%

8.3%

12.5%

16.7% = 1.6 cm

4 2 0 2 4
Ey [cm]

= 1.7 cm

50 0 50
Ez [cm]

= 30.4 cm

20 10 0 10 20
E x [deg]

0%

8%

17%

25%

33%

42%

50%
= 8.9

10 0 10
E y [deg]

= 5.1

20 0 20
E z [deg]

= 10.8

Fr
ac

tio
n

of
 te

st
 im

ag
es

Distribution of absolute translation and rotation errors (3 range)

Figure 4.5: Absolute error distribution

2 0 2
ex [-] ×10 3

0.0%

2.1%

4.2%

6.2%

8.3% = 1.16E 03

2 0 2
ey [-] ×10 3

= 1.09E 03

40 20 0 20 40
ez [-] ×10 3

= 1.49E 02

5.0 2.5 0.0 2.5 5.0
e x [-] ×10 2

0%

8%

17%

25%

33%

42%

50%
= 2.22E 02

2 0 2
e y [-] ×10 2

= 1.27E 02

5 0 5
e z [-] ×10 2

= 2.69E 02

Fr
ac

tio
n

of
 te

st
 im

ag
es

Distribution of relative translation and rotation errors (3 range)

Figure 4.6: Relative error distribution

As one may expect, all 6 pose components are characterized by a normally distributed

48 Chapter 4. Results

error with zero mean. In each subplot, the y-axis indicates the fraction of test images
associated with a given error bin. All these distributions were plotted using 101 bins.

Note that the two distributions of the lateral position errors are practically identical,
both in terms absolute and relative errors. The translation error along the boresight
direction is clearly much higher, with an uncertainty that is one order of magnitude larger
compared to the two other translation components.

The fact that the distributions of the three rotation error components are similar and
characterized by the same order of magnitude indicates a suitable choice of the semantic
keypoints. Indeed, their selection should always be aimed at breaking as much as possible
the symmetry of the structure, thus avoiding attitude ambiguities, while at the same time
being associated with strong visually relevant features. Note that the error associated with
θz is affected by a larger uncertainty, which may be explained by our previous conjecture.

4.4 Error distribution

In Figures 4.7 and 4.8 we reported the thresholds, in terms of the 6 error components,
as a function of the test set fraction that does not exceed them. In both figures, the top
plot provides the error distribution for the entire test set, while in the bottom plot we
truncated the dataset at the best 95% fraction, just to zoom-in on the dataset portion
that is unaffected by outliers.

In Figure 4.7 the error components are plotted in semi-logarithmic scale, due to the
huge difference between lateral and boresight errors. At a given distance, the latter is one
order of magnitude larger than lateral errors.

10 3

10 1

101

103

Ex

Ey

Ez

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%100%
Fraction of test set

10 3

10 1

101 Truncated at best 95% fraction

Tr
an

sla
tio

n
er

ro
r [

cm
]

Figure 4.7: Translation error distribution across the test set

In Figure 4.8 the three Euler angle error components are similarly plotted, but in linear
scale. It may be interesting to observe the trend of Eθz , which up to the best 70% fraction
is practically coincident with Eθy . At that point, Eθz starts increasing sharply, compared
to the two other components, and becomes the largest rotation error component of the 2%
worst fraction of the test set. This behavior is clearly linked to the effect of outliers, whose
presence, as we already explained in Section 4.3, has a more detrimental repercussion upon

4.4 Error distribution 49

the estimation of θz.

0

50

100

150 E x

E y

E z

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%100%
Fraction of test set

0

1

2

3 Truncated at best 95% fraction

Ro
ta

tio
n

er
ro

r [
de

g]

Figure 4.8: Euler angle error distribution across the test set

4.4.1 Effect of relative distance
At this point, we investigated the effect of the inter-spacecraft distance upon the

accuracy of our RPEP. In Figures 4.9 to 4.11 such effect can be visualized in terms of
various error metrics. In particular, all test set images were first of all sorted, based on
relative distance, and then grouped into 30 batches of 80 images each. For each batch, the
corresponding mean performance is plotted against the mean distance. The shaded region
indicates the 1σ range uncertainty, i.e. between the 15.87% and 84.13% percentiles.

5 10 15 20 25
0

25

50

75

100

Tr
an

sla
tio

n
er

ro
r [

cm
]

Mean error
1 range

5 10 15 20 25
Mean true distance [m]

0

10

20

30

Qu
at

er
ni

on
 e

rro
r [

de
g]

Mean error
1 range

Error vs. relative distance

Figure 4.9: Effect of inter-spacecraft distance upon absolute errors Et and Eq

In Figure 4.9 we analyzed this distance dependency for what concerns the absolute

50 Chapter 4. Results

translation and quaternion errors. From these two plots it is also evident the behavior that
we anticipated in Section 3.2, according to which the performance of our pipeline remains
practically constant (Et ∼ 3 cm and Eq ∼ 0.8◦) for all close-range images up to 8÷ 10 m.
To this threshold, it corresponds a size of the non-resized RoI of about 416 pixels, which
means that for all images taken at lower distances there is a loss of information implicit in
the downscaling to 416× 416. In other words, for all images in which Tango is located at
a distance ≤ 8÷ 10 m, the degree of detail in the features that can be detected from the
resized digital picture is exactly the same. For what concerns the attitude error, a sudden
performance drop-off takes place at separations larger than 25 m. If we only consider
image batches with mean distance ≤ 20 m, the highest batch-errors are Et = 22 cm and
Eq = 4.3◦

In Figure 4.10 we performed a similar analysis, here visualizing the error breakdown in
terms of translation components and Euler angles. For ease of visualization, we used a
semi-logarithmic scale when plotting Ex, Ey, Ez. From the bottom plot it can be noticed
that the sharp loss of attitude accuracy, when tC/B > 25 m, is mainly due to the Eθz
component.

5 10 15 20 25

10 1

100

101

102

Tr
an

sla
tio

n
er

ro
r [

cm
] Ex

Ey

Ez

1 range
1 range
1 range

5 10 15 20 25
Mean true distance [m]

0

5

10

15

20

25

30

35

Ro
ta

tio
n

er
ro

r [
de

g]

E x

E y

E z

1 range
1 range
1 range

Error components vs. relative distance

Figure 4.10: Effect of inter-spacecraft distance upon absolute error components

The distance dependency has been analyzed also in terms of global score and relative
errors. The difference between the SLAB score and our MNPE is particularly evident
from Figure 4.11. For a more direct comparison between the two metrics, in the bottom
plot we used a slightly different definition of the Normalized Posed Error, compared to
the one in Equation (4.7): we computed the mean over a batch of images, instead of the
median. Indeed, it is immediately visible that in the SLAB score, the non-normalized
quaternion error is up to one order of magnitude larger than the relative translation error,

4.4 Error distribution 51

which results into a score that is strongly biased towards attitude error. On the contrary,
using a fully normalized score reduces this gap. This is therefore supposed to produce a
more meaningful and consistent global evaluation metric.

5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

0.10

0.12

SL
AB

 sc
or

e
[-]

Mean total error
Translation error (et)
Rotation error (Eq)
1 range (total error)

5 10 15 20 25
Mean true distance [m]

0.005

0.010

0.015

0.020

0.025

0.030

0.035

No
rm

al
ize

d
Po

se
 E

rro
r [

-] Mean total error
Translation error (et)
Rotation error (eq)
1 range (total error)

Accuracy vs. relative distance

Figure 4.11: Effect of inter-spacecraft distance upon SLAB score and Normalized Pose Error

0.00 0.05 0.10 0.15 0.20 0.25
Normalized position error [-]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Qu
at

er
ni

on
 e

rro
r [

-]

SLAB error components vs. distance

5

10

15

20

25

30

35

40
Inter-S/C distance [m]

0.000 0.005 0.010 0.015 0.020
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 4.12: SLAB error components of all test set images

52 Chapter 4. Results

The difference between the orders of magnitude of the two error components that
define the SLAB score is further stressed in Figure 4.12, in which we provided a scatter
plot, representing the results obtained for all the 2400 test images. The color of each dot
indicates the Ground Truth distance associated with each individual image. The close-up
region corresponds to the 2σ rectangle, i.e. whose sides span over the 95.44% of the related
error components.

4.4.2 Effect of the image background

Half of the images in our test set were rendered using a black background behind the
S/C, while the other half was rendered with the presence of Earth in the image background,
either in Eclipse condition or not. It is then clear that, despite all the actions taken during
training to improve the robustness of our CNNs to a variable background, the presence
of Earth in the image may still cause a performance degradation in our pipeline. This is
especially true whenever the target is very far from the chaser. Indeed it can experienced
that in long-range images with the presence of Earth in the background, SLN still works
exceptionally well, but LRN may sometimes struggle at properly detecting all semantic
keypoints.

The aforementioned performance drop is clearly visible in Figure 4.13. Here, all test
set images were sorted based on their individual SLAB score. Each image is represented
as a blue dot if it has a black background, otherwise, if the Earth lies inside the image
frame we will plot a red dot. It can be observed that most of the images with a very low
error have a black background. On the contrary, the right-hand side of this distribution is
characterized by the increasing prevalence of images with Earth in the background.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fraction of test set

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SL
AB

 sc
or

e

0.00151 0.00919 0.01310 0.01745 0.02329 0.03226 0.05544

0.15929

0.57034

1.60106

2.23991

3.17616

Performance vs. image background
Earth background
Black background

Figure 4.13: Effect of the image background upon SLAB score

4.5 Benefit from iterative pose refinement 53

4.5 Benefit from iterative pose refine-
ment

Unless a pose outlier is detected, the initial pose estimate computed using the EPnP
algorithm will always be iteratively refined by employing the Levenberg-Marquardt Method
(LMM). It is intuitive that, despite resulting into an improvement of the final estimate, such
a strategy will also entail an increased computational cost. It was eventually concluded
that the negligible impact in terms of computational burden is certainly justified by the
tangible increase in accuracy, compared to exclusively relying on EPnP.

For instance, on an Intel Core i7-4870HQ (2.5 GHz) CPU, the runtime associated with
the EPnP algorithm only is about 10−6 s, while the LMM pose refinement is in the order
of 10−4 s. In any case, the impact of the pose solver subsystem upon total runtime will
remain negligible with respect to the two other subsystems of the pipeline (SLN and LRN).

In Figure 4.14 we compared the results obtained with and without LMM refinement,
by plotting the 2σ distribution of the two normalized error components, across the whole
test set. It is immediately visible that the distribution of errors obtained without pose
refinement tends to be slightly shifted towards higher errors.

0.000 0.005 0.010 0.015 0.020 0.025
Normalized position error [-]

0.00%

0.42%

0.83%

1.25%

1.67%

2.08%

2.50% EPnP + LMM pose refinement
EPnP only

0.00 0.01 0.02 0.03 0.04 0.05
Normalized quaternion error [-]

0.0%

2.1%

4.2%

6.2%

8.3%

10.4%
EPnP + LMM pose refinement
EPnP only

Accuracy vs. pose refinement

Fr
ac

tio
n

of
 te

st
 im

ag
es

Figure 4.14: Effect of pose refinement upon the normalized pose error

We may at this point compare the resulting global performance metrics, which are
reported in Table 4.2. Note that that pose refinement allows a 12.3% reduction of the
Median Normalized Pose Error (MNPE).

54 Chapter 4. Results

Table 4.2: Main performance metrics of the pipeline, with and without pose refinement

EPnP + LMM EPnP only

Mean Et 10.36 cm 11.14 cm
Median Et 3.58 cm 4.31 cm
Mean Eq 2.24◦ 2.39◦

Median Eq 0.81◦ 0.89◦

MNPE 0.00648 0.00739
SLAB score 0.04627 0.04966

4.6 Runtime

The entire pipeline has been tested on an NVIDIA Tesla P4 GPU, in order to evaluate
runtime across the whole test set. The resulting execution times for processing each
individual image are reported in Figure 4.15, from which it is also possible to appreciate
the order of magnitude of the computational cost associated with each of the three
subsystems. The average total runtime is 0.089 s, which means that our pipeline runs at
11 FPS.

0 500 1000 1500 2000 2500
Image #

10 3

10 2

10 1

Ru
nt

im
e

[s
]

Computational cost of the pose estimation pipeline
tPnP
tYOLO
tHRNet

Figure 4.15: Runtime breakdown, across the entire dataset

It has to be highlighted that the performance here reported is not meant to be
representative of actual spaceborne hardware/software integration. This is basically due
to two main reasons:

• SLN and LRN were implemented using the PyTorch framework, which allows high-
level programming for quick prototyping of an ANN architecture, but cannot be
clearly compared, in terms of computational efficiency, with a C/C++ implementation

• a high-end off-the-shelf GPU has been used to evaluate runtime, which clearly
outperforms any space-grade hardware

4.7 Prediction visualization 55

The two aforementioned aspects may somehow compensate in an actual spaceborne scenario,
although further investigation is clearly required.

Nonetheless, with the obtained results, we may still compare in relative terms the
computational cost of each subsystem. The most computationally expensive subsystem is
LRN, which represents about 84% of the execution runtime. SLN and the pose solver will
require instead an average time of 0.014 s and 0.0005 s, respectively.

4.7 Prediction visualization

For an immediate and straightforward visualization of the pose estimation results, an
apposite graphical representation has been implemented. In Figures 4.16 and 4.17 the final
estimated pose, along with the intermediate results from SLN and LRN, are represented.
The two corresponding input images were randomly chosen from mid-range test images and
are somehow representative of median performance, with Earth background (Figure 4.17)
and without (Figure 4.16).

x

y

z
B3

B4
S1

S2
S3

S4
A1

A2

Distance [m]
 x = 0.12
 y = -0.15
 z = 10.16

Error [cm]:
 Ex = 0.0
 Ey = 0.2
 Ez = 0.5

Attitude
 x = 171.0
 y = 59.9
 z = 23.2

Error:
 E x = 0.56
 E y = 0.45
 E z = 0.39

0.0

0.2

0.4

0.6

0.8

1.0
Keypoint

 confidence

Figure 4.16: Mid-range test image with black background

56 Chapter 4. Results

x

yz

B3

B4

S1

S2 S3

S4

A2

Distance [m]
 x = 0.05
 y = -0.28
 z = 10.17

Error [cm]:
 Ex = 0.7
 Ey = 0.2
 Ez = 3.9

Attitude
 x = 135.7
 y = 31.7
 z = 37.1

Error:
 E x = 0.01
 E y = 0.47
 E z = 0.35

0.0

0.2

0.4

0.6

0.8

1.0
Keypoint

 confidence

Figure 4.17: Mid-range test image with Earth background

In particular, in each image:

• a green rectangle delimits the RoI detected by the Spacecraft Localization Network

• the subset of estimated keypoint positions(6) that are fed to the pose solver is
properly plotted and labeled; the color of each landmark indicates the confidence
score predicted by the Landmark Regression Network, according to the color-bar
provided on the right side of the image

• a cyan wireframe model is projected onto the image, based on the final pose estimate

• the body-fixed reference frame is plotted in yellow, according to the estimated
attitude; the origin of the frame is in correspondence of the center of the bottom
surface of Tango

• the two text boxes on the left side of the image report the predicted pose, along
with the corresponding errors with respect to the Ground Truth

Let us now visualize some more examples, over a wide variety of conditions in terms of
distance, illumination and background.

(6)the rejected low-confidence predictions are not included

4.7 Prediction visualization 57

x

y

z

B1B2

B3

B4

S1

S3

A1

Distance [m]
 x = -0.05
 y = -0.11
 z = 3.02

Error [cm]:
 Ex = 0.1
 Ey = 0.1
 Ez = 0.1

Attitude
 x = 40.6
 y = 37.9
 z = 121.4

Error:
 E x = 1.02
 E y = 0.71
 E z = 0.53

0.0

0.2

0.4

0.6

0.8

1.0
Keypoint

 confidence

x

y

z

B1

B2
B3S1

S2

A1

A2

Distance [m]
 x = -0.06
 y = 0.01
 z = 4.25

Error [cm]:
 Ex = 0.2
 Ey = 0.0
 Ez = 0.2

Attitude
 x = 82.6
 y = 30.7
 z = 80.7

Error:
 E x = 0.05
 E y = 0.12
 E z = 0.21

x

y

zB1B2

B3 B4

S2

S4

A1

A2
A3

Distance [m]
 x = 0.02
 y = 0.22
 z = 5.38

Error [cm]:
 Ex = 0.0
 Ey = 0.2
 Ez = 0.4

Attitude
 x = 49.7
 y = 15.3
 z = 70.2

Error:
 E x = 0.06
 E y = 0.42
 E z = 0.13

x

y z
B1

B3

S1

S2 S3

A1

A2

Distance [m]
 x = -0.11
 y = -0.14
 z = 6.28

Error [cm]:
 Ex = 0.3
 Ey = 0.1
 Ez = 2.1

Attitude
 x = 116.0
 y = 45.1
 z = 54.6

Error:
 E x = 0.53
 E y = 0.24
 E z = 0.72

x

y

z

B1 B2

B3B4
S1

S3S4

A1

A2
A3

Distance [m]
 x = -0.01
 y = -0.19
 z = 7.35

Error [cm]:
 Ex = 0.2
 Ey = 0.1
 Ez = 1.1

Attitude
 x = 55.7
 y = 6.0
 z = 81.3

Error:
 E x = 0.22
 E y = 0.50
 E z = 0.34

x

y

z

B1

B2

B3

B4

S1

S2

S3

S4

A1

A2

Distance [m]
 x = -0.23
 y = 0.77
 z = 8.52

Error [cm]:
 Ex = 0.2
 Ey = 0.7
 Ez = 8.3

Attitude
 x = 9.2
 y = 34.9
 z = 26.6

Error:
 E x = 0.80
 E y = 0.88
 E z = 0.30

xy
z

B1

B2

S1

S2

S3

S4

A1 A2

A3

Distance [m]
 x = -0.27
 y = -0.02
 z = 9.74

Error [cm]:
 Ex = 0.4
 Ey = 0.0
 Ez = 1.1

Attitude
 x = 132.6
 y = 21.1
 z = 72.2

Error:
 E x = 0.45
 E y = 0.88
 E z = 0.60

x
y

z

B1

B2

B3

B4

S2

S3

S4

A2

A3

Distance [m]
 x = -0.31
 y = -0.59
 z = 10.97

Error [cm]:
 Ex = 0.3
 Ey = 0.1
 Ez = 4.3

Attitude
 x = 46.8
 y = 53.3
 z = 3.8

Error:
 E x = 0.43
 E y = 0.71
 E z = 0.36

x

y

z B1

B2

S1

S2

S3

S4

A1

A2

A3

Distance [m]
 x = -0.27
 y = 0.11
 z = 12.42

Error [cm]:
 Ex = 0.2
 Ey = 0.4
 Ez = 9.9

Attitude
 x = 167.4
 y = 38.8
 z = 145.6

Error:
 E x = 0.93
 E y = 0.04
 E z = 0.17

x

y

z
B1

B2
B3

B4

S1

S2
S3

S4

A1

A2

A3

Distance [m]
 x = 0.29
 y = -0.49
 z = 14.26

Error [cm]:
 Ex = 0.1
 Ey = 0.5
 Ez = 12.4

Attitude
 x = 8.6
 y = 18.7
 z = 26.7

Error:
 E x = 0.14
 E y = 0.01
 E z = 0.16

x
y

z

B1
B2

B4

S1

S2

S4A3

Distance [m]
 x = 0.21
 y = -1.05
 z = 20.07

Error [cm]:
 Ex = 0.3
 Ey = 0.4
 Ez = 2.9

Attitude
 x = 89.8
 y = 62.8
 z = 125.9

Error:
 E x = 0.10
 E y = 0.03
 E z = 0.11

x

y

z

B1B4S1
S2S3

A1

A2

Distance [m]
 x = 0.17
 y = 1.48
 z = 34.62

Error [cm]:
 Ex = 0.0
 Ey = 3.5
 Ez = 76.8

Attitude
 x = 34.6
 y = 50.1
 z = 0.9

Error:
 E x = 7.39
 E y = 2.61
 E z = 2.33

Figure 4.18: Prediction visualization mosaic of test images with black background and increasing
inter-spacecraft distance

In Figures 4.18 and 4.19 a total of 24 random test images is displayed with the
corresponding inference results. In particular, the random images were sampled from
image batches, each with a given range of relative distances, and are here sorted in order
of ascending distance. The 12 test images in Figure 4.18 have a black background, while
the 12 remaining images in Figure 4.19 were all rendered with Earth in the background
(some of them in eclipse condition).

58 Chapter 4. Results

x

y

z

B1

B2

S1

S2

S3

S4

A3

Distance [m]
 x = -0.02
 y = 0.10
 z = 3.01

Error [cm]:
 Ex = 0.1
 Ey = 0.5
 Ez = 0.1

Attitude
 x = 146.1
 y = 29.7
 z = 168.4

Error:
 E x = 0.60
 E y = 0.72
 E z = 0.17

0.0

0.2

0.4

0.6

0.8

1.0
Keypoint

 confidence

x

y z

B1

B2

B3

S1

S3

A1

A2

Distance [m]
 x = -0.05
 y = 0.14
 z = 4.01

Error [cm]:
 Ex = 0.1
 Ey = 0.2
 Ez = 0.9

Attitude
 x = 62.0
 y = 50.4
 z = 70.7

Error:
 E x = 0.88
 E y = 0.14
 E z = 0.71

x

y z
B1

B3

B4

S1

S3

A1

A2

Distance [m]
 x = 0.06
 y = 0.20
 z = 5.10

Error [cm]:
 Ex = 0.1
 Ey = 0.5
 Ez = 5.8

Attitude
 x = 93.2
 y = 42.1
 z = 76.6

Error:
 E x = 0.59
 E y = 0.09
 E z = 0.80

x
y

z

B1

B2 B3
S1

S2

A1

A2

Distance [m]
 x = -0.01
 y = -0.02
 z = 6.34

Error [cm]:
 Ex = 0.2
 Ey = 0.5
 Ez = 0.1

Attitude
 x = 74.7
 y = 8.5
 z = 33.7

Error:
 E x = 0.62
 E y = 0.23
 E z = 0.15

x
y z

B1

B2

B3

B4
S1

S3

S4

A1

A2

A3

Distance [m]
 x = -0.24
 y = -0.25
 z = 7.45

Error [cm]:
 Ex = 0.4
 Ey = 0.2
 Ez = 2.5

Attitude
 x = 48.1
 y = 4.8
 z = 30.2

Error:
 E x = 0.13
 E y = 0.39
 E z = 0.22

x

y

z

B1
B2

S1

S3

S4

A1

A2

Distance [m]
 x = -0.07
 y = 0.37
 z = 8.63

Error [cm]:
 Ex = 0.1
 Ey = 0.8
 Ez = 9.3

Attitude
 x = 72.4
 y = 17.7
 z = 94.2

Error:
 E x = 0.19
 E y = 0.59
 E z = 0.36

x
y

z

B1 B2

B3
B4S1

S3
S4

A1

A2

A3

Distance [m]
 x = 0.09
 y = 0.02
 z = 10.08

Error [cm]:
 Ex = 0.0
 Ey = 0.2
 Ez = 6.6

Attitude
 x = 64.4
 y = 15.4
 z = 44.7

Error:
 E x = 0.67
 E y = 0.01
 E z = 0.20

x

y

z

B1B2

B3 B4

S1A1

A2

Distance [m]
 x = 0.33
 y = -0.21
 z = 11.58

Error [cm]:
 Ex = 0.4
 Ey = 0.3
 Ez = 12.2

Attitude
 x = 52.9
 y = 15.7
 z = 68.0

Error:
 E x = 0.01
 E y = 0.52
 E z = 0.10

x

y

z
B1 B2

B3B4

S1

S4

A1

Distance [m]
 x = -0.81
 y = 0.43
 z = 13.08

Error [cm]:
 Ex = 1.3
 Ey = 0.9
 Ez = 15.2

Attitude
 x = 35.6
 y = 56.5
 z = 114.4

Error:
 E x = 0.81
 E y = 0.22
 E z = 0.86

x

y

z
S1

S2

S3
S4

A1

A2

A3

Distance [m]
 x = 0.31
 y = 0.51
 z = 14.62

Error [cm]:
 Ex = 0.6
 Ey = 0.2
 Ez = 0.2

Attitude
 x = 158.9
 y = 12.8
 z = 107.0

Error:
 E x = 1.48
 E y = 1.83
 E z = 0.16

x

y

z

B2
B3 B4

S2
S3 S4A2

Distance [m]
 x = -1.53
 y = 0.41
 z = 19.81

Error [cm]:
 Ex = 3.0
 Ey = 0.2
 Ez = 35.6

Attitude
 x = 99.5
 y = 23.9
 z = 38.3

Error:
 E x = 1.84
 E y = 0.18
 E z = 0.98

x

yz
B1

B3B4

S1
S4

A1

A3

Distance [m]
 x = -0.37
 y = -2.60
 z = 30.91

Error [cm]:
 Ex = 1.1
 Ey = 1.7
 Ez = 41.5

Attitude
 x = 64.8
 y = 62.8
 z = 163.3

Error:
 E x = 9.77
 E y = 1.05
 E z = 2.48

Figure 4.19: Prediction visualization mosaic of test images with Earth background and increasing
inter-spacecraft distance

A total of 13 pose outliers out of 2400 test images has been detected and partially
corrected (in terms of translation only). We also depicted 6 of the corresponding visualiza-
tions in Figure 4.20. All these images are characterized by a mid-to-large relative distance.
As it can be immediately seen from the color of the dots, the keypoints are here predicted
by LRN with very low confidence and, as a result, only the minimal set of 7 landmarks is
retained.

The most common scenario in these cases is the one in which a given keypoint is
mistaken for another one that is visually similar. This is particularly evident in the top
right image of Figure 4.20 (img002961.jpg), in which most of the retained landmarks
are detected with exceptional accuracy, except for two of them: what actually is the A1
antenna is mistaken for the A2 antenna and the detected S1 solar panel edge should
have been the S3 landmark. This leads to an inconsistency which, nonetheless, the EPnP
algorithm tries to fit, thus resulting into a completely wrong attitude estimation.

The RoI-based approximation employed for correcting the relative translation vector
yields substantial improvements, although the accuracy of the boresight component is
highly dependent on the range between chaser and target.

4.7 Prediction visualization 59

x
y

z

B1B2B4
S1S4 A2

A3

Distance [m]
 x = -0.42
 y = 0.52
 z = 15.22

Error [cm]:
 Ex = 1.0
 Ey = 2.0
 Ez = 73.3

Attitude
 x = 81.8
 y = 12.2
 z = 110.5

Error:
 E x = 4.30
 E y = 1.03
 E z = 17.71

0.0

0.2

0.4

0.6

0.8

1.0
Keypoint

 confidence
x

y

z
B1

B2
B3 S1

S2
S4

A1

Distance [m]
 x = 0.31
 y = -0.04
 z = 11.70

Error [cm]:
 Ex = 12.3
 Ey = 21.3
 Ez = 278.7

Attitude
 x = 43.1
 y = 71.8
 z = 69.5

Error:
 E x = 149.22
 E y = 26.72
 E z = 109.23

x

y

z

B1 B2B4
S1

S4
A1A3

Distance [m]
 x = 0.48
 y = -2.02
 z = 25.71

Error [cm]:
 Ex = 0.4
 Ey = 30.5
 Ez = 393.4

Attitude
 x = 79.7
 y = 18.5
 z = 70.1

Error:
 E x = 31.16
 E y = 12.53
 E z = 6.35

x

y

z

B2

B3B4

S1S4A1A3

Distance [m]
 x = 0.43
 y = -0.64
 z = 25.74

Error [cm]:
 Ex = 4.3
 Ey = 6.3
 Ez = 96.2

Attitude
 x = 133.4
 y = 35.5
 z = 71.4

Error:
 E x = 42.52
 E y = 21.76
 E z = 68.14

x

y

z

B1
B2B3

B4S4A1
A3

Distance [m]
 x = 0.34
 y = 0.43
 z = 18.51

Error [cm]:
 Ex = 13.3
 Ey = 7.1
 Ez = 55.5

Attitude
 x = 84.0
 y = 32.3
 z = 93.6

Error:
 E x = 13.84
 E y = 29.28
 E z = 2.93

x

y
z

B2
B4

S3S4

A1

A2A3

Distance [m]
 x = 0.66
 y = -1.07
 z = 26.66

Error [cm]:
 Ex = 6.8
 Ey = 0.2
 Ez = 104.4

Attitude
 x = 78.6
 y = 59.9
 z = 154.4

Error:
 E x = 5.63
 E y = 1.30
 E z = 43.53

Figure 4.20: Prediction visualization of 6 out of 13 pose outliers

Chapter5
Conclusions & future work

5.1 Conclusions

The main contribution of this work is the development of a deep learning-based pipeline
capable of estimating the relative pose of an uncooperative spacecraft from a single
monocular image, provided the knowledge of the target’s 3D model and with no need of
any other a-priori information.

Our discussion started with a survey of current state-of-the-art pose estimation tech-
niques, either feature-based or deep-learning based, with a particular focus on the techniques
employed by the top ranking teams that participated in the SLAB/ESA Pose Estimation
Challenge. This was supplemented by an introduction to Convolutional Neural Networks
(CNNs) and to algorithms for the solution of the Perspective-n-Point (PnP) problem.

At this point, we presented the architecture of our Relative Pose Estimation Pipeline
(RPEP) which is composed of three main subsystems.

i) Spacecraft Localization Network (SLN). Its aim is to identify in the image the RoI,
in which the S/C is located. This allows cropping out irrelevant portions of the
image, so as to avoid unnecessary computation. SLN is a Convolutional Neural
Network (CNN) based on the YOLOv5 architecture. For this subsystem alone, the
measured Average Precision is AP95

50 = 98.51%, with a mean IoU of 95.38%.

ii) Landmark Regression Network (LRN). It processes the output of the previous
subsystem in order to detect the position in the RoI of pre-defined semantic keypoints
of the S/C. This CNN is based on the HRNet32 architecture. The Average Precision
of the landmark regression task, measured in terms of OKS thresholds, is AP95

50 =
98.97%.

iii) Pose solver. This third and last subsystem receives as input the landmarks detected
by LRN and seeks for the best pose fit of the known 3D wireframe model of the
satellite, that minimizes the reprojection error. Our algorithm is based on the EPnP
method for computing an initial pose estimate, which is iteratively refined using the
Levenberg-Marquardt Method (LMM). The pose solver is also in charge of flagging
and partially correcting possible pose outliers.

The performance of our pipeline has been tested on the synthetic images from the
Spacecraft PosE Estimation Dataset (SPEED). The latter consists of 15300 images of the

60

https://kelvins.esa.int/satellite-pose-estimation-challenge/
https://kelvins.esa.int/satellite-pose-estimation-challenge/

5.2 Future work 61

Tango satellite and is the first and only publicly available ML dataset for spacecraft pose
estimation.

Our architecture demonstrated to outperform the baseline developed by SLAB within
the framework of the Pose Estimation Challenge. In particular, a SLAB synthetic score
of 0.04673 has been achieved in the post-mortem competition, which means that our
RPEP virtually ranks 3rd in original Pose Estimation Challenge. In addition, the same
error metric evaluated on the real test set of SPEED corresponds to 0.12726, which, as
of November 24th 2020, is the 2nd best score ever obtained since the beginning of the
original competition in February 2019.

A global error metric alternative to the SLAB score has also been presented, which
we called the Median Normalized Pose Error (MNPE). This score is characterized by two
main peculiarities: it accounts for full normalization, both of position and attitude error;
it evaluates median accuracy, which is more representative of actual performance in a
nominal situation, i.e. in the absence of extreme conditions that could impair the quality
of our estimation.

From the analysis of the results obtained on the test images in SPEED, it was concluded
that the accuracy of our estimation strongly correlates with two main factors.

• Inter-spacecraft distance: there will clearly be a progressive drop in performance as
the range between chaser and target increases.

• Presence of Earth in the image background: it is intuitive that images with a black
background, due to the sharp contrast between the RoI and the rest of the image,
will result into features that are easier to detect and hence higher accuracy of the
estimated pose.

This means that pose estimation may be particularly challenging in the event of long-
range images with cluttered backgrounds, which is indeed the case of our pose outliers. The
end-to-end performance of our pipeline, evaluated across the entire test set, corresponds
to an absolute translation error of 10.36 cm (mean) and 3.58 cm (median), while the
quaternion error is 2.24◦ (mean) and 0.81◦ (median).

5.2 Future work

We will now provide a few directions for future work, that are necessary steps in the
roadmap to spaceborne implementation of a fully vision-based relative navigation system.
They are listed here below.

i) Performance evaluation in a dynamic rendezvous scenario. The output of the pipeline,
which still processes individual frames, is fed to a navigation filter, which accumulates
information from sequential images to provide a more accurate dynamic estimate of
the pose. A detailed evaluation of the uncertainty in our raw estimates coming from
the RPEP is clearly of paramount importance.

ii) Implementation of an algorithm for identifying individual keypoint outliers, hence
removing them from the subset of landmarks processed by the pose solver. One of

62 Chapter 5. Conclusions & future work

the main drawbacks of our current architecture, is that whenever a pose outlier is
detected, no action is taken in order to correct the attitude.(1)

iii) Validation of the architecture on actual spaceborne imagery.

iv) Implementation of data augmentation techniques such the Neural Style Transfer, in
order to randomize the S/C’s texture in the images used for training our CNNs. This
is of particular importance to address the issue of mismatch in terms of textures and
reflective properties, between the synthetic imagery used during offline training and
the actual flight imagery processed during online inference. Randomizing the textures
of our training images would largely improve the robustness to such mismatches.

v) Low-level C/C++ inference implementation of our pipeline.

vi) Evaluation of the runtime on space-grade hardware or on an off-the-shelf microcom-
puter such as the Raspberry Pi.

vii) In order to support mission scenarios in which the target is unknown or partly know,(2)

further generalization of the problem is clearly needed. This would expectedly come
at the expense of the outstanding accuracy demonstrated in this dissertation.

(1)in a dynamic scenario, one may actually implement a navigation filter that, whenever a pose outlier
is flagged, performs the propagation step but skips the update step, without necessarily having to identify
the inconsistent keypoint detection(s)

(2)e.g. debris removal (completely unknown object) or de-orbiting of a dismissed satellite (might be
damaged or exhibit surface degradation)

Bibliography

[Boc20] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4:
Optimal Speed and Accuracy of Object Detection”. In: arXiv preprint
arXiv:2004.10934 (2020).

[Bod12] Per Bodin et al. “The prisma formation flying demonstrator: Overview and
conclusions from the nominal mission”. In: Advances in the Astronautical
Sciences 144.2012 (2012), pp. 441–460.

[Can86] John Canny. “A computational approach to edge detection”. In: IEEE Trans-
actions on pattern analysis and machine intelligence 6 (1986), pp. 679–698.

[Cha95] Yves Chauvin and David E Rumelhart. Backpropagation: theory, architectures,
and applications. Psychology press, 1995.

[Che19] Bo Chen et al. “Satellite pose estimation with deep landmark regression and non-
linear pose refinement”. In: Proceedings of the IEEE International Conference
on Computer Vision Workshops. 2019, pp. 0–0.

[Dai16] Jifeng Dai et al. “R-fcn: Object detection via region-based fully convolutional
networks”. In: Advances in neural information processing systems. 2016, pp. 379–
387.

[DAm14] Simone D’Amico, Mathias Benn, and John L Jørgensen. “Pose estimation of an
uncooperative spacecraft from actual space imagery”. In: International Journal
of Space Science and Engineering 5 2.2 (2014), pp. 171–189.

[Dho89] Michel Dhome et al. “Determination of the attitude of 3D objects from a single
perspective view”. In: IEEE transactions on pattern analysis and machine
intelligence 11.12 (1989), pp. 1265–1278.

[Dud72] Richard O Duda and Peter E Hart. “Use of the Hough transformation to detect
lines and curves in pictures”. In: Communications of the ACM 15.1 (1972),
pp. 11–15.

[ESAa] ESA. https: // www. esa. int/ Safety_ Security/ Clean_ Space/ ESA_
commissions_ world_ s_ first_ space_ debris_ removal .

[ESAb] Kelvins - ESA. https: // kelvins. esa. int/ satellite-pose-estimation-
challenge/ .

[Gir14] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014, pp. 580–587.

[Gir15] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference
on computer vision. 2015, pp. 1440–1448.

63

https://www.esa.int/Safety_Security/Clean_Space/ESA_commissions_world_s_first_space_debris_removal
https://www.esa.int/Safety_Security/Clean_Space/ESA_commissions_world_s_first_space_debris_removal
https://kelvins.esa.int/satellite-pose-estimation-challenge/
https://kelvins.esa.int/satellite-pose-estimation-challenge/

64

[Kin14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[Kis20] Mate Kisantal et al. “Satellite Pose Estimation Challenge: Dataset, Competition
Design and Results”. In: IEEE Transactions on Aerospace and Electronic
Systems (2020).

[Kri12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097–1105.

[LeC98] Yann LeCun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[Lep09] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. “Epnp: An accurate
o (n) solution to the pnp problem”. In: International journal of computer vision
81.2 (2009), p. 155.

[Liu18] Shu Liu et al. “Path aggregation network for instance segmentation”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 8759–8768.

[Low12] David Lowe. Perceptual organization and visual recognition. Vol. 5. Springer
Science & Business Media, 2012.

[Low87] David G Lowe. “Three-dimensional object recognition from single two-
dimensional images”. In: Artificial intelligence 31.3 (1987), pp. 355–395.

[Mac67] James MacQueen et al. “Some methods for classification and analysis of mul-
tivariate observations”. In: Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967,
pp. 281–297.

[Par19] Tae Ha Park, Sumant Sharma, and Simone D’Amico. “Towards Robust Learning-
Based Pose Estimation of Noncooperative Spacecraft”. In: arXiv preprint
arXiv:1909.00392 (2019).

[Pro20] Pedro F Proença and Yang Gao. “Deep learning for spacecraft pose estimation
from photorealistic rendering”. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2020, pp. 6007–6013.

[Qia99] Ning Qian. “On the momentum term in gradient descent learning algorithms”.
In: Neural networks 12.1 (1999), pp. 145–151.

[Red16] Joseph Redmon et al. “You only look once: Unified, real-time object detec-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 779–788.

[Red17] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 7263–7271.

[Red18] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In:
arXiv preprint arXiv:1804.02767 (2018).

[Red20] Nola Taylor Redd. “Bringing satellites back from the dead: Mission extension
vehicles give defunct spacecraft a new lease on life-[News]”. In: IEEE Spectrum
57.8 (2020), pp. 6–7.

65

[Ree16] Benjamin B Reed et al. “The restore-L servicing mission”. In: AIAA space 2016.
2016, p. 5478.

[Ren15] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with re-
gion proposal networks”. In: Advances in neural information processing systems.
2015, pp. 91–99.

[San18] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4510–4520.

[Sha17] S Sharma, C Beierle, and S D’Amico. “Towards Pose Determination for Non-
Cooperative Spacecraft Using Convolutional Neural Networks”. In: Proceedings
of the 1st IAA Conference on Space Situational Awareness (ICSSA). 2017,
pp. 1–5.

[Sha18a] Sumant Sharma, Connor Beierle, and Simone D’Amico. “Pose estimation for
non-cooperative spacecraft rendezvous using convolutional neural networks”.
In: 2018 IEEE Aerospace Conference. IEEE. 2018, pp. 1–12.

[Sha18b] Sumant Sharma, Jacopo Ventura, and Simone D’Amico. “Robust model-based
monocular pose initialization for noncooperative spacecraft rendezvous”. In:
Journal of Spacecraft and Rockets 55.6 (2018), pp. 1414–1429.

[Sha20] Sumant Sharma and Simone D’Amico. “Neural Network-Based Pose Estima-
tion for Noncooperative Spacecraft Rendezvous”. In: IEEE Transactions on
Aerospace and Electronic Systems (2020).

[Sob68] Irwin Sobel and Gary Feldman. “A 3x3 isotropic gradient operator for image
processing”. In: a talk at the Stanford Artificial Project in (1968), pp. 271–272.

[Sun19a] Ke Sun et al. “Deep high-resolution representation learning for human pose
estimation”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2019, pp. 5693–5703.

[Sun19b] Ke Sun et al. “High-resolution representations for labeling pixels and regions”.
In: arXiv preprint arXiv:1904.04514 (2019).

[Tan20] Mingxing Tan, Ruoming Pang, and Quoc V Le. “Efficientdet: Scalable and
efficient object detection”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 10781–10790.

[Tie12] Tijmen Tieleman and G Hinton. “Divide the gradient by a running average of
its recent magnitude. COURSERA Neural Netw”. In: Mach. Learn 6 (2012),
pp. 26–31.

[Uij13] Jasper RR Uijlings et al. “Selective search for object recognition”. In: Interna-
tional journal of computer vision 104.2 (2013), pp. 154–171.

[Ult] Ultralytics. YOLOv5 (https: // github. com/ ultralytics/ yolov5).

[Wan20] Chien-Yao Wang et al. “CSPNet: A new backbone that can enhance learning
capability of cnn”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2020, pp. 390–391.

https://github.com/ultralytics/yolov5

	Introduction
	Problem statement & motivation
	State-of-the-art
	Feature-based pose estimation
	Deep learning-based pose estimation

	Spacecraft Pose Estimation Dataset
	Synthetic images
	Actual mock-up images
	SLAB/ESA challenge
	Dataset re-partitioning

	Outline

	Mathematical background
	Convolutional Neural Networks
	Architecture of a CNN
	Gradient-based learning
	Object detection
	Landmark regression

	Perspective-n-Point problem
	Iterative solvers
	Efficient PnP solver

	Relative Pose Estimation Pipeline
	Spacecraft Localization Network
	Training
	Performance evaluation

	Landmark Regression Network
	Training
	Performance evaluation

	Pose solver
	Keypoint selection
	Initial pose estimation and refinement
	Outlier identification & translation correction

	Results
	Error metrics
	Translation error
	Rotation error
	Pose error

	Optimal keypoint rejection
	Performance evaluation
	Estimation uncertainty

	Error distribution
	Effect of relative distance
	Effect of the image background

	Benefit from iterative pose refinement
	Runtime
	Prediction visualization

	Conclusions & future work
	Conclusions
	Future work

