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Nella società dell’apparire occorre
apparire, ma l’essere oggi rappresenta
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Ritengo che l’apparire abbia breve
durata, ma l’essere sia per la vita ...
L’eleganza non è farsi notare, ma
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Abstract

The number of artificial satellites is growing continuously year after year. This, coupled
with the well known problem of space debris, leads to possible hazardous impacts between
active satellites and resident orbiting objects. For this reason, collision avoidance manoeu-
vres are planned to mitigate the risk. This is just the frame where this thesis is inscribed.
The increasing number of close approaches and objects makes the risk analysis more com-
plex and operator time-demanding, thus the need of computationally efficient models for
preliminary analysis. The aim of this work is to develop a semi-analytical mathematical
model for the 3D low thrust collision avoidance problem capable of describing the change
of orbital elements driven by a generic thrust action whose components are in all three
directions. Starting from Gauss Planetary Equations in absence of any environmental
perturbation, we first moved from the time-derivative formulation to a true anomaly-
derivative one. Then, assuming a small variation of the Keplerian parameters after the
application of the thrust action, we performed a Taylor expansion in the neighbourhood
of the reference condition. From this point on, we developed two different methods. The
first, denoted as full model, consists of a direct integration of the system obtained after
the expansion. On the contrary, the second, denoted as small thrust model, has in addition
a MacLaurin expansion of the previous equations with the aim of making explicit the de-
pendence from the small thrust parameters. In both cases the integrations are performed
by means of the Fourier Series tool. It allows, not only to carry out the integrations in an
easy manner, but also to take apart the constant and oscillatory contributions of the solu-
tions. In the case of the small thrust model the expressions of the Fourier Series coefficients
are provided in closed form in terms of complete elliptic integrals and series expansions
involving the Gauss Hypergeometric function. Finally, different simulations with various
test cases are provided to assess the accuracy and the effectiveness of the method.

This thesis was part of the COMPASS project: “Control for Orbit Manoeuvring through
Perturbations for Application to Space Systems" (Grant agreement No 679086). This
project is a European Research Council (ERC) funded project under the European Unions
Horizon 2020 research.
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Abstract in lingua italiana

La quantità di satelliti artificiali in orbita aumenta in maniera incessante anno dopo anno.
Ciò, insieme al ben noto problema dei detriti spaziali, rende assai concreta la possibilità
di impatti potenzialmente fatali fra i vari oggetti orbitanti. Per questo motivo, sono pre-
viste manovre di prevenzione delle collisioni per mitigare il rischio. Questa è la cornice in
cui è inscritta questa tesi. Il numero crescente di incontri ravvicinati e oggetti orbitanti
di diversa natura rende l’analisi di rischio più difficile e onerosa dal punto di vista delle
tempistiche. Sorge quindi la necessità di modelli computazionalmente efficienti per una
analisi preliminare. Lo scopo di questa tesi è sviluppare un modello matematico semi-
analitico per il problema 3D di prevenzione delle collisioni qualora il sistema propulsivo
possa fornire solo una bassa spinta. Il modello deve essere in grado di descrivere il cambi-
amento dei parametri orbitali qualora l’azione di spinta sia un generico vettore con com-
ponenti in tutte e tre le direzioni spaziali. Partendo dalle Equazioni Planetarie di Gauss
in assenza di qualsiasi perturbazione relativa all’ambiente circostante, si è in primo luogo
passati dalla formulazione con la derivata temporale di suddette equazioni a quella con la
derivata rispetto all’anomalia vera. Quindi, ipotizzando una variazione non eccessiva dei
parametri Kepleriani dopo l’applicazione dell’azione di spinta volta a deviare il satellite
dalla traiettoria per schivare l’ostacolo, si è eseguita un’espansione di Taylor nell’intorno
della condizione di riferimento. Da questo punto in poi, vengono sviluppati due diversi
metodi. Il primo, indicato come full model, consiste in una diretta integrazione del sistema
ottenuto dopo l’espansione. Al contrario, il secondo, indicato come small thrust model, ha
in aggiunta un’espansione di MacLaurin delle precedenti equazioni con lo scopo di rendere
esplicita la loro dipendenza dai parametri di bassa spinta. In entrambi i casi le integrazioni
vengono eseguite tramite la Serie di Fourier. Essa, infatti, ci consente, non solo di eseguire
le integrazioni in modo semplice, ma anche di separare i contributi costanti delle soluzioni
da quelli oscillatori. Nel caso del small thrust model le espressioni dei coefficienti della
Serie di Fourier sono fornite in forma chiusa in termini di integrali ellittici completi ed
espansioni in serie che coinvolgono la funzione ipergeometrica di Gauss. Infine, vengono
fornite diverse simulazioni con vari casi test per valutare l’efficacia del metodo.

Questa tesi è parte del progetto COMPASS: “Control for Orbit Manoeuvring through



Perturbations for Application to Space Systems" (Grant agreement No 679086). Questo
progetto è finanziato dall’ European Research Council (ERC) sotto la European Unions
Horizon 2020 research.

Parole chiave: Bassa Spinta, Manovre Anti-Collisione, Probabilità di Collisione, Se-
rie di Fourier, Funzioni Ipergeometriche, Distanza Critica, Modello Semi-Analitico, Serie
di Taylor
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1| Introduction

1.1. Background

The Sputnik 1 was the first artificial satellite placed in orbit after its successful launch,
October 4th, 1957. From that time on, space exploration and utilization has been con-
tinuously growing and the number of satellites launched per year significantly increased.
The Union of Concerned Scientists (UCS) created the Satellite Database [1] as a listing
of more than 4852 operational satellites currently (updated January 1st, 2022) in orbit
around Earth. The database is updated three times a year and holds 28 types of data for
each satellite, including technical information about it (mass, power, launch date, expected
lifetime) and its orbit (apogee, perigee, inclination, and period), the satellite mission and
who owns, operates, and built it. One of the most relevant aspects is that around 4078
satellites are placed in Low Earth Orbits (LEO) and around 574 in Geostationary Orbits
(GEO). The former are the most used in various disciplines and activities: navigation,
telecommunication, agriculture, meteorology, Earth observation, wildfires, natural disas-
ters monitoring and also ecology applications as polar caps melting, greenhouse and gases
emissions.

The increasing space activities and the huge number of satellites has, year after year, led to
the problem of space debris: these are different nature man-made Earth orbiting objects,
not only defunct satellites but also mission related objects and fragments of collisions and
explosions. On the purpose, as explained by Holger Krag [2], Head of the Space Safety
Program, the biggest contributor to the space debris problem is explosion in orbit, caused
by left-over energy (fuel and batteries) on board spacecraft and rocket. This problem has
been increasing in time due to lack of regulations. In the last years the consciousness of
the problem has risen, so that international guidelines and standards now exist. According
to ESA [2], the main items are: minimize the amount of detached objects during launch,
prevent explosions by passivating1 spacecraft at the end of life, move defunct spacecraft to
graveyard orbits and prevent crashes by means of collision avoidance manoeuvres (CAMs).

1prevent explosions by releasing stored energy
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At international level, the mitigation measures and technical consensus are discussed at
IADC (Inter-Agency Space Debris Coordination Committee) [3]. The primary objective
is to connect all the member space agencies to facilitate opportunities for cooperation in
space debris field. In the same context, also the NASA Orbital Debris Program Office
(ODPO) [4] has a relevant role. It is a Delegated Program in the Office of Safety and Mis-
sion Assurance (OSMA) at NASA HQ (NASA Headquarters). It performs measurements
of the orbital environment and develops technical consensus for adopting mitigation mea-
sures. In the website2 it is possible to see a video showing the sudden growth of space
debris starting from 1960 till 2019. The catalogued objects are all with a diameter greater
than 10 cm (see also NASA [5]).

In ESA’s 2022 Space Environment Report [6] a very accurate description of the space
debris situation is provided. In particular, LEO orbits are considered; based on ESA
models, the true number of objects larger than 1 cm in size is likely over one million. The
increase in launch traffic and the long-lasting nature of space debris in LEO is causing a
significant number of close encounters, known as conjunctions, between active satellites
and other objects in heavily congested orbits. These close encounters could end up in
unwanted impacts which could lead to the satellite failure or, in the worst case scenario,
to the satellite crash. In ESA Space debris 2017 a journey to Earth [7] a relevant video
gives a closer look at the different regions used for space flight and explains how mitigation
and removal measures could preserve future usage of these orbits. It was produced by ESA
for the 7th European Conference on Space Debris, 18-21 April 2017.

As already said, if a close encounter occurs the possibility of having serious damages to the
spacecraft or even losing it is quite high. Therefore, the need of planning CAMs becomes
strict. First, Conjunction Data Messages (CDMs) are generated. According to B. Reihs et
al. [8], these messages include the time of the encounter, the predicted positions with the
consequential miss distance and the covariance matrices at the time of the encounter (see
R. Book Conjunction data message [9]). As example, in [10] it is available a collection
of CDMs received by ESA from 2015 to 2019. These messages, provided by Combined
Space Operations Center (CSpOC)3, notifies satellite operators about the possible risks
of collisions. Satellite operators then perform their own way of evaluating significance of
the CDMs: a manoeuvre is performed only if the CDM is evaluated as risky in order to
not interrupt the regular spacecraft operations. Since this procedure has to be repeated
several times (hundreds of collision alerts per week for possible close encounters between
two catalogued resident space objects), ESA is developing automated systems that use

2see https://orbitaldebris.jsc.nasa.gov/modeling/
3other entities (companies, etc.) are also providing this kind of service, although the main one remains

the CSpOC

https://orbitaldebris.jsc.nasa.gov/modeling/


1| Introduction 3

artificial intelligence and other technologies to help operators to carry out CAMs, see ESA
Dodging debris to keep satellites safe [11], and reduce the number of false alarms. More
informations about how CDMs work could be found in S.Dural et al. [12].

Finally, referring to Gonzalo et al. [13], nowadays many current satellites complement or
substitute traditional impulsive thrusters with low thrust electric propulsion systems4.
This choice is mainly due to the advantage of reducing the launch mass, possibly in-
creasing the payload mass, while keeping advanced manoeuvring capabilities. The main
issue coming from these low thrust technologies is that, differently from the traditional
impulsive one, the CAM has to be performed sufficiently in advance of time of the closest
approach (TCA).

1.2. State of the art

The main strategies to perform CAMs are two: impulsive and low thrust. The simplest
way to deal with this kind of problem is to formulate it in absence of any environmen-
tal perturbation5 with the addition of the external action6. Referring to the traditional
literature on this topic, many formulations can be adopted, e.g. Cartesian equations of
motion or Gauss Planetary Equations. This kind of problem could be faced either in a
full numerical way or in an analytical/semi-analytical one. While the numerical approach
allows to formulate the problem as a whole, the analytical/semi-analytical approach relies
on some simplified hypothesis. This implies that these kind of solutions are approximated
and they are usually obtained through some series expansions with reasonable assump-
tions such as small thrust parameters appearing into equations or small variation of a
certain quantity over one orbital revolution. Regardless of the type of approach used, the
ultimate goal is to evaluate the Miss Distance and the probability of collision (PoC) at
the close approach (CA) for given uncertainties.

1.2.1. A short about numerical methods and relevant software

The aim of this thesis work is the development of a semi-analytical model for the low
thrust collision avoidance problem. Therefore most of the scientific literature analysed
here is about the relevant semi-analytical approaches commonly adopted to deal with
such a problem. Nevertheless, the semi-analytical way is not the only path followed in
the usual practice. There are plenty of operational software using numerical approaches.

4they provide a low thrust with a very high specific impulse.
5i.e. a two body problem.
6impulsive or constant in magnitude and with a very small value.
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Without going too much into details, we will now present some relevant works.

In Aida et al. [14] is presented the collision avoidance system implemented at GSOC
(German Space Operation Center) since 2008. The software detects close approaches
of operational LEO satellites against more than 14000 space objects listed in the TLE
catalogue provided by USSTRATCOM (US Strategic Command). In brief it works as
follows. The collision risk is detected around 7 days in advance using the TLE catalogue
as well as precise orbit data of the spacecraft. The PoC is then evaluated with a threshold
of 10−4; in case of an high collision risk, the orbit refinement using a radar tracking
is foreseen as the second step. A comparison between the analytical SGP4 (Simplified
General Perturbation 4) orbit propagation and the software for numerical propagation
ODEM (Orbit Determination for Extended Manoeuvres) is performed. By means of the
same tools (TLEs and SGP4), Abay [15] investigates the optimal impulse manoeuvre using
a semi-numerical method. In this paper, TLEs are estimated using ephemerides generated
by the orbit propagator of Orekit, which is an open source low-level space dynamics library.
The main result of the work is an increased accuracy with less computational effort for
the optimal CAM evaluation. Moreover, this calculation is shown to be possible using
machine learning (ML) techniques . Without going too much into details, ML is growing
in popularity in the collision avoidance field; for instance a relevant work is Sánchez et
al. [16]. Here a simple calculation of an optimal CAM is performed when the Intelligent
Classification System (ICS) suggests that a CAM is needed.

In Crassidis et al. [17] a different numerical approach with respect to those already dis-
cussed is presented. This indeed is a discretized space approach to conjunction analysis. It
is proved that it efficiently reduces the number of computationally expensive conjunction
analyses required for the PoC evaluation. After assessing the effectiveness of the method
a mathematical model is investigated in order to optimize the CAM.

Finally, among the several systems for CAM calculation we want to highlight CORAM
[18] and OCCAM [19]. CORAM is employed by ESA’s Space Debris Office and provides
the relevant informations about conjunctions, manoeuvres, and trajectories. Moreover it
is capable to cope with multi-encounter and multi-manoeuvre cases. OCCAM, on the
other hand, allows fast CAM computations based on an analytical formulation of the
collision problem. This system is able to cope with conjunction with just one debris and
supports three optimization goals: fuel consumption optimization, collision probability
minimization and Miss Distance maximization.
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1.2.2. Relevant literature about analytical and semi-analytical

models

Let us to analyse some relevant works on the analytical and semi-analytical models for the
CAM problem. The model for the impulsive CAM is fully analytical while that for low
thrust CAMs is semi-analytical. This means that the main procedure is analytical but
some numerical procedures (e.g. small amount of numerical integrations) are required.
Regardless to which procedure and/or technology has been chosen, the main objective
is to compute the Miss Distance and the PoC of two approaching objects. To do so, a
maximization/minimization problem (sometimes collapsing into a root finding problem)
is set up; i.e. in other words the goal is maximizing Miss Distance and/or minimizing the
PoC. A very detailed explanation of what has been briefly introduced in this paragraph
can be found in Gonzalo et al. [20]. Now, let us see the basically different methodologies
about CAMs: the impulsive approach versus the low thrust one.

1.2.2.1. Impulsive CAMs

In Bombardelli [21] the investigation of an optimal solution for the impulsive CAM prob-
lem is performed. The mathematical formulation relies on the Dromo orbital elements.
The main assumptions are: short term encounter, impulsive burn and elliptical Keple-
rian orbits. The main objective in this work is the maximization of the Miss Distance
for a fixed manoeuvre location, optimizing the impulse direction. Closed form analytical
expressions to predict the dynamics of the two bodies in the encounter B-plane are pro-
vided. A relevant aspect of this work is: it opens the doors to further developments. Those
generalizations have been indeed achieved by Bombardelli et al. in [22] and [23]. Starting
from the analytical formulation for the computation of the Miss Distance described in
[21], the authors proceed to generalize the process taking into account the PoC (using
Chan method), the initially non zero Miss Distance vector at close approach and the
presence of environmental perturbations. The formulation hinged on a relation between
the applied impulse and the objects’ relative motion in the B-plane, which allowed the
treatment of the manoeuvre optimization problem as an eigenvalue problem coupled to a
simple non-linear algebraic equation. This important technique of reducing the maximum
deviation optimal control problem to an eigenvalue problem was previously obtained by
Conway [24].

In Gonzalo et al. [25], following the procedure proposed by Vasile et al. [26] for the optimal
deflection of asteroids, the computation7 of the instantaneous change in orbital elements

7through Gauss Planetary Equations.
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due to an impulsive manoeuvre is presented. Since the change in orbital elements is
typically small, the deviation at the CA can then be computed through linearized relative
motion equations, leading to a linear model with a matrix depending on the nominal
orbital elements of the deflected body and the lead time of the manoeuvre. This again
reduces to an eigenvalue problem by means of Conway [24]. The main novelty is that
the formulation is extended to the optimization of minimum PoC following the method
proposed by Bombardelli et al. [23].

Dharmarajan et al. [27] investigate collision avoidance applications for formation flying
in LEO combining the two approaches presented in Bombardelli et al. [23] and Slater et
al. [28]. Neglecting the uncertainties in the knowledge of the kinematic state of the two
colliding objects, the proposed optimization technique solves an eigenvalue problem for a
case of non direct approach. The effect of the manoeuvre anticipation time with respect
to the foreseen possible collision is highlighted, and specific detail is given to the in-plane
and out of plane components of the impulsive manoeuvre indicated in order to avoid such
an event.

In Reiter et al. [29] the investigation is focused on rapid collision avoidance manoeuvres:
their optimization relies on the so called finite burn analysis and aims to find the optimal
burn locations and directions. The linear regression technique is applied to determine an
useful expression for the thrusting duration for any of the sample scenarios. It was found
that, if the notification time is less than around 20 minutes, it is best to decrease the PoC
as much as the available fuel allows. On the contrary, if it is higher than 20 minutes, the
time required to perform the manoeuvre acts a more relevant role. Finally, simultaneously
minimizing the manoeuvre time and PoC, overestimates the slight extra fuel required.

1.2.2.2. Low thrust CAMs

The main difference between the impulsive CAM and the low thrust one is that, while
in the former the propulsion system acts instantaneously, while in the latter the external
action is distributed over a certain thrust arc. As already said, nowadays many satellites
operate with low thrust propulsion systems. This leads to the need of models and tools
for the analysis and design of low thrust CAMs. An introductory work, but not directly
related to CAM topic, is Colombo et al. [30]. The main idea of the low thrust preliminary
design is to develop a simple but reliable semi-analytical mathematical framework where
some explicit and computational efficient formulas can be obtained. Starting from Gauss
Planetary Equations the main assumptions made in [30] are that no thrust action is
present in the normal and out of plane directions while the tangential direction is affected
by a tangential thrust proportional to the inverse of the square of the modulus of the
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distance. This valuable assumption allows to express the small variations of the orbital
elements in closed from, i.e. by means of incomplete elliptic integrals of first and second
kind.

Proceeding in such a similar fashion the semi analytical expressions for the variations of
the orbital parameters can be obtained for the generic low thrust problem. In Gonzalo
et al. [31] those relations are obtained and their accuracy is assessed using various test
cases with comparisons with the full numerical solution. This new model is part of the
Manoeuvre Intelligence for Space Safety (MISS) software tool, currently being developed
by the European Research Council-funded COMPASS project (see Gonzalo et al. [13] and
COMPASS website [32]). In Gonzalo et al. [33] the same path of [31] is followed but the
main novelty of this work is that those solutions are then decomposed into a sum of two
contributions: a mean value and an oscillatory term. Such a decoupling yields both to an
easier way to handle such solutions and a faster and more efficient evaluation of the time
law. This is somehow a precursor of what we will do in this thesis work. Another relevant
work that goes in this direction is Gonzalo et al. [34], where the mathematical model
is furthermore refined and contextualized with respect to the current mission scenarios,
e.g. the e.Cube mission. Furthermore, many numerical tests are carried out to assess the
robustness of the method.

Finally, we want to highlight that all the works already presented about low thrust models
deal with the case where only the tangential thrust action is present. On the contrary in
Gao [35] the problem is analysed in terms of three types of control laws: the perigee centred
tangential steering, the apogee centred inertial steering and the piecewise constant yaw
steering. Those are performed over different orbital arcs within each transfer revolution to
simultaneously change semimajor axis, eccentricity and inclination. The main novelty of
this work is: it tries to build up a complete model for the low thrust CAM (i.e. with thrust
in all directions) relying its argumentation on a sort of superposition principle suitably
adapted for non linear equations.

1.3. Objectives

The main goal of this work is to develop a semi-analytical model for the 3D low thrust
CAM problem, i.e. comprehensive of all three thrust actions: tangential, normal and out
of plane. This specific requirement for the method of being semi-analytical, on one hand
requires a more complicated mathematical formulation, but, on the other, leads to an
easier and more effective way to obtain and analyse the results.
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1.4. Novelties

The main novelty of this work is the use of the Fourier Series tool to perform the in-
tegrations, once the Gauss Planetary Equations are led to quadratures. This kind of
solution is possible since, after some manipulations, it turns out that the integrations to
be performed are those of 2π-periodic functions in the true anomaly. This Fourier Series
approach gives great advantages both in terms of computational efficiency and capability
of getting simple analytical formulas. In fact, for a given periodic function, once a few
terms are computed, most of the function information are already captured with a high
level of accuracy. Moreover, notice that the numerical part of the procedure could be
possibly addressed to the evaluation of the Fourier Series coefficients only and not on the
evaluation of the functional law.

The general procedure to lead the problem to quadratures strongly relies on the Taylor
expansion in the neighborhood of the reference condition. This is another element of
novelty with respect to the current literature; indeed in this way it is possible to increase
the accuracy level of certain orbital parameters. Of course, the higher is the number of the
terms included, the higher will be the complexity of the integrations to be performed. We
will see how this procedure will lead us to first order linear ODEs with variable coefficients.

1.5. Thesis Structure

This thesis work is organised into four main parts:

• Chapter 1: Introduction. In this chapter we present the current state of the
art about the topic of CAMs. After a general presentation of the current status
of the space environment and the main organizations playing an important role at
international level, we go to describe the main techniques adopted nowadays to deal
with the mitigation of the problem of space debris. Among the many mitigations
strategies, we underlined why collision avoidance manoeuvres play an important role
in the prevention of catastrophic events. Then, a general overview of the current
scientific literature about the collision avoidance problem is presented.

• Chapter 2: Mathematical model. In this chapter we present the main features of
our new semi-analytical model in two main sections. The first regards the so called
full model while the second is about the small thrust model. In both sections we
provide the main steps to obtain the semi-analytical solution for the six Keplerian
elements by means of the Fourier Series tool.
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• Chapter 3: Simulations. In this chapter we first present some background notions
about the probability of collision, the Miss Distance and the B-plane. After this short
introduction we move to the analysis of the various test cases. All simulations are
performed with Matlab®.

• Chapter 4: Conclusions. The results are here briefly discussed in relation to the
aim of the thesis.
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2| Mathematical model

In this chapter we are going to analyse the mathematical model of the Low Thrust prob-
lem. After a brief introduction on the Gauss Planetary Equations, we will then move to
the solution of them by means of a semi-analytical method which relies on the Fourier
Series tool; this is used to analyse the involved functions and to perform the integrations.
We carried out two models: the first, also denoted as full model, is the solution for arbi-
trary thrust actions while the second, denoted as small thrust model, is the solution when
the assumption of small thrust parameters is applied. The hypothesis of small thrust pa-
rameters actually is equivalent of performing a first order MacLaurin expansion of the
equations for {at, an, ah} → 0; the resulting equations are then easier to be manipulated.
We will carry out a deep analysis of both models, showing how to perform all the inte-
grations in closed form by exploiting the properties of the Fourier Series. Finally, for the
small parameters approach, we evaluated analytically the Fourier Series coefficients of all
functions involved (a brief summary is presented in Table 2.3).

2.1. Preliminary definitions

Let f(θ) be a 2π-periodic function, then its Fourier series expansion F[f ](θ) is:

F[f ](θ) =
α0[f ]

2
+ P2π

(
αn[f ]

βn[f ]

∣∣∣∣∣ θ
)

(2.1.1)

where P2π is the Periodic P function of period 2π defined as:

P2π

(
αn[f ]

βn[f ]

∣∣∣∣∣ θ
)

=
+∞∑
n=1

{αn[f ] cos(nθ) + βn[f ] sin(nθ)} (2.1.2)

and α0[f ], αn[f ] and βn[f ] are the coefficients of the Fourier series expansion. This notation
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underlines that such operators are applied to a certain function, i.e.:

α0[f ] =
1

π

∫ π

−π
f(θ)dθ, αn[f ] =

1

π

∫ π

−π
f(θ) cos(nθ)dθ, βn[f ] =

1

π

∫ π

−π
f(θ) sin(nθ)dθ

It is clear that the main advantage of expanding f in the form Equation 2.1.1 is that the
operations of derivation and integration becomes straightforward. In particular:

Definition 2.1.1. The θ-integral of F[f ](θ) is:

∫
F[f ](θ)dθ =

α0[f ]

2
θ + P2π

(
−βn[f ]/n

αn[f ]/n

∣∣∣∣∣ θ
)

(2.1.3)

where in particular:

∫
P2π

(
αn[f ]

βn[f ]

∣∣∣∣∣ θ
)

dθ = P2π

(
−βn[f ]/n

αn[f ]/n

∣∣∣∣∣ θ
)

(2.1.4)

Definition 2.1.2. The θ-derivative of F[f ](θ) is:

d

dθ
{F[f ](θ)} = P2π

(
nβn[f ]

−nαn[f ]

∣∣∣∣∣ θ
)

Definition 2.1.3. The θ-integral of the product θ · F[f ](θ) is:

∫
θ · F[f ](θ)dθ =

α0[f ]

4
θ2 + P2π

(
−βn[f ]/n

αn[f ]/n

∣∣∣∣∣ θ
)
θ + P2π

(
αn[f ]/n2

βn[f ]/n2

∣∣∣∣∣ θ
)

(2.1.5)

Proof. The proof of Equation 2.1.5 can be obtained integrating by parts:∫
θ · F[f ](θ)dθ = θ

∫
F[f ](θ)dθ −

∫ [∫
F[f ](θ)dθ

]
dθ

The first integral is directly given by Equation 2.1.3 while for the second double integration
the integral of the linear term in θ is straightforward while for the periodic part we rely
on Equation 2.1.4 �
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Definition 2.1.4. The θ-integral of the product θ2 · F[f ](θ) is:

∫
θ2 · F[f ](θ)dθ =

α0[f ]

6
θ3 + P2π

(
2βn[f ]/n3

−2αn[f ]/n3

∣∣∣∣∣ θ
)

+

+ P2π

(
2αn[f ]/n2

2βn[f ]/n2

∣∣∣∣∣ θ
)
θ + P2π

(
−βn[f ]/n

αn[f ]/n

∣∣∣∣∣ θ
)
θ2

(2.1.6)

Proof. The proof is analogous to the one of Equation 2.1.5, but this time the integration
by parts has to be applied twice. �

Definition 2.1.5. The θ-integral of the product exp[−kθ] · F[f ](θ) is:∫
exp[−kθ] · F[f ](θ)dθ = −α0[f ]

2k
exp[−kθ]+

+ P2π

(
−(kαn[f ] + nβn[f ])/(k2 + n2)

(nαn[f ]− kβn[f ])/(k2 + n2)

∣∣∣∣∣ θ
)

exp[−kθ]
(2.1.7)

Proof. Assuming k ∈ R and assuming also k 6= 0 we have:∫
exp[−kθ]dθ = − exp[−kθ]/k

and ∀n ∈ N we have:∫
exp[−kθ] cos(nθ)dθ =

n sin(nθ)− k cos(nθ)

k2 + n2
exp[−kθ]∫

exp[−kθ] sin(nθ)dθ = −k sin(nθ) + n cos(nθ)

k2 + n2
exp[−kθ]

Thus it follows Equation 2.1.7. �

Definition 2.1.6. The θ-integral of the product θ · exp[−kθ] · F[f ](θ) is:∫
θ · exp[−kθ] · F[f ](θ)dθ = −α0[f ]

2k2
(1 + kθ) exp[−kθ]+

+ θP2π

(
−(kαn[f ] + nβn[f ])/(k2 + n2)

(nαn[f ]− kβn[f ])/(k2 + n2)

∣∣∣∣∣ θ
)

exp[−kθ]+

+ P2π

(
[αn[f ](n2 − k2)− 2knβn[f ]] /(k2 + n2)2

[2knαn[f ] + βn[f ](n2 − k2)] /(k2 + n2)2

∣∣∣∣∣ θ
)

exp[−kθ]

(2.1.8)

Proof. The proof is analogous to the one of Equation 2.1.7. �
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Definition 2.1.7. The θ-integral of the product θ2 · exp[−kθ] · F[f ](θ) is:∫
θ2 · exp[−kθ] · F[f ](θ)dθ =−
α0[f ]

k3
+ 2P2π


n (n2 − 3k2) βn[f ]− k (k2 − 3n2)αn[f ]

(k2 + n2)3

−n (n2 − 3k2)αn[f ] + k (k2 − 3n2) βn[f ]

(k2 + n2)3

∣∣∣∣∣∣∣∣ θ

 exp[−kθ]+

−
α0[f ]

k2
+ 2P2π


(n2 − k2)αn[f ]− 2knβn[f ]

(k2 + n2)2

(n2 − k2) βn[f ] + 2knαn[f ]

(k2 + n2)2

∣∣∣∣∣∣∣∣ θ

 θ exp[−kθ]+

+

−α0[f ]

2k
+ P2π

 −kαn[f ] + nβn[f ]

k2 + n2

nαn[f ]− kβn[f ]

k2 + n2

∣∣∣∣∣∣∣ θ

 θ2 exp[−kθ]

(2.1.9)

Proof. The proof is analogous to the one of Equation 2.1.7. �

The Fourier Series approach to solve differential problems has been analysed in Bocci et.
al [36] and [37]. Here the solution for periodic bounded problems is carried out and also
the procedure for the time law inversion is presented. This goes far beyond the scope of
this thesis, but it could be an hint for future developments. An important result (which
will be used in next chapters) is the following convolution theorem:

Theorem 2.1.1 (Convolution of two periodic functions). Let f(θ) and g(θ) be
2π-periodic functions in θ, then:

α0[f · g] =
1

2
α0[f ]α0[g] +

+∞∑
m=1

{αm[f ]αm[g] + βm[f ]βm[g]}

αn[f · g] =
1

2
α0[f ]αn[g] +

1

2

+∞∑
m=1

αm[f ]
{
α|n−m|[g] + αn+m[g]

}
+

− 1

2

+∞∑
m=1

βm[f ]
{
sgn(n−m)β|n−m|[g]− βn+m[g]

}
βn[f · g] =

1

2
α0[f ]βn[g] +

1

2

+∞∑
m=1

αm[f ]
{
sgn(n−m)β|n−m|[g] + βn+m[g]

}
+

+
1

2

+∞∑
m=1

βm[f ]
{
α|n−m|[g]− αn+m[g]

}

(2.1.10)
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where:

sgn(x) =


1 x > 0

0 x = 0

−1 x < 0

(2.1.11)

Proof. Since f and g are 2π-periodic functions we can evaluate their Fourier series expan-
sion coefficients separately. Then, for instance, putting in the product only the expansion
of f we get:

α0[f · g] =
1

2
α0[f ] · 1

π

∫ π

−π
g(θ)dθ+

+
+∞∑
m=1

[
αm[f ] · 1

π

∫ π

−π
g(θ) cos(mθ)dθ + βm[f ] · 1

π

∫ π

−π
g(θ) sin(mθ)dθ

]
=

=
1

2
α0[f ]α0[g] +

+∞∑
m=1

{αm[f ]αm[g] + βm[f ]βm[g]}

and:

αn[f · g] =
1

2
α0[f ] · 1

π

∫ π

−π
g(θ) cos(nθ)dθ +

+∞∑
m=1

αm[f ] · 1

π

∫ π

−π
g(θ) cos(mθ) cos(nθ)dθ+

+
+∞∑
m=1

βm[f ] · 1

π

∫ π

−π
g(θ) sin(mθ) cos(nθ)dθ =

=
1

2
α0[f ]αn[g] +

1

2

+∞∑
m=1

αm[f ] · 1

π

∫ π

−π
g(θ) {cos[|n−m|θ] + cos[(n+m)θ]} dθ+

− 1

2

+∞∑
m=1

βm[f ] · 1

π

∫ π

−π
g(θ) {sgn(n−m) sin[|n−m|θ]− sin[(n+m)θ]} dθ =

=
1

2
α0[f ]αn[g] +

1

2

+∞∑
m=1

αm[f ]
{
α|n−m|[g] + αn+m[g]

}
+

− 1

2

+∞∑
m=1

βm[f ]
{
sgn(n−m)β|n−m|[g]− βn+m[g]

}

and:
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βn[f · g] =
1

2
α0[f ] · 1

π

∫ π

−π
g(θ) sin(nθ)dθ +

+∞∑
m=1

αm[f ] · 1

π

∫ π

−π
g(θ) cos(mθ) sin(nθ)dθ+

+
+∞∑
m=1

βm[f ] · 1

π

∫ π

−π
g(θ) sin(mθ) sin(nθ)dθ =

=
1

2
α0[f ]βn[g]+

+
1

2

+∞∑
m=1

αm[f ] · 1

π

∫ π

−π
g(θ) {sgn(n−m) sin[|n−m|θ] + sin[(n+m)θ]} dθ+

+
1

2

+∞∑
m=1

βm[f ] · 1

π

∫ π

−π
g(θ) {cos[|n−m|θ]− cos[(n+m)θ]} dθ =

=
1

2
α0[f ]βn[g] +

1

2

+∞∑
m=1

αm[f ]
{
sgn(n−m)β|n−m|[g] + βn+m[g]

}
+

+
1

2

+∞∑
m=1

βm[f ]
{
α|n−m|[g]− αn+m[g]

}
�

2.2. Gauss Planetary Equations overview

The general formulation of Gauss Planetary equations is:

da

dt
=

2a2v

µ
at

de

dt
=

1

v

{
2 [e+ cos(θ)] at −

r

a
sin(θ)an

}
di

dt
=
r cos(θ + ω)

h
ah

dΩ

dt
=
r sin(θ + ω)

h sin(i)
ah

dω

dt
=

1

ev

{
2 sin(θ)at +

[
2e+

r

a
cos(θ)

]
an

}
− r sin(θ + ω) cos(i)

h sin(i)
ah

dθ

dt
=

h

r2
− 1

ev

{
2 sin(θ)at +

[
2e+

r

a
cos(θ)

]
an

}

(2.2.1)

with:

r =
a(1− e2)

1 + e cos(θ)
, v =

√
2µ

r
− µ

a
, h =

√
µa(1− e2) (2.2.2)
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In our notation: a is the semimajor axis of the orbit, e is the eccentricity, i is the inclination,
Ω is the Right Ascension of the Ascending Node (also denoted as RAAN), ω is the
argument of perigee and θ is the true anomaly. Moreover, in order to simplify the notation,
we introduced in Equation 2.2.1 the quantities indicated in Equation 2.2.2, i.e. h is the
specific angular momentum, r is the norm of the position vector, v is the norm of the
velocity vector and µ is the standard gravitational parameter of a celestial body1. Finally
we indicate with at the thrust in the tangential direction, with an the thrust in the normal
direction and with ah the thrust in the out of plane2 direction.

In the most general sense the system Equation 2.2.1 is a time domain set of ordinary
differential equations. Exploiting all the functional dependencies, the ODEs system can
be reduced to the kind:

da

dt
= α(a, e, θ; at)

de

dt
= β(a, e, θ; at, an)

di

dt
= γ(a, e, ω, θ; ah)

dΩ

dt
= δ(a, e, i, ω, θ; ah)

dω

dt
= ε(a, e, i, ω, θ; at, an, ah)

dθ

dt
= ζ(a, e, θ; at, an)

(2.2.3)

where α, β, γ, δ, ε and ζ can be easily obtained from Equation 2.2.1.

Remark 2.2.1. Referring to Equation 2.2.3, the shape problem {a, e, θ} is decoupled
from the orientation problem {i,Ω, ω}. The main reason is that, since the thrust ac-
celerations components {at, an, ah} are constant, the functions α, β and ζ form a self
consisting subsystem of ODEs.

Now, assuming as independent variable the true anomaly θ and indicating with ()′ all the
θ-derivatives, the system Equation 2.2.3 is led to:

1i.e. µ = GM , where G is the gravitational constant and M is the mass of the body.
2i.e. the plane containing the spacecraft orbit.
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a′ = α(a, e, θ; at, an)/ζ(a, e, θ; at, an) = R(a, e, θ; at, an)

e′ = β(a, e, θ; at, an)/ζ(a, e, θ; at, an) = S(a, e, θ; at, an)

t′ = 1/ζ(a, e, θ; at, an) = τ(a, e, θ; at, an)

i′ = γ(a, e, ω, θ; at, an, ah)/ζ(a, e, θ; at, an) = I(a, e, ω, θ; at, an, ah)

Ω′ = δ(a, e, i, ω, θ; at, an, ah)/ζ(a, e, θ; at, an) = O(a, e, i, ω, θ; at, an, ah)

ω′ = ε(a, e, i, ω, θ; at, an, ah)/ζ(a, e, θ; at, an) = O(a, e, i, ω, θ; at, an, ah)

(2.2.4)

The constant small thrust parameters are present inside these functions in terms of compli-
cated algebraic forms. Nevertheless they are not referred to in the functional dependencies
in the computations hereafter in order to have a simpler notation.

2.3. Arbitrary thrust actions solution - full model

The solution procedure consists in expanding in Taylor series all the previous functions
near the reference condition x0 = {a0, e0, i0, ω0}. All functions are expanded up to first
order with the exception of S which characterizes the eccentricity. Moreover, we assume
that the inclination is affected in its variation from a and e much more than from ω.

The system Equation 2.2.4 reduces to:

a′ = R0(θ) +Ra(θ)(a− a0) +Re(θ)(e− e0)

e′ = S0(θ)

t′ = τ0(θ) + τa(θ)(a− a0) + τe(θ)(e− e0)

i′ = I0(θ) + Ia(θ)(a− a0) + Ie(θ)(e− e0)

Ω′ = O0(θ) + Oa(θ)(a− a0) + Oe(θ)(e− e0) + Oi(θ)(i− i0) + Oω(θ)(ω − ω0)

ω′ = O0(θ) + Oa(θ)(a− a0) + Oe(θ)(e− e0) + Oi(θ)(i− i0) + Oω(θ)(ω − ω0)

(2.3.1a)

(2.3.1b)

(2.3.1c)

(2.3.1d)

(2.3.1e)

(2.3.1f)

In the present notation (and also further in this work) if f(x, θ) is a generic function,
then:

f0(θ) = f(x0, θ) and fxi(θ) =
∂f

∂xi

∣∣∣∣
(x0,θ)

(2.3.2)

Remark 2.3.1. The two hypotheses previously done are supported by numerical evi-
dences as presented in Figure 2.1. In the simulations we compared the solutions of the
Gauss Planetary Equations in the form Equation 2.2.4 with the numerical solution of the
system in Equation 2.3.1 (namely Reduced First Order system - rfo) and also with the
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numerical solution of the system composed by same set of equations but where Equa-
tion 2.3.1a and Equation 2.3.1d are replaced with:

e′ = S0(θ) + Sa(θ)(a− a0) + Se(θ)(e− e0)

i′ = I0(θ) + Ia(θ)(a− a0) + Ie(θ)(e− e0) + Iω(θ)(ω − ω0)

(namely Complete First Order system - cfo). From Figure 2.1 we can see that passing
from the cfo-model to the rfo-model the relative error increases but it remains low. This
is even more true if we take into account the fact that these simulations are carried out
imposing a continuous thrust action for two orbital revolutions.3 In the common practice,
indeed, the thrust arc should be as short as possible to not interfere too much with the
satellite operations. Finally we observe that, in order to test the strength of the method,
the selected thrust actions are relatively high in magnitude, but this not true in reality;
in particular the thrust level in the out of plane direction ah is typically vary low. Putting
together all these considerations we conclude that the reduction in Equation 2.3.1 is an
effective and reliable method to approximate the solution of Equation 2.2.4.

3this choice is done just to test the strength of the method and of the hypothesis.
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Figure 2.1: Relative errors for e and i for different thrust levels. (Reference orbit: a0 =

12000 km, e0 = 0.1, i0 = 30 deg, Ω0 = 10 deg, ω0 = 29 deg, θ0 = 5 deg. Orbital period:
T0 = 3.634 h. Initial time: t0 = 0 s.)

Remark 2.3.2. The variation of the eccentricity is more affected by the variation of
the semimajor axis than from the variation of the eccentricity itself. Therefore, replacing
Equation 2.3.1b with a first order approximation of the kind:

e′ = S0(θ) + Se(θ)(e− e0) (2.3.3)
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would lead to a small increase in precision. On the contrary the approximation:

e′ = S0(θ) + Sa(θ)(a− a0) (2.3.4)

would be more beneficial. Referring to Figure 2.2 we can see what previously explained.
Here we present the solutions for different thrust levels and for different values of the
reference eccentricity e0. We can appreciate that the numerical solution of Equation 2.3.4
(denoted by eSa) is slightly more accurate than the solution of Equation 2.3.3 (denoted
by eSe) specially when the number of revolutions increases. Nevertheless this small gain
in accuracy does not justify the corresponding increase in difficulty of the mathematical
model.



22 2| Mathematical model

Figure 2.2: Relative errors for e for different thrust levels and reference eccentricities.
(Reference orbit: a0 = 12000 km, i0 = 30 deg, Ω0 = 10 deg, ω0 = 29 deg, θ0 = 5 deg and
e0 = 0.1, 0.6. Orbital period: T0 = 3.634 h. Initial time: t0 = 0 s.)

Remark 2.3.3. A final remark has to be done on the behaviours of the errors. As we
can appreciate in Figure 2.2 the behaviours of the relative error are not so much affected
by the reference value of the eccentricity (and in general from the reference value of any
other orbital parameter). This is because our model in Equation 2.3.1 is the result of a
Taylor expansion in the neighbourhood of the reference condition. Therefore one of its
strength point is that the accuracy will be high till the solution will not differ too much
from the reference.
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2.3.1. Zero order solution for the orbital shape problem

Referring to Remark 2.2.1 we now proceed to derive a very simple solution for the shape
problem. The main assumption is to consider that both the variations of a and e are
driven by the zero order terms. In this case Equation 2.3.1a and Equation 2.3.1b become:

a′ = R0(θ) and e′ = S0(θ)

But R0 and S0 are 2π-periodic in θ so the integrations come directly from Equation 2.1.4:

a(θ)− a0 =

[
α0[R0]

2
ξ + P2π

(
−βn[R0]/n

αn[R0]/n

∣∣∣∣∣ ξ
)]θ

θ0

e(θ)− e0 =

[
α0[S0]

2
ξ + P2π

(
−βn[S0]/n

αn[S0]/n

∣∣∣∣∣ ξ
)]θ

θ0

These expressions can be rewritten as:

a(θ)− a0 =
α0[R0]

2
θ + Ξa(θ) (2.3.5)

e(θ)− e0 =
α0[S0]

2
θ + Ξe(θ) (2.3.6)

with:

Ξa(θ) = −α0[R0]

2
θ0 +

[
P2π

(
−βn[R0]/n

αn[R0]/n

∣∣∣∣∣ ξ
)]θ

θ0

, Ξa(θ) = Ξa(θ + 2π)

Ξe(θ) = −α0[S0]

2
θ0 +

[
P2π

(
−βn[S0]/n

αn[S0]/n

∣∣∣∣∣ ξ
)]θ

θ0

, Ξe(θ) = Ξe(θ + 2π)

The main advantage of rewriting the solutions for a and e in the form of Equation 2.3.5
and Equation 2.3.6 is that we take apart the periodic contributions (i.e. Ξa and Ξe) from
the linear increasing ones. This technique will allow us to achieve the further integrations
in an easier way.
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2.3.1.1. Time law computation

Plugging Equation 2.3.5 and Equation 2.3.6 into Equation 2.3.1c we get:

t− t0 =

∫ θ

θ0

X0(ξ)dξ +

∫ θ

θ0

X1(ξ)ξdξ (2.3.7)

where:

X0(θ) = τ0(θ) + τa(θ)Ξa(θ) + τe(θ)Ξe(θ), X0(θ) = X0(θ + 2π)

X1(θ) = [α0[R0]τa(θ) + α0[S0]τe(θ)] /2, X1(θ) = X1(θ + 2π)

Now combining Equation 2.1.3 and Equation 2.1.5 we obtain:

t− t0 = Aθ2 +B(θ)θ + C(θ)−
[
Aθ2

0 +B(θ0)θ0 + C(θ0)
]

(2.3.8)

with:

A =
α0[X1]

4
, B(θ) =

α0[X0]

2
+ P2π

(
−βn[X1]/n

αn[X1]/n

∣∣∣∣∣ θ
)

C(θ) = P2π

(
−βn[X0]/n+ αn[X1]/n2

αn[X0]/n+ βn[X1]/n2

∣∣∣∣∣ θ
)

Notice that A is a constant, while B(θ) and C(θ) are both 2π-periodic functions.

A more refined model for the time law can be achieved considering a second order approx-
imation. Expanding in Taylor series and performing the substitutions the Equation 2.3.1c
becomes:

t′ = T0(θ) + T1(θ)θ + T2(θ)θ2

with:
T0(θ) =

1

2
Ξ2
a(θ)τaa(θ) + Ξa(θ)τae(θ)Ξe(θ) + Ξa(θ)τa(θ)+

+
1

2
Ξ2
e(θ)τee(θ) + Ξe(θ)τe(θ) + τ0(θ)

T1(θ) =
1

2
α0 [R0] [Ξa(θ)τaa(θ) + τa(θ) + τae(θ)Ξe(θ)] +

+
1

2
α0 [S0] [Ξa(θ)τae(θ) + Ξe(θ)τee(θ) + τe(θ)]

T2(θ) =
1

8

[
α2

0 [R0] τaa(θ) + 2α0 [R0]α0 [S0] τae(θ) + α2
0 [S0] τee(θ)

]
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Now combining Equation 2.1.3, Equation 2.1.5 and Equation 2.1.6 we obtain:

t− t0 = Ãθ3 + B̃(θ)θ2 + C̃(θ)θ + D̃(θ)− [Ãθ3
0 + B̃(θ0)θ2

0 + C̃(θ0)θ0 + D̃(θ0)] (2.3.9)

with:

Ã =
α0[T2]

6
, B̃(θ) =

[
α0[T1]

4
+ P2π

(
−βn[T2]/n

αn[T2]/n

∣∣∣∣∣ θ
)]

C̃(θ) =
α0[T0]

2
+ P2π

(
−βn[T1]/n+ 2αn[T2]/n2

αn[T1]/n+ 2βn[T2]/n2

∣∣∣∣∣ θ
)

D̃(θ) = P2π

(
−βn[T0]/n+ αn[T1]/n2 + 2βn[T2]/n3

αn[T0]/n+ βn[T1]/n2 − 2αn[T2]/n3

∣∣∣∣∣ θ
)

Remark 2.3.4. The expressions obtained in Equation 2.3.8 and Equation 2.3.9 provide
time t as a function of the true anomaly θ. This means that an inversion has to be
performed in order to obtain the functional relationship θ = θ(t). This is done by solving
for each value of t a non linear root finding problem by means of Newton-Raphson method.

2.3.2. First order approximation for the semi-major axis

The general statement is expressed4 by Equation 2.3.1a and Equation 2.3.1b:

a′ = R0(θ) +Ra(θ)(a− a0) +Re(θ)(e− e0)

e′ = S0(θ)

Taking the θ-integral of Equation 2.3.1b and plugging that solution into Equation 2.3.1a
we obtain:

a′ = R0(θ) +Ra(θ)(a− a0), R0(θ) = R0(θ) +Re(θ)

∫ θ

θ0

S0(ξ)dξ

Setting ā = a− a0 and defining:

ā = exp[Ra(θ)]v(θ), Ra(θ) =

∫
Ra(θ)dθ

the ODE reduces to:
v′ = exp[−Ra(θ)]R0(θ), v(θ0) = 0

4we recall it here in order to be more clear.
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Hence the overall solution is given by:

a− a0 = exp[Ra(θ)]

∫ θ

θ0

exp[−Ra(ξ)]R0(ξ)dξ (2.3.10)

The relevant integral to be performed in Equation 2.3.10 is:

It(θ) =

∫
exp[−Ra(θ)]R0(θ)dθ (2.3.11)

Since Ra assumes the form Equation 2.1.3:

Ra(θ) =
α0[Ra]

2
θ + P2π

(
−βn[Ra]/n

αn[Ra]/n

∣∣∣∣∣ θ
)

then its exponential can be conveniently decomposed as:

exp[Ra(θ)] = exp [kθ] Ξ+Ra(θ) and exp[−Ra(θ)] = exp [−kθ] Ξ−Ra(θ)

where the parameter k 6= 0 and the periodic functions Ξ+Ra and Ξ−Ra are defined as:

k =
α0[Ra]

2
, Ξ±Ra(θ) = exp

[
±P2π

(
−βn[Ra]/n

αn[Ra]/n

∣∣∣∣∣ θ
)]

Moreover, recalling Equation 2.3.6 the expression of R0 becomes:

R0(θ) = R0(θ) +Re(θ)

[
α0[S0]

2
θ + Ξe(θ)

]
= R01(θ) + R02(θ)θ

with:
R01(θ) = R0(θ) +Re(θ)Ξe(θ), R01(θ) = R01(θ + 2π)

R02(θ) =
α0[S0]

2
Re(θ), R02(θ) = R02(θ + 2π)

Then the integrand in Equation 2.3.11 becomes:

exp[−Ra(θ)]R0(θ) = R̂01(θ) exp[−kθ] + R̂02(θ) exp[−kθ]θ
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where:
R̂01(θ) = Ξ−Ra(θ)R01(θ) = Ξ−Ra(θ)[R0(θ) +Re(θ)Ξe(θ)]

R̂02(θ) = Ξ−Ra(θ)R02(θ) = Ξ−Ra(θ)α0[S0]Re(θ)/2

It follows that the integral reduces to:

It(θ) =

∫ {
R̂01(θ) + R̂02(θ)θ

}
exp[−kθ]dθ

which solution can be obtained combining the integration properties provided by Equa-
tion 2.1.7 and Equation 2.1.8; it follows:

It(θ) = [B0(θ) + B1(θ)θ] exp[−kθ] (2.3.12)

with:

B0(θ) = −

[
α0[R̂01]

2k
+
α0[R̂02]

2k2

]
+

+ P2π


αn[R̂02](n2 − k2)− 2knβn[R̂02]

(k2 + n2)2
− kαn[R̂01] + nβn[R̂01]

k2 + n2

2knαn[R̂02] + βn[R̂02](n2 − k2)

(k2 + n2)2
+
nαn[R̂01]− kβn[R̂01]

k2 + n2

∣∣∣∣∣∣∣∣ θ


B1(θ) = −α0[R̂02]

2k
+ P2π

 −
kαn[R̂02] + nβn[R̂02]

k2 + n2

nαn[R̂02]− kβn[R̂02]

k2 + n2

∣∣∣∣∣∣∣∣ θ


So finally, plugging Equation 2.3.12 into Equation 2.3.10 we get:

a− a0 = B̃0(θ) + B̃1(θ)θ + B̃2(θ) exp[kθ] (2.3.13)

with:

B̃0(θ) = Ξ+Ra(θ)B0(θ), B̃1(θ) = Ξ+Ra(θ)B1(θ), B̃2(θ) = −Ξ+Ra(θ)It(θ0)
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2.3.2.1. Time law computation

Plugging Equation 2.3.13 and Equation 2.3.6 into Equation 2.3.1c we get:

t− t0 =

∫ θ

θ0

{
T̂0(ξ) + T̂1(ξ)ξ + T̂2(ξ) exp[kξ]

}
dξ (2.3.14)

with:
T̂0(θ) = B̃0(θ)τa(θ) + Ξe(θ)τe(θ) + τ0(θ)

T̂1(θ) = B̃1(θ)τa(θ) +
1

2
α0 [S0] τe(θ)

T̂2(θ) = B̃2(θ)τa(θ)

Then, by means of the integration properties provided by Equation 2.1.3, Equation 2.1.5
and Equation 2.1.7 we get:

t− t0 = Âθ2 + B̂(θ)θ + Ĉ(θ) + D̂(θ) exp[kθ]+

−
{
Âθ2

0 + B̂(θ0)θ0 + Ĉ(θ0) + D̂(θ0) exp[kθ0]
} (2.3.15)

with:

Â =
α0[T̂1]

4
, B̂(θ) =

α0[T̂0]

2
+ P2π

(
−βn[T̂1]/n

αn[T̂1]/n

∣∣∣∣∣ θ
)

Ĉ(θ) = P2π

(
−βn[T̂0]/n+ αn[T̂1]/n2

αn[T̂0]/n+ βn[T̂1]/n2

∣∣∣∣∣ θ
)

D̂(θ) =
α0[T̂2]

2k
+ P2π

(
(kαn[T̂2]− nβn[T̂2])/(k2 + n2)

(nαn[T̂2] + kβn[T̂2])/(k2 + n2)

∣∣∣∣∣ θ
)

2.3.3. Orientation problem

Once the shape problem is solved and so {a, e, θ} are computed, we can proceed to evaluate
the remaining three Keplerian elements Ω, ω and i. The procedure is similar to what we
have already seen in previous sections; nevertheless we will recall the main steps for the
solutions.

Starting from Equation 2.3.1d, the ODE for the inclination can be rewritten as:

i′ = Ai′(θ) +
1

2
Bi′(θ)θ (2.3.16)
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with:
Ai′(θ) = I0(θ) + Ia(θ)Ξa(θ) + Ie(θ)Ξe(θ)

Bi′(θ) = α0[R0]Ia(θ) + α0[S0]Ie(θ)

Integrating Equation 2.3.16 in the same way of Equation 2.3.7 we get:

i(θ)− i0 = Aiθ
2 +Bi(θ)θ + Ci(θ)− ki, ki = Aiθ

2
0 +Bi(θ0)θ0 + Ci(θ0) (2.3.17)

Plugging Equation 2.3.17 into Equation 2.3.1f we obtain the form:

ω′ = Aω′(θ)θ
2 +Bω′(θ)θ + Cω′(θ) + Oω(θ)(ω − ω0) (2.3.18)

with:
Aω′(θ) = AiOi(θ)

Bω′(θ) =
1

2
α0 [R0]Oa(θ) +Bi(θ)Oi(θ) +

1

2
α0 [S0]Oe(θ)

Cω′(θ) = Ξa(θ)Oa(θ) + [Ci(θ)− ki]Oi(θ) + Ξe(θ)Oe(θ) + O0(θ)

Proceeding similarly to what done in Section 2.3.2 we set ω̄ = ω−ω0 and we perform the
following change of variable:

ω̄ = exp[Y (θ)]v(θ)

where:

Y (θ) =

∫
Oω(θ)dθ = kθ + P2π

(
−βn[Oω]/n

αn[Oω]/n

∣∣∣∣∣ θ
)

with k =
α0[Oω]

2

after performing the substitutions, leading Equation 2.3.18 to the quadratures, we obtain:

ω − ω0 = exp[Y (θ)]

∫ θ

θ0

{
Aω′(ξ)ξ

2 +Bω′(ξ)ξ + Cω′(ξ)
}

exp[−Y (ξ)]dξ (2.3.19)

The exponentials appearing into Equation 2.3.19 can be conveniently rewritten as:

exp[Y (θ)] = exp[kθ] exp[Ξ+Y (θ)] and exp[−Y (θ)] = exp[−kθ] exp[Ξ−Y (θ)]

where:

Ξ±Y (θ) = exp

[
±P2π

(
−βn[Oω]/n

αn[Oω]/n

∣∣∣∣∣ θ
)]
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Then the relevant integral inside Equation 2.3.19 becomes:

J(θ) =

∫ {
Ȳ2(θ)θ2 + Ȳ1(θ)θ + Ȳ0(θ)

}
exp[−kθ]dθ (2.3.20)

with:
Ȳ2(θ) = Ξ−Y (θ)Aω′(θ), Ȳ1(θ) = Ξ−Y (θ)Bω′(θ), Ȳ0 = Ξ−Y (θ)Cω′(θ)

The integral in Equation 2.3.20 can be solved by means of the integration properties
provided by Equation 2.1.7, Equation 2.1.8 and Equation 2.1.9; we get:

J(θ) =
{
Ŷ0(θ) + Ŷ1(θ)θ + Ŷ2(θ)θ2

}
exp[−kθ] (2.3.21)

where:

Ŷ0(θ) = −
[
α0[Ȳ0]

2k
+
α0[Ȳ1]

2k2
+
α0[Ȳ2]

k3

]
+

+ P2π


αn[Ȳ1](n2 − k2)− 2knβn[Ȳ1]

(k2 + n2)2
− kαn[Ȳ0] + nβn[Ȳ0]

k2 + n2

2knαn[Ȳ1] + βn[R̄1](n2 − k2)

(k2 + n2)2
+
nαn[Ȳ0]− kβn[Ȳ0]

k2 + n2

∣∣∣∣∣∣∣∣ θ
+

+ P2π

 2
n (n2 − 3k2) βn[Ȳ2]− (k3 − 3kn2)αn[Ȳ2]

(k2 + n2)3

−2
(n3 − 3k2n)αn[Ȳ2] + k (k2 − 3n2) βn[Ȳ2]

(k2 + n2)3

∣∣∣∣∣∣∣∣ θ


Ŷ1(θ) = −
[
α0[Ȳ1]

2k
+
α0[Ȳ2]

k2

]
+

+ P2π

 −
kαn[Ȳ1] + nβn[Ȳ1]

k2 + n2
+ 2

(n2 − k2)αn[Ȳ2]− 2knβn[Ȳ2]

(k2 + n2)2

nαn[Ȳ1]− kβn[Ȳ1]

k2 + n2
+ 2

(n2 − k2) βn[Ȳ2] + 2knαn[Ȳ2]

(k2 + n2)2

∣∣∣∣∣∣∣∣ θ


Ŷ2(θ) = −α0[Ȳ2]

2k
+ P2π

 −kαn[Ȳ2] + nβn[Ȳ2]

k2 + n2

nαn[Ȳ2]− kβn[Ȳ2]

k2 + n2

∣∣∣∣∣∣∣ θ


So finally plugging Equation 2.3.21 into Equation 2.3.19 we get:

ω(θ)− ω0 = Aω(θ)θ2 +Bω(θ)θ + Cω(θ) +Dω(θ) exp[kθ] (2.3.22)
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where:
Aω(θ) = Ξ+Y (θ)Ŷ2(θ), Bω(θ) = Ξ+Y (θ)Ŷ1(θ),

Cω(θ) = Ξ+Y (θ)Ŷ0(θ), Dω(θ) = −J(θ0)Ξ+Y (θ)

Finally plugging Equation 2.3.22 into Equation 2.3.1e we get:

Ω′ = AΩ′(θ)θ
2 +BΩ′(θ)θ + CΩ′(θ) +DΩ′(θ) exp[kθ] (2.3.23)

with:

AΩ′(θ) = AiOi(θ) + Aω(θ)Oω(θ)

BΩ′(θ) =
1

2
α0 [R0]Oa(θ) +Bi(θ)Oi(θ) +Bω(θ)Oω(θ) +

1

2
α0 [S0]Oe(θ)

CΩ′(θ) = Ξa(θ)Oa(θ) + Oi(θ) (Ci(θ)− ki) + Cω(θ)Oω(θ) + Ξe(θ)Oe(θ) + O0(θ)

DΩ′(θ) = Dω(θ)Oω(θ)

Integrating Equation 2.3.23 by means of the integrations properties provided by Equa-
tion 2.1.3, Equation 2.1.5, Equation 2.1.6 and Equation 2.1.7 we have:

Ω(θ)− Ω0 = AΩθ
3 +BΩ(θ)θ2 + CΩ(θ)θ +DΩ(θ) + EΩ(θ) exp[kθ]− kΩ (2.3.24)

with:
AΩ =

1

6
α0 [AΩ′ ]

BΩ(θ) =
1

4
α0 [BΩ′ ] + P2π

 −βn [AΩ′ ]

n
αn [AΩ′ ]

n

∣∣∣∣∣∣∣ θ


CΩ(θ) =
1

2
α0 [CΩ′ ] + P2π

 2αn [AΩ′ ]− nβn [BΩ′ ]

n2

2βn [AΩ′ ] + nαn [BΩ′ ]

n2

∣∣∣∣∣∣∣ θ


DΩ(θ) = P2π

 2βn [AΩ′ ] + n (αn [BΩ′ ]− nβn [CΩ′ ])

n3

n (βn [BΩ′ ] + nαn [CΩ′ ])− 2αn [AΩ′ ]

n3

∣∣∣∣∣∣∣ θ


EΩ(θ) =
α0 [DΩ′ ]

2k
+ P2π

 kαn [DΩ′ ]− nβn [DΩ′ ]

k2 + n2

kβn [DΩ′ ] + nαn [DΩ′ ]

k2 + n2

∣∣∣∣∣∣∣ θ


kΩ = AΩθ
3
0 +BΩ(θ0)θ2

0 + CΩ(θ0)θ0 +DΩ(θ0) + EΩ(θ0) exp[kθ0]

In Table 2.1 a summary of all the results obtained for the full model approximation is
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presented.

Table 2.1: Summary of the main results obtained for the full model

Quantity Equation number
a, Semimajor axis (zero order approx.) Equation 2.3.5
a, Semimajor axis (first order approx.) Equation 2.3.13
e, Eccentricity (zero order approx.) Equation 2.3.6
t(θ), Time law (1st order approx.) with zero order approx. for a Equation 2.3.8
t(θ), Time law (2nd order approx.) with zero order approx. for a Equation 2.3.9
t(θ), Time law (1st order approx.) with 1st order approx. for a Equation 2.3.15
i, Inclination (1st order approx.) with zero order approx. for a Equation 2.3.17
ω, arg. perigee (1st order approx.) with zero order approx. for a Equation 2.3.22
Ω, RAAN (1st order approx.) with zero order approx. for a Equation 2.3.24

2.4. Small thrust parameters approximation - small

thrust model

Up to now we did consider general thrust parameters so that all the functions shown are
complicated expressions of them and they operate in non linear way inside the functions.
However, notice that we are talking about a low thrust problem and, in addition, a first
order linearization has been performed: some information therefore has been lost. As a
consequence, we can reasonably simplify the aforementioned functions by a Maclaurin
expansion with respect to the thrust parameter.

For at → 0, an → 0 and ah → 0, performing a MacLaurin expansion truncated at first
order we pass from the form Equation 2.2.4 to:

a′ = Rat(a, e, θ)at

e′ = Sat(a, e, θ)at + San(a, e, θ)an

t′ = τ0(a, e, θ) + τat(a, e, θ)at + τan(a, e, θ)an

i′ = Iah(a, e, ω, θ)ah

ω′ = Oat(a, e, i, ω, θ)at + Oan(a, e, i, ω, θ)an + Oah(a, e, i, ω, θ)ah

Ω′ = Oah(a, e, i, ω, θ)ah

(2.4.1)
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performing the derivatives as in Equation 2.4.1 we obtain:

a′ = −2a3 (e2 − 1)R(e, θ)

µS(e, θ)
at

e′ =
2a2 (e2 − 1)

2
(e+ cos(θ))

µS(e, θ)R(e, θ)
at +

a2 (e2 − 1)
3

sin(θ)

µS3/2(e, θ)R(e, θ)
an

t′ =
a3/2 (1− e2)

3/2

√
µS(e, θ)

+
2a7/2 (1− e2)

7/2
sin(θ)

eµ3/2S2(e, θ)R(e, θ)
at +

a7/2 (1− e2)
7/2

Q(e, θ)

eµ3/2S5/2(e, θ)R(e, θ)
an

i′ =
a2 (e2 − 1)

2
cos(θ + ω)

µS3/2(e, θ)
ah

ω′ =
2a2 (e2 − 1)

2
sin(θ)

eµS(e, θ)R(e, θ)
at +

a2 (e2 − 1)
2
Q(e, θ)

eµS3/2(e, θ)R(e, θ)
an −

a2 (e2 − 1)
2

cot(i) sin(θ + ω)

µS3/2(e, θ)
ah

Ω′ =
a2 (e2 − 1)

2
csc(i) sin(θ + ω)

µS3/2(e, θ)
ah

with:

Q(e, θ) =
(
e2 + 1

)
cos(θ) + 2e, R(e, θ) =

√
1 + e2 + 2e cos(θ), S(e, θ) = (e cos(θ) + 1)2

(2.4.2)

Then, following the notation Equation 2.3.2 and linearizing the equations near to the
reference condition x0 = {a0, e0, i0, ω0}, we get:

a′ = {R̄at,0(θ) + R̄at,a(θ)(a− a0) + R̄at,e(e− e0)}ãt
e′ = S̄at,0(θ)ãt + S̄an,0(θ)ãn

i′ = {Īah,0(θ) + Īah,a(θ)(a− a0) + Īah,e(θ)(e− e0)}ãh

(2.4.3)

(2.4.4)

(2.4.5)

t′ = {τ̄at,0(θ) + τ̄at,a(θ)(a− a0) + τ̄at,e(θ)(e− e0)}ãt+

+ {τ̄an,0(θ) + τ̄an,a(θ)(a− a0) + τ̄an,e(θ)(e− e0)}ãn+

+ τ0,0(θ) + τ0,a(θ)(a− a0) + τ0,e(θ)(e− e0)

(2.4.6)

ω′ = {Ōat,0(θ) + Ōat,a(θ)(a− a0) + Ōat,e(θ)(e− e0)}ãt+

+ {Ōan,0(θ) + Ōan,a(θ)(a− a0) + Ōan,e(θ)(e− e0)}ãn+

+ {Ōah,0(θ) + Ōah,a(θ)(a− a0) + Ōah,e(θ)(e− e0)+

+ Ōah,i(θ)(i− i0) + Ōah,ω(θ)(ω − ω0)}ãh

(2.4.7)

Ω′ = {Ōah,0(θ) + Ōah,a(θ)(a− a0) + Ōah,e(θ)(e− e0)+

+ Ōah,i(θ)(i− i0) + Ōah,ω(θ)(ω − ω0)}ãh
(2.4.8)
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where we defined the adimentional thrust parameters:

ãt =
a2

0

µ
at, ãn =

a2
0

µ
an, ãh =

a2
0

µ
ah (2.4.9)

and if x(θ) is the generic function then:

x̄(θ) =
µ

a2
0

x(θ)

2.4.1. Semimajor axis solution

The ODE for the semimajor axis is given by Equation 2.4.3. Now, for analogous reasons
of those seen in Remark 2.3.1 and Remark 2.3.2 not reported here to avoid redundancies,
assuming that the variation of the semi-major axis is not so much affected by the variation
of the eccentricity we get:

a′ = 2(1− e2
0)g(θ)[a0 + 3(a− a0)]ãt, g(θ) =

R(e0, θ)

S(e0, θ)
(2.4.10)

Let now be:
R∗a(θ) = ãt · 6(1− e2

0)

∫
g(θ)dθ

R∗0(θ) = ãt · 2(1− e2
0)a0g(θ) =

a0

3
· d[R∗a(θ)]

dθ

Then:

a− a0 = exp[R∗a(θ)]

∫ θ

θ0

exp[−R∗a(ξ)]R∗0(ξ)dξ = −a0

3
(1− exp[R∗a(θ)−R∗a(θ0)])

with:

R∗a(θ) = ãt · 6(1− e2
0)

[
α0[g]

2
θ + P2π

(
0

αn[g]/n

∣∣∣∣∣ θ
)]

Then we have:
exp[R∗a(θ)] = exp[kaθ]Ξ+R∗a(θ)

with:

ka = ãt · 3(1− e2
0)α0[g], Ξ+R∗a(θ) = exp

[
ãt · 6(1− e2

0)P2π

(
0

αn[g]/n

∣∣∣∣∣ θ
)]

(2.4.11)
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Finally we can observe that, since the argument of the exponential inside Ξ+R∗a is bounded
we can approximate it for small ãt:

Ξ+R∗a(θ) ≈ 1 + ãt · 6(1− e2
0)P2π

(
0

αn[g]/n

∣∣∣∣∣ θ
)

= 1 + ãtQa(θ)

Then we can rewrite the variation of the semi-major axis with respect to the reference
condition in matrix form as:

a− a0 = k0[1− exp(kaθ + k1)− ãtQa(θ) exp(kaθ + k1)] =

= k0[1− exp(kaθ + k1),−Qa(θ) exp(kaθ + k1)]

[
1

ãt

]
(2.4.12)

with:

k0 = −a0

3
, k1 = −Ra(θ0), Qa(θ) = 6(1− e2

0)P2π

(
0

αn[g]/n

∣∣∣∣∣ θ
)

2.4.1.1. Fourier series coefficients

With reference to Appendix B, Equation B.0.17, it can be proved that :

g(θ) =
1

2
π1/2(1 + e2

0)1/2

+∞∑
m=0

qm(e0) cosm(θ)

where the coefficients qm are given by:

qm(e0) =
(2e0)m (e2

0 + 1) −m

Γ (3/2−m) Γ(m+ 1)
2F1

(
2 −m

3/2−m

∣∣∣∣∣ 1 + e2
0

2

)

where Γ is the complete Gamma Function and 2F1 is the Gauss Hypergeometric function
(see Appendix A for a short general presentation or Slater [38] for mare details).

It follows that the relevant integral to be performed is:

1

π

∫ π

−π
cosm(θ) cos(nθ)dθ = pm(n)
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with:

pm(n) = − π(−2)m(n+m− 1)Γ(m+ 1)

Γ ((−n−m+ 3)/2) Γ ((n−m+ 1)/2) Γ(−n+m+ 1)Γ(n+m+ 1)
(2.4.13)

So finally the expression of the coefficients is:

α0[g] =
2

π

[
1

1 + e0

E(κ) +
1

1− e0

K(κ)

]
αn[g] =

1

2
π1/2(1 + e2

0)1/2

+∞∑
m=0

qm(e0)pm(n)

βn[g] = 0

(2.4.14)

Where K(κ) and E(κ) are the complete elliptic integrals of first and second kind respec-
tively with elliptic modulus:

κ = − 4e0

(e0 − 1)2
(2.4.15)

2.4.2. Eccentricity solution

Starting from Equation 2.4.4 the θ-derivative of the eccentricity becomes:

e′ = S̄at,0(θ)ãt + S̄an,0(θ)ãn = 2(1− e2
0)2 ¯̄Sat,0(θ)ãt + (e2

0 − 1)3 ¯̄San,0(θ)ãn

where:
¯̄Sat,0(θ) =

Sat,0(θ)

2(1− e2
0)2

=
e0 + cos(θ)

S(e0, θ)R(e0, θ)

¯̄San,0(θ) =
San,0(θ)

(e2
0 − 1)3

=
sin(θ)

S3/2(e0, θ)R(e0, θ)

So that the solution can be expressed as:

e− e0 = 2ãt(1− e2
0)2

[
α0[ ¯̄Sat,0]

2
θ + P2π

(
0

αn[ ¯̄Sat,0]/n

∣∣∣∣∣ ξ
)]θ

θ0

+

+ ãn(e2
0 − 1)3

[
P2π

(
−βn[ ¯̄San,0]/n

0

∣∣∣∣∣ ξ
)]θ

θ0
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which can be rewritten in matrix form as:

e− e0 = ãt[keθ +Q1e(θ)] + ãnQ2e(θ) = [keθ +Q1e(θ), Q2e(θ)]

[
ãt

ãn

]
(2.4.16)

with:

ke = α0[ ¯̄Sat,0](1− e2
0)2

Q1e(θ) = −keθ0 + 2(1− e2
0)2

[
P2π

(
0

αn[ ¯̄Sat,0]/n

∣∣∣∣∣ ξ
)]θ

θ0

Q2e(θ) = (e2
0 − 1)3

[
P2π

(
−βn[ ¯̄San,0]/n

0

∣∣∣∣∣ ξ
)]θ

θ0

2.4.2.1. Fourier series coefficients

It can be proved that:

¯̄Sat,0(θ) =
1

e0

√
π

1 + e2
0

+∞∑
m=0

um(e0) cosm(θ)

¯̄San,0(θ) =
1

2(e2
0 − 1)

√
π

1 + e2
0

· sin(θ)
+∞∑
m=0

vm(e0) cosm(θ)

with:

um(e0) =
(2e)m

Γ(m+ 1)(1 + e2
0)m
·
[
um(e0)− (1− e2

0)vm(e0)
]

vm(e0) =
(2e)m

Γ(m+ 1)(1 + e2
0)m
·
[
(3 + 2m)um(e0) + (e2

0(m+ 2)−m− 5)vm(e0)
]

and:

um(e0) =
1

Γ(1/2−m)
2F1

(
1 −m

1/2−m

∣∣∣∣∣ 1 + e2
0

2

)

vm(e0) =
1

Γ(1/2−m)
2F1

(
2 −m

1/2−m

∣∣∣∣∣ 1 + e2
0

2

)

Then:
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α0[ ¯̄Sat,0] =
2

πe0

[
E(κ)

1 + e0

+
K(κ)

1− e0

− 2

(1− e0)2
Π (ζ|κ)

]
αn[ ¯̄Sat,0] =

1

e0

√
π

1 + e2
0

+∞∑
m=0

um(e0)pm(n)

βn[ ¯̄Sat,0] = α0[ ¯̄San,0] = αn[ ¯̄San,0] = 0

βn[ ¯̄San,0] =
n

2(e2
0 − 1)

√
π

1 + e2
0

+∞∑
m=0

vm(e0)pm+1(n)

m+ 1

(2.4.17)

where pm is defined in Equation 2.4.13, κ comes from Equation 2.4.15, Π(ζ|κ) is the
complete elliptic integral of third kind with elliptic modulus:

ζ =
2e0

e0 − 1
(2.4.18)

2.4.3. Time law solution

Rewriting Equation 2.4.6 in matrix form notation and substituting into that the expres-
sions of a − a0 and e − e0 given by Equation 2.4.12 and Equation 2.4.16 respectively we
get:

t′ = [1, ãt, ãn]

 τ00(θ)

τ̄0,at(θ)

τ̄0,an(θ)

+

+ k0[1, ãt, ãn]

 (− exp[kaθ + k1] + 1) τa,0(θ) −Qa(θ)τa,0(θ) exp[kaθ + k1]

(− exp[kaθ + k1] + 1) τ̄a,at(θ) −Qa(θ)τ̄a,at(θ) exp[kaθ + k1]

(− exp[kaθ + k1] + 1) τ̄a,an(θ) −Qa(θ)τ̄a,an(θ) exp[kaθ + k1]

[ 1

ãt

]
+

+ [1, ãt, ãn]

 (θke +Q1e(θ)) τe,0(θ) Q2e(θ)τe,0(θ)

(θke +Q1e(θ)) τ̄e,at(θ) Q2e(θ)τ̄e,at(θ)

(θke +Q1e(θ)) τ̄e,an(θ) Q2e(θ)τ̄e,an(θ)

[ ãt

ãn

]

Now neglecting all terms higher than first order we get:

t′ = [1, ãt, ãn]

 T1(θ) + T2(θ) exp[kaθ + k1]

T3(θ) + T4(θ)θ + T5(θ) exp[kaθ + k1]

T6(θ) + T7(θ) exp[kaθ + k1]


with:
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T1(θ) = τ00(θ) + k0τa,0(θ) = τ00(θ)/2

T2(θ) = −k0τa,0(θ) = τ00(θ)/2

T3(θ) = τ̄0,at(θ) + k0τ̄a,at(θ) +Q1e(θ)τe,0(θ) = −τ̄0,at(θ)/6 +Q1e(θ)τe,0(θ)

T4(θ) = keτe,0(θ)

T5(θ) = −k0τ̄a,at(θ)− k0Qa(θ)τa,0(θ) = 7/6 · τ̄0,at(θ) + 1/2 · τ00(θ)Qa(θ)

T6(θ) = τ̄0,an(θ) + k0τ̄a,an(θ) +Q2e(θ)τe,0(θ) = −τ̄0,an(θ)/6 +Q2e(θ)τe,0(θ)

T7(θ) = −k0τ̄a,an(θ) = 7/6 · τ̄0,an(θ)

We have already seen how to deal with integrals of these kinds in Section 2.3.2.1, Equa-
tion 2.3.14 and Equation 2.3.15.

2.4.3.1. Fourier series coefficients

The first function to be expanded is τ00, which is an even function defined as:

τ00(θ) =
a

3/2
0 (1− e2

0)3/2

µ1/2
· 1

S(e0, θ)

Now we recall a result from Gradshteyn et al. [39], rearranging formula 1.6 page 391 we
have:

Y (p, q, n) =
1

π

∫ π

−π

cos(nθ)

p− q cos(θ)
dθ =

2√
p2 − q2

(
p−
√
p2 − q2

q

)n
(2.4.19)

for |q| < p. In our case p = 1 and q = −e0. Then:

1

π

∫ π

−π

cos(nθ)

(e0 cos(θ) + 1)2
dθ = −

[
∂Y (p, q, n)

∂p

]
p=1

q=−e0

=
2
[
−1 + λ1/2

]n [
1 + nλ1/2

]
en0λ

3/2
(2.4.20)

Then the coefficients are:

α0[τ00] = 2a
3/2
0 µ−1/2

αn[τ00] = 2a
3/2
0 µ−1/2 · e−n0

[
−1 + λ1/2

]n [
1 + nλ1/2

]
βn[τ00] = 0

(2.4.21)

with:
λ = 1− e2

0 (2.4.22)
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The function τ̄0,at is an odd function defined as:

τ̄0,at(θ) =
2a

3/2
0 (1− e2

0)7/2

e0µ1/2
· sin(θ)

S2(e0, θ)R(e0, θ)

Then we observe that:

τ̄0,at(θ) =
π1/2a

3/2
0 (1− e2

0)
3/2

3e0(e2
0 + 1)1/2µ1/2

· sin(θ)
+∞∑
m=0

wm(e0) cosm(θ)

with:

wm(e0) =
1

m!

(
2e0

1 + e2
0

)m
·
{

[2(e2
0 − 1)m2 + (9e2

0 − 19)m+ 9e2
0 − 24]um(e0)+

+ [(1− e2
0)2m2 + (9− 14e2

0 + 5e4
0)m+ 30− 21e2

0 + 6e4
0]vm(e0)

}

Then the coefficients are:

α0[τ̄0,at ] = 0

αn[τ̄0,at ] = 0

βn[τ̄0,at ] =
π1/2a

3/2
0 (1− e2

0)
3/2

3e0(e2
0 + 1)1/2µ1/2

· n
+∞∑
m=0

wm(e0)pm+1(n)

m+ 1

(2.4.23)

where pm is defined in Equation 2.4.13. The function τe,0 is an even function defined as:

τe,0(θ) = −a
3/2
0 (1− e2

0)1/2

µ1/2
· (e2

0 + 2) cos(θ) + 3e0

S(e0, θ)3/2

Then the coefficients are:

α0[τe,0] = 0

αn[τe,0] = 2
a

3/2
0

µ1/2e0η
· nζn(1 + η)−2n(1 + e0 + ηn)

βn[τe,0] = 0

(2.4.24)

where ζ is defined in Equation 2.4.18 and:

η =

√
1 + e0

1− e0

(2.4.25)
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Regarding the coefficients of the product Q1e · τe,0, we first observe that:

Q1e(θ) = Q̂0 + Q̂1e(θ)

with:

Q̂0 = −keθ0 − 2λ2P2π

(
0

αn[ ¯̄Sat,0]/n

∣∣∣∣∣ θ0

)
, Q̂1e(θ) = 2λ2P2π

(
0

αn[ ¯̄Sat,0]/n

∣∣∣∣∣ θ
)

Then recalling that τe,0 is an even function with zero mean value and Q̂1e is an odd
function we have:

α0[Q1e · τe,0] = Q̂0α0[τe,0] + α0[Q̂1e · τe0] = 0

αn[Q1e · τe,0] = Q̂0αn[τe,0] + αn[Q̂1e · τe0] = Q̂0αn[τe,0]

βn[Q1e · τe,0] = Q̂0βn[τe,0] + βn[Q̂1e · τe,0] = βn[Q̂1e · τe,0]

It is now clear that the only thing we have to evaluate are the coefficients βn of the
convolution Q̂1e · τe,0; this is straightforward applying Theorem 2.1.1, Equation 2.1.10. So
in conclusion:

α0[Q1e · τe,0] = 0

αn[Q1e · τe,0] = Q̂0αn[τe,0]

βn[Q1e · τe,0] = λ2

+∞∑
m=1

αm[ ¯̄Sat,0]{α|m−n|[τe,0]− αm+n[τe,0]}m−1

(2.4.26)

The process to obtain the coefficients of the functions Q2e · τe,0 and Qa · τ00 is analogous
and the coefficients are:

α0[Q2e · τe,0] = λ3

+∞∑
m=1

βm[ ¯̄San,0]αm[τe,0]m−1

αn[Q2e · τe,0] = Q̃0αn[τe,0] +
λ3

2

+∞∑
m=1

βm[ ¯̄San,0]{α|m−n|[τe,0] + αm+n[τe,0]}m−1

βn[Q2e · τe,0] = 0

(2.4.27)

with:

Q̃0 = −(e2
0 − 1)3P2π

(
−βn[ ¯̄San,0]/n

0

∣∣∣∣∣ θ0

)
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and:

α0[Qa · τ00] = 0

αn[Qa · τ00] = 0

βn[Qa · τ00] = 3λ
+∞∑
m=1

αm[g]{α|m−n|[τ00]− αm+n[τ00]}m−1

(2.4.28)

Finally:

τ̄0,an(θ) =
a

3/2
0 (1− e2

0)7/2

e0µ1/2
· (1 + e2

0) cos(θ) + 2e0

S5/2(e0, θ)R(e0, θ)

which can be rewritten as:

τ̄0,an =
a

3/2
0 (1− e2

0)3/2π1/2

24e2
0(1 + e2

0)1/2µ1/2

+∞∑
m=0

ym(e0) cosm(θ)

with:

ym(e0) =
1

m!

(
2e0

1 + e2
0

)m
·
{

[2λ2m3 +
(
25e4

0 − 46e2
0 + 21

)
m2+

+
(
81e4

0 − 188e2
0 + 97

)
m+ 3

(
24e4

0 − 64e2
0 + 35

)
]um(e0)+

+ [−λ3m3 +
(
13e2

0 − 10
)
λ2m2+

− λ
(
46e4

0 − 95e2
0 + 42

)
m+ 3

(
16e6

0 − 56e4
0 + 80e2

0 − 35
)
]vm(e0)

}
Then:

α0[τ̄0,an ] =
a

3/2
0

6πe2
0λ

1/2µ1/2
·
{

8 (e0 − 1)
(
e4

0 + 6e2
0 − 10

)
E(κ)+

+ λ (e0 + 1)
(
8e2

0 + 25
)
K(κ)− 3(1 + e0)2(35 + 13e2

0)Π(ζ|κ)

}
αn[τ̄0,an ] =

a
3/2
0 (1− e2

0)3/2π1/2

24e2
0(1 + e2

0)1/2µ1/2

+∞∑
m=0

ym(e0)pm(n)

βn[τ̄0,an ] = 0

(2.4.29)

where pm is defined in Equation 2.4.13 and κ comes from Equation 2.4.15. The results are
summarized in Table 2.2.
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Table 2.2: Fourier series coefficients for the functions Ti(θ) characterizing the time law.

Function α0 αn βn Eq. Number

T1(θ) α0[τ00]/2 αn[τ00]/2 0 Equation 2.4.21

T2(θ) α0[τ00]/2 αn[τ00]/2 0 Equation 2.4.21

T3(θ) 0 αn[Q1e · τe,0]
−βn[τ̄0,at ]/6+

+βn[Q1e · τe,0]

Equation 2.4.23

Equation 2.4.26

T4(θ) 0 keαn[τe,0] 0 Equation 2.4.24

T5(θ) 0 0
7βn[τ̄0,at ]/6+

+βn[Qa · τ00]/2

Equation 2.4.23

Equation 2.4.28

T6(θ)
−α0[τ̄0,an ]/6+

+α0[Q2e · τe,0]

−αn[τ̄0,an ]/6+

+αn[Q2e · τe,0]
0

Equation 2.4.27

Equation 2.4.29

T7(θ) 7α0[τ̄0,an ]/6 7αn[τ̄0,an ]/6 0 Equation 2.4.29

2.4.4. Inclination solution

Starting from Equation 2.4.5 the θ-derivative of the inclination becomes:

i′ = {Īah,0(θ) + Īah,a(θ)(a− a0) + Īah,e(θ)(e− e0)}ãh =

= {Īah,0(θ) + 2a−1
0 Īah,0(θ)(a− a0) + Īah,e(θ)(e− e0)}ãh

where ãh is defined in Equation 2.4.9 and with:

Īah,0(θ) = λ2 · cos(θ + ω0)

S3/2(e0, θ)

Īah,e(θ) = −λ · [(e2
0 + 3) cos(θ) + 4e0] cos (θ + ω0)

S2(e0, θ)

(2.4.30)

Thus recalling Equation 2.4.12 and Equation 2.4.16 we get:

i′ =
1

3
Īah,0(θ) {1 + 2 exp[kaθ + k1]} ãh+

+

{
2

3
Īah,0(θ)Qa(θ) exp[kaθ + k1] + keĪah,e(θ)θ + Īah,e(θ)Q1e(θ)

}
ãtãh+

+ Īah,e(θ)Q2e(θ)ãnãh
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Thus at first order:
i′ =

1

3
Īah,0(θ) {1 + 2 exp[kaθ + k1]} ãh (2.4.31)

2.4.4.1. Fourier series coefficients

The first function to be analysed is Īah,0 given by Equation 2.4.30. Notice that:

cos(θ + ω0) = cos(θ) cos(ω0)− sin(θ) sin(ω0)

Then recalling Equation 2.4.19 and Equation 2.4.20 we observe that:

1

π

∫ π

−π

cos(θ) cos(nθ)

S3/2(e0, θ)
dθ = −1

2

[
∂2Y (p, q, n)

∂p∂q

]
p=1

q=−e0

1

π

∫ π

−π

sin(θ) sin(nθ)

S3/2(e0, θ)
dθ = − n

2e0

· 1

π

∫ π

−π

cos(nθ)

S(e0, θ)
dθ = − µ1/2

2e0a
3/2
0 λ3/2

· nαn[τ00]

So finally the analytical expressions of the Fourier series coefficients are:

α0[Īah,0] = −3e0 cos(ω0)λ−1/2

αn[Īah,0] = −cos(ω0)

e0λ
·
(
λ1/2 − 1

e0

)n [
λ3/2n2 +

(
−2e4

0 + e2
0 + 1

)
n+ 3e2

0λ
1/2
]

βn[Īah,0] =
sin(ω0)λ1/2µ1/2

2e0a
3/2
0

· nαn[τ00]

(2.4.32)

where λ is given by Equation 2.4.22. In a similar fashion we can compute analytically the
Fourier series coefficients of Iah,e function. Indeed:

Īah,e(θ) = −λ(3 + e2
0) · cos(θ) cos (θ + ω0)

S2(e0, θ)
− 4e0λ ·

cos (θ + ω0)

S2(e0, θ)

But from Equation 2.4.19 we get:

1

π

∫ π

−π

cos2(θ) cos(nθ)

S2(e0, θ)
dθ = −1

6

[
∂3Y (p, q, n)

∂p∂2q

]
p=1

q=−e0

1

π

∫ π

−π

cos(θ) cos(nθ)

S2(e0, θ)
dθ =

1

6

[
∂3Y (p, q, n)

∂2p∂q

]
p=1

q=−e0
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Then the coefficients are:

α0[Īah,e] = −3 cos(ω0)λ−3/2

αn[Īah,e] = −λ
2n3 + 2e2

0λ
3/2n2 + (2e6

0 − 8e4
0 + 7e2

0 − 1)n+ 3e2
0λ

1/2

e2+n
0 λ2 [λ1/2 − 1]

−n cos(ω0)

βn[Īah,e] = −nζ
n [e2

0(e0 + 1)n+ η (1− λn2)]

e2
0(e0 + 1) (η + 1)2n sin(ω0)

(2.4.33)

where λ comes from Equation 2.4.22, η from Equation 2.4.25 and ζ from Equation 2.4.18.
Following a procedure similar to that explained in Section 2.4.3.1 we also have:

α0[Īah,0 ·Qa] = 3
λ3/2µ1/2

e0a
3/2
0

sin(ω0)
+∞∑
m=1

αm[g]αm[τ00]

αn[Īah,0 ·Qa] = −3

2

λ3/2µ1/2

e0a
3/2
0

sin(ω0)·

·
+∞∑
m=1

αm[g]

m

{
(n−m)α|n−m|[τ00]− (n+m)αn+m[τ00]

}
βn[Īah,0 ·Qa] = 3λ

+∞∑
m=1

αm[g]

m

{
α|n−m|[Īah,0]− αn+m[Īah,0]

}
(2.4.34)

α0[Īah,e ·Q1e] = Q̂0α0[Īah,e] + 2λ2

+∞∑
m=1

αm[ ¯̄Sat,0]

m
βm[Īah,e]

αn[Īah,e ·Q1e] = Q̂0αn[Īah,e]+

− λ2

+∞∑
m=1

αm[ ¯̄Sat,0]

m

{
sgn(n−m)β|n−m|[Īah,e]− βn+m[Īah,e]

}
βn[Īah,e ·Q1e] = Q̂0βn[Īah,e] + λ2

+∞∑
m=1

αm[ ¯̄Sat,0]

m

{
α|n−m|[Īah,e]− αn+m[Īah,e]

}
(2.4.35)
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and:

α0[Īah,e ·Q2e] = Q̃0α0[Īah,e] + λ3

+∞∑
m=1

βm[ ¯̄San,0]

m
αm[Īah,e]

αn[Īah,e ·Q2e] = Q̃0αn[Īah,e] +
λ3

2

+∞∑
m=1

βm[ ¯̄San,0]

m

{
α|n−m|[Īah,e] + αn+m[Īah,e]

}
βn[Īah,e ·Q2e] = Q̃0βn[Īah,e]+

+
λ3

2

+∞∑
m=1

βm[ ¯̄San,0]

m

{
sgn(n−m)β|n−m|[Īah,e] + βn+m[Īah,e]

}
(2.4.36)

Where the sgn convention is the same as in Equation 2.1.11.

2.4.5. Argument of perigee solution

The expression of the θ-derivative of the argument of perigee provided by Equation 2.4.7
can be conveniently rewritten in matrix form as:

ω′ = [ãt, ãn, ãh]

 Ōat,0(θ) Ōat,a(θ) Ōat,e(θ) 0 0

Ōan,0(θ) Ōan,a(θ) Ōan,e(θ) 0 0

Ōah,0(θ) Ōah,a(θ) Ōah,e(θ) Ōah,i(θ) Ōah,ω(θ)



a− a0

e− e0

i− i0
ω − ω0


Thus substituting the expressions of a− a0, e− e0 and i− i0 ( given by Equation 2.4.12,
Equation 2.4.16 and by solving Equation 2.4.31) and considering only the first order
contributions, we get:

ω′ = [ãt, ãn, ãh]


 Ōat,0(θ) + k0Ōat,a(θ) {1− exp[kaθ + k1]}

Ōan,0(θ) + k0Ōan,a(θ) {1− exp[kaθ + k1]}
Ōah,0(θ) + k0Ōah,a(θ) {1− exp[kaθ + k1]}


+ ãhŌah,ω(θ)(ω − ω0)

which has the same form analysed in Section 2.4.1, Equation 2.4.10. Thus, leading the
problem to the quadratures we obtain:

ω − ω0 = exp[kωθ] · [ãt, ãn, ãh]·

· 1

3

∫ θ

θ0

 {exp[−kωξ] + 2 exp[(ka − kω)ξ + k1]}Ōat,0(ξ)

{exp[−kωξ] + 2 exp[(ka − kω)ξ + k1]}Ōan,0(ξ)

{exp[−kωξ] + 2 exp[(ka − kω)ξ + k1]}Ōah,0(ξ)

 dξ
(2.4.37)
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with:

kω =
α0[Ōah,ω]

2
ãh =

3e0 cot(i0) cos(ω0)

2
√

1− e2
0

ãh

2.4.5.1. Fourier series coefficients

The three relevant functions to be expanded are:

Ōat,0(θ) =
2λ2 sin(θ)

e0S(e0, θ)R(e0, θ)

Ōan,0(θ) =
λ2Q(e0, θ)

e0S3/2(e0, θ)R(e0, θ)

Ōah,0(θ) = −λ
2 cot(i0) sin(θ + ω0)

S3/2(e0, θ)

In a fashion similar to what was done previously:

Ōat,0(θ) =
2λ2π1/2

e0(1 + e2
0)1/2

· sin(θ)
+∞∑
m=0

zm(e0) cosm(θ)

Ōan,0(θ) =
λ2π1/2

2e2
0(1 + e2

0)1/2

+∞∑
m=0

lm(e0) cosm(θ)

with:
zm(e0) =

1

m!

(
2e0

1 + e2
0

)m
vm(e0)

lm(e0) =
1

m!

(
2e0

1 + e2
0

)m [
(3 + 2m)um(e0) + (−3 + 4e2

0 − λm)vm(e0)
]

thus:
α0[Ōat,0] = 0

αn[Ōat,0] = 0

βn[Ōat,0] =
2λ2π1/2

e0(1 + e2
0)1/2

· n
+∞∑
m=0

zm(e0)pm+1(n)

m+ 1

(2.4.38)
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and:

α0[Ōan,0] =
2(1 + e0)(1 + λ)

πe2
0

E(ν) +
2λ(1− e0)

πe2
0

K(ν)− 6(1− e0)2

πe2
0

Π(σ|ν)

αn[Ōan,0] =
λ2π1/2

2e2
0(1 + e2

0)1/2

+∞∑
m=0

lm(e0)pm(n)

βn[Ōan,0] = 0

(2.4.39)

with:
ν =

4e0

(1 + e0)2
, σ =

2e0

1 + e0

Regarding Ōah,0 we notice that:

sin(θ + ω0) = sin(ω0) cos(θ) + cos(ω0) sin(θ)

thus comparing with the function Īah,0 we get:

α0[Ōah,0] = − tan(ω0) cot(i0)α0[Īah,0]

αn[Ōah,0] = − tan(ω0) cot(i0)αn[Īah,0]

βn[Ōah,0] = cot(ω0) cot(i0)βn[Īah,0]

(2.4.40)

2.4.6. Right ascension of the ascending node solution

Starting from Equation 2.4.8 the θ-derivative of the Right Ascension of the Ascending
Node becomes:

Ω′ = {Ōah,0(θ) + Ōah,a(θ)(a− a0) + Ōah,e(θ)(e− e0)+

+ Ōah,i(θ)(i− i0) + Ōah,ω(θ)(ω − ω0)}ãh =

= {Ōah,0(θ) + 2a−1
0 Ōah,0(θ)(a− a0) + Ōah,e(θ)(e− e0)+

+ Ōah,i(θ)(i− i0) + Ōah,ω(θ)(ω − ω0)}ãh

For the RAAN we make the assumption of neglecting the small variations of the inclination
(i.e. the solution of Equation 2.4.31) and of the argument of perigee (i.e. the solution of
Equation 2.4.37). This is done for two reasons mainly: first, they are both second order
terms; furthermore, both variations are really small over one thrust arc. Then recalling
Equation 2.4.12 and Equation 2.4.16 for a−a0 and e−e0 respectively, a similar expression
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as the one for the inclination is achieved:

Ω′ =
1

3
Ōah,0(θ) {1 + 2 exp[kaθ + k1]} ãh+

+

{
2

3
Ōah,0(θ)Qa(θ) exp[kaθ + k1] + keŌah,e(θ)θ + Ōah,e(θ)Q1e(θ)

}
ãtãh+

+ Ōah,e(θ)Q2e(θ)ãnãh

And at first order:
Ω′ =

1

3
Ōah,0(θ) {1 + 2 exp[kaθ + k1]} ãh

where ãh is defined in Equation 2.4.9 and with:

Ōah,0(θ) =
λ2 csc(i0) sin(θ + ω0)

S3/2(e0, θ)
(2.4.41)

2.4.6.1. Fourier series coefficients

Comparing Equation 2.4.41 with Equation 2.4.30, it is easy to notice that:

Ōah,0(θ) = −∂Īah,0(θ)

∂ω0

csc(i0)

This relation can be extended to the coefficients; considering for instance the Fourier
coefficient α0 we have:

α0[Ōah,0] = −∂α0[Īah,0]

∂ω0

csc(i0)

and this relation holds for all the other coefficients. It follows:

α0[Ōah,0] = tan(ω0) csc(i0)α0[Īah,0]

αn[Ōah,0] = tan(ω0) csc(i0)αn[Īah,0]

βn[Ōah,0] = − cot(ω0) csc(i0)βn[Īah,0]

(2.4.42)

α0[Ōah,e] = tan(ω0) csc(i0)α0[Īah,e]

αn[Ōah,e] = tan(ω0) csc(i0)αn[Īah,e]

βn[Ōah,e] = − cot(ω0) csc(i0)βn[Īah,e]

(2.4.43)
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α0[Ōah,0 ·Qa] = − cot(ω0) csc(i0)α0[Īah,0 ·Qa]

αn[Ōah,0 ·Qa] = − cot(ω0) csc(i0)αn[Īah,0 ·Qa]

βn[Ōah,0 ·Qa] = tan(ω0) csc(i0)βn[Īah,0 ·Qa]

(2.4.44)

α0[Ōah,e ·Q1e] = tan(ω0) csc(i0)Q̂0α0[Īah,e]+

− 2λ2 cot(ω0) csc(i0)
+∞∑
m=1

αm[ ¯̄Sat,0]

m
βm[Īah,e]

αn[Ōah,e ·Q1e] = tan(ω0) csc(i0)Q̂0αn[Īah,e] + λ2 cot(ω0) csc(i0)·

·
+∞∑
m=1

αm[ ¯̄Sat,0]

m

{
sgn(n−m)β|n−m|[Īah,e]− βn+m[Īah,e]

}
βn[Ōah,e ·Q1e] = − cot(ω0) csc(i0)Q̂0βn[Īah,e]+

+ λ2 tan(ω0) csc(i0)
+∞∑
m=1

αm[ ¯̄Sat,0]

m

{
α|n−m|[Īah,e]− αn+m[Īah,e]

}

(2.4.45)

and:
α0[Ōah,e ·Q2e] = tan(ω0) csc(i0)α0[Īah,e ·Q2e]

αn[Ōah,e ·Q2e] = tan(ω0) csc(i0)αn[Īah,e ·Q2e]

βn[Ōah,e ·Q2e] = − cot(ω0) csc(i0)βn[Īah,e ·Q2e]

(2.4.46)

In Table 2.3 we summarize all the results concerning the Fourier series coefficients.
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Table 2.3: Summary of Fourier series coefficients of the functions

Function Equation Number

g Equation 2.4.14

¯̄Sat,0, ¯̄San,0 Equation 2.4.17

τ00 Equation 2.4.21

τ̄0,at Equation 2.4.23

τe,0 Equation 2.4.24

Q1e · τe,0 Equation 2.4.26

Q2e · τe,0 Equation 2.4.27

Qa · τ00 Equation 2.4.28

τ̄0,an Equation 2.4.29

Īah,0 Equation 2.4.32

Īah,e Equation 2.4.33

Īah,0 ·Qa Equation 2.4.34

Īah,e ·Q1e Equation 2.4.35

Īah,e ·Q2e Equation 2.4.36

Ōat,0 Equation 2.4.38

Ōan,0 Equation 2.4.39

Ōah,0 Equation 2.4.40

Ōah,0 Equation 2.4.42

Ōah,e Equation 2.4.43

Ōah,0 ·Qa Equation 2.4.44

Ōah,e ·Q1e Equation 2.4.45

Ōah,e ·Q2e Equation 2.4.46
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In this chapter the previously defined analytical models are tested by means of several
test cases. The first set has been carried out to compare the full model to the small
thrust model as it concerns accuracy and computational time. Both beneficial and limiting
aspects have been highlighted. The result is that the small thrust model has the best trade
off between the above mentioned performances. Afterwards, several CAMs strategies have
been computed. In the first one we considered only the tangential thrust (which is the
quasi optimal manoeuvre in practical scenarios), while in the second both tangential and
normal thrust act simultaneously. All the simulations have been carried out at several
thrust levels and for different reference conditions. Special care has been due to e0 because
these kind of solutions are very sensitive towards reference eccentricity values. Several
plots provide a comparative view between our semi-analytical solution and that of Gauss
Planetary equations numerically obtained by means of the Adams–Bashforth-Moulton
method, assessing the effectiveness of the method.

3.1. Mathematical background

The simulation methodology used in the following sections is based on the assumption of
short-term conjunction. This means that it is possible to consider the relative velocity at
CA sufficiently large to ensure a brief encounter time and static covariance. The calculation
of the PoC relies on the assumption that the relative motion is linear without velocity
uncertainty. In this case the position error ellipsoid during the encounter is constant and
equal to the value at the estimated conjunction. The PoC is defined as the probability
that the Miss Distance between two objects is less than the sum of the radii of their
spherical envelopes. Each object’s positional uncertainties are combined1 and the resultant
is projected onto a plane perpendicular to the relative velocity (the B-plane). Then the
calculation of the PoC passes from an integral of the 3D Gaussian distribution to an
integral of a 2D Gaussian probability density function (PDF) over the circular collision
cross-sectional area. Referring to Bombardelli et al. [23] the B-plane centred on the debris

1combining both covariances also relies on the hypothesis that they are statistically independent.
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nominal position is defined as:

η =
vs − vd
||vs − vd||

, ξ =
vd ∧ vs
||vd ∧ vs||

, ζ = ξ ∧ η

where vd is the debris velocity and vs is the spacecraft velocity. The Miss Distance is
defined as:

ρmiss = ||rs − rd||

Where rs and rd are the spacecraft position vector and the debris position vector, respec-
tively. The idea is that at the time of close approach tCA we have:

ρmiss(tCA) > sA, with sA = ρs + ρd

where ρs and ρd are the radii of the spacecraft and of the debris, respectively, assuming a
spherical envelope for both objects. The relevant advantage of projecting on the B-plane
is that the CA relative position in {ξ,η, ζ} axes (denoted by e subscript) becomes:

r̂e = [ξe, 0, ζe]

For the PoC evaluation we adopt the Chan method. Chan [40] transforms the two-
dimensional Gaussian PDF to a one-dimensional Rician PDF. Then the computation
of the PoC reduces to a Rician integral that can be computed by the convergent series:

PoC = exp
(
−v

2

) +∞∑
m=0

[
vm

2mm!

(
1− exp

(
−u

2

) m∑
k=0

uk

2kk!

)]

with:

u =
s2
A

σξσζ
√

1− ρ2
ξζ

, v =

[(
ξe
σξ

)2

+

(
ζe
σζ

)2

− 2ρξζ
ξeζe
σξσζ

]
/(1− ρ2

ξζ)

where σξ, σζ and ρξζ can be extracted from the relative position covariance matrix in the
B-plane:

C =

 σ2
ξ ρξζσξσζ

ρξζσξσζ σ2
ζ



3.2. A full model and small thrust model comparison

The first simulations have the aim of comparing the two proposed methods both in terms
of accuracy and computational time. We will rely on two reference orbits outlined in
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Table 3.1 and Table 3.2.

Table 3.1: First reference orbit for models comparison.

a0 [km] e0 [−] i0 [deg] Ω0 [deg] ω0 [deg] θ0 [deg] T [h] t0 [s]

12000 0.1 30 10 29 5 3.634 0

Table 3.2: Second reference orbit for models comparison.

a0 [km] e0 [−] i0 [deg] Ω0 [deg] ω0 [deg] θ0 [deg] T [h] t0 [s]

26000 0.8 63 40 270 33 11.5896 0

For our methods the number of Fourier Series coefficients is determined automatically by
the code relying on the desired level of accuracy in the integrating functions approxima-
tion. For instance, referring to Equation 2.3.1b the stop criterion is defined as:

max
θ∈[0,2π]

{|F[S0](θ)− S0(θ)|} < toll

where toll is the tolerance. Now, considering the decomposition of S0 into a mean value
and an oscillatory part, we have:

|F[S0](θ)− S0(θ)| =

∣∣∣∣∣∣P2π

 αn[S0]

βn[S0]

∣∣∣∣∣∣ θ
∣∣∣∣∣∣ ≤√α2

n[S0] + β2
n[S0]

Therefore, the stop criterion can be rewritten as:

√
α2
n[S0] + β2

n[S0] < toll

for our computations we set toll = 10−12. For low eccentricities the number of terms is
in the range 5-10 while for higher eccentricities it is in the range 25-30 or higher. For
the truncation of the series present in the coefficients, such as Equation 2.4.14, we used a
similar approach. In this case the stop criterion would be:

|g(θ)− gapprox.(θ)| ≤
1

2
π1/2(1 + e2

0)1/2

N∑
m=0

qm(e0)

where N is the order of approximation. For low eccentricities the number of terms is in
the range 10-15, while for higher eccentricities it is in the range 90-100 or higher. All the
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simulations are carried out with a MacBook Pro with a CPU 2.4 GHz Intel Core i9 8 core.

The selected reference solution is the numerical one of the Gauss Planetary Equations by
means of the Adams–Bashforth-Moulton method2. First we start to analyse the results
for the first reference orbit in Table 3.1. In Figure 3.1 the relative errors for the semimajor
axis and for the eccentricity at different thrust levels are shown. As we can see, the full
model with a first order approximation for a behaves better, specially inside the first
orbital revolution. Nevertheless, it shows s a monotonically increasing behaviour, while
the small thrust model has a lower accuracy but presents a more stationary one. For the
eccentricity instead, the behaviours are more or less the same. This is due to the fact that,
referring to Equation 2.3.1b and Equation 2.4.1, both rely on a zero order approximation
for the θ-derivative of the eccentricity.

2In Matlab ode113. It is a variable-step, variable-order Adams-Bashforth-Moulton solver of orders
1 to 13. Relative error tolerance RelTol setted to 10−13 and absolute error tolerance AbsTol setted
to 10−13.
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Figure 3.1: f.m. and s.t.m. comparison for a and e. Reference orbit in Table 3.1.
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Figure 3.2: f.m. and s.t.m. comparison for i and Ω. Reference orbit in Table 3.1.

In Figure 3.2 we can appreciate analogous results for the inclination and the RAAN.
The inclination relative error behaves similarly in both models while for the RAAN it is
significantly lower. This is related to the approximation of the eccentricity; in other words,
approximating S at order zero affects the inclination, while the RAAN is more influenced
by the variation of the semimajor axis.

Finally in Figure 3.3 the results for the argument of perigee and the true anomaly are
provided. These behaviours are coherent with those already discussed. In particular, notice
that a better approximation of the semimajor axis leads to an increased accuracy in the
time law computation and so for the true anomaly.
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To better appreciate the difference between the two methods, we report in Table 3.3 the
computational elapsed times for both. Notice that for the full model it is much higher
than for the small thrust model. The main reasons are two. First of all, in the full model
the Fourier Expansion coefficients have to be evaluated at each simulation while in the
small thrust model they can be computed once for all at the beginning for the selected
reference orbit. The second reason, which is the most heavy in terms of computational
time, is that the inversion of the time law requires the solution of a non linear root finding
problem.

Table 3.3: Computational times. Reference data Table 3.1.

Case Sym. 1 Sym. 2 Sym. 3 Sym. 4 Sym. 5

Time f.m. [s] 1.7759 1.7736 1.7781 1.7768 1.7712

Time s.t.m. [s] 0.6043 0.6034 0.6154 0.5567 0.6657

Time ode113 [s] 0.0345 0.0360 0.0416 0.0401 0.0415
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Figure 3.3: f.m. and s.t.m. comparison for ω and θ. Reference orbit in Table 3.1.

The same approach is used for the reference orbit in Table 3.2 and the results are shown in
Figure 3.4, Figure 3.6 and Figure 3.7. Notice that for this kind of high elliptical orbit both
methods are still capable of achieving a good approximation for the orbital parameters.
For a, e, i and θ, the same considerations as previously can be applied.
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Figure 3.4: f.m. and s.t.m. comparison for i and Ω. Reference orbit in Table 3.2.

For the argument of perigee and the RANN (see Figure 3.6 and Figure 3.7) we can see
a better behaviour of the small thrust model with respect to the full model for some
combinations of the thrust actions. This is mainly due to two reasons. The first is that,
while in the full model the first order approximation for the semimajor axis is used to
achieve a better accuracy on itself and in the time law computation, in the small thrust
model also the orientation problem is solved using such an approximation.

The second, which is more important, is that the functions to be expanded in Fourier
Series are very sensible to the reference value of the eccentricity. In other words, the
higher is the value of e0 the higher should be the number of terms of the expansion. This
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has two main consequences: the computational time increases a lot (see Table 3.4) and
the precision in the numerical integrations for the coefficients decreases. Indeed, as the
value of e0 increases, the functions start to become more and more irregular, as shown in
Figure 3.5, till collapsing into a singularity for e0 = 1.

Figure 3.5: Behaviour of O0(θ) = δ0(θ)/ζ0(θ) for different values of e0.

This problem is partially overcome in the small thrust model because the Fourier coef-
ficients are expressed in closed form. Nevertheless, for high value of eccentricities, the
required number of terms increases and this leads to problems in terms of machine pre-
cision. For instance referring to Equation 2.4.17, if we want to truncate the series for
αn[ ¯̄Sat,0] up to the 100th term we should compute:

Γ(1/2− 100) = 3.37046 · 10−157

For such reasons the solution for high eccentricities will be less accurate. Nevertheless,
some techniques for series manipulation could be used to deal with such a problem and
this could be left to a future development. Finally we report the computational times:
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Table 3.4: Computational times for the full model and the low thrust model. Reference
data Table 3.2.

Case Sym. 1 Sym. 2 Sym. 3 Sym. 4 Sym. 5

Time f.m. [s] 13.4304 13.3951 13.6707 13.3480 13.6472

Time s.t.m. [s] 0.7038 0.7459 0.7177 0.7612 0.6159

Time ode113 [s] 0.0946 0.0971 0.1060 0.1123 0.1045

Figure 3.6: f.m. and s.t.m. comparison for i and Ω. Reference orbit in Table 3.2.
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Figure 3.7: f.m. and s.t.m. comparison for i and Ω. Reference orbit in Table 3.2.

As a final remark, notice that the computational times reported in Table 3.3 and Table 3.4
are related to a full orbit propagation using the numerical ODEs solver ode113 and com-
pared to our semi-analytical methods. Nevertheless, the real advantage of these solutions
is that, unlike the numerical method, we do not need to evaluate the entire sampling time-
span to obtain the solution at a fixed instant of time. Since we have already seen that the
full model is computationally very expensive, we now perform a different analysis using
the small thrust model. We consider two performance parameters: the relative error related
to the norm of the position vector at the end of the thrust arc and the computational time
needed to compute it. We then did a comparison between ode113 and the small thrust
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model for different levels of the trhust vector magnitude and for different values of the
reference eccentricity. Operatively, for an assigned thrust magnitude, the corresponding
thrust vector components are obtained by multiplying this value for a random number
between 0 and 1. The results are shown in Figure 3.8. For the error related to the norm
of the position vector the results are satisfactory and show a behaviour like those already
seen. The interesting aspect is about the computational time. We can see from the plot
that the quantity:

σ =
tstm − tode113

tode113

can also assume values in the range 0.8-0.9, meaning that the computational time of our
small thrust model could also be the 2% − 1% of the ode113 computational time. This
assesses the accuracy and the efficiency of the method.

Figure 3.8: ode113 and s.t.m. comparison: relative error related to the norm of the position
vector at the end of the thrust arc and computational times. a0, i0, Ω0, ω0 as in Table 3.1.
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3.3. Preliminary data for the manoeuvres simulations

To carry out the simulations, a reference spacecraft orbit has been selected; the orbital
elements at t = t0 = 0 s are:

Table 3.5: Spacecraft nominal orbit: Keplerian elements.

a0 [km] e0 [−] i0 [deg] Ω0 [deg] ω0 [deg] θ0 [deg] T0 [h]

12000 0.1 30 10 29 0 3.634

The debris trajectory has been built such that at the time of close encounter tCA, the
position vector of the spacecraft equates to the position vector of the debris; this is done
by solving a suitable Lambert problem. The procedure is the following. First the debris
is assumed to be on a virtual orbit and its position vector at t0 can be computed using
the following orbital elements:

Table 3.6: Debris virtual orbit.

ad,in [km] ed,in [−] id,in [deg] Ωd,in [deg] ωd,in [deg] θd,in [deg] Td,in [h]

3 a0 0.03 20 0 0 0 18.8826

Then, considering the time of close approach equal to the orbital period of the reference
orbit, namely tCA = T , the boundary value problem is built up setting:

rd(t0) = rd,in and rd(tCA) = rs(tCA)

where rd is the position vector of the debris which can be obtained from Table 3.6 and
rs is the position vector of the spacecraft obtained after propagating the reference orbit
in Table 3.5. The resulting orbital elements characterizing the debris orbit at t = t0 are:

Table 3.7: Debris orbital elements.

ad [km] ed [−] id [deg] Ωd [deg] ωd [deg] θd [deg] Td [h]

18382 0.9253 23.2080 0 182.6773 177.3227 6.8899

Of course, this kind of procedure to build the debris orbit is fictitious, nevertheless it allows
a simple visualization of the problem. For all our simulation cases, we consider that in
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the nominal situation the uncertainties are so small that the nominal PoC obtained from
calculations is in the range 95%− 100%. This is, of course, not true in practical scenarios
because the uncertainties on the position vectors of both objects can have higher values.
Nevertheless, they would lead to a lower nominal value of the PoC; the above assumption
has then to be seen as a worst case scenario where uncertainties are vary small. Moreover,
we assumed the radii of the spherical envelopes for the spacecraft and the debris as
reported in Table 3.8.

Table 3.8: Radius of the spacecraft and the debris (spherical envelopes assumption).

ρs [m] ρd [m]

3 4

The general simulation procedure consists of the following steps:

1. Select a nominal orbit for the spacecraft (e.g. see Table 3.5).

2. Define the orbit of the debris: i.e. define the time of close approach tCA and compute
the trajectory solving the relevant Lambert Problem (e.g. see Table 3.7).

3. Apply Gaussian uncertainties with normalized distribution on both spacecraft and
debris trajectories (maximum value3 assumed to be 1 m) and evaluate also the
nominal PoC.

4. Apply the thrust action and the CAM strategy.

5. Evaluate B-plane at encounter point for the nominal CA obtaining {ξe, 0, ζe} .

6. Evaluate the covariance matrix.

7. Extract σξ, σζ and ρξζ .

8. Evaluate Miss Distance and PoC.

3.4. First case: spacecraft thrusted only tangentially

The first strategy is to perform the CAM by means of the tangential acceleration only,
namely an = ah = 0. This is a very important scenario because it is the quasi optimal
solution in practical applications. The main assumptions are:

3coherently to what previously said, this is done to have high PoC values for the direct impact nominal
case.
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• The manoeuvre is performed in the last orbital revolution of the spacecraft before
the close approach.

• The close approach occurs at the end of the nominal orbital period, namely tCA = T .

• In the most general case the manoeuvre is organized as: 1 coast arc of duration kτ ,
1 thrust arc of duration τ and a final coast arc of duration4 T − (k + 1)τ . Where
k ∈ [0, 1] is a constant parameter and τ is the length of the thrust arc. Notice
that varying the k parameter means actually changing the time instant at which
the thrust action begins; and so, in other words, the true anomaly θ. In such a
framework, the thrust action in the tangential direction at is a piecewise function
defined as:

at(t) =


0 if t < kτ

ât if kτ ≤ t ≤ (1 + k)τ ∧ t ≤ T

0 if t > (1 + k)τ

(3.4.1)

where ât is the assigned value of the thrust action in the tangential direction. We
can underline some limit cases:

1. If k = 0 there is no first coast arc ant the CAM consists only in one thrust arc
and one final coast arc.

2. If k = 0 and τ = T there are no coast arcs and the CAM consists only in one
thrust arc.

3. If k = 0 and τ = t0 the CAM reduces to an impulse manoeuvre at the initial
time t0.

4. ∀k and ∀τ such that T − (k + 1)τ < 0 the CAM consists in one coast arc and
one thrust arc.

5. If k = 1 and τ = T the CAM reduces to an impulsive manoeuvre at TCA.

• The maximum value of the length of the thrust arc is fixed at τmax = T . This is
done to explore all the possible combinations and see if some optimal solution can
be achieved.

The main goal of such a simulation is to compute both the PoC and the Miss Distance.
In particular, the objective is to determine the optimal values of the tangential thrust
magnitude at and of the length of the thrust arc τ such that the PoC is less than a certain
threshold or equivalently such that the Miss Distance is greater that a certain threshold.

4the final coast arc is defined only if T − (k + 1)τ > 0.
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The main architecture of the simulation is the following:

1. The PoC is built up as function of the three main variables, i.e. PoC = PoC(at, τ, k).

2. The parameter k is forced to assume up to 6 values: k = 0, 0.2, 0.4, 0.6, 0.8, 1 .

3. For each value of k, say k̄, the function of two variables ¯PoC = PoC(at, τ, k̄) is
obtained.

4. A mesh of the domain formed by the two independent variables at and τ is done,
i.e. a mesh-grid 80× 80.

5. Finally the PoC level lines are obtained for different k values .

In Figure 3.9 the results in terms of the PoC are presented for different values of the
parameter k. As we can see, as k increases in magnitude, the region of low PoC decreases
in size. Moreover, the 2D contour lines, namely the curves representing the function ãt =

ãt(τ), progressively pass from a monotonically decreasing behaviour to an increasing one.
This is even more clear looking to Figure 3.9(6) where minima points are clearly outlined.
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Figure 3.9: Contour plots for different values of the k parameter.

As in literature (see ESA [11] and Aida et al. [14]) the PoC shall be less than 10−4; this is
assumed as threshold and the results are shown in Figure 3.10. For k = 0 the length of the
thrust arc is τ = 0.84T and the minimum thrust required is approximately at = 0.61·10−10

km/s2, while as k increases, τ starts to decrease but the thrust level drastically increases,
e.g. for k = 0.8, at is already 1.5 · 10−10 km/s2 which is more than twice the case k = 0.
Therefore, a trade off between the cost of the manoeuvre and the maximum manoeuvring
time to avoid operational problems has to be performed.
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Figure 3.10: Level lines for fixed PoC for different values of the k parameter.

To assess the accuracy of the semi-analytical approximation (subscript sa), we define the
following relative errors:

err(a) =

∣∣∣∣anum − asa

anum

∣∣∣∣ , err(e) =

∣∣∣∣enum − esa
enum

∣∣∣∣
which are the errors over the semimajor axis and eccentricity, respectively. Notice that
both a and e vary with time and so, from a computational point of view, we will consider
the maximum error over the overall time span, e.g. for a we have:

erreval = max([a(t1), a(t2), . . . a(ti)])

where ti is the i-th time instant of which the sampling time is subdivided. In Figure 3.11
the results of the analysis are presented. Coherently to what was seen in Section 3.2-
Figure 3.1 the approximation works better for short thrust arcs and low thrust actions
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(blue zone) while it decreases in accuracy for higher values (worst accuracy in the yellow-
orange zone). Nevertheless, the results are still accurate and this assesses the effectiveness
of our semi-analytical solution.

Figure 3.11: Contour plots for the relative errors related a and e.

For completeness we report the results of the analysis with the same reference data in
Table 3.5 but with e0 = 0.8. Comparing Figure 3.12 with Figure 3.10 we can see that
the minimum thrust level required to achieve the PoC threshold is lower. Comparing
Figure 3.13 with Figure 3.11 the error in the orbital parameters estimation is higher in
agreement with the results already presented in Section 3.2-Figure 3.4.
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Figure 3.12: Level lines for fixed PoC for different values of the k parameter with e0 = 0.8.
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Figure 3.13: Contour plots for the relative errors related a and e with e0 = 0.8.

3.5. Second case: spacecraft thrusted in tangential

and normal directions

Similarly to what was done in Section 3.4, we now proceed to analyse the case where
both the tangential and the normal thrust actions are applied. The reference values for
the spacecraft orbit adopted for these simulations are those of Table 3.5. Moreover, we
considered a large interval of values of an thrust action. Of course this is not for some
practical interest because the optimal CAM is typically nearly tangential, but this allows
to visualize better the results. In Figure 3.14 and Figure 3.15 the contour plots of the
PoC as a function of both thrust levels are presented. In particular, in Figure 3.14 we
considered the case with k = 0 and we evaluated the PoC for different values of τ . The
same procedure is followed setting k = 0.6 and the results are shown in Figure 3.15. In
both figures we can see that the PoC decreases faster as the value of τ increases. On the
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other hand, for a fixed value of τ the contour lines are actually similar to ellipses: the
maximum PoC is reached in correspondence of the smaller ellipses while the minimum
PoC is reached in correspondence to the bigger ones.
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Figure 3.14: Contour Plots for different values of τ and for k = 0.
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Figure 3.15: Contour Plots for different values of τ and for k = 0.6.

To better understand such a behaviour, we present the same results in a different fashion
in Figure 3.16 and Figure 3.17. Here the level lines are displayed as a function of the norm
of the thrust vector and the angle that the latter forms with respect to the tangential
direction. Notice that, the norm of the thrust vector linearly increases for a big interval
of angles and then starts increasing till it reaches a maximum. In other words the lowest
thrust levels are reached with a pure tangential action and the higher thrust levels are
reached with high normal accelerations. The region in-between could be very interesting
if the propulsion system is not capable of providing the required tangential action. Indeed
the increasing linear behaviour has a small rate of change before entering the critical
zone dominated by the normal acceleration. Finally notice that as k and τ increase the
contribution of the normal acceleration also increase till the limit case where k = 1 shown
in Figure 3.16(6) and Figure 3.17(6). This means that, progressively, we are meeting the
condition of last-minute CAM. Indeed, as already said in Section 3.4-Equation 3.4.1, if
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we consider the case k = 1 and τ > 2T/3 this means that the length of the thrust arc is
τ = T/3 which correspond with the remaining time before the CA.

Figure 3.16: Level lines when the independent variables are switched to the norm of the
thrust vector and the angle with respect to the tangential direction (for k = 0).
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Figure 3.17: Level lines when the independent variables are switched to the norm of the
thrust vector and the angle with respect to the tangential direction (for k = 0.6).
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4| Conclusions

In this work we developed a semi-analytical mathematical model for the 3D low thrust
collision avoidance problem. The Gauss Planetary Equations are reduced to a simpler
form by means of a Taylor expansion in the neighbourhood of the reference condition.
Two different methods are developed: the first, denoted as full model, where the main
functions are complicated non linear relations of the thrust accelerations and the second,
denoted as small thrust model, which, on the contrary, has an explicit dependency from
the small thrust parameters. All the integrations are performed by means of the Fourier
Series tool and for the small thrust model the expressions of the Fourier Series coefficients
are provided in closed form also involving the Gauss Hypergeometric function. Different
simulations with various test cases to assess the effectiveness of the method are provided.
By comparison with numerical outputs, both models are capable of reproducing accurately
the solution of the Gauss Planetary Equations. In particular, for not too high eccentricity
reference values, the solution provided by the full model has a by far greater accuracy
for the semimajor axis and the true anomaly, specially if the first period is assumed as
time span. On the contrary, the small thrust model even if less accurate, is nevertheless
capable of granting an acceptable precision and a remarkable reduction of computational
time. And this becomes even more evident considering higher eccentricities. In this case
we would have a lower performance as it concerns accuracy: nevertheless knowing the
closed form expressions of Fourier coefficients, the small thrust model succeeds to be more
efficient in accuracy and elapsed time with respect to the full model. Then, the trade off
chose the small thrust model as the winner. For both methods the greater computational
expense occurs in time law inversion when solving a non linear root finding problem.
One of the best computational qualities of these methods is that they allow to evaluate
the orbital parameters (and then the state vector) at the wished instant of time without
passing through the previous ones, what is convenient in PoC computing and in CAMs
design. Two sample tests have been provided. In the first, only the tangential thrust is
active; in the second there is also the normal component too. In both cases, beyond a
good PoC evaluation, the small thrust model has been seen to provide a satisfactory
approximation of orbital parameters.
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Future developments

This thesis opens to a variety of future developments.
First, a possible technique to provide the time law inversion could be obtained following
the procedure proposed by Bocci et. al [36] and [37]. This would lead to a remarkable gain
in computational time because the non linear root finding problem would be substituted
by a convergent series providing θ = θ(t).
Moreover, some techniques for series manipulation could be used to deal with the prob-
lem of machine precision in the computation of the Fourier Series coefficients of the small
thrust model. Both full model and small thrust model could be adopted for approximating
a generic low thrust problem, not necessary a CAM one. For both models, some simula-
tions show that there are regions where the error is slightly higher with relative low thrust
action and higher length of the thrust arc. This is due to the first order approximation
done for some of the orbital parameters. Indeed, referring for instance to Equation 2.4.11,
if ãt → 0 then ka → 0. Therefore substituting into Equation 2.3.15 it is easy to see that
the function multiplying the exponential term diverges. This problem is solved merging
those regions with the zero order solution Equation 2.3.8 which works perfectly for ãt = 0.
Nevertheless the transition part from a sufficiently high thrust level and the null one is a
little less accurate.
All these proposed refinements are the preamble for the biggest challenge as future devel-
opment: optimize the method such that it could be implemented on-board. Finally, one
of the most important assumptions we made is that no environmental perturbations are
acting on the spacecraft. This is not true in reality. Typically, the satellite motion is per-
turbed by the solar radiation pressure, the drag due to Earth atmosphere and the effect
of earth oblateness (i.e. the J2 effect). These should be added to include non Keplerian
orbits in the model.
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We recall here the basic ideas about the Gauss Hypergeometric function. The first hyper-
geometric series appeared in the Wallis’s Arithmetica infinitorum (1656):

2F1(a, b; c;x) = 1 +
a · b
1 · c

x+
a · (a+ 1) · b · (b+ 1)

1 · 2 · c · (c+ 1)
x2 + · · · ,

for |x| < 1 and real parameters a, b, c. The product of n factors:

(λ)n = λ (λ+ 1) · · · (λ+ n− 1) ,

called Pochhammer symbol (or truncated factorialTESIFINE) allows to write 2F1 as:

2F1(a, b; c;x) =
∞∑
n=0

(a)n (b)n
(c)n

xn

n!
.

A meaningful contribution on various 2F1 topics is ascribed to Euler1; but he does not
seem Dutka [41] to have known the integral representation:

2F1(a, b; c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ua−1(1− u)c−a−1

(1− xu)b
du,

really due to A. M. Legendre2. The above integral relationship is true if c > a > 0 and
for |x| < 1, even if this limitation can be discarded thanks to the analytic continuation.

1We quote three works: a) De progressionibus transcendentibus, Op. omnia, S.1, vol. 28; b) De curva
hypergeometrica Op. omnia, S.1, vol. 16; c) Institutiones Calculi integralis, 1769, vol. II

2A. M. Legendre, Exercices de calcul intégral, II, quatriéme part, sect. 2, Paris 1811
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Let us consider the following function of the variable x:

f(x) =
g(x)

h(x)
(B.0.1)

where:

g(x) =
√

1 + α cos(x) and h(x) = [1 + β cos(x)]2 (B.0.2)

clearly expanding in MacLaurin series f(x) and obtaining a recurrence relation for the
coefficients is impossible. Nevertheless, we could expand f in MacLaurin series considering
as variable the cos(x), then the resulting expansion will be:

f [cos(x)] =
+∞∑
k=0

ak cosk(x) (B.0.3)

Let be for simplicity cos(x) = X, referring to [39] formula 1.110 and formula 1.112-2 pag.
25 respectively, the MacLaurin expansion of f and 1/h are:

g(X) =
√

1 + αX =
+∞∑
n=0

αn
(

1/2

n

)
Xn

1

h(X)
= (1 + βX)−2 =

+∞∑
n=0

(−β)n(1 + n)Xn

(B.0.4)

(B.0.5)

Where we denote with
(
p
q

)
the binomial coefficient. The convolution is obtained by means

of the Cauchy Product theorem for the power series:

Theorem B.0.1 (Convolution of two power series). Let:

+∞∑
n=0

an and
+∞∑
n=0

bn

be two infinite series with complex terms. The Cauchy product of these two infinite series
is defined by a discrete convolution as follows:
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(
+∞∑
n=0

an

)
·

(
+∞∑
n=0

bn

)
=

+∞∑
n=0

n∑
k=0

akbn−k (B.0.6)

By applying Equation B.0.6 to the product of Equation B.0.4 and Equation B.0.5 we
have:

g(X)

h(X)
=

+∞∑
n=0

[
n∑
k=0

(−1)k(1 + k)

(
1/2

n− k

)(
β

α

)k]
αnXn (B.0.7)

Now we recall some important properties:

Definition B.0.1. For the binomial coefficient it holds the following properties:(
p

q

)
=

(p− q + 1)r
(q − r + 1)r

(
p

q − r

)
(
p

q

)
=

p!

q!(p− q)!
=

Γ(p+ 1)

Γ(q + 1)Γ(p− q + 1)

(B.0.8)

(B.0.9)

Definition B.0.2. For the rising factorial it holds the following properties:

(p)q = q!

(
p+ q − 1

q

)
(p)q =

Γ(p+ q)

Γ(p)

(B.0.10)

(B.0.11)

Where we denote with (p)q the rising factorial, with p! the factorial and with Γ the Gamma
function. Now by means of Equation B.0.8, setting p = 1/2, q = n and r = k we have:

(3/2− n)k
(n− k + 1)k

(
1/2

n− k

)
=

(
1/2

n

)
(B.0.12)

Then by means of Equation B.0.10, setting p = n− k + 1 and q = k we have:

(n− k + 1)k = k!

(
n

k

)
(B.0.13)

Thus combining Equation B.0.12 and Equation B.0.13 we have:(
1/2

n− k

)
=

(
1/2

n

)
k!

(3/2− n)k

(
n

k

)
(B.0.14)

Plugging Equation B.0.14 into Equation B.0.7 we get:
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g(X)

h(X)
=

+∞∑
n=0

(
1/2

n

)[ n∑
k=0

(−1)k
(1 + k)k!

(3/2− n)k

(
n

k

)(
β

α

)k]
αnXn (B.0.15)

And thanks to Equation B.0.11:

(1 + k)k! = Γ(k + 2) =
Γ(k + 2)

Γ(2)
= (2)k (B.0.16)

It follows that the internal summation of Equation B.0.15 becomes:

Sn =
n∑
k=0

(−1)k
(2)k

(3/2− n)k

(
n

k

)(
β

α

)k

which is case where the Gauss hypergeometric function 2F1(a, b; c) reduces to the hy-
pergeometric polynomial: the series terminates if either a or b is a nonpositive integer.
Then:

Sn = 2F1

 2 −n

3/2− n

∣∣∣∣∣∣∣
β

α


Thanks to Equation B.0.9 we have:(

1/2

n

)
=

Γ(3/2)

Γ(n+ 1)Γ(3/2− n)
=

π1/2/2

Γ(n+ 1)Γ(3/2− n)

Thus in conclusion:

f(x) =
π1/2

2

+∞∑
n=0

2F1

 2 −n

3/2− n

∣∣∣∣∣∣∣
β

α

 αn cosn(x)

Γ(n+ 1)Γ(3/2− n)
(B.0.17)
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