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Abstract

The rise of machine learning (ML), fueled by open datasets, affordable processing, and
cost-effective storage, has accelerated model development across various applications like
computer vision and natural language processing. Federated learning (FL) enables the
creation of ML models without compromising user data privacy. Users train individual
models and periodically share updates with a central server. The server aggregates these
models, creating a centralized model that incorporates insights from all users without ac-
cessing their specific data. This approach maintains data privacy while deriving collective
knowledge from the distributed user data. FL introduces complexities such as statisti-
cal and system heterogeneity, requiring innovative algorithms for convergence in non-iid
datasets. Furthermore, strategic client selection and resource allocation become crucial
for optimizing FL system performance. Finally, experimenting with realistic federated
environments is challenging due to associated costs.

This thesis proposes extensions to Flower, a highly promising framework for advancing
federated learning research. Using Flower to prioritize reproducibility and extendability,
crucial for experimental challenges in FL, the thesis extend it with algorithms for dynamic
client selection and resource-aware workload allocation.

The work concludes with an experimental phase assessing the impact of introduced el-
ements compared to state-of-the-art techniques. Experimental results showcase the com-
petitiveness of proposed strategies, particularly in heterogeneous settings, demonstrating
effectiveness, convergence speed, and stability. The experiments underscore the impor-
tance of strategic client selection and workload distribution in FL for effective and stable
model training. The thesis contributes to advancing FL research and highlights Flower
as a valuable framework for future development.

Keywords: machine learning, federated learning, framework, dynamic selection, dy-
namic workload allocation





Abstract in lingua italiana

L’ascesa del machine learning (ML), alimentata da set di dati disponibili, elaborazione
a prezzi accessibili e archiviazione a costi contenuti, ha accelerato lo sviluppo di modelli
in varie applicazioni come la computer vision e l’elaborazione del linguaggio naturale. Il
federated learning (FL) consente la creazione di un modello di apprendimento automatico
senza compromettere la privacy dei dati degli utenti. Gli utenti addestrano modelli indi-
viduali e condividono periodicamente gli aggiornamenti con un server centrale. Il server
aggrega questi modelli, creando un modello centralizzato che incorpora gli aggiornamenti
di tutti gli utenti senza accedere ai loro dati specifici. Questo approccio consente di man-
tenere la privacy dei dati e di ricavare conoscenze collettive dai dati distribuiti degli utenti.
Il FL introduce complessità come l’eterogeneità statistica e del sistema, che richiede al-
goritmi innovativi per la convergenza in insiemi di dati non indipendenti e identicamente
distribuiti. Inoltre, la selezione strategica dei client e l’allocazione delle risorse diven-
tano cruciali per ottimizzare le prestazioni del sistema FL. Infine, la sperimentazione di
ambienti federati realistici è impegnativa a causa dei costi associati.

Questa tesi propone Flower come un framework molto promettente per far progredire
la ricerca sul federated learning. Utilizzando Flower per dare priorità alla riproducibilità
e all’estendibilità, cruciali per le sfide sperimentali nel federated learning, la tesi lo es-
tende con algoritmi per la selezione dinamica dei client e l’allocazione del carico di lavoro
consapevole delle risorse.

Il lavoro si conclude con una fase sperimentale che valuta l’impatto degli elementi in-
trodotti rispetto allo stato dell’arte. I risultati sperimentali dimostrano la competitività
delle strategie proposte, in particolare in contesti eterogenei, dimostrando efficacia, veloc-
ità di convergenza e stabilità. Gli esperimenti sottolineano l’importanza della selezione
strategica dei client e della distribuzione del carico di lavoro nel federated learning per una
formazione efficace e stabile dei modelli. La tesi contribuisce a far progredire la ricerca
sul federated learning e mette in evidenza come Flower sia un valido framework per lo
sviluppo futuro della materia.

Parole chiave: machine learning, federated learning, framework, selezione dinamica,
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allocazione dinamica del carico computazionale
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1| Introduction

Machine Learning (ML) is a specialized domain within the broader field of Artificial
Intelligence (AI) and computer science, focused on employing data and algorithms to
replicate human learning processes. While AI encompasses a wide array of technologies
emulating human capabilities, ML specifically trains machines in the art of learning. The
increasing prevalence of ML applications is primarily attributable to the proliferation
of diverse and extensive datasets, cost-effective and potent computational processing, as
well as affordable data storage solutions. These factors collectively enable the rapid and
automated development of models capable of handling larger and more intricate datasets,
thereby yielding quicker and more precise outcomes.

The applications of ML span a multitude of domains. Notably, it finds extensive appli-
cation in computer vision, where it empowers computers and systems to derive meaningful
insights from digital images, videos, and other visual inputs, thereby facilitating informed
decision-making. Such applications extend to recommendation systems in e-commerce
and content platforms, radiology imaging within the healthcare sector, and the realiza-
tion of self-driving cars in the automotive industry.

The prominence of deep learning within the domain of machine learning has led to a
significant dependence on the accumulation of extensive datasets for model development.
However, this increased demand for data has given rise to notable challenges in terms
of data transmission and storage. Specifically, the transfer of substantial data samples
from external devices can lead to network latency issues, and concurrently, there are
concerns regarding privacy due to the potential inclusion of sensitive information within
the collected datasets.

Federated Machine Learning (Federated Learning or FL) offers a partial solution to these
challenges. FL constitutes an ML technique that facilitates the training of algorithms
across a network of decentralized devices, each housing local data samples. Crucially, in
FL, local data samples remain within their respective devices and are never exchanged
between devices. The training process is performed locally by a subset of devices. Par-
ticipating devices retrieve the model from a central server, conduct local model training
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with their respective data, and subsequently communicate the resultant model back to the
server. These model weights are then aggregated, and the process can iteratively repeat,
referred to as "rounds," until a satisfactory level of accuracy is attained.

Numerous tools support federated learning model training, yet no standard has emerged.
The dynamic nature of this recent paradigm is reflected in the evolving landscape of
tools. Additionally, there are gaps in the analysis of state-of-the-art techniques and tools,
indicating opportunities for further exploration and refinement in this rapidly evolving
domain.

1.1. Problem statement

Federated Learning (FL) offers distinct advantages over traditional Machine Learning
(ML) in distributed settings. FL enhances privacy by allowing local model training on
decentralized devices, reducing the need for data sharing and minimizing privacy risks.
Additionally, it reduces communication overhead as data remains on the local device,
alleviating network congestion.

However, FL introduces its own set of complexities. In contrast to conventional ML,
which conducts training centrally on a single server, Federated Learning (FL) adopts a de-
centralized approach with parallel training across multiple devices. This decentralization
introduces new challenges that need innovative solutions.

One of the distinguishing feature between classic ML and FL is the presence of sta-
tistical and system heterogeneity. Statistical heterogeneity arises from the non-iid (non-
independent and identically distributed) nature of data on different devices, coupled with
significant variations in the sizes of local data samples, influenced by individual user be-
haviors. This diversity in data distribution can impede model convergence compared to
the homogeneous centralized dataset used in traditional ML. To address this, techniques
and algorithms are required to bridge the gap between locally obtained models and ensure
convergence.

System heterogeneity encompasses variations in device attributes such as computational
capabilities, memory, energy availability, and environmental factors like network speed
and reliability. In contrast to the relatively uniform and robust machines used in classic
ML, FL contends with diverse and less predictable system conditions.

To address these challenges, specialized platforms and algorithms are imperative. Strate-
gic client selection and resource allocation become crucial in optimizing FL system perfor-
mance. Considering factors such as quality and size of local data, computational resources,
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and device availability can enhance client selection, mitigating the impact of slower clients
and refining the learning process. These strategies must be tailored to accommodate the
diverse and unpredictable conditions in FL, thereby optimizing both model accuracy and
resource utilization.

Existing solutions have tried to address these challenges by means either of static solu-
tions that don’t take into account the evolution of the learning over the duration of the
process or either solutions that don’t take into account system heterogeneity.

Lastly, experimentation is difficult, given the fact that setting up a realistic federated
network for experimentation presents notable challenges and costs. A real federated en-
vironment often includes an extensive number of clients. Replicating such a vast and
diverse environment mandates acquiring or renting a multitude of devices, resulting in
substantial costs.

1.2. Contribution of the thesis

The goal of this thesis is to address the challenges outlined in Section 1.1, exploring
methodologies and innovations to maximize the potential of Federated Learning while
tackling its inherent complexities.

This thesis has three primary objectives: (1) analyze available Federated Learning (FL)
frameworks and select the most promising one, (2) extend it with algorithms for dy-
namic client selection during training, and (3) further extend it with algorithms enabling
resource-aware workload allocation to clients during training.

A significant contribution of this thesis is the use of an open-source framework, prior-
itizing reproducibility and extendability. As highlighted in Section 1.1, experimentation
poses a critical challenge in federated learning. Thus, implementing the solution in an
environment favorable to easy experiment reproduction in a simulated federated setting
is crucial. At the same time, to obtain meaningful results, the experimental environment
should allow reproducing conditions close to the real ones.

The work concludes with an experimental phase to assess the impact of the introduced
elements compared to state-of-the-art techniques. This experimental phase aims to closely
replicate a real federated environment and is designed for ease of future reproducibility
and extension.
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1.3. Structure of the thesis

The thesis is organized as follows. In Chapter 2, we introduce the theoretical founda-
tions on which this thesis is based, specifically focusing on the topic of machine learning.
Chapter 3 presents the concept of federated learning, the paradigm of machine learning
upon which this thesis is focused. In this chapter, we also analyze available federated
learning frameworks, highlighting their strengths and weaknesses. Chapter 4 delves into
the implementation of the proposed techniques to address challenges introduced in Sec-
tion 1.1. The techniques primarily revolve around two key topics: dynamic selection of
clients and resource-aware workload allocation. In Chapter 5, we present the experiments
conducted to assess the impact of the introduced strategies. This chapter not only focuses
on the results obtained but also describes the setup in detail to facilitate the reproducibil-
ity of the experiments. Lastly, in Chapter 6, we summarize the contributions of the thesis
and examine possible future work.



5

2| Machine learning

This chapter describes the theoretical foundations on which this thesis is based. Section
2.1 gives an introduction of what machine learning is. Section 2.2 dives into what is deep
learning and what distinguishes it from traditional ML.

2.1. Basics

Machine Learning (ML) is a branch of computational research and algorithmic tech-
niques with a primary focus on identifying inherent patterns within data and employing
these patterns to construct models able to predict the correct output given a certain input.

Performing machine learning involves creating a model which is trained on some training
data and then can process additional data to make predictions. Various types of models
have been used and researched for machine learning systems: decision trees, support-
vector machines, regression analyses, bayesian networks and artificial neural networks.

2.1.1. Approaches

Machine learning approaches can be broadly categorized into three main paradigms
based on the type of feedback or signal available to the system:

1. Supervised Learning: This paradigm learns a model by mapping an input to an
output using examples of input-output pairs, known as experience. Human-labeled
data is essential as it allows comparison of the model’s predicted output with the
actual output decided by human experts. For instance, in image classification, a
model is trained on a dataset of images labeled with their respective classes. Given
a new image, the trained classifier predicts the corresponding class.

2. Unsupervised Learning: This approach identifies undetected patterns or regu-
larities in the data to create a representation used for probabilistic reasoning or
prediction. As there are no predefined outputs in the training data, it does not
rely on human-labeled examples. Clustering serves as an example of this paradigm.
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Here, the algorithm analyzes data to detect similarities (features) and, based on
these features, groups the data. The number and type of groups are not predefined.

3. Reinforcement Learning: In this paradigm, a system operates in an environment
where it can perform various actions. Each action influences the environment and is
associated with a reward. The objective is to select actions that maximize a reward
function over the long term.

This thesis will be focused only on supervised learning. The workflow in supervised
learning generally unfolds through two main stages: the training phase and the inference
phase, each with its own specific goals and techniques.

2.1.2. Training

The training phase involves learning (determining) good values for all the weights and
the bias from labeled examples. In supervised learning, a machine learning algorithm
builds a model by examining many examples and attempting to find a model that mini-
mizes loss; this process is called empirical risk minimization [18].

Loss function

A cardinal element of the learning process involves employing a loss function. This
function serves a fundamental purpose: it measures how much the model’s predictions
(ŷ) deviate from the actual outcomes (y). There are different types of loss functions,
depending on the nature of the task.

In regression tasks, the Mean Squared Error (MSE) [2] [55] is often used as the loss
function, and is described mathematically as:

L(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2

Here, n represents the total number of observations. The function provides a singular
scalar value, representing the mean of the squared differences between predicted and actual
outcomes, offering a measurable insight into the precision of the model’s predictions.

In classification problems the Cross-Entropy loss function is predominantly used [53].
Consider pi to be the probability, as computed by the model, asserting that a particular
sample belongs to class i. Given the truth values are one-hot encoded – for instance,
[1,0,0], [0,1,0], and [0,0,1] – and asserting that ti represents the truth value correlative
to class i, the value of ti is discerned to be 1 if the sample is a member of class i and 0
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otherwise.

The Cross-Entropy loss function quantifies the distance between output probabilities p
and actual truth values. For a singular data point, it is expressed as follows:

L(t, p) = −
N∑
i=1

ti log(pi)

In scenarios where the actual labels are one-hot encoded, we refer to the methodology
as "Categorical Cross-Entropy". On the contrary, when labels are expressed as unique
integers, for example [1], [2], and [3] in a 3-class classification problem, we employ the
term "Sparse Cross-Entropy".

After identifying the loss, the objective shifts to minimizing this computed error, usu-
ally by employing optimization algorithms. A widely utilized algorithm in this context is
Gradient Descent [56] [7]. This method operates by repetitively altering the model param-
eters (θ) in a way that continuously reduces the computed loss. The repeated adjustment
or update to the model parameters can be mathematically represented as:

θt+1 = θt − α∇θL(y, ŷ)

In this representation:

• θt+1 and θt symbolize the parameter values at the subsequent and current iteration,
respectively,

• α denotes the learning rate, dictating the magnitude of steps taken towards mini-
mizing the loss function, and

• ∇θL signifies the gradient of the loss function concerning the model parameters,
pointing towards the steepest ascent of the loss function in the parameter space.

After concluding the training phase, the model transitions to the second stage, the
inference phase.

2.1.3. Inference

In this phase the model, comprehensively trained using a training dataset, is employed
to make predictions or decisions on new, unseen data, without undergoing further modi-
fications.
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Inference involves using the model f with learned parameters θ to predict outputs ŷ

given new inputs X, typically expressed as:

ŷ = f(X; θ)

Here, θ remains constant, and the model applies the patterns recognized during training
to new data.

The model’s performance in this phase is evaluated using specific metrics, chosen based
on the type of ML problem. For instance, precision and recall may be employed for
classification problems, while mean absolute error (MAE) might be utilized for regression
problems to average out the absolute differences between the predicted and actual values.

The inference phase is crucial for testing the model’s ability to generalize its learned
knowledge to new, unobserved data, ensuring its predictions or decisions are robust and
reliable across diverse real-world applications.

2.2. Deep Learning

Deep Learning (DL) is a specialized branch of Machine Learning (ML) that stands out
for its use of deep neural networks [16]. Unlike traditional ML methods, which often
require experts to manually design features to understand data, DL relies on complex
neural structures with multiple layers of artificial neurons. These layers equip DL models
with the remarkable ability to independently and hierarchically recognize complex data
patterns directly from raw input.

To simplify, a deep neural network can be thought as a series of interconnected compu-
tational units, similar to neurons in the human brain.

Each neuron in a DNN performs a weighted sum of its input values and applies an acti-
vation function to produce an output. The weights associated with these connections are
crucial and are iteratively adjusted during the training process to optimize the network’s
performance.

Mathematically, let us consider a single neuron in a DNN. It receives inputs, denoted
as x1, x2, x3, . . . , xn, each multiplied by corresponding weights w1, w2, w3, . . . , wn. Addi-
tionally, there is a bias term, b, which plays an essential role in shifting the activation
function. The weighted sum, also known as the activation, is calculated as:

Activation = w1 · x1 + w2 · x2 + w3 · x3 + . . .+ wn · xn + b
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Afterward, an activation function (commonly a non-linear function like the sigmoid or
ReLU) is applied to this result to introduce non-linearity into the neuron’s response. The
neuron’s output, denoted as y, is then determined as:

y = Activation_Function(Activation)

In Figure 2.1 the overall architecture of a neuron in an artificial neural network is shown
(the bias term is omitted for simplicity).

Figure 2.1: The architecture of a neuron in a DNN.

This process is repeated across multiple layers, with each layer learning progressively
abstract features from the input data. The weights for each connection are fine-tuned
using optimization algorithms like gradient descent during the training phase, where the
network minimizes a loss function, such as Mean Squared Error or Cross-Entropy, to
improve its predictive accuracy.

This iterative process of weighted summation, activation, and weight adjustment across
multiple layers enables deep neural networks to autonomously discover intricate data
representations and capture complex patterns, making them highly effective for tasks
such as image recognition, natural language processing, and more.

The key appeal of deep learning lies in its automatic discovery of high-level data features,
leading to significantly improved accuracy, especially in tasks like image recognition and
speech analysis. DL’s attractiveness is rooted in its efficiency in grasping complex data
relationships while leveraging modern computing power and abundant datasets. Conse-
quently, deep learning has swiftly integrated into various applications, including natural
language understanding [42], computer vision [50], autonomous systems, and more. In the
current landscape of machine learning, DL has emerged as an influential and prevalent
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paradigm.

2.2.1. Multi layer perceptrons

A Multilayer Perceptron (MLP) is a feedforward neural network that comprises multiple
layers of interconnected neurons [1]. This structure is mathematically described as follows:

Input Layer: The first layer is the input layer, consisting of neurons representing input
features (x1, x2, . . . , xn). Each neuron in this layer simply passes its value to the neurons
in the subsequent layer.

Hidden Layers: Between the input and output layers, there are hidden layers where
the network learns and captures complex patterns. Neurons in the hidden layers are
represented mathematically as:

Output = Activationi

(
m∑
j=1

wij · xj

)

Here, Activationi is the activation function for neuron i, xj is the output of the j-th
neuron from the previous layer, wij is the weight for the connection between neuron j and
neuron i, and the summation covers all neurons in the previous layer.

Output Layer: The last layer is the output layer, producing the final result or predic-
tion. Neurons in the output layer are represented as:

Output = Activationk

(
p∑

i=1

wik · xi

)

Here, Activationk is the activation function for neuron k, xi is the output of the i-th
neuron from the last hidden layer, wik is the weight for the connection between neuron i

and neuron k, and the summation covers all neurons in the last hidden layer.

During training, weights (wij and wik) are adjusted using optimization algorithms, like
gradient descent, to minimize a loss function. The goal is to learn optimal weights that
enable the network to make accurate predictions.
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Figure 2.2: A MLP with one output neuron.

MLPs excel at capturing intricate patterns and relationships within structured data,
making them suitable for a diverse array of applications, spanning classification and re-
gression tasks.

2.2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [52] are a class of deep learning models specif-
ically designed for processing grid-like data, such as images. CNNs utilize convolutional
layers to automatically detect spatial patterns and hierarchical features in the input data.
The core operation in a convolutional layer is the convolution operation, defined as:

Output(x, y) =
∑
i

∑
j

Input(x− i, y − j) · Kernel(i, j)

In this equation, Output(x, y) represents the value at position (x, y) in the output
feature map, Input(x, y) is the value at position (x, y) in the input data, and Kernel(i, j)
is the value at position (i, j) in the convolutional kernel (filter).

After the Convolutional Neural Network (CNN) has processed the input data with
convolutional layers, the resulting feature maps contain information about local patterns
and features. However, these feature maps are not directly interpretable for classification
tasks. To make a final prediction or classification, a fully connected layer is typically



12 2| Machine learning

added to the network.

The dense layer takes the flattened feature maps as input, where each element in the
feature maps corresponds to a learned feature, and passes them through a series of fully
connected neurons. These neurons collectively learn to recognize and combine the features
from the feature maps, allowing the network to make high-level decisions about the input
data. The output layer of the dense layer often consists of one or more neurons, depending
on the specific classification task.

In classification tasks the output layer has as many neurons as there are classes or
categories to classify the input image into. The network’s final prediction is based on
the activations of these output neurons, typically using a softmax activation function to
convert raw scores into class probabilities. In Figure 2.3, a simple Convolutional Neural
Network (CNN), taking an image from the MNIST dataset [54] as input, features 10
output neurons, each outputting the probability of the input image representing one of
the 10 digits.

Figure 2.3: The overall architecture of a CNN.

The integration of convolutional layers for feature extraction and dense layers for clas-
sification makes CNNs well-suited for tasks like image recognition, object detection, and
more. The hierarchical features extracted by the convolutional layers provide the dense
network with a rich set of features to make informed classifications, and this combination
has proven highly effective in various domains.
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2.3. Paradigms

Together with the growing volume of data and the increasing computational capabilities,
machine learning paradigms have evolved in the way they manage the training process.

2.3.1. Centralized ML

In the traditional paradigm of centralized learning (CL), client devices extract raw data
from various sources spanning measurements, audio, images to videos, and, post prelimi-
nary pre-processing, relay it to a centralized server responsible for executing computation-
ally intensive model training tasks. This methodology, while consolidating computational
demands at a single point, introduces substantial traffic overheads to the underlying net-
work due to the requisite transmission of voluminous data essential for training models.

Although this framework absolves participating devices from computationally taxing
training processes, it introduces a dichotomy: devices might be hesitant to share data,
especially of a privacy-sensitive nature, while the necessity to transmit extensive data
imposes a palpable communication overhead between the participants and the central
server, potentially hampering the efficacy and responsiveness of the learning process.
Consequently, CL, while proficiently centralizing computational demands, at the same
time introduces challenges pertaining to data privacy and communication overhead, ne-
cessitating careful consideration and mitigation.

2.3.2. Distributed ML

Driven by the growing concerns and extra communication efforts linked to centralizing
data in Machine Learning (ML), new approaches that focus on sharing the workload and
keeping data private gained interest [38]. The first paradigm, called distributed (on-site)
learning, avoids sending user data and requests to the cloud, choosing instead to use
on-site ML. Here, the server sends a ready-made or general ML model to user devices.
After it is set up, each device tweaks the model by training it with its own data, allowing
for personalized predictions and data analysis without giving away private data. This
method, which clearly keeps data safe by holding it on the user’s device, has been used
in various applications, from detecting skin cancer [12] to smart classrooms [43].

However, without back-and-forth data exchange between the cloud and devices, models
are limited to individual user experiences and do not benefit from other users’ data.

Federated Learning (FL) provides a way to build a shared Machine Learning (ML) model
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while letting users keep their data. In this approach, users each train their own models and
send them periodically to a central server. The server combines all the models into one,
benefiting from the knowledge of all users without needing to access their individual data.
This method keeps private data spread out across users, while still creating a centralized
model that reflects insights from the data of all the clients participating in the training.

Therefore, distributed ML introduces various strategies to mitigate the challenges posed
by centralized learning.

Figure 2.4 illustrates a comparison among the three approaches.

Figure 2.4: Comparison between the three approaches.
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This chapter introduces the concepts of Federated Learning this thesis is based on. Section
3.1 introduces the topic of Federated Learning. Section 3.2 analyses the available federated
learning frameworks.

3.1. Federated Learning

Federated learning is a machine learning paradigm that trains an algorithm across
multiple decentralized devices, each using its own dataset [30]. The first key point of
federated learning is that it enables multiple actors to build a common, robust machine
learning model without sharing data, thus addressing critical issues such as data privacy,
data security, data access rights and access to heterogeneous data. This aspect enables
federated learning to be used in scenarios where privacy is crucial, such as for example
in training models with data coming from different hospitals, holding sensitive data from
patients [44], or large language models to be trained on chats of users [22].

Figure 3.1: Federated learning applied to the healthcare sector.

Another key point of FL is that participating devices are highly heterogeneous in terms
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of computing resources, data (non-IID), and network connections. Devices are equipped
with different hardware and are located in dynamic and diverse environments. The par-
ticipating devices are usually mobile or edge devices with limited resources. Each device
is provided with a local dataset whose samples are usually generated by the interaction
of the user with the device. For example, the local dataset can be composed of pictures
taken with a mobile phone camera. In other cases the local dataset could contain the
sentences written by the user with a virtual mobile keyboard [22].

The training phase is based on iterative training rounds. During a round, a subset of
devices is chosen to participate in the training. These devices receive the current model
weights from a central server, train the model using their own local dataset, and then
relay back to the server the updated weights of the model. After receiving the weights of
the model updated from the devices, the server aggregates them to a central model and
proceeds to the following round. This iterative process ensures each device contributes
with its local insights, leading to a model that embodies the collective wisdom of all
participants, aiming for optimal accuracy and generalizability, while preserving the data
privacy of the clients.

3.1.1. Federated learning algorithms

Modifications to the way the server behaves in orchestrating clients along rounds and
aggregating weights are frequent, and they take the name of federated learning algorithms.

FedAvg

The most common algorithm, usually used as benchmarking baseline in research pa-
pers, is called FedAvg, introduced by McMahan et al. [40]. This algorithm combines
local stochastic gradient descent (SGD) on each client with a server that performs model
averaging.

Consider a setting with a predetermined set of K clients. Each client k has a unique
local dataset of size nk. At the beginning of every round, a random subset St of clients
is chosen, which represents a fraction C of the total clients. The variable m denotes
the count of selected clients for round t. Initially, it’s assumed that all K clients are
chosen, i.e., C = 1. Let n be the cumulative data size from all selected clients, given as∑K

k=1 nk = n, and let η be the learning rate.

The process starts with the server dispatching the global model parameters wt to the
selected clients. These clients then train this global model locally on their local dataset.
Specifically, using the loss function Fk, every client k adjusts its local model via the
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equation wk = wk − η∇Fk(wk), executing this update for E epochs.

Afterwards, the server aggregates these updates to determine the new global model,
which is an average based on the size of the local datasets. The formula for the global
weights at the completion of round t is:

wt+1 = wt − η

K∑
k=1

nk

n
gk (3.1)

An alternative formulation of this update, considering the weights wk,t of each client k

at time t is:

wk,t+1 = wk,t − ηgk (3.2)

Combining equations (3.1) and (3.2), we derive:

wt+1 = wt − η
K∑
k=1

nk

n
gk

=
K∑
k=1

nk

n
(wk,t − ηgk)

=
K∑
k=1

nk

n
wk,t+1 (3.3)

This aggregation strategy gives more importance to weights from clients who’ve used
larger data subsets for local training. The underlying principle is that clients with more
data typically yield better models, warranting a higher influence on the global model.

FedProx

The FedProx federated algorithm proposed by Li et al. [46] demonstrates significantly
more stable and accurate convergence behavior relative to FedAvg in highly heterogeneous
settings. When speaking about heterogeneity, both statistical and system heterogeneities
are considered.

System Heterogeneity: System heterogeneity in federated networks refers to the dif-
ferences in system-level attributes of devices. The computational, storage, and communi-
cation capacities can vary based on hardware (e.g., CPU, memory), network connectivity
(3G, 4G, 5G, WiFi), and power constraints (battery level). In FedAvg, devices with con-
strained resources, which cannot compute E epochs within a set time frame, are excluded.
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This can impact convergence by reducing the effective devices contributing to the training
and potentially introducing bias if dropped devices possess specific data traits. FedProx
addresses this by allowing the number of epochs on each device to vary according to its
system resources.

Statistical Heterogeneity: Statistical heterogeneity arises when devices have non-
uniform data distributions. As noted in [40], when data is non-identically distributed, the
model can diverge empirically. To prevent this, FedProx introduces a proximal term to
the local subproblem, thereby limiting the variability of local updates. This term serves
dual purposes: (1) it counters statistical heterogeneity by constraining local updates to
remain close to the initial global model; and (2) it allows for safely incorporating variable
amounts of local work resulting from systems heterogeneity. More precisely, instead of just
minimizing the local function Fk(w), device k aims to minimize the following objective:

hk(w;wt) = Fk(w) +
µ

2
∥w − wt∥2 (3.4)

where µ > 0 is a hyper-parameter and wt represents the global model. Through exper-
imentation, the authors determine that µ can be adaptively set based on model perfor-
mance. A large µ can slow convergence by constraining updates to be near the starting
point, while a small µ might have minimal impact. Their heuristic is to raise µ if loss
increase and reduce it otherwise, aiming to ensure convergence. However, the relationship
between loss dynamics and convergence is not elaborated upon.

It is worth noting that FedAvg can be seen as a special case of FedProx when: (1) µ = 0;
(2) the local solver is specifically SGD; and (3) the number of local epochs E remains
constant across devices and rounds.

FedNova

The FedNova federated algorithm, introduced by Wang et al. [51], employs a normalized
averaging method that addresses objective inconsistency while ensuring fast error conver-
gence. Designed for scenarios exhibiting client system heterogeneity, FedNova allows the
number of local iterations τk to be tailored to individual devices. The local iterations for
client k are defined as:

τk =
Eknk

Bk

(3.5)

where Ek is the number of epochs, nk the number of samples used by client k in the local
step, and Bk represents the batch size. This flexibility can be advantageous; for instance,
devices with faster computational capabilities might be allocated more local iterations.
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The variability of local updates across communication rounds might be influenced by fac-
tors like network slowdowns or stragglers. The authors wonder whether the conventional
FedAvg aggregation (as in (3.3)) ensures convergence to a consistent stationary point in
presence of heterogeneous local updates. They prove that such updates, under standard
averaging, may converge not to the original objective function F (x) but to an inconsistent
objective F̃ (x). The difference between these objectives can be substantial, contingent
upon τk values. To counteract this, FedNova proposes normalized and scaled local up-
dates, based on the number of local steps, prior to global model updating. Assuming a
total of K clients, with St being the subset of m ≤ K clients selected in round t, the
global model weight update is given by:

w(t+1) − w(t) =
∑
k∈St

pkτ
(t)
k

∑
k∈St

pk∆
(t)
k

τ
(t)
k

(3.6)

Here, pk = nk∑
j nj

indicates the data fraction at client k, while ∆
(t)
k = w

(t,τk)
k −w(t,0) stands

for the local parameter alterations of client k during round t.

Dynamic sampling selector

Li et al. [28] introduced the dynamic sampling selector to address the challenges of re-
ducing communication and computation costs in federated learning with numerous clients.
Given the fixed bandwidth of the central server when gathering updates from distributed
clients, bottlenecks are imminent. To mitigate this, the authors suggest a dynamic sam-
pling method that starts with a high sampling rate and then gradually reduces it with
each communication round. This approach aims to expedite convergence at the onset of
federated learning by involving a greater number of clients in model aggregation. As a
generalized federated model emerges, the method trims the number of clients participating
in model aggregation to save on communication. Though initially resource-intensive, the
required number of clients drops significantly after a few training rounds. The decaying
rate of the sampling rate is chosen so that, over a given number of communication rounds,
dynamic sampling incurs fewer parameter transmissions than static sampling. The pro-
posed dynamic subsampling employs an exponential decay rate to adjust the sampling
rate throughout training, expressed as:

R(t, β) =
1

exp(βt)

At the t-th training round, the dynamic sampling rate is given by c = C
exp(βt)

, where C

is a predefined initial sample rate. As communication rounds progress, the sampling rate
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becomes very small, sometimes resulting in fewer than one client being chosen for model
aggregation. In real-world scenarios, the minimum number of selected client models is
kept at two. This dynamic approach, with its varying sampling rate, distinguishes it from
static sampling methods.

Power of choice

The Power Of Choice federated algorithm, as introduced by Jee Cho et al. [27], provides
a communication- and computation-efficient client selection framework that flexibly bal-
ances between convergence speed and solution bias. While preceding works have probed
into the convergence of federated learning—considering data heterogeneity, communica-
tion/computation constraints, and partial client participation—most assume unbiased
client selection. In this study, the authors delve into the convergence implications of
federated learning under biased client selection and elucidate the effects of such biases
on convergence speed. Their findings indicate that client selection, when biased towards
entities with higher local losses, accelerates error convergence.

In a cross-device FL configuration with K clients, client k possesses a local dataset Bk

comprising |Bk| = Dk data samples. Interconnected via a central aggregating server, the
collective seeks the model parameter w which minimizes the empirical risk:

F (w) =
1∑K

k=1Dk

K∑
k=1

∑
ξ∈Bk

f(w, ξ) =
K∑
k=1

pkFk(w) (3.7)

where f(w, ξ) defines the composite loss function relative to sample ξ and parameter
vector w. pk = Dk∑K

k=1 Dk
represents the data fraction at the k-th client, while Fk(w) =

1
|Bk|
∑

ξ∈Bk
f(w, ξ) represents the local objective function of client k.

Drawing insights from the aforementioned convergence analyses, the authors propose
a power-of-choice client selection strategy, termed πpow−d. In this strategy, the server
chooses the active client set S(t) as follows:

1. Sample the Candidate Client Set: The central server samples a candidate set
A of d clients (m ≤ d ≤ K) without replacement. Each client k is selected with
probability pk, the fraction of data at the k-th client.

2. Estimate Local Losses: The global model w(t) is dispatched to the clients in set
A, and they compute and relay their local loss Fk(w

(t)) back to the central server.

3. Select Highest Loss Clients: From set A, the server constructs the active client
set S(t) by choosing the top m = max(CK, 1) clients with the largest values of
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Fk(w
(t)), with ties broken at random. These clients participate in the subsequent

training round, spanning iterations t+ 1, t+ 2, . . . t+ τ .

The authors further propose two strategy variants:

• Computation-efficient Variant πcpow−d: To save computational resources, rather
than evaluating Fk(w) over the complete local dataset Bk, an estimate is derived
from 1

|ξbk|
∑

ξ∈ξbk f(w, ξ), where ξbk is a uniformly random sampled mini-batch from
Bk.

• Communication- and Computation-efficient Variant πrpow−d: Saving both
computation and communication cost, chosen clients for each round send their aver-
aged loss over local iterations (computed as 1

τ |ξ(l)k |

∑t
l=t−τ+1

∑
ξ∈ξ(l)k

f(w
(l)
k , ξ)) during

the model update to the server. The most recently received value from each client,
treated as a proxy for Fk(w), guides client selection. For clients yet to be selected,
the latest value is set to ∞.

3.1.2. Open Issues

Federated learning, as a rapidly evolving area of study, still faces many unsolved chal-
lenges, some of which are elucidated by Baresi et al. [4].

Scalability

The traditional model prescribes a centralized orchestrator that oversees the manage-
ment, distribution, and aggregation of results from various clients. Such a central point
can readily become a system bottleneck or a single failure point, jeopardizing the entire
training process should it malfunction. The scientific community has been actively seek-
ing decentralized federated learning solutions. Bonawitz et al. [6], for instance, propose
an elastic architecture capable of scaling with the number of connected clients, although it
remains conceptual since no experimental results are shown in the paper. Other research
avenues like those explored by Korkmaz et al. [32] leverage peer-to-peer (P2P) networks
to remove the need for an orchestrator. Here, every client undergoes local training and
conveys results to selected neighboring clients, then updates its model by averaging re-
ceived parameters and its local model. Still, there might be a necessity for an orchestrator
to initialize the model, tasks, and training algorithms, especially during hyperparameter
tuning.
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Client selection

Random selection remains the go-to method used by orchestrator to select clients par-
ticipating in a training round. However, more strategic selection could enhance system
performance. Clients could convey nonsensitive metadata about their status, like the
quality and size of local samples, computational resource availability, or battery life, to
the orchestrator. With such insights, the orchestrator could more judiciously select clients,
potentially mitigating the drag from stragglers (i.e., clients that are slower than the others
to complete a training round) without compromising privacy. Furthermore, an orchestra-
tor might maintain logs on device availability and historical failures to refine selection.
Noteworthy initiatives in this domain include those previously discussed [27, 28].

Resource allocation

The resources available on each device can vary dramatically, for instance, between IoT
devices and base stations. Therefore, expecting uniform workloads or performance across
devices is unrealistic. McMahan et al. proposed FedAvg [40], performing multiple local
training iterations within every global round before relaying results to the orchestrator,
yielding bandwidth savings over more traditional methods like FedSGD [40]. Li et al. [46]
advanced FedProx, a FedAvg variant, to exploit resource heterogeneity. Features include
the local processing of variable workloads depending on available resources, the aggre-
gations of partial straggler data, and a tunable parameter limiting the impact of local
updates to prevent significant model shifts per round. Yu et al. [58] introduced Fed+
that combines various FL algorithms, letting heterogeneous devices undertake varying
number of iterations during training rounds, depending on the device’s resources. Baresi
et al. [3] portrayed FL applications as self-adaptive systems, optimizing client resource
allocation at runtime based on model accuracy and network overhead constraints. Prelim-
inary evaluations proved the efficacy of this strategy in conserving client resources with
respect to existing methods. While basic strategies like FedAvg remain agnostic to client
resources, more refined methods must take into account device heterogeneity and resource
availability to optimize iteration scheduling and yield superior results faster.

3.2. Analysis of FL frameworks

Setting up a realistic federated network for experimentation presents notable challenges
and costs. A real federated environment often includes an extensive number of clients.
For instance, private networks typically comprise hundreds to thousands of devices, while
public networks can extend to millions. The device configurations within these networks
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are inherently heterogeneous. Replicating such a vast and diverse environment mandates
acquiring or renting a multitude of devices, resulting in substantial costs. Moreover, the
geographic distribution of these devices, which leads to varying communication times, is
a pivotal factor in a federated setup. Emulating this distribution physically can introduce
logistical difficulties. While a physical network mirrors real conditions, its inflexibility
can inhibit simulation of diverse network states. Changes in hardware capabilities, net-
work conditions, or other uncontrollable factors mean that experimental outcomes are
hardware-dependent, complicating reproducibility. The nature of data collection in a fed-
erated environment, whether through sensors or user interactions, further complicates the
setup and can escalate costs. For instance, devices equipped with accelerometer sensors
might be suitable for activity recognition, yet inadequate for other common federated
tasks like image recognition or text prediction. Addressing this breadth requires diverse
data collection methods. Given these complexities, numerous existing federated learning
frameworks aim to navigate and mitigate these challenges.

3.2.1. Tensorflow federated

TensorFlow Federated (TFF) [20] is an open-source framework designed for machine
learning and various computations on decentralized data. TFF is developed to promote
open research and experimentation in federated learning (FL). It allows developers to sim-
ulate federated learning algorithms on their models and data, as well as to test innovative
algorithms.

TFF structures its interfaces into two primary layers:

• The Federated Core API provides lower-level interfaces that merge TensorFlow with
distributed communication operations.

• The Federated Learning API offers high-level interfaces, enabling integration of ex-
isting machine learning models into the TFF framework.

These layers facilitate fundamental tasks, such as federated training or evaluation, with-
out delving deep into the intricacies of the federated learning algorithms.

To enhance experimental capabilities, TFF’s creators introduced a dataset collection
for simulation scenarios. These datasets enable the retrieval of non-iid partitions for a
specified client count. However, a limitation lies in its rigidity; the dataset partition cannot
be customized. The number of clients for partitioning the datasets is predetermined, and
given a client id, its local dataset is also unchangeable. This restricts the potential to
simulate environments with a varied number of clients or clients with different sample
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sizes. Another drawback of this framework is that it is not very user friendly and flexible,
given that most of the core logic is written in the core API, written mainly in C++, and
not very well documented.

The library is open-source, with an Apache license, so friendly to expandibility, and the
project hosted on Github [21] is quite popular and well maintained, counting 2.2k stars.

3.2.2. FATE

FATE [39] is an open-source project geared towards facilitating a secure and federated
AI ecosystem. Its design encompasses multiple secure computation protocols, empower-
ing big data collaboration while ensuring compliance with data protection regulations.
Sponsored by WeBank, a privately-owned neo bank situated in Shenzhen, China, FATE
is available for both standalone and cluster deployment configurations. The structure of
FATE consists of several components, here we highlight only a few of them:

• FATEFlow: The central component of FATE, FATEFlow encapsulates the end-to-
end machine learning orchestration pipeline. This pipeline is proficient in handling
tasks ranging from data preprocessing to model training, testing, publishing, and
serving.

• FederatedML: This component is pivotal for the implementation of numerous
standard machine learning algorithms alongside other utility tools.

• FATEBoard: Serving as a suite of visualization and dashboarding tools, FATE-
Board simplifies the process of exploring, analyzing, and comprehending federated
learning models.

• FATE Serving: Dedicated to enabling federated learning models for production
usage, this component ensures smooth deployment in real-world applications.

• FATE-Client: Designed to interact with various FATE components, this compo-
nent plays a crucial role in system operations.

One of FATE’s distinct advantages lies in the breadth of its functionality. Specifically,
FATE supports live visualization through FATEBoard, incorporates its own model serving
mechanism via FATEServing, is compatible with Spark clusters facilitating large-scale
computations, and KubeFATE enables the deployment of FATE using Docker Compose
and Kubernetes.

However, navigating FATE’s myriad modules and options is not always intuitive. While
it boasts extensive documentation, users might find it cumbersome to browse through.
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Moreover, the English version occasionally appears to be incomplete.

In summary, FATE emerges as a business-ready FL framework, loaded with pre-built
modules that facilitate pipeline construction and an array of additional functionalities,
including orchestration. However, it is not easy to build and use custom modules and
usability could be improved.

3.2.3. FedJax

FedJAX is a JAX-based open-source library designed specifically for Federated Learning
simulations [45].

JAX [19], abbreviated for "Just After eXecution," is a contemporary machine learning
library pioneered by DeepMind. Unlike Tensorflow, which is a flagship product of Google,
JAX is more research-oriented. The research community is increasingly adopting JAX,
thanks to its unique features and its similarity with the NumPy syntax. Essentially, JAX
serves as a Just-In-Time (JIT) compiler that capitalizes on maximizing FLOPs to produce
optimized code while retaining the elegance of pure Python. Some of the standout features
of JAX include:

• Just-in-Time (JIT) compilation.

• Extension of NumPy code to CPU, GPU, and TPU.

• Capabilities for automatically obtaining of the gradient function through differenti-
ation of a function.

• Automatic vectorization.

• Enhanced options for numerical program transformations and compositions.

The primary objective of FedJAX is to provide researchers with an easy-to-use platform
that can expedite the process of developing and evaluating federated algorithms. A no-
table feature of this library is its compatibility with accelerators, such as GPU and TPU,
without necessitating significant additional configurations. Despite its capabilities, it is
important to note that FedJAX is primarily aimed at research purposes and is not suited
for deployment across distributed devices.

Given that simulation is the primary concern, there is no need to introduce complexities
associated with distributed machine communication. The implication is that all per-client
work can efficiently run on a singular machine, resulting in a simpler API and faster
execution in most scenarios.
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However, despite the strong backing from a conglomerate like Google and the utilization
of a robust framework like JAX, FedJAX has yet to gain significant popularity. As of
now, its presence on platforms like GitHub is relatively modest, with only 242 stars [17],
and it does not exhibit the active maintenance seen in other projects.

3.2.4. FedML

FedML [23] seeks to provide a comprehensive platform for ML, complemented by a suite
of tools tailored to diverse needs in the domain.

At its core is the FEDML Nexus AI, a next-generation cloud service targeting LLMs &
Generative AI. This service allows developers to perform model training, deployment, and
federated learning across a number of platforms, including decentralized GPUs, multi-
clouds, edge servers, and even smartphones, in a manner that’s both economical and
secure. Seamlessly integrated with the FEDML open-source library, FEDML Nexus AI
ensures robust support across three pivotal AI infrastructure layers: user-centric MLOps,
an efficiently managed scheduler, and high-performance ML libraries suitable for various
AI tasks on GPU Clouds.

Among the large number of components available, the FEDML Federate stands out as
the federated learning platform. This is further empowered by the world’s first FLOps
(Federated Learning Ops), which promotes on-device training on diverse platforms like
smartphones and cross-cloud GPU servers. The platform’s versatility extends to facili-
tating zero-code, lightweight, cross-platform, and provably secure federated learning and
analytics, thanks to its cross-platform Edge AI SDK, deployable on edge GPUs, smart-
phones, and IoT devices.

FEDML’s strength revolves around its versatile federated learning simulator, offering
support for data silo-based federated learning, distributed training acceleration, MLOps,
open-source backing, and an array of datasets. However, its main drawback is in its
complexity; while the platform offers an extensive toolset and multiple solutions, their
complexity and overlaps often lead to confusion, making the learning process challenging.

The core libraries are open source and the project counts 3200 stars on GitHub [13].

3.2.5. PySyft

PySyft [61], an initiative of the OpenMined project backed by major tech corporations
and open-source contributors, is a promising open-source federated learning (FL) frame-
work. From a larger perspective, PySyft is not only a FL framework but a remote data
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science platform, facilitating experiments on sensitive data. This is achieved while ensur-
ing privacy via mechanisms like differential privacy and secure multi-party computation.

For optimal functioning, PySyft integrates with PyGrid, a bridge between data owners
(FL clients) and data scientists (FL servers). While PyGrid is fundamentally a Linux
application, it offers cross-OS compatibility through containers, and its synergy with
HAGrid, a CLI tool, augments deployment ease.

When performing FL experiments PySyft is not framework-agnostic, but supports only
the deep learning libraries PyTorch and TensorFlow. PySyft currently faces challenges in
maintaining documentation congruency with its evolving versions, potentially due to its
active development by its open source community.

In summary, PySyft goes beyond normal FL frameworks by creating a platform where
not only FL but also federated data science is addressed. Although it offers multiple
capabilities, which can occasionally lead to complexity, especially in its FL segment, the
framework’s current documentation gaps makes it difficult to understand by newcomers.
Yet, its potential is undeniably evident, as echoed by its impressive traction, with over
9000 stars on GitHub [41].

3.2.6. Flower

Flower (flwr) [5] is a versatile framework designed for building federated learning sys-
tems, rooted in principles that prioritize customization, extensibility, framework-agnosticism,
and maintainability.

Developed from a research project at the University of Oxford, Flower accommodates
diverse federated learning configurations, enabling users to tailor the system to their
specific use cases. Its framework-agnostic nature allows seamless integration with various
machine learning libraries, supporting PyTorch, TensorFlow, and more.

Flower’s server orchestrates the federated learning process, guided by a user-defined
strategy, while clients, represented by subclasses of flwr.client.Client, await server
instructions for training and evaluation.

Notably, Flower offers a powerful simulation capability through the VirtualClientEngine,
facilitating experimentation and validation across different scenarios. With a well-documented
API, an array of tutorials, and an active community, Flower stands out as a comprehensive
and accessible tool for researchers and developers in the federated learning domain. Its
baselines, mirroring state-of-the-art techniques, further enhance its utility for comparative
studies and experimentation.
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3.3. Framework of choice

In this section, we clarify the selection of our federated learning framework, outlining
the reasons behind our choice. We then present the chosen framework in detail.

3.3.1. Criteria

In this subsection, we elaborate on the criteria that have guided our choice of selecting
Flower as the framework to use in this thesis.

In Table 3.1 we give a consolidated view of the strengths and weaknesses of the afore-
mentioned federated learning frameworks.

User friendliness

Flower is easy to use and learn. The primary objective is to utilize a framework that
other researchers can easily reuse to reproduce our results, and Flower fits this require-
ment. Its well-maintained documentation, tutorials, and baselines provide a structure for
implementing our techniques and ensuring their reusability. Compared to other power-
ful frameworks such as FedML and PySyft, Flower excels in its documentation, aligning
perfectly with our needs.

Extendability

Flower offers numerous classes that can be easily extended and customized with minimal
effort. This flexibility allows us to concentrate on the core algorithms and techniques
instead of integrating changes into a convoluted structure. This criterion led us to discard
Tensorflow Federated, as it heavily relies on the underlying Federated Core API. This
API is not thoroughly documented, making it challenging to understand and resulting in
intricate, hard-to-extend code.

Capabilities

Flower is among the most versatile frameworks available. Its capabilities range from
adaptability to various client types (mobile, embedded, and edge devices) to the monitor-
ing of the FL loop using logging and external tools like Grafana. Its compatibility with all
major machine learning frameworks ensures its suitability for a range of tasks, including
image classification, natural language processing, and sentiment analysis.
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Framework Strengths Weaknesses
TensorFlow
Federated
(TFF)

+ Integration with TensorFlow.
+ Low-level and high-level APIs.
+ Simulation scenarios with pre-

defined datasets.

- Limited dataset customization
in simulation.

- Core logic in C++, less user-
friendly.

FATE
+ Secure computation protocols.
+ End-to-end ML orchestration

pipeline.
+ Versatility in deployment op-

tions.

- Framework complexity.
- Documentation complexity.
- English version occasional in-

completeness.

FedJax
+ JAX-based for easy NumPy

syntax.
+ Compatible with GPU and

TPU.

- Limited popularity and mainte-
nance.

- Primarily research-oriented.
- Not suited for deployment

across distributed devices.

FedML
+ Support for various AI infras-

tructure layers.
+ Business-ready with pre-built

modules.

- Complexity in module usage.
- Overlapping functionalities.

PySyft
+ Offers multiple capabilities.
+ Remote data science platform.

- Documentation gaps
- Can occasionally lead to com-

plexity.
- Limited framework support.

Flower
+ Customizable and extendable.
+ Framework-agnostic and versa-

tile.
+ Well-documented with active

community.
+ Built-in simulation engine.

- None significant.

Table 3.1: Strengths and weaknesses of FL frameworks.

Simulation

Flower ’s built-in simulation engine allows for quick prototyping and verification of each
strategy’s results without adapting or scaling the simulation code. Varying hyperparam-
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eters and running simulations with a large number of clients, even on a single machine,
becomes feasible. This adaptability enables experimentation with different configurations
without limitations imposed by the tool.

Popularity

Lastly, the chosen framework should be popular and actively maintained. This char-
acteristic is vital to ensure that the framework remains updated and functional so that
researchers can reproduce implemented results even years later. Thanks to the variety of
channels Flower offers for community interaction, it has gained considerable popularity.
Most importantly, its community is highly active and engaged.

In summary, the choice of Flower is motivated by its user-friendliness, extendability,
broad capabilities, built-in simulation engine, and active community support. It excels in
providing a comprehensive and flexible platform for federated learning, making it suitable
for our research and experimentation needs.

3.3.2. Flower in detail

In this subsection, we delve into Flower, highlighting its numerous features and capa-
bilities.

Flower (flwr) is a framework for building federated learning systems [5]. The design of
Flower is based on a few guiding principles:

1. Customizable: Federated learning systems vary wildly from one use case to an-
other. Flower allows for a wide range of different configurations depending on the
needs of each individual use case.

2. Extendable: Flower originated from a research project at the University of Oxford,
so it was built with AI research in mind. Many components can be extended and
overridden to build new state-of-the-art systems.

3. Framework-agnostic: Different machine learning frameworks have different strengths.
Flower can be used with any machine learning framework, for example, PyTorch,
TensorFlow, Hugging Face Transformers, PyTorch Lightning, MXNet, scikit-learn,
JAX, TFLite, fastai, Pandas for federated analytics, or even raw NumPy for users
who enjoy computing gradients by hand.

4. Understandable: Flower is written with maintainability in mind. The community
is encouraged to both read and contribute to the codebase.
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Being complete customization one of the founding principles behind Flower, the frame-
work allows programmers to load the data, define the model and configure its training
and evaluation phase at each client independently, offering a supporting set of classes to
integrate all of this into a federated learning environment. Federated learning systems
consist of a server and multiple clients, each of them do have a counterpart class in Flower.

Server

In federated learning, the server sends the global model parameters to the clients, which
train their models on the local datasets and send the updated model parameters back to
the server. As a result the role of the server is to orchestrate this process along all its
phases.

It is possible to implement a federated learning server in Flower by implementing sub-
classes of flwr.server.Server. This class uses some other objects to delegate part of
its functionality, in detail:

• ClientManager: Manages a set of ClientProxy objects, each representing a single
client connected to the server, and selects clients participating in each training round
depending on the logic defined in the Strategy.

• Strategy: Represents a FL algorithm and defines the logic behind each phase: se-
lection of clients, configuration of federated training, aggregation of weights returned
to the server into the global model.

In Figure 3.2, the main components of the FL server in Flower are presented through a
UML class diagram.

Figure 3.2: Flower server class diagram.
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In summary, the FL loop in the Server asks the Strategy to configure the next round of
FL, sends those configurations to the affected clients, receives the resulting client updates
(or failures) from the clients, and delegates result aggregation to the Strategy. It takes
the same approach for both federated training and federated evaluation, with the added
capability of server-side evaluation (again, via the Strategy).

Clients

The client side is simpler in the sense that it only waits for messages from the server.
It then reacts to the messages received by calling user-provided training and evaluation
functions.

In Flower, it is possible to create clients by implementing subclasses of flwr.client.Client.
Implementing a client, in its simplest case, involves implementing the three main methods
that define the actions of a client, get_parameters, fit, and evaluate:

• get_parameters: Return the current local model parameters.

• fit: Receive model parameters from the server, train the model parameters on the
local data, and return the (updated) model parameters to the server.

• evaluate: Receive model parameters from the server, evaluate the model parame-
ters on the local data, and return the evaluation result to the server.

Federated learning systems have multiple clients, so each client will be represented by
its own instance of FlowerClient. If we have, for example, three clients in our workload,
then we would have three instances of FlowerClient. Flower calls FlowerClient.fit

on the respective instance when the server selects a particular client for training (and
FlowerClient.evaluate for evaluation).

To train the model, each client needs its own dataset. Depending on the application,
Flower allows clients to load datasets from popular datasets that have been previously
appropriately preprocessed and split in partitions, or to load their own dataset stored
locally.

As previously mentioned, Flower is designed to be framework-agnostic. This means it
supports various machine learning frameworks. Not only can users build models used by
clients with popular deep learning libraries like PyTorch and TensorFlow, but they can
also utilize frameworks such as TensorFlow Lite for mobile clients [15].
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Simulation

As already elaborated in Section 3.2, simulating Federated Learning workloads is useful
for a multitude of use-cases: we might want to run our workload on a large cohort of
clients but without having to source, configure and manage a large number of physical
devices; we might want to run our FL workloads as fast as possible on the compute
systems we have access to without having to go through a complex setup process; we
might want to validate our algorithm on different scenarios at varying levels of data and
system heterogeneity, client availability, privacy budgets, etc.

Flower can accommodate these scenarios by means of its VirtualClientEngine. The
VirtualClientEngine schedules, launches and manages virtual clients. These clients are
identical to non-virtual clients in the sense that they can be configured by creating a
class inheriting, for example, from flwr.client.NumPyClient and therefore behave in
an identical way. In addition to that, clients managed by the VirtualClientEngine are:

• resource-aware: this means that each client gets assigned a portion of the compute
and memory on the system. The user can control this at the beginning of the simu-
lation and it allows to control the degree of parallelism of the Flower FL simulation.
The fewer the resources per client, the more clients can run concurrently on the
same hardware.

• self-managed : this means that the user do not need to launch clients manually,
instead this gets delegated to VirtualClientEngine’s internals.

• ephemeral : this means that a client is only materialized when it is required in the
FL process (e.g. to do fit()). The object is destroyed afterwards, releasing the
resources it was assigned and allowing in this way other clients to participate.

The VirtualClientEngine implements virtual clients using Ray, an open-source frame-
work for scalable Python workloads. In particular, Flower’s VirtualClientEngine makes
use of actors to spawn virtual clients and run their workload.

In Figure 3.3 the Flower core framework architecture with both Edge Client Engine and
Virtual Client Engine is shown. With edge clients we refer to clients living on real edge
devices and communicating with the server over RPC. Virtual clients on the other hand
are those managed by the VCE for simulation on a single machine, they consume close to
zero resources when inactive and only load model and data into memory when the client
is being selected for training or evaluation.
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Figure 3.3: Flower core framework architecture.

Baselines

Among its many advantages, Flower provides a set of baselines, which are organized
directories designed to reproduce results from notable publications or benchmarks. These
baselines enable researchers and students to effortlessly replicate state-of-the-art FL tech-
niques and algorithms, facilitating comparisons with their own ideas and experiments.
Flower actively encourages its open-source community to expand the available baselines,
providing scripts and abstract classes to integrate new techniques.

The assortment of FL baselines in Flower is continuously expanding, currently featur-
ing more than five cutting-edge techniques ready for experimentation. These include
DASHA [49], FedMeta [10], FedMLB [31], FedProx [46], Fjord [24], MOON [36], and
TAMUNA [11].

This feature of Flower echoes what was highlighted in Section 3.2 regarding the primary
benefits of a FL framework: the ability to compare new methodologies with state-of-the-
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art techniques.

Documentation

Another significant advantage of Flower is its up-to-date and well-organized documen-
tation. Both APIs and classes are meticulously documented and maintained. Such clarity
is not a given, especially for an open-source project boasting over 90 contributors. This is
achieved by enforcing a rigorous coding and documentation style, which is verified using
analyzers that must be satisfied before merging new code into the repository.

Alongside its great documentation, Flower provides an array of well-crafted tutorials to
assist newcomers in familiarizing themselves with the principles of Federated Learning as
well as the components and classes of Flower. These tutorials include ready-to-run Colab
notebooks. Users begin by constructing their initial system in Flower and progressively
evolve it into a sophisticated Federated Learning environment.

Lastly, Flower sustains an active community through various channels: a dynamic and
organized Slack channel where both novices and experts can pose questions, suggest new
features, and directly interact with the project’s founders. Additionally, they host events
such as Flower Monthly [14], where community members can showcase new applications
of Flower across diverse sectors, spanning from finance to medicine.
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This chapter describes our proposed solutions to address the challenges introduced in
Section 1.1. The chapter is organized as follows: in Section 4.1, the solutions implemented
for the topic of dynamic selection of clients are presented; in Section 4.2, the solutions
implemented for the topic of resource-aware workload allocation are presented.

4.1. Dynamic selection

The focus of this section is on algorithms and techniques designed for the rational
dynamic selection of clients that participate in each round of training and/or evaluation
in federated learning.

This emphasis addresses one of the open issues in federated learning as highlighted in
Section 3.1.2. While random selection remains the prevalent strategy employed by the
orchestrator to determine the clients participating in a training round, a more strategic
selection could further optimize system performance.

To enhance the selection process, techniques that involve clients providing non-sensitive
metadata regarding their current status need to be developed. This metadata should
encompass factors such as the quality and size of local samples, computational resource
availability, or even battery life. With these insights at its disposal, the orchestrator
can make more informed choices about client selection, thus speeding up the convergence
of training or maintaining similar performances but using fewer clients at each round,
thereby saving resources. Moreover, by maintaining logs on device availability and track-
ing historical failures, the orchestrator can further fine-tune its selection strategy.

The contributions of this thesis on this topic, as underscored in Section 1.2, are threefold:

1. Investigation of techniques for dynamic selection of clients.

2. Extension of the Flower framework with dynamic sampling strategies for ease of
reproducibility by other researchers and consolidated simulation.

3. Integration with resource-aware workload allocation strategies.
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In total, five state-of-the-art strategies were implemented and integrated into the Flower
framework to facilitate comparison and to ensure straightforward reproducibility: FedAvg,
dynamic sampling, pow-d, cpow-d and rpow-d. Figure 4.1 depicts a UML class diagram
of these techniques.

Figure 4.1: The five strategies implemented.

4.1.1. FedAvg

FedAvg, introduced by McMahan et al. [40] and detailed in Section 3.1.1, is often used
as representation of a random selector. It is universally recognized as the benchmark for
client selection in federated learning.

Consider a setting with a predetermined set of K clients. Each client k has a unique local
dataset of size nk. At the beginning of every round, this strategy consists of selecting a
random subset St of clients, which represents a fraction C of the total clients. In Table 4.1,
the parameters of this strategy are specified.

Parameter Description
T Total number of rounds
K Total number of clients
C Fraction of clients to select at each round

Table 4.1: Parameters of the FedAvg technique
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The pseudocode for the FedAvg strategy is presented in Algorithm 4.1.

Algorithm 4.1: FedAvg Strategy

parameters = initialize_parameters ()

for round in t = 1, 2, ..., T :

# Sample m clients at random

m = max(C * K, min_num_clients)

clients = random.sample(m)

# Use the sampled clients for training

for client in clients:

fit_result = client.fit()

fit_results.append(fit_result)

# Aggregate fit results using a weighted average

parameters , results = aggregate_fit(fit_results)

# Perform server -side evaluation

evaluate(parameters , test_set)

Parameters and results are aggregated using the formula:

wt+1 =

∑K
k=1 nk · wk,t+1

n

where the weights are determined by the dataset size nk of each client.

Each client executes a round of training on its local dataset when the fit() function
is called.

Flower provides a built-in FedAvg implementation among its baselines, ensuring seam-
less integration for new projects wishing to benchmark against FedAvg. In particular, the
core strategy was already implemented, and we integrated it with our specific client, using
custom models and datasets. FedAvg serves as our baseline for comparing new techniques.
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4.1.2. Dynamic sampling

One of the primary constraints of FedAvg is its method of selecting clients for training.
In each training round, it selects a number m of clients, where m = max(C ·K, 1). Here,
C and K respectively represent the fraction of clients to select and the total number of
clients. Both of these variables are predefined and remain static throughout the federated
learning process.

Our focus in this thesis is to explore dynamic techniques that modify client selection
dynamically at each round, rather than sticking to the static nature of FedAvg.

For this reason we deepen the Dynamic Sampling technique. This method, first in-
troduced by Ji et al. [28] and detailed in Section 3.1.1, was developed to address the
communication and computation challenges in federated learning, especially with a large
number of clients.

The core idea behind this technique is a dynamic sampling method. Initially, it starts
with a high sampling rate, which reduces gradually with each communication round.
This strategy seeks to accelerate convergence at the beginning by involving more clients
in model aggregation. As a more generalized federated model begins to take shape,
the method reduces the number of clients in the aggregation process, thus conserving
communication resources. While it might be resource-intensive at first, the number of
participating clients drops significantly after a few training rounds. The decay rate of
the sampling rate is chosen to ensure that, over multiple communication rounds, dynamic
sampling involves fewer parameter transmissions than its static counterpart.

The dynamic subsampling utilizes an exponential decay rate for adjusting the sampling
rate during training. This can be represented as:

R(t, β) =
1

exp(βt)

For the t-th training round, the dynamic sampling rate is defined by:

c =
C

exp(βt)

Where C is a pre-defined initial sample rate. As communication rounds progress, this
sampling rate becomes very small, sometimes even selecting fewer than one client for
model aggregation. However, in practical applications, a minimum of two client models
are chosen for aggregation. This dynamic approach, with its variable sampling rate,
differentiates this strategy from static sampling techniques.
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Although the core idea of the strategy has been implemented exactly as in the afore-
mentioned paper, extending Flower to support this logic involved creating a set of custom
classes. In particular, we created a custom Strategy that implements the core algorithm
of selection, integrated it into a custom Server, and with a custom Client, using our own
models and datasets. Finally, we allowed integration of this strategy with resource-aware
workload allocation techniques, which will be presented shortly.

A number of parameters are also involved in this technique, and they are reported in
Table 4.2. All of them have been defined in the conf.yaml file and can be easily changed
for new experiments.

Parameter Description
T Total number of rounds
K Total number of clients
C Initial sampling rate
β Decay rate for adjusting the sampling rate during training

Table 4.2: Parameters of the Dynamic Sampling technique

The core of the strategy involves dynamically modifying the number of clients sampled
at each round accordingly to an exponential decay rate starting from the initial sampling
rate.

The pseudocode for this part of the strategy is depicted in Algorithm 4.2.

Algorithm 4.2: Dynamic sampling Strategy

parameters = initialize_parameters ()

for server_round in t = 1, 2, ..., T :

# Compute sample rate c

sample_rate = C / math.exp(β * server_round)

# Compute number of clients to sample

sample_size = max(sample_rate * K, min_fit_clients)

# Sample sample_size < K clients at random

clients = random.sample(sample_size)

# Use the sampled clients for training

for client in clients:
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fit_result = client.fit()

fit_results.append(fit_result)

# Aggregate fit results using a weighted average

parameters , results = aggregate_fit(fit_results)

# Perform server -side evaluation

evaluate(parameters , test_set)

The remaining part of the technique involves pretty standard clients that load their own
dataset partition and train a model, in our case implemented using Tensorflow.

4.1.3. Power of choice

Dynamic sampling introduces dynamic selection of clients, however it still uses a random
criteria to select clients at each round. As highlighted at the beginning of this Section,
we would like to experiment some techniques that select clients dynamically depending
on how do they perform during training.

Here comes Power of Choice, a technique for selecting clients introduced by Jee Cho et
al. [27], that strives to provide a communication- and computation-efficient client selection
framework that flexibly balances between convergence speed and solution bias. Power of
Choice consists of a two key characteristics:

• Dynamically selects clients that have the highest loss during training, at the cost of
obtaining a biased client selection technique.

• Aims for a faster convergence speed by selecting clients with the highest loss, thus
enabling the model to converge more quickly.

The idea behind this selection technique is that clients having the highest loss will
be those who still have something "to contribute" to the global model, as a result it is
convenient selecting them to make the global model faster converge at the cost of having
a biased model.

Three variants of this strategy are proposed in the corresponding paper: pow-d, cpow-d
and rpow-d. We extended Flower to include of all of them. Being Power of Choice a
more complex strategy, it required to create a custom Server for each technique, as well
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as a custom Strategy and other custom classes such as Criterion to customize the logic to
select the clients as well as custom clients to behave differently depending on the variant
employed.

In Table 4.3, the parameters of the three variants are introduced.

Parameter Variant Description
T all Total number of rounds
K all Total number of clients
C all Fraction of clients to select at each round
d all Number of clients to select in the candidate set
b cpow-d Number of samples in the mini-batches used in cpow-d

Table 4.3: Parameters of the Power of Choice techniques

pow-d

This strategy is the base variant of the Power of Choice techniques. It consists of the
following phases for server-side selection of active clients at the start of each round:

1. Sample the Candidate Client Set: The central server samples a candidate set
A of d clients (m ≤ d ≤ K) without replacement. Each client k is selected with
probability pk, the fraction of data at the k-th client.

2. Estimate Local Losses: The global model w(t) is sent to the clients in set A,
and they compute and return their local loss Fk(w

(t)) to the server. This phase is
denoted as evaluate_first_phase in the pseudocode.

3. Select Highest Loss Clients: From set A, the server constructs the active client
set S(t) by choosing the top m = max(CK, 1) clients with the largest values of
Fk(w

(t)), with ties broken at random. These clients participate in the subsequent
training round.

The pseudocode for this variant is presented in Algorithm 4.3.

Algorithm 4.3: pow-d Strategy

parameters = initialize_parameters ()

for server_round in t = 1, 2, ..., T :

# Select candidate set of d clients , each client has

# probability of being chosen proportional to its
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# dataset size

cl_prob = [num_data_samples[cid] for cid in clients]

cl_prob_norm = [p/sum(cl_prob) for p in cl_prob]

candidate_set = np.random.choice(clients , size=d,

replace=False , p=cl_prob_norm)

for client in candidate_set

# Estimate local losses of the candidate set

res_first_phase = evaluate_first_phase ()

# Sort clients based on their losses

sorted_client_losses = sorted(res_first_phase)

# Take the m clients with the highest losses

m = max(C * K, 1)

chosen_clients = [client in sorted_client_losses [:m]]

# Use the sampled clients for training

for client in chosen_clients:

fit_result = client.fit()

fit_results.append(fit_result)

# Aggregate fit results using a weighted average

parameters , results = aggregate_fit(fit_results)

# Perform server -side evaluation

evaluate(parameters , test_set)

cpow-d

The Power of Choice base strategy (pow-d) presents two primary disadvantages:

• It necessitates a preliminary phase where each client evaluates the entire local
dataset, leading to increased computational overhead.

• All clients must communicate their local losses to the server in every round, intro-
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ducing an additional communication cycle into the federated learning loop, resulting
in increased communication costs.

To mitigate the first issue, a computationally efficient variant, from now on referred
to as cpow-d, is proposed. The primary distinction between pow-d and cpow-d is that,
instead of requiring clients to evaluate their local loss Fk on the full local dataset Bk,
cpow-d has clients compute Fk on a mini-batch of b samples, randomly selected from
Bk. This approach saves computational resources and accelerates the overall process, as
the initial phase completes more quickly. However, this efficiency comes at the cost of
potentially reducing the representativeness of the loss, which might not reflect the loss
across the entire dataset.

The pseudocode for the cpow-d variant is outlined in Algorithm 4.4.

Algorithm 4.4: cpow-d Strategy

parameters = initialize_parameters ()

for server_round in t = 1, 2, ..., T :

# Select candidate set of d clients , each client has

# probability of being chosen proportional to its

# dataset size

cl_prob = [num_data_samples[cid] for cid in clients]

cl_prob_norm = [p/sum(cl_prob) for p in cl_prob]

candidate_set = np.random.choice(clients , size=d,

replace=False , p=cl_prob_norm)

for client in candidate_set

# Estimate local losses of the candidate set

# on a mini batch

res_first_phase = eval_first_phase_mini_batch ()

# Sort clients based on their losses

sorted_client_losses = sorted(res_first_phase)

# Take the m clients with the highest losses

m = max(C * K, 1)

chosen_clients = [client in sorted_client_losses [:m]]
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# Use the sampled clients for training

for client in chosen_clients:

fit_result = client.fit()

fit_results.append(fit_result)

# Aggregate fit results using a weighted average

parameters , results = aggregate_fit(fit_results)

# Perform server -side evaluation

evaluate(parameters , test_set)

rpow-d

The other variant of Power of Choice strategy, proposed to address both the identified
weaknesses of the base strategy, is denoted as rpow-d.

This strategy eliminates the initial phase by having selected clients return their cu-
mulative averaged loss from local iterations when they transmit their local models to the
server. The server utilizes the most recently received loss value from each client as a proxy
for the loss to be used in client selection. For clients that have not yet been selected, the
most recent loss value is set to ∞.

The pseudocode for the rpow-d variant is detailed in Algorithm 4.5.

Algorithm 4.5: rpow-d Strategy

parameters = initialize_parameters ()

for server_round in t = 1, 2, ..., T :

# Sort clients based on their latest losses

sorted_client_losses = sorted(latest_losses)

# Take the m clients with the highest losses

m = max(C * K, 1)
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chosen_clients = [client in sorted_client_losses [:m]]

# Use the sampled clients for training

for client in chosen_clients:

fit_result = client.fit()

fit_results.append(fit_result)

# Evaluate loss on each selected client

eval_result = client.evaluate ()

eval_results.append(eval_result)

# Aggregate fit results using a weighted average

parameters , results = aggregate_fit(fit_results)

# Update latest losses

latest_losses.update(eval_results)

# Perform server -side evaluation

evaluate(parameters , test_set)

4.2. Resource-aware workload selection

The focus of this section is on algorithms and techniques for federated learning workload
assignment that is aware of resources of clients and dynamically adapts to their variations.

As introduced in Section 3.1.2, one of the open issues of federated learning is that the
resources available on each device can vary dramatically, for instance, between IoT de-
vices and base stations. Therefore, expecting uniform workloads or performance across
devices is unrealistic. Existing strategies hardly consider resource heterogeneity within
their vision. Notable examples in this direction are Li et al. [46], who advanced FedProx,
a FedAvg variant, to exploit resource heterogeneity. Features include the local process-
ing of variable workloads depending on available resources, the aggregations of partial
straggler data, and a tunable parameter limiting the impact of local updates to prevent
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significant model shifts per round. Yu et al. [58] introduced Fed+ that combines vari-
ous FL algorithms, letting heterogeneous devices undertake varying number of iterations
during training rounds, depending on the device’s resources. Baresi et al. [3] portrayed
FL applications as self-adaptive systems, optimizing client resource allocation at runtime
based on model accuracy and network overhead constraints.

While basic strategies like FedAvg remain agnostic to client resources, more refined
methods must take into account device heterogeneity and resource availability to optimize
workload scheduling and yield superior results faster.

In this thesis, we introduce four innovative so-called Global Update Optimizers, that can
be thought of as extensions of strategies to tune workload allocation at each client at the
beginning of each round.

To extend Flower to include such logic, we exploited the configure_fit parameter that
can be passed to each Strategy, that is a function called at the beginning of each round by
the Flower server, so that it sends a custom FitIns object (fit instructions) to customize
the workload to be performed by each client participating in the training round. Then
each Global Update Optimizer is a class that has a method get_configure_fit_fn() to
get the function object to be passed to the Strategy.

To customize the workload assigned to each client, we varied three parameters that
influence the amount of computation required at each round for each client.

• number of epochs : the number of complete passes through the training dataset to
be performed by a client during a round.

• batch size: the number of training samples to work through before the model’s
parameters are updated.

• fraction of samples : the fraction of the training dataset used by a client during a
round.

Depending on these three parameters, the workload for each client can be formulated as:

training set size × fraction of samples × epochs
batch size

Therefore, by varying these parameters, we vary the amount of workload assigned to
each client during a round.

In total, four Global Update Optimizers were implemented and integrated into the
Flower framework to facilitate comparison and to ensure straightforward reproducibility:
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static optimizer, uniform optimizer, Round Time optimizer, Equal Computation Time
optimizer. Figure 4.2 depicts a UML class diagram of these techniques.

Figure 4.2: The four workload optimizers implemented

4.2.1. Static optimizer

The Static Optimizer statically sets epochs, batch_size and fraction_samples from
the parameters epochs, batch_size, and fraction_samples in the configuration file. The
parameters assigned are equal for each device k. This setting is straightforward to imple-
ment but does not take into account the specific features of devices. It is considered here
as the baseline to compare with more sophisticated techniques, as it does not consider
resource heterogeneity and lacks any dynamic behavior. The configuration file is a YAML
file, loaded using Hydra [26]. The pseudocode of the corresponding configure_fit func-
tion is shown in Algorithm 4.6.

Algorithm 4.6: Static optimizer

def configure_fit(server_round: int):

# Load parameters from configuration file cfg

# and return them

config["epochs"] = cfg.epochs

config["batch_size"] = cfg.batch_size

config["fraction_samples"] = cfg.fraction_samples

return config
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4.2.2. Uniform optimizer

The Uniform Optimizer generates epochs, batch_size, and fraction_samples using a
uniform distribution within a specified range. The extremes of the range from which the
numbers are drawn are set in the YAML configuration file.

The number of epochs for device k is extracted uniformly in the range

[epochs_min, epochs_max)

where epochs_min and epochs_max represent the minimum and the maximum number
of epochs, respectively:

epochsk ∼ U(epochs_min, epochs_max) (4.1)

The batch size for device k is extracted uniformly in the range

[batch_size_min, batch_size_max)

where batch_size_min and batch_size_max represent the minimum and the maximum
batch size, respectively:

batch_sizek ∼ U(batch_size_min, batch_size_max) (4.2)

The fraction of samples for device k is extracted uniformly in the range

[fraction_samples_min, fraction_samples_max)

where fraction_samples_min and fraction_samples_max are the parameters repre-
senting the minimum and the maximum fraction of samples to use, respectively:

fraction_samplesk ∼ U(frac_samples_min, frac_samples_max) (4.3)

This optimizer is designed to simulate the heterogeneity of the computational workload
assigned to devices.

The pseudocode of the corresponding configure_fit function is shown in Algorithm 4.7.
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Algorithm 4.7: Uniform optimizer

def configure_fit(server_round: int):

# Sample the parameters for each client

for client in clients:

config[client ]["epochs"] =

np.random.uniform(epochs_min , epochs_max)

config[client ]["batch_size"] = np.random

.uniform(batch_size_min , batch_size_max)

config[client ]["fraction_samples"] = np.random

.uniform(frac_samples_min , frac_samples_max)

return config

4.2.3. RT optimizer

The RT (Round Time) Optimizer sets parameters batch_size and fraction_samples

from the YAML configuration file.

The number of epochs for client k is instead assigned proportionally to the compu-
tational power of client k. To model the computational power of clients, we used a
parameter called IPS, acronym for iterations per second. The device with the highest IPS
(which has the lowest computation time) is assigned with the highest number of epochs,
corresponding to the value of epochs in the configuration file.

This optimization technique leverages the fastest devices more effectively by allocating
additional computational burden to them. Consequently, devices with slower computation
times no longer cause slowdowns, as their assigned number of epochs is proportionally
reduced.
This technique represents an example of resource-aware workload allocation, with the
additional dynamic capability to adjust workload allocation in response to variations in
clients’ IPS.

The pseudocode of the corresponding configure_fit function is shown in Algorithm 4.8.
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Algorithm 4.8: RT optimizer

def configure_fit(server_round: int):

ips_clients = []

# Retrieve IPS of sampled clients

for client in clients:

properties_res = client.get_properties ()

ips = properties_res.properties["ips"]

ips_clients.append ((client , ips))

# Compute the maximum IPS

max_ips = max(ips_clients , key=lambda x: x[1]) [1]

for client , ips in ips_clients:

# Compute scaling factor

scale_factor = ips / max_ips

if(ips == max_ips):

# Set epochs to value from configuration

epochs = cfg.epochs

else:

# Set epochs proportionally to scale factor

epochs = max(1, cfg.epochs * scale_factor)

config[client] = {

"epochs": epochs ,

"batch_size": cfg.batch_size ,

"fraction_samples": cfg.fraction_samples

}

return config

4.2.4. Equal computation time optimizer

The Equal Computation Time (ECT) Optimizer generates epochs, batch_size, and
fraction_samples depending on a fixed amount of desired computation time and the
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specific IPS value for each client k.

The parameter comp_time represents the computation time in seconds that each device
should spend to perform the local computations at each round.

To match the computation time on each device, the server assigns a number of local
iterations proportional to the IPS each client. For a client k with IPS value IPSk, the
number of iterations to perform is computed as:

local_iterationsk = comp_time · IPSk (4.4)

As seen in Section 4.2, the number of local iterations is influenced by all the three param-
eters epochs, batch_size, and fraction_samples. Given the number of local iterations
local_iterationsk, the ECT optimizer allows to vary one of these three parameters and as-
signs the remaining two from configuration file. The boolean variables is_epochs_varying,
is_fraction_samples_varying, and is_batch_size_varying, set in the configuration file,
define which parameter is the varying one.

The choice of the varying parameter is not trivial as it depends on the specific scenario.
For instance, involving a enough number of samples in each local update is crucial, thus
if the fraction of samples is the varying parameter, devices with small IPS may involve
too few samples, risking inadequate updates. Conversely, increasing the batch size leads
to higher memory usage, which could be a constraint for devices with limited memory.
Additionally, setting too many epochs for devices with high IPS can cause overfitting,
especially when few examples are used in the local update.

The parameters are set as follows:

• If the number of epochs is the varying parameter, batch_size and fraction_samples

are set according to the static configuration parameters batch_size and fraction_samples,
and epochsk is computed as:

epochsk =
local_iterationsk · batch_size

num_samplesk · fraction_samples
(4.5)

• If the fraction of samples is the varying parameter, epochs and batch_size are
set according to the static configuration parameters epochs and batch_size, and
fraction_samplesk is computed as:

fraction_samplesk =
local_iterationsk · batch_size

num_samplesk · epochs
(4.6)



54 4| Implementation

• If the batch size is the varying parameter, epochs and fraction_samples are set
according to the static configuration parameters epochs and fraction_samples, and
batch_sizek is computed as:

batch_sizek =
epochs · num_samplesk · fraction_samples

local_iterationsk
(4.7)

This optimizer takes from the Best RT Optimizer as it scales parameters depending
on the computational resources of selected clients. However, instead of considering the
maximum IPS, the computation time is the constant factor here. This distinction is
beneficial when the goal is to maximize the number of local iterations within a specified
time frame. Moreover, this optimizer provides resource-aware workload allocation not
only in the number of epochs, as with the Best RT Optimizer, but also in the batch size
and the fraction of samples.

The pseudocode of the corresponding configure_fit function is shown in Algorithm 4.9.

Algorithm 4.9: ECT optimizer

def configure_fit(server_round: int):

ips_clients = []

# Retrieve IPS of sampled clients

for client in clients:

properties_res = client.get_properties ()

ips = properties_res.properties["ips"]

ips_clients.append ((client , ips))

# Compute local iterations for each client

local_iterations = {}

for client , ips in ips_clients:

local_iterations[client] = int(comp_time * ips)

# If epochs is the parameter varying:

if varying_config["epochs"]:

batch_size = cfg.batch_size

fraction_samples = cfg.fraction_samples

num_samples = samples_client * fraction_samples
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for client , local_iteration in local_iterations:

epochs = (local_iteration * batch_size) /

num_samples

config = {

"local_epochs": local_epochs ,

"batch_size": batch_size ,

"fraction_samples": fraction_samples ,

}

config[client] = config

# Analogous in the other two cases

[...]

return config
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5| Experiments

In this chapter, we present the experiments conducted to verify the performance of the
techniques we implemented, as presented in Chapter 4. In Section 5.1, we describe the
setup for the experiments. In Section 5.2, we present the results.

5.1. Setup

In this section, we present the setup of the experiments conducted to assess the impact
of the strategies and techniques we implemented on the federated learning process.

In federated learning, as in machine learning in general, the correctness of the outcome
is not the sole aspect to consider; instead, each modification to the algorithm can impact
a variety of metrics, including training accuracy, convergence speed, test accuracy, and
loss. Therefore, it is important to set up experiments that allow for the comparison of
different techniques under various settings to analyze the strengths and weaknesses of
each technique.

5.1.1. Task

As highlighted in Chapter 2, multiple tasks can be addressed by machine learning and
federated learning. For our experimentation phase, we opted for image classification due
to several reasons:

• The availability of multiple open datasets that facilitate research and experimenta-
tion.

• Image classification is one of the most widespread task in federated learning, as
demonstrated in [35], [37], and [57].

• The sensitive nature of images makes federated learning particularly attractive for
privacy preservation.

• Image classification tasks often involve non-IID data, presenting a realistic challenge
for federated learning models.
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• Techniques and insights gained from federated image classification models are often
transferable to other domains, such as natural language processing, signal process-
ing, and complex tasks like drug discovery and genomics.

To provide more meaningful comparisons, we experimented with two types of networks:

1. A Multi-Layer Perceptron with 2 hidden layers having 64 and 30 neurons, respec-
tively. Dropout is applied after the first hidden layer, and the input is the flattened
image.

2. A deep convolutional neural network with 2 convolutional layers followed by max
pooling. This is succeeded by 4 fully connected linear layers with 120, 100, 84, and
50 neurons, respectively.

5.1.2. Dataset loading

A crucial aspect of reproducing a federated learning environment is simulating a realistic
setting in terms of data distribution. As discussed in Chapter 3, data heterogeneity across
clients in federated learning (FL) settings presents a well-recognized challenge. It arises
from the varied and uneven distribution of data across participating clients, with each
device’s data reflecting the unique behavior, preferences, and environment of its user,
resulting in non-IID (not independently and identically distributed) datasets.

While several techniques to emulate non-IID datasets in FL have been proposed [40,
47, 60], these often oversimplify the complexity of realistic FL scenarios, which typically
involve a larger number of clients and more intricate data distributions.

We adopted the method proposed by Hsu et al. [25], employing the Dirichlet distribution
DirK(α) to construct heterogeneous data partitions among clients, with the parameter α
controlling the extent of data heterogeneity (imbalance in data size and label distribution
among clients). A smaller value of α signifies greater data heterogeneity.

In Figure 5.1 and Figure 5.2, we plot the distribution of samples over the first ten clients,
obtained through Dirichlet distribution with parameter α equal to 2 and 0.6, respectively.
In different colours, we represent the different classes in each partition. The parameter
α influences both the number of samples in each partition and the balance of samples
among classes, as shown in the plots.
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Figure 5.1: Distribution of samples over clients with alpha=2

Figure 5.2: Distribution of samples over clients with alpha=0.6

To ensure our experiments were comprehensive, we employed two distinct datasets:

1. The MNIST dataset [34], comprising 28x28 pixel images of handwritten digits, with
60,000 images for training and 10,000 for testing, distributed across 10 classes cor-
responding to the digits 0 through 9. In Figure 5.3, we show the first ten samples
of the MNIST dataset, with the corresponding labels.
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Figure 5.3: First ten samples of the MNIST dataset

2. The CIFAR-10 dataset [33], which includes 60,000 32x32 color images across 10
classes, each class containing 6,000 images. The dataset is split into 50,000 training
images and 10,000 test images. In Figure 5.4, we show the first ten samples of the
CIFAR-10 dataset, with the corresponding labels.

Figure 5.4: First ten samples of the CIFAR-10 dataset

5.1.3. Simulation parameters

All experiments were run using the Flower simulation engine, on a MacOS laptop
equipped with 32GB of RAM and an M1 Pro chip. Given that the employed networks
were quite simple, all experiments were able to run on the CPU without the need for a
GPU. However, the code supports running on a GPU to facilitate the reproduction of
experiments with larger networks.

As highlighted in Chapter 3, one advantage of the Flower simulation engine is its ability
to simulate experiments with a large number of clients, thanks to its efficient process



5| Experiments 61

management. This feature was exploited to better replicate a federated environment in
terms of the number of clients, compared to what would have been achievable by renting
physical devices.

This section presents the default setup of the experiments. Specific values for each ex-
periment, if different from the default, are detailed in the respective subsections. Table 5.1
recaps the default values of the parameters common to all experiments.

Parameter Description Value
num_clients Total number of clients 100
num_rounds Total number of rounds 200

epochs Default number of epochs on clients 4
batch_size Default batch size on clients 32

fraction_samples Default fraction of samples used by clients 1.0

Table 5.1: Default parameters for the experiments

5.2. Results

In this section, we present the results of the experiments conducted.

5.2.1. Dynamic selection

The first group of experiments compares different techniques of dynamic client selection
in federated learning, employing the techniques presented in Chapter 4.

In Table 5.2, we present the values of the parameters for these experiments.

Parameter Strategy Description Value
C FedAvg, pow-d,

cpow-d, rpow-d
Fraction of clients to select at
each round

0.1

d pow-d, cpow-d Number of clients to select in the
first_phase

20

b cpow-d Mini-batch size to use in the
first_phase

64

C0 dyn-sampling Initial sampling rate 0.2
beta dyn-sampling Sampling rate decay coefficient 0.1

Table 5.2: Parameters for the experiments on dynamic selection.
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Multi Layer Perceptron on MNIST

The setting for these experiments involves an image classification task using the MNIST
dataset, partitioned into num_clients partitions by means of a Dirichlet distribution
DirK(α) to create heterogeneous data partitions among clients, with the parameter α set
to 2 for a balanced dataset, and 0.6 for a highly unbalanced dataset.

These experiments compare the techniques FedAvg, dynamic sampling, pow-d, cpow-d,
and rpow-d.

In Figure 5.5 we plot the test accuracy obtained by performing on the server an evalua-
tion of the global model on the test set, composed of 10000 images in the case of MNIST.
The results in this plot are obtained on a dataset partitioned with parameter α = 2, so
quite balanced.

Figure 5.5: MLP on MNIST with α=2, Test accuracy

From the results we can see that pow-d, cpow-d and rpow-d strategies performances are
very close to those of FedAvg. This is expected because the Power of Choice family of
strategies give their best in case of highly unbalanced datasets.

The dynamic sampling strategy instead presents quite different performances: it con-
verges to a well performing model (in the order of 90% accuracy on the test set) much
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quicker that the other strategies, but then presents very unstable performances as the
simulation continues, oscillating between 90% and 95% accuracy until round 200. This
behavior can be explained by the fact that the dynamic sampling strategy involves a very
large number of clients in the first rounds (around 20 in these experiments, double the
number of the other strategies) to quickly converge to a good performing model, and then
decreases the number of clients selected as the simulation proceeds. In the final rounds
of the simulation, this technique randomly selects only 1 client at each round, and that’s
why it fails to converge to a stable solution and presents very variable performances on
the test set.

In Figure 5.6 we plot the test accuracy obtained by performing a server-side evaluation
of the global model on the test set. The results in this plot are obtained on a dataset
partitioned with parameter α = 0.6, so highly unbalanced.

Figure 5.6: MLP on MNIST with α=0.6, Test accuracy

From the plot we see that, as expected, the pow-d, cpow-d and rpow-d strategies perform
better than the random sampling FedAvg strategy, both in terms of quicker convergence,
resulting in better test accuracy, in rounds from 0 to 100, where the blue line (corre-
sponding to FedAvg) always stays below the yellow, green and red lines (corresponding
to the Power of Choice strategies), and in terms of stability, given that FedAvg presents
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highly instability in its test accuracy for the entire duration of the simulation. This result
can be explained by considering that random sampling does not take into account any
information given from clients while selecting those participating to each round, resulting
in the possibility to select clients having very few samples, as for example client 2 in
Figure 5.2. The Power of Choice family of strategies, instead, selects clients also based on
the number of samples they have locally, having an higher probability of selecting clients
with larger number of local samples.

The performances of dynamic sampling strategy still present a quicker convergence to a
good model with respect to the other strategies, but this converging to a worse model in
the long run compared to that of the other techniques, as we can see from the purple line
staying below the other lines for almost all the rounds between 25 and 200. This is for
the same reasons of FedAvg, exacerbated by the fact that dynamic sampling diminishes
the number of clients sampled at each round.

Figure 5.7: MLP on MNIST with α=0.6, Training loss

In Figure 5.7 we plot the training loss of the clients over the simulation, where we can
see that dynamic sampling presents a quicker convergence to a good model (lower loss
earlier). Such a much quicker convergence can also be explained by the fact that in this
strategy we employed an Adam optimizer in the clients, that starts with a high learning
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rate in the first rounds and then diminishes it, resulting in faster convergence.

Strategy alpha Test
Acc.@100

Test
Acc.@200

Train
Loss@100

Train
Loss@200

FedAvg 2 0.9283 0.9411 0.2695 0.2332
dyn_sampling 2 0.9441 0.9550 0.0754 0.0161

pow-d 2 0.9334 0.9468 0.2381 0.2188
cpow-d 2 0.9241 0.9447 0.2647 0.2301
rpow-d 2 0.9330 0.9484 0.2378 0.1782
FedAvg 0.6 0.9284 0.9429 0.2532 0.2089

dyn_sampling 0.6 0.9123 0.9470 0.0257 0.0432
pow-d 0.6 0.9463 0.9538 0.1804 0.1847
cpow-d 0.6 0.9283 0.9484 0.1493 0.1361
rpow-d 0.6 0.9312 0.9510 0.1560 0.1429

Table 5.3: MLP on MNIST, Test Accuracy and Training Loss values

Convolutional Neural Network on CIFAR10

In these experiments, we repeat the comparisons presented in the previous section under
a different setting. In this case, we employ a CNN to classify images from the CIFAR10
dataset. The dataset is partitioned into num_clients partitions using a Dirichlet distri-
bution DirK(α) with the parameter α set to 2, to create a fairly balanced dataset, and
0.6, to create a highly unbalanced dataset.

We compare the techniques FedAvg, dynamic sampling, pow-d, cpow-d, and rpow-d.

Figure 5.8 plots the test accuracy obtained by performing server-side evaluation of the
global model on the test set, composed of 10,000 images in the case of CIFAR10. The
results in this plot are obtained on a dataset partitioned with parameter α = 2, indicating
a balanced dataset.

These results confirm those of the previous section, with FedAvg, pow-d, cpow-d, and
rpow-d performing similarly in the case of a balanced dataset. The performance of dy-
namic sampling is again very unstable, showing quick convergence with higher test accu-
racy in rounds 0-50, but then becoming unstable and showing worse steady-state perfor-
mance in rounds 100-200.

In Figure 5.9, we plot the test accuracy obtained by performing server-side evaluation
of the global model on the test set. The results in this plot are obtained on a dataset
partitioned with parameter α = 0.6, indicating a highly unbalanced dataset.

In the presence of an unbalanced dataset, the results are consistent with those obtained
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Figure 5.8: CNN on CIFAR10 with α=2, Test accuracy

using a MLP. The FedAvg strategy performs worse than the Power of Choice strategies,
particularly in the first 125 rounds, as can be seen from the blue line always being below
the yellow, red, and green ones. The dynamic sampling strategy converges faster but then
remains very unstable and performs much worse than the other techniques in the long
run.

In this experiment, we also observe that the rpow-d strategy takes slightly longer to
converge compared to the other strategies. This can be explained by the fact that it saves
computation and communication costs by removing the first phase of client evaluation.
As a result, it relies on a proxy for the optimal choice, which may not always select the
best clients at each round, especially if some well-performing clients have not yet been
selected and thus have their loss set to ∞.
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Figure 5.9: CNN on CIFAR10 with α=0.6, Test accuracy

Strategy alpha Test
Acc.@100

Test
Acc.@200

Train
Loss@100

Train
Loss@200

FedAvg 2 0.4608 0.5120 1.2441 0.9622
dyn_sampling 2 0.4584 0.4898 0.4473 0.4034

pow-d 2 0.4774 0.5055 1.2117 1.0238
cpow-d 2 0.4773 0.5065 1.2065 0.9929
rpow-d 2 0.4628 0.5176 1.2169 1.0014

FedAvg 0.6 0.4366 0.4746 0.8496 0.7266
dyn_sampling 0.6 0.3761 0.3944 0.6432 0.5296

pow-d 0.6 0.4426 0.4674 0.8344 0.6666
cpow-d 0.6 0.4633 0.4892 0.8031 0.6500
rpow-d 0.6 0.4455 0.4984 0.9699 0.6837

Table 5.4: CNN on CIFAR10, Test Accuracy and Training Loss values
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5.2.2. Resource-aware Workload Selection

This second group of experiments compares the different techniques of resource-aware
workload selection presented in Chapter 4.

In Table 5.5, we present the values of the parameters for these experiments.

Parameter Optimizer Description Value
epochs_min uniform Minimum number of epochs 1
epochs_max uniform Maximum number of epochs 5

batch_size_min uniform Minimum batch size 32
batch_size_max uniform Maximum batch size 128

fraction_samples_min uniform Minimum fraction of samples 0.1
fraction_samples_max uniform Maximum fraction of samples 1.0

epochs ecto Default number of epochs 2
batch_size ecto Default batch size 32

fraction_samples ecto Default fraction of samples 1.0
frac_samples_varying ecto Vary or not the fraction of samples True

comp_time rt, ecto Computation time for each client 30
mean_ips rt, ecto IPS mean value 100
var_ips rt, ecto IPS variance value 50

Table 5.5: Parameters for the experiments on workload selection.

Multi Layer Perceptron on MNIST

In these experiments, we employ a Multi Layer Perceptron to learn an image classifica-
tion task on the MNIST dataset, partitioned into num_clients partitions using a Dirichlet
distribution DirK(α) to create heterogeneous data partitions among clients. The param-
eter α is set to 0.6 to create a highly unbalanced dataset.

We chose to analyze this setting directly because it provided the most meaningful results
in previous experiments and replicates a highly unbalanced dataset, which is common in
real-world settings.

These experiments compare the Global Update Optimizers implemented, namely static
optimizer, uniform optimizer, RT optimizer, and ECTO optimizer.

In Figure 5.10, we plot the test accuracy obtained by performing a server-side evaluation
of the global model on the test set at the end of each round.



5| Experiments 69

Figure 5.10: Workload optimizers, MLP on MNIST with α=0.6, Test accuracy

From the plot, it is evident that the static and RT optimizers achieve similar perfor-
mances, with the former being slightly better. The ECTO optimizer follows closely but
shows worse results, particularly in the first 50 rounds. The uniform optimizer performs
the worst, exhibiting over 5% less accuracy than the other techniques after 200 rounds.

These results allow us to infer the following key points:

• The static optimizer being the best performing one was expected. This is be-
cause it sets the highest possible workload (epochs to 4, batch_size to 32, and
fraction_samples to 1.0) for every client at each round, without considering less
performing clients. This approach could result in longer computation times in the
case of slow clients.

However, the fact that the RT optimizer, which dynamically sets the number of
epochs for each client depending on their computational power, performs closely to
the static optimizer, suggests it as a very viable alternative. It manages to maintain
a fixed computation time per round, regardless of the presence of slower clients.

• The uniform optimizer, which assigns workloads by randomly picking parameters
from a uniform distribution, performs poorly. This confirms that dynamic workload
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assignment requires a logic that takes into account client properties such as compu-
tational power or dataset size, especially in cases of unbalanced datasets. Incorrect
settings, like the batch size, can prevent clients with few samples from contributing
effectively to the model.

These two key takeaways are further confirmed by examining the training loss of the
clients over the entire simulation, as plotted in Figure 5.11. This plot also shows the same
rank in terms of performance.

Figure 5.11: Workload optimizers, MLP on MNIST with α=0.6, Training loss

Finally, if we examine the variance of the training loss among clients, as shown in
Figure 5.12, it becomes evident that the uniform optimizer exhibits the highest variance.
This is attributed to the workload parameters being assigned randomly, resulting in a
very unstable training throughout the entire duration of the simulation.

The static and RT optimizers, however, perform similarly in this metric as well. They
both start with a very high variance in the initial rounds and gradually converge to zero
over the course of 200 rounds.
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Figure 5.12: Workload optimizers, MLP on MNIST with α=0.6, Loss variance

Strategy alpha Test
Acc.@100

Test
Acc.@200

Train
Loss@100

Train
Loss@200

static 0.6 0.9360 0.9547 0.1617 0.1512
uniform 0.6 0.8760 0.9066 0.4587 0.3795

RT 0.6 0.9265 0.9474 0.2144 0.1747
ECTO 0.6 0.9181 0.9365 0.2571 0.2101

Table 5.6: MLP on MNIST, Test Accuracy & Training Loss with optimizers

Convolutional Neural Network on CIFAR10

In these experiments, we employ a Convolutional Neural Network to learn an image
classification task on the CIFAR10 dataset, partitioned into num_clients partitions using
a Dirichlet distribution DirK(α) to create heterogeneous data partitions among clients,
with the parameter α set to 2.

These experiments compare the Global Update Optimizers implemented, namely static
optimizer, uniform optimizer, RT optimizer, and ECTO optimizer.
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In Figure 5.13, we plot the test accuracy obtained by performing a server-side evaluation
of the global model on the test set at the end of each round.

Figure 5.13: Workload optimizers, CNN on CIFAR10 with α=2, Test accuracy

From the results, it is evident that the different optimizers behave similarly to that
observed in the previous experiment. The static optimizer shows the best performance,
closely followed by the RT optimizer, which in this case demonstrates slower convergence,
and the ECTO optimizer. The uniform optimizer remains the worst performing, showing
even poorer performance compared to the other strategies than those observed in the
previous experiment, despite the dataset being more balanced. This may be attributed
to the task being somewhat more challenging for the network, as indicated by the overall
lower test accuracy in this task.

Similar observations can be made when examining the training loss of the clients over
the entire simulation, as shown in Figure 5.14.

5.2.3. Takeaways from the experiments

This section consolidates the key findings from the series of experiments conducted on
dynamic client selection and resource-aware workload selection, using both Multi Layer
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Figure 5.14: Workload optimizers, CNN on CIFAR10 with α=2, Training loss

Strategy alpha Test
Acc.@100

Test
Acc.@200

Train
Loss@100

Train
Loss@200

static 2 0.4519 0.4979 1.2403 1.0898
uniform 2 0.2559 0.3592 1.8038 1.6246

RT 2 0.4376 0.4969 1.3727 1.2130
ECTO 2 0.4090 0.4629 1.4525 1.2917

Table 5.7: CNN on CIFAR10, Test Accuracy & Training Loss with optimizers

Perceptron on MNIST and Convolutional Neural Network on CIFAR10.

The experiments on dynamic client selection revealed several insights:

• The Power of Choice strategies (pow-d, cpow-d, rpow-d) demonstrated effectiveness,
particularly in unbalanced datasets, outperforming the FedAvg in terms of both
convergence speed and stability.

• The dynamic sampling strategy, while converging quickly, showed instability in per-
formance over time, especially in later rounds of the simulation. This was attributed
to its approach of initially involving a large number of clients and gradually reducing
this number, affecting long-term model stability.
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Key observations from the resource-aware workload selection experiments include:

• The static and RT optimizers performed consistently well across different settings,
indicating their robustness. The static optimizer, setting the highest workload,
generally led in performance, but the RT optimizer’s ability to adapt the workload
to client capabilities made it a close and more efficient competitor.

• The uniform optimizer’s random approach to workload distribution resulted in
poorer performance, highlighting the necessity for strategies that consider client-
specific characteristics like computational power and dataset size.

• Variance analysis of the training loss among clients further confirmed these findings,
with the uniform optimizer showing the highest variance due to its random workload
assignment.

These experiments underscore the importance of strategic client selection and workload
distribution in federated learning to achieve effective and stable model training, especially
in heterogeneous and real-world scenarios.
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This thesis proposes extensions to Flower, a highly promising framework for advancing
federated learning research.

The platform offers several advantages:

• A comprehensive set of classes and interfaces that allow easy extension and integra-
tion of new strategies and techniques.

• Very well-maintained documentation and an active community to support the de-
velopment of the project.

• An easy-to-use simulation engine that allows replication of federated learning envi-
ronments close to reality, enabling easy reproducibility of experiments and proto-
typing.

Building on this platform, our objective was to address existing gaps in federated learn-
ing research, specifically focusing on crucial open issues such as dynamic client selection
during training and workload allocation considering client properties and resources.

To this end, we presented four state-of-the-art strategies for dynamic client selection,
extended Flower to accommodate them, and compared them against the FedAvg baseline.

Subsequently, we proposed four innovative strategies for resource-aware workload allo-
cation, extended Flower to support them and integrated them with the dynamic client
selection techniques.

We finally experimented with the implemented techniques by utilizing the built-in
Flower simulator. We simulated a federated learning setting with 100 clients over 200
rounds and compared the implemented techniques.

Our experiments revealed the competitiveness of the proposed strategies with state-of-
the-art techniques, showcasing superior performance in certain settings, such as hetero-
geneous clients. In detail:

• The Power of Choice strategies exhibited effectiveness, particularly in unbalanced
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datasets, outperforming FedAvg in terms of convergence speed and stability.

• The dynamic sampling strategy, while converging quickly, displayed performance
instability over time, attributed to its initial involvement of a large number of clients.

• The static and RT optimizers consistently performed well across diverse settings,
with the latter’s adaptive workload distribution proving to be a close and efficient
competitor.

• The uniform optimizer, relying on a random approach to workload distribution,
yielded poorer performance, emphasizing the necessity for strategies considering
client-specific characteristics in federated learning scenarios.

In summary, our experiments underscored the significance of strategic client selection
and workload distribution in federated learning, particularly in heterogeneous and real-
world scenarios, to achieve effective and stable model training.

Part of our work is currently in the process of being merged into the official repository
of Flower, which boasts over 3300 stars on GitHub. This contribution positions us as part
of the next generation of research in federated learning.

6.1. Future work

Even though the work considered multiple facets of federated learning, it could be
extended in various directions:

• Further investigate dynamic selection and resource-aware workload allocation by
proposing innovative strategies that take into account multiple client properties,
such as battery life, signal level, or network speed. A more comprehensive strategy,
considering various properties other than just computational power, would enhance
adaptability to diverse scenarios.

• Experiment with other tasks, such as natural language processing using large lan-
guage models. Recent developments in complex models like GPT [8] and LLaMA [48]
have sparked research interest in federated learning for these models [9, 29, 59]. Ex-
perimenting with such models involves setting up more powerful clients and enabling
parallelization on GPUs due to their high computational demands. While Flower
supports this, potential bottlenecks and performance issues need consideration.

• Experiment with a real federated environment: despite highlighting the advantages
of Flower’s simulation engine, future work could involve setting up a real federated
environment with multiple actual devices. Initial investigations revealed that Flower
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provides an APK to install a federated learning client on an Android device. Future
work could involve renting real mobile phones or using cloud instances like AWS EC2
to deploy clients on actual federated devices. These experiments may reveal nuances
not evident in a simulated environment, such as clients slowing down training due to
lower computational power. However, reproducing a highly heterogeneous setting,
as a real federated environment should be, currently lacks off-the-shelf solutions.
Thus, investigations into techniques and tools are necessary.
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