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Abstract

Many geophysical and engineering applications, such as fluid-structure interaction, crack
and wave propagation problems, and flow in fractured porous media, are characterized by
a strong complexity of the physical domain, possibly involving thousands of fractures, het-
erogeneous media, moving geometries and complex topographies. Whenever "classical"
Finite Element Methods (FEMs) are employed to discretize the underlying differential
model, the process of generating and handling the computational mesh can be the bottle-
neck of the whole simulation, as computational grids can be composed only of tetrahedral,
hexahedral, or prismatic elements. To overcome this limitation, many numerical meth-
ods that support computational meshes composed of general polygonal and polyhedral
(polytopal, for short) elements have been developed in the last decade, such as for exam-
ple the Virtual Element Method (VEM), the Polytopal Discontinuous Galerkin method
(PolyDG), the mimetic finite differences method, the hybridizable discontinuous Galerkin
method and the Hybrid High-Order method. However, since elements may have any
shape, there are no well-established strategies to efficiently handle polytopal mesh refine-
ment, i.e., partitioning mesh elements into smaller elements to produce a finer grid, and
agglomeration, i.e., merging mesh elements to obtain coarser grids. Refinement is used
to adaptively construct the grid in order to improve the accuracy of the solution, while
agglomeration is used to reduce the number of degrees of freedom or in combination with
multigrid solvers, which exploit a hierarchy of grids with different resolutions to accelerate
the convergence of iterative algebraic algorithms. In order to perform these operations
effectively, it is therefore extremely important to preserve the geometrical structure and
quality of the initial grid, at a low computational cost. In this thesis, we propose to
use Machine Learning (ML) based strategies to tackle the open problems of perform-
ing effectively mesh refinement and agglomeration. In two dimensions, we develop new
strategies to handle polygonal grids refinement based on Convolutional Neural Networks
(CNNs). We show that CNNs can be successfully employed to identify the "shape" of
a polygonal element correctly so that ad-hoc refinement criteria can be applied. In this
way, CNNs can be used to enhance existing refinement strategies, at a low online com-
putational cost. In three dimensions, we extend the two-dimensional framework for mesh
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refinement, combining CNNs also with the k-means clustering algorithm, to partition the
points of the polyhedron to be refined, in order to make the approach more robust with
respect to unstructured grids. In order to deal with the agglomeration of polygonal grids,
we propose the use of Graph Neural Networks (GNNs) to partition the connectivity graph
of mesh elements. GNNs can naturally and effectively process both the graph and the
geometrical information, featuring strong generalisation capabilities and fast inference.
The effectiveness of the proposed strategies is demonstrated in terms of quality metrics,
mesh complexity, computational cost and performance when applied to VEMs, PolyDG
methods and multigrid solvers. Finally, as a complementary contribution to this work,
we explore the use Variational Physics-Informed Neural Networks (VPINNs) to directly
solve the one-dimensional Helmholtz impedance problem, which is a mesh-less approach.

Keywords: Convolutional Neural Networks, Graph Neural Networks, K-means clus-
tering, Virtual Element method, Polytopal Discontinuous Galerkin method, Multigrid
solvers.
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Sommario

Molte applicazioni geofisiche e ingegneristiche, come problemi d’interazione fluido-struttura,
di propagazione di fessure e onde o di flusso di un fluido in mezzi porosi fratturati, sono
caratterizzate da una forte complessità del dominio fisico, che può coinvolgere migliaia
di fratture, mezzi eterogenei, geometrie mobili e topografie complesse. Ogni volta che si
utilizzano approcci classici basati sugli elementi finiti per discretizzare il modello differen-
ziale sottostante, il processo di generazione e gestione della griglia di calcolo può essere il
collo di bottiglia dell’intera simulazione, poiché tali mesh possono essere composte solo da
elementi tetraedrici, esaedrici o prismatici. Per ovviare a questa limitazione, nell’ultimo
decennio sono stati sviluppati molti metodi numerici che supportano griglie computazion-
ali composte da elementi poligonali e poliedrici generici (abbreviato politopali), come il
metodo degli Elementi Virtuali Politopali, il metodo di Galekin Discontinuo per griglie
Politopali, il metodo delle differenze finite mimetiche, il metodo di Galerkin discontinuo
ibridizzabile e il metodo Ibrido di Alto Ordine. Tuttavia, poiché gli elementi possono avere
qualsiasi forma, non esistono strategie consolidate per gestire in modo efficiente il raffina-
mento delle mesh poliedriche, ossia la suddivisione degli elementi della griglia in elementi
più piccoli per produrre una mesh più fine, e agglomerazione, ossia l’unione degli elementi
della griglia per ottenere una mesh più lasca. Il raffinamento viene utilizzato per costru-
ire in modo adattivo la griglia al fine di migliorare l’accuratezza della soluzione, mentre
l’agglomerazione viene utilizzata per ridurre il numero di gradi di libertà o in combinazione
con i solutori multi-griglia, che sfruttano una gerarchia di mesh con risoluzioni diverse per
accelerare la convergenza di algoritmi algebrici iterativi. Per eseguire queste operazioni in
modo efficace è quindi estremamente importante preservare la struttura geometrica e la
qualità della griglia iniziale, ad un basso costo computazionale. In questa tesi proponiamo
di utilizzare strategie basate sull’Apprendimento Automatico per affrontare i problemi
aperti di eseguire efficacemente il raffinamento e l’agglomerazione delle griglie. In due
dimensioni, sviluppiamo nuove strategie per gestire il raffinamento delle mesh poligonali
basate su Reti Neurali Convoluzionali. Dimostriamo che le Reti Neurali Convoluzionali
possono essere impiegate con successo per identificare correttamente la "forma" di un
elemento poligonale, in modo da poter applicare criteri di raffinamento ad-hoc. In questo
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modo, le Reti Neurali Convoluzionali possono essere utilizzate per migliorare le strategie
di raffinamento esistenti, a un basso costo computazionale online. In tre dimensioni, es-
tendiamo l’approccio bidimensionale per il raffinamento della mesh, combinando le Reti
Neurali Convoluzionali anche con l’algoritmo k-means, per partizionare i punti del poliedro
da raffinare, al fine di rendere l’approccio più robusto rispetto a griglie non strutturate.
Per far fronte all’agglomerazione di mesh poligonali, proponiamo l’uso di Reti Neurali per
Grafi per partizionare il grafo di connettività degli elementi della griglia. Le Reti Neurali
per Grafi sono in grado di elaborare in modo naturale ed efficace sia il grafo che le in-
formazioni geometriche, con una forte capacità di generalizzazione e una rapida inferenza
di nuovi input. L’efficacia delle strategie proposte è dimostrata in termini di metriche
di qualità, complessità della griglia, costo computazionale e prestazioni quando vengono
applicate al metodo degli Elementi Virtuali Politopali, al metodo di Galekin Discontinuo
per griglie Politopali e a solutori multi-griglia. Infine, come contributo complementare a
questo lavoro, esploriamo l’uso delle Reti Neurali Variazionali Informate sulla Fisica del
problema per risolvere direttamente il problema d’impedenza di Helmholtz unidimension-
ale, che è un approccio privo di mesh.

Parole chiave: Reti Neurali Convoluzionali, Reti Neurali per Grafi, algoritmo K-means,
metodo degli Elementi Virtuali Politopali, metodo di Galekin Discontinuo per griglie Poli-
topali, solutori multi-griglia.
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1

Introduction

Many applications in the fields of Engineering and Applied Sciences, such as fluid-structure
interaction problems, flow in fractured porous media, crack and wave propagation prob-
lems, are characterized by a strong complexity of the physical domain, possibly involving
moving geometries, heterogeneous media, immersed interfaces and complex topographies.
Whenever classical Finite Element Methods (FEMs) are employed to discretize the un-
derlying differential model, the process of grid generation can be the bottleneck of the
whole simulation, as computational meshes can be composed only of tetrahedral, hexahe-
dral, or prismatic elements. To overcome this limitation, in the last years there has been
a great interest in developing FEMs that can employ general polygons and polyhedra
as grid elements for the numerical discretizations of partial differential equations. We
mention the mimetic finite difference method [32, 47, 48, 102], the hybridizable discontin-
uous Galerkin method [59–62], the Polyhedral Discontinuous Galerkin (PolyDG) method
[10, 13, 18, 28, 50, 53, 99], the Virtual Element Method (VEM) [19, 30, 31, 33, 34, 36]
and the Hybrid High-Order method [70–74]. This calls for the need to develop effective
algorithms to handle polygonal and polyhedral (polytopal, for short) grids and to assess
their quality (see e.g. [23]). For a comprehensive overview we refer to the monographs
and special issues [19, 32, 36, 53, 74, 75] and the references therein.

Among the open problems, there is the issue of efficiently handling polytopal mesh re-
finement [37, 100, 111], i.e., partitioning mesh elements into smaller elements to pro-
duce a finer grid, and agglomeration, i.e., merging mesh elements to obtain coarser grids
[16, 28, 56, 89, 124]. Mesh refinement can be used to obtain a finer approximation of the
differential problem at hand, in order to improve the accuracy of the solution. On the
contrary, mesh agglomeration can be used to obtain a coarser approximation of the differ-
ential problem at hand, in order to reduce the number of degrees of freedom and therefore
the computational effort. These operations can be naturally performed in the context of
polygonal and polyhedral grids, because of the flexibility in the definition of the shape
of mesh elements. They can be used in combination to attain an optimal convergence
of the employed numerical method, properly balancing the trade-off between accuracy of
the solution and computational effort related to the number of degrees of freedom. Appli-
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cations also include generating a hierarchy of grids with different resolution for a domain
of interest, that are at the basis of multigrid solvers [12, 15, 28, 29, 43, 45, 77, 91], to
accelerate the converge of algebraic iterative solvers. Moreover, these operations can be
exploited with domain decomposition techniques [7, 11, 84, 141] to obtain a meaningful
decomposition of the original domain, given a suitable initial discretization.
As for standard triangular and quadrilateral meshes, during either refinement or agglom-
eration it is important to preserve the quality of the underlying mesh, since this might
affect the overall performance of the method in terms of stability and accuracy. Indeed a
suitable adapted mesh may allow to achieve the same accuracy with a much smaller num-
ber of degrees of freedom when solving the numerical problem, hence saving memory and
computational power. However, since in such a general framework mesh elements may
have any shape, there are no well established strategies to achieve effective refinement or
agglomeration with a fast, robust and simple approach, contrary to classical tetrahedral,
hexahedral and prismatic meshes. Moreover, grid agglomeration is a topic quite unex-
plored, because it is not possible to develop such kind of strategies within the framework
of classical FEMs.

In recent years there has been a great development of Machine Learning (ML) algorithms,
a framework which allows to extract information automatically from data, to enhance
and accelerate numerical methods for scientific computing [17, 98, 127–129, 131–133]. In
this thesis, we propose to use ML-based strategies to efficiently handle polytopal mesh
refinement and agglomeration, in order to fully exploit all of the benefits of polytopal finite
element methods, such as geometrical flexibility, convergence properties and others. The
core concept lies in learning the "shape" of mesh elements in order to perform the desired
operations accordingly. Such a learning needs to be performed in an automatic and flexible
way, because of the too high variability of the geometries of interest, tailoring the approach
to a wide range of different possible situations, and avoiding, as much as possible, online
geometric checks that are expensive to be carried out for large-scale applications where the
under-laying grid might be composed of million of elements. Rather than simply trying to
decide a priori criteria to perform refinement and agglomeration, which would inevitably
result in poor performance or high computational cost due to the impossibility of capturing
all of the possible situations, ML strategies exploit and process automatically the huge
amount of available data to learn only the distribution of the features of interest for the
application, leading to high performance and computational efficiency. By combining the
a priori approach of classical numerical methods, with the a posteriori approach of ML-
based strategies, it is possible to not only to boost existing algorithms but also to develop
new algorithms capable to work in more general frameworks. In particular, we propose
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the use of Deep Neural Networks [114], powerful function approximators, to exploit the
information coming from artificially generated databases of meshes, in order to drive the
processes of refinement and agglomeration. This approach is fully generalizable as it is
not dependent of the differential problem under investigation, but depends only on the
"shape" of the local mesh elements.

In the following, we provide an overview of the contents of each chapter of the thesis.

In Chapter 1 we introduce the numerical methods that employ general polygonal and
polyhedral grid, that we employ as benchmark for the proposed refinement and agglom-
eration strategies. In particular, we will describe the VEM and the PolyDG method,
with the latter being employed also in a multigrid framework. Applications include the
advection-diffusion-reaction problem and the Stokes problem.

In Chapter 2 we introduce different ML techniques that can be employed for grid refine-
ment and agglomeration. In particular, we will introduce Convolutional Neural Networks
(CNNs) for the problem of image classification, related to mesh refinement, Graph Neural
Networks (GNNs) for the problem of graph partitioning, related to mesh agglomeration,
and the k-means algorithm in a general framework.

In Chapter 3 we propose new strategies to handle polygonal grids refinement based on
CNNs, that are function approximatiors particularly well suited for image classification.
Indeed, they have been successfully applied in many areas, especially computer vision
[2, 83, 110, 114, 140]. By viewing mesh elements as images, where pixels represent volume
units of the considered polytope, CNNs can be employed to correctly classify the "shape"
of both polygons and polyhedra, without resorting to the explicit calculation of geometric
properties, which may be expensive, especially in three dimensions. This information
can then be exploited to design tailored strategies for different families of polygons and
polyhedra [4, 6]. According to the classification, the most suitable refinement strategy is
then selected among the available ones, therefore enhancing performance. The proposed
approach has several advantages:

• it helps preserving structure and quality of the mesh, since it can be easily tailored
for different types of elements;

• it can be combined with suitable user-defined refinement criteria;

• it is independent of the differential model at hand and of the numerical method
employed for the discretization;

• the overall computational cost is kept low, since neural networks can be trained
offline once and for all.
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We test the proposed idea in two dimensions considering PolyDG methods and VEMs.
We demonstrate that the proposed algorithms can greatly improve the performance of
the discretization schemes both in terms of accuracy and quality of the underlying grids.

In Chapter 4 we propose new strategies based on ML techniques to handle polyhedral grid
refinement, to be possibly employed within an adaptive framework, as a generalization
to three dimensions of the approach proposed in Chapter 3. While in two dimensions an
approach based solely on CNNs seems to be sufficient to handle the complexity of mesh
elements [4], this is not the case in three dimensions [6], where the shape variability of
polyhedra is too high to be captured withing a single database. This calls for the need of an
unsupervised learning approach that, contrary to the supervised one which employs CNNs,
does not require prior knowledge in form of labelled data to solve a new instance of the
problem. In particular, we employ the k-means clustering algorithm [95, 115] to partition
the points of the polyhedron to be refined. Learning a clustered representation allows
to better handle situations where elements have no particular structure, while preserving
the quality of the grid. This strategy is a variation of the well known Centroidal Voronoi
Tessellation (CVT) [82, 117]. We also propose the use of CNNs to classify the shape of
an element so that ad-hoc refinement criteria can be defined, as in the two dimensional
case. This strategy can be used to enhance existing refinement strategies, including the
k-means strategy. We test the proposed algorithms considering the VEM and the PolyDG
method. We demonstrate that these strategies do preserve the structure and the quality
of the underlaying grids, reducing the overall computational cost and mesh complexity.

In Chapter 5 we propose a geometrical deep learning-based approach to handle polygonal
grids agglomeration via GNNs [85, 86, 94], that are architectures specifically meant to
work with graph-structured data. GNNs can be viewed as the generalisation of CNNs,
since the latter are designed to work on specific lattice graphs, while the former can
applied to graph any sort of irregular sparsity pattern. The problem of mesh agglomer-
ation can be re-framed as a graph partitioning problem, by exploiting the connectivity
structure of the mesh. In particular, the graph representation of the mesh is obtained by
assigning a node to each element of the mesh, and connecting with an edge the pair of
nodes which are relative to adjacent elements in the original mesh. By exploiting such a
representation, GNNs can be applied to solve a node classification problem, where each
element is assigned to a cluster, which corresponds an element of the agglomerated mesh.
GNNs can process naturally and simultaneously both the graph structure of mesh and
the geometrical information that can be attached to the nodes, such the elements areas
or their barycentric coordinates. This is not the case of other approaches such as METIS
[106], a standard solver for graph partitioning which can process only the graph infor-
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mation, or k-means, which can process only the geometrical information. The proposed
GNN-based algorithms exploit an unsupervised training procedure, where parameters are
set to minimize the expected value of the normalized cut, over a database of polygonal
grids. Performance in terms of quality metrics is enhanced for ML strategies, with GNNs
featuring a lower computational cost online. Such models also show a good degree of
generalization when applied to more complex geometries, such as brain MRI scans, and
the capability of preserving the quality of the grid. The effectiveness of these strategies
is accessed also when applied to MG solvers in a PolyDG framework.

In Chapter 6, as a further development, we propose a preliminary work on the use of
Variational Physics-Informed Neural Networks (VPINNs) to solve the one-dimensional
Helmholtz impedance problem. In particular, neural networks are used to minimize the
residual of the weak formulation of the Helmholtz problem. In this case, neural networks
are employed to directly compute the solution of the differential problem, therefore sub-
stituting classical finite element schemes. This is a different approach to the one adopted
so far in this thesis, where ML strategies were employed to enhance numerical meth-
ods. One of the main differences of this approach with respect to classical finite element
schemes is the fact of being "mesh-less", as it is not required to perform a discretization
of the physical domain. However, some analogies can be drawn since the neural network
automatically induces a partition of the domain. Therefore, this work can be seen as a
complementary contribution to the problem of handling polytopal meshes, in the attempt
to highlight advances, disadvantages, similarities and synergies of both mesh-based and
mesh-less approaches. The main reason to use artificial neural networks to tackle the
Helmholtz problem resides in their powerful approximation properties for highly oscilla-
tory functions, which are of particular interest for the application under investigation.
Indeed, the required number of parameters of the network, in particular the number of
layers, scales logarithmically with respect to the considered frequency. The main bot-
tleneck of this approach is the expensive training of the network. We therefore analyze
different training strategies, aiming at simplifying the under-laying optimization problem.

In Chapter 7 we summarize the achieved results and discuss further developments and
open problems for future research.
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1| Numerical methods for

polytopal grids

In this chapter, following [8, 20, 51, 66], we introduce numerical methods that employ
general polygons and polyhedra as grid elements for the numerical discretizations of par-
tial differential equations. In particular, we will describe the Virtual Element Method
(VEM) and the Polytopal Discontinuous Galrkin (PolyDG) method, with the latter being
employed also in a multigrid framework. Applications include the advection-diffusion-
reaction problem and the Stokes problem.

The VEM was introduced in [30, 31] as a generalization of the Finite Element Method
(FEM) that allows for very general polygonal and polyhedral meshes, which also includes
non convex and very distorted elements. The VEM is not based on the explicit construc-
tion and evaluation of the basis functions, as standard FEM, but on a proper choice and
use of the degrees of freedom in order to compute the operators involved in the discretiza-
tion of the problem. The employed basis functions are virtual, since they follow a rigorous
definition, include (but are not restricted to) standard polynomials but are not computed
in practice. The accuracy of the method is guaranteed by the polynomial part of the
virtual space. Using such approach introduces other potential advantages, such as exact
satisfaction of linear constraints [67] and the possibility to build easily discrete spaces of
high global regularity [14, 46].

The Discontinuous Galerkin (DG) method was first introduced in [130] and then proposed
to deal with elliptic and parabolic problems [21, 26, 142]. As the discrete polynomial space
can be defined locally on each mesh element, DG methods feature a high-level of intrinsic
parallelism. The DG methods can be extended to computational grids characterized by
polytopic elements [10, 13, 15, 18, 28, 50, 53, 99]. In particular, employing a bounding
box approach for each element [50, 88], together with a proper discontinuity penalization,
allow for polytopic elements that can be characterized by faces of arbitrarily small measure
and possibly by an unbounded number of faces [15, 52].

Employing general polygonal e polyhedral grids allows for flexibility in the definition of
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the element shape, which couples very well with the possibility of defining agglomerated
meshes, a key ingredient for the development of multigrid algorithms [5, 12, 15, 28, 29, 43,
45, 55, 77, 91, 144]. Multigrid methods, such as the two-level, the V-cycle or the W-cycle,
exploit a hierarchy of discretizations of the physical domain in order to accelerate the
convergence of classical numerical methods for the solution of partial differential equations.
In particular, through a practice known as relaxation, they perform a global correction
of the fine grid solution approximation by solving the problem on a coarser grid. The
definition of the subspaces associated with the agglomerated grids is straightforward,
since inter-element continuity is not required. Agglomeration must done with care, since
it may lead to coarser grids with an increasing number of faces and this might affect the
conditioning of the coarser components of the solver and the overall efficiency.

In order to effectively exploit of all the benefits of the described algorithm, such as the
geometrical flexibility during mesh generation, the capability of handling hanging nodes
naturally and the convergence properties, it is therefore important to design proper re-
finement and agglomeration strategies for polytopal grids, capable of preserving the grid
quality at a low computational cost.

1.1. The virtual element discretization of the diffusion-

reaction problem

In this section we give a brief overview of the VEM in three space dimensions for the
simple model problem of diffusion-reaction in primal form. More details on the method
for this same model and formulation can be found in [1, 30, 31, 66] while extension to
variable coefficients is presented in [33]. Here k will denote a positive integer number,
associated to the "polynomial degree" of the virtual element scheme.

1.1.1. Notation

In the following, E will denote a polygon and P a polyhedron, while faces, edges and
vertices will be indicated by f, e, and v respectively.

If P is a polyhedron in R3, we will denote by xP , hP and |P | the centroid, the diameter,
and the volume of P , respectively. The set of polynomials of degree less than or equal to
s in P will be indicated by Ps(P ). If α = (α1, α2, α3) is a multiindex, we will indicate by
mα the scaled monomial

mα =

(
x− xP

hP

)α1
(
y − yP
hP

)α2
(
z − zP
hP

)α3
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and we will denote by Phom
s (P ) the space of scaled monomials of degree exactly (and no

less than) s :
Phom

s (P ) = span {mα, |α| = s}

where |α| = α1 + α2 + α3. The case of a polygon E ⊂ R2 is completely analogous.

A face f of a polyhedron is treated as a two-dimensional set, using local coordinates
(x, y) on the face. Edges of polyhedra and polygons are treated in an analogous way as
one-dimensional set.

1.1.2. The diffusion-reaction model problem

Let Ω ⊂ R3 represent the domain of interest (that we assume to be a polyhedron) and let
Γ denote a subset of its boundary, that we assume for simplicity to be given by a union
of some of its faces. We denote by Γ′ = ∂Ω/Γ.

We consider the simple diffusion-reaction problem
−∆u+ u = f in Ω

u = r on Γ

∂u

∂n
= g on Γ′

where f ∈ L2(Ω) and g ∈ L2 (Γ′) denote respectively the applied load and Neumann
boundary data, and r ∈ H1/2(Γ) is the assigned boundary data function. The variational
form of our model problem reads{

Find u ∈ H1
Γ(Ω) such that∫

Ω
∇u · ∇v +

∫
Ω
uv =

∫
Ω
fv +

∫
Γ′ gv ∀v ∈ H1

Γ,0(Ω),

where
H1

Γ =
{
v ∈ H1(Ω) : v|Γ = r

}
, H1

Γ,0 =
{
v ∈ H1(Ω) : v|Γ = 0

}
.

1.1.3. Virtual elements on polygons

We start by defining the virtual element space on polygons. Given a generic polygon E,
let the preliminary virtual space

Ṽ k(E) =
{
v ∈ H1(E) ∩ C0(E) : v|e ∈ Pk(e) ∀e ∈ ∂E,∆v ∈ Pk(E)

}
with e denoting a generic edge of the polygon.
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For any edge e, let the points {νi
e}

k−1
i=1 be given by the k− 1 internal points of the Gauss-

Lobatto integration rule of order k+1 on the edge. We now introduce three sets of linear
operators from Ṽ k(E) into real numbers. For all v in Ṽ k(E) :

O1: evaluation of v(ν) ∀ν vertex of E;

O2: evaluation of v(νi
e) ∀e ∈ ∂E, i = {1, 2, . . . , k − 1};

O3: moments
∫
E
vpk−2 ∀pk−2 ∈ Pk−2(E).

The following projector operator Π∇
E : Ṽ k(E) → Pk(E) will be useful in the definition

of our space and also for computational purposes. For any v ∈ Ṽ k(E), the polynomial
Π∇

Ev ∈ Pk(E) is defined by (see [30])
∫
E
∇
(
v − Π∇

Ev
)
· ∇pk = 0 ∀pk ∈ Pk(E)

for k = 1 :
∑

ν vertex of E

(
v(ν)− Π∇

Ev(ν)
)
= 0

for k ≥ 2 :
∫
E

(
v − Π∇

Ev
)
= 0.

Note that, given any v ∈ Ṽ k(E) the polynomial Π∇
Ev only depends on the values of the

operators O1-O3. Indeed, an integration by parts easily shows that the values of the above
operators applied to v are sufficient to uniquely determine Π∇

Ev and no other information
on the function v is required [30, 31].

We are now ready to present the two dimensional virtual space:

V k(E) =

{
v ∈ Ṽ k(E) :

∫
E

vq =

∫
E

(
Π∇

Ev
)
q for all q ∈ Phom

k−1 (E) ∪ Phom
k (E)

}
.

It is immediate to check that Pk(E) ⊆ V k(E) ⊆ Ṽ k(E). Moreover the following lemma
holds (the proof can be found in [1, 33]).

Lemma 1.1. The operators O1-O3 constitute a set of degrees of freedom for the space
V k(E).

Finally note that, since any pk ∈ Pk(E) can be written in an unique way as pk = pk−2+ q,
with pk−2 ∈ Pk−2(E) and q ∈ Phom

k−1 (E) ∪ Phom
k (E), it holds∫

E

vpk =

∫
E

v (pk−2 + q) =

∫
E

vpk−2 +

∫
E

(
Π∇

Ev
)
q (1.1)

for any pk ∈ Pk(E). The first term on the right hand side above can be calculated recalling
O3 while the second one can be computed directly by integration. This shows that we
can actually compute

∫
E
vpk for any pk ∈ Pk(E) by using only information on the degree
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of freedom values of v.

1.1.4. Virtual elements on polyhedrons

Let Ωh be a partition of Ω into non-overlapping and conforming polyhedrons. We start
by defining the virtual space V k locally, on each polyhedron P ∈ Ωh. Note that each face
f ∈ ∂P is a two-dimensional polygon. Let the following boundary space

Bk(∂P ) =
{
v ∈ C0(∂P ) : v|f ∈ V k(f) for all f face of ∂P

}
.

The above space is made of functions that on each face are two-dimensional virtual func-
tions, that glue continuously across edges. Recalling Lemma 1.1, it follows that the
following linear operators constitute a set of degrees of freedom for the space Bk(∂P )

O4 evaluation of v(ν) ∀ν vertex of P

O5 evaluation of v(νi
e) ∀e edge of ∂P, i = {1, 2, .., k − 1};

O6 moments
∫
f
vpk−2 ∀pk−2 ∈ Pk−2(f),∀f face of ∂P .

Once the boundary space is defined, the steps to follow in order to define the local vir-
tual space on P become very similar to the two dimensional case. We first introduce a
preliminary local virtual element space on P

Ṽ k(P ) =
{
v ∈ H1(P ) : v|∂P ∈ Bk(∂P ),∆v ∈ Pk(P )

}
and the "internal" linear operators

• moments
∫
P
vpk−2 ∀pk−2 ∈ Pk−2(P ). We can now define the projection operator

Π∇
P : Ṽ k(P )→ Pk(P ) by

∫
P
∇
(
v − Π∇

P v
)
· ∇pk = 0 ∀pk ∈ Pk(P )

for k = 1 :
∑

ν vertex
of P

(
v(ν)− Π∇

P v(ν)
)
= 0,

for k ≥ 2 :
∫
P

(
v − Π∇

P v
)
= 0.

An integration by parts and observation (1.1) show that the projection Π∇
P only depends

on the operator values O4-O6. Therefore we can define the local virtual space

V k(P ) =

{
v ∈ Ṽ k(P ) :

∫
P

vq =

∫
P

(
Π∇

P v
)
q for all q ∈ Phom

k−1 (P ) ∪ Phom
k (P )

}
The proof of the following lemma mimicks the two dimensional case, see for instance [6].
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Lemma 1.2. The operators O4-O6 constitute a set of degrees of freedom for the space
V k(P ).

It is immediate to verify that Pk(P ) ⊆ V k(P ), that is a fundamental condition for the
approximation properties of the space. Moreover, again due to the observation above, the
projection operator Π∇

P : V k(P ) → Pk(P ) is computable only on the basis of the degree
of freedom values O4-O6. In addition, by following the same identical argument as in
(1.1) we obtain that

∫
P
vpk is computable for any pk ∈ Pk(P ) by using the degrees of

freedom. Therefore also the L2 projection operator Π0
P : V k(P )→ Pk(P ), defined for any

v ∈ V k(P ) by ∫
P

(
v − Π0

Pv
)
qk = 0 ∀qk ∈ Pk(P ),

is computable by using the degree of freedom values.

Finally, the global virtual space V k ⊂ H1(Ω) is defined by using a standard assembly
procedure as in finite elements. We define

V k =
{
v ∈ H1(Ω) : v|P ∈ V k(P ) for all P ∈ Ωh

}
.

The associated (global) degrees of freedom are the obvious counterpart of the local ones
introduced above, i.e.

• evaluation of v(ν) ∀ν vertex of Ωh\Γ

• evaluation of v (νi
e) ∀e edge of Ωh\Γ, i = {1, 2, .., k − 1};

• moments
∫
f
vpk−2 ∀pk−2 ∈ Pk−2(f),∀f face of Ωh\Γ;

• moments
∫
P
vpk−2 ∀pk−2 ∈ Pk−2(P ),∀P ∈ Ωh.

1.1.5. Discretization of the problem

We start by introducing the discrete counterpart of the involved bilinear forms. Given
any polyhedron P ∈ Ωh we need to approximate the local forms

aP (v, w) =

∫
P

∇v · ∇w, mP (v, w) =

∫
P

vw.

We follow [30, 31]. We first introduce the stabilization form

sP (v, w) =

Np
dof∑
i=1

Ξi(v)Ξi(w) ∀v, w ∈ V k(P ),
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where Ξi(v) is the operator that evaluates the function v in the ith local degree of freedom
and NP

dof denotes the number of such local degrees of freedom, see O4-O6. We then set,
for all v, w ∈ V k(P ),

ahP (v, w) =

∫
P

(
∇Π∇

P v
)
·
(
∇Π∇

Pw
)
+ hP sP

(
v − Π∇

P v, w − Π∇
Pw
)
,

mh
P (v, w) =

∫
P

(
Π0

Pv
) (

Π0
Pw
)
+ |P |sP

(
v − Π0

Pv, w − Π0
Pw
)
.

The above bilinear forms are consistent and stable in the sense of [30]. The global forms
are given by, for all v, w ∈ V k,

ah(v, w) =
∑
P∈Ωh

ahP (v, w), mh(v, w) =
∑
P∈Ωh

mh
P (v, w).

Let now the discrete space with boundary conditions and its corresponding test space

V k
Γ =

{
v ∈ V k : v|Γ = rI

}
, V k

0 =
{
v ∈ V k : v|Γ = 0

}
where rI is, face by face, an interpolation of r in the virtual space V k(f).

We can finally state the discrete problem{
Find uh ∈ V k

Γ such that
ah (uh, vh) +mh (uh, vh) =

∫
Ω
fhvh +

∫
Γ′ ghvh ∀vh ∈ V k

0

where the approximate loading fh is the L2-projection of f on piecewise polynomials of
degree k, and where gh is the L2-projection of g on piecewise polynomials (still of degree
k ) living on Γ′. Note that all the forms and operators appearing above are computable
in terms of the degree of freedom values of uh and vh.

We close this section by recalling a convergence result. The main argument for the proof
can be found in [30], while the associated interpolation estimates were shown in [120] for
two dimensions and extended in [54] to the three dimensional case.

Let now {Ωh}h be a family of meshes, satisfying the following assumption. There exists a
positive constant γ such that all elements P of {Ωh}h and all faces of ∂P are star-shaped
with respect to a ball of radius bigger than or equal to γhP ; moreover all edges e ∈ ∂P ,
for all P ∈ {Ωh}h have length bigger than or equal to γhP .

Theorem 1.1. Let the above mesh assumptions hold. Then, if the data and solution is
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sufficiently regular for the right hand side to make sense, it holds

∥u− uh∥H1(Ω) ≤ Chs−1
(
|u|Hs(Ωh) + |f |Hs−2(Ωh) + |g|Hs−3/2(Γ′

h)

)
,

where 2 ≤ s ≤ k + 1, the real h denotes the maximum element diameter size and the
constant C is independent of the mesh size. The norms appearing on the right hand side
are broken Sobolev norms with respect to the mesh (or its faces).

The above result applies also if 1 ≤ s < 2, but in that case the regularities on the data
f, g need to be modified. If the domain Ω is convex (or regular) then under the same
assumptions and notations it also holds [33]

∥u− uh∥L2(Ω) ≤ Chs
(
|u|Hs(Ωh) + |f |Hs−2(Ωh) + |g|Hs−3/2(Γ′

h)

)
.

Finally, we note that an extension of the results to more general mesh assumptions could
be possibly derived following the arguments for the two-dimensional case shown in [35].

1.2. Polytopal discontinuous Galerkin discretization

of the advection-diffusion-reaction problem

In this section we introduce the DG method for polytopal grids for the solution of the
advection-diffusion-reaction model problem, applied in two and three dimensions. For
more details see [50, 51].

1.2.1. Preliminaries

For a Lipschitz domain ω ⊂ Rd, d ≥ 1, we denote by Hs(ω) the Hilbertian Sobolev space
of index s ≥ 0 of real-valued functions defined on ω, endowed with the seminorm | · |Hs(ω)

and norm ∥ · ∥Hs(ω). Furthermore, we let Lp(ω), p ∈ [1,∞], be the standard Lebesgue
space on ω, equipped with the norm ∥ · ∥Lp(ω). Finally, |ω| denotes the d-dimensional
Hausdorff measure of ω.

1.2.2. The advection-diffusion-reaction model problem

Let Ω be a bounded open polyhedral domain in Rd, d = 2, 3, and let Γ signify the union of
its (d− 1) dimensional open faces. We consider the advection-diffusion-reaction equation

Lu ≡ −∇ · (a∇u) + b · ∇u+ cu = f, in Ω, (1.2)
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where c ∈ L∞(Ω), f ∈ L2(Ω), and b := (b1, b2, . . . , bd)
⊤ ∈ [W 1

∞(Ω)]
d. Here, a = {aij}di,j=1

is a symmetric positive semidefinite tensor whose entries aij are bounded, piecewise con-
tinuous, real-valued functions defined on Ω̄, with

ξ⊤a(x)ξ ≥ 0 ∀ξ ∈ Rd, a.e. x ∈ Ω̄.

Under the above hypothesis, (1.2) is termed a partial differential equation with nonnega-
tive characteristic form.
We denote by n(x) = {ni(x)}di=1 the unit outward normal vector to Γ at x ∈ Γ and
introduce the Fichera function b · n to define

Γ0 =
{
x ∈ Γ : n(x)⊤a(x)n(x) > 0

}
Γ− = {x ∈ Γ\Γ0 : b(x) · n(x) < 0} , Γ+ = {x ∈ Γ\Γ0 : b(x) · n(x) ≥ 0} .

The sets Γ−and Γ+are referred to as the inflow and outflow boundary, respectively. Note
that Γ0 = Γ0 ∪ Γ− ∪ Γ+. If Γ0 is nonempty, we subdivide it into two disjoint subsets
ΓD and ΓN whose union is Γ0, with ΓD nonempty and relatively open in Γ, on which we
consider the boundary conditions for (1.2):

u = gD on ΓD ∪ Γ−, n · (a∇u) = gN on ΓN, (1.3)

and also adopt the hypothesis that b·n ≥ 0 on ΓN, whenever ΓN is nonempty. Additionally,
we assume that the following positivity hypothesis holds: there exists a positive constant
γ0 such that

c0(x)
2 := c(x)− 1

2
∇ · b(x) ≥ γ0 a.e. x ∈ Ω

The well-posedness of the boundary value problem (1.2),(1.3) has been studied in [101].

1.2.3. Finite element spaces

Let T be a subdivision of the computational domain Ω into disjoint open polygonal (d = 2)

or polyhedral (d = 3) elements κ such that Ω̄ = ∪κ∈T κ̄ and denote by hκ the diameter
of κ ∈ T ; i.e., hκ := diam(κ). In the absence of hanging nodes/edges, we define the
interfaces of the mesh T to be the set of (d−1)-dimensional facets of the elements κ ∈ T .
To facilitate the presence of hanging nodes/edges, which are permitted in T , the interfaces
of T are defined to be the intersection of the (d − 1)-dimensional facets of neighbouring
elements. In the case when d = 2, the interfaces of a given element κ ∈ T will always
consist of line segments (( d − 1) dimensional simplices). For d = 3, we assume that
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each interface of an element κ ∈ T may be subdivided into a set of co-planar triangles.
With this in mind we use the terminology ’face’ to refer to a (d− 1)-dimensional simplex
(line segment or triangle for d = 2 or 3 , respectively), which forms part of the boundary
(interface) of an element κ ∈ T . For d = 2, the face and interface of an element κ ∈ T
necessarily coincide with each other, while in three-dimensions this may no longer be the
case, since the boundary of a general polyhedron may consist of planar polygons which
are not triangular.

As in [50], we assume that a sub-triangulation into faces of each mesh interface is given
if d = 3, and denote by E the union of all open mesh interfaces if d = 2 and the union
of all open triangles belonging to the subtriangulation of all mesh interfaces if d = 3. In
this way, E is always defined as a set of (d− 1)-dimensional simplices. Further, we write
Eint to denote the union of all open (d − 1)-dimensional element faces F ⊂ E that are
contained in Ω, and let Γint := {x ∈ Ω : x ∈ F, F ∈ Eint }. Further assumptions on the
class of admissible meshes will be outlined later on in Section 1.2.6.

Given κ ∈ T , we write pκ to denote the (positive) polynomial degree of the element κ,
and collect the pκ in the vector p := (pκ : κ ∈ T ). We then define the finite element space
Sp
T with respect to T and p by

Sp
T := {u ∈ L2(Ω) : u|κ ∈ Ppκ(κ), κ ∈ T } ,

where Ppκ(κ) denotes the space of polynomials of total degree pκ on κ. As in [50], we
point out that the local elemental polynomial spaces employed within the definition of
Sp
T are defined in the physical coordinate system, without the need to map from a given

reference or canonical frame. We define the broken Sobolev space Hs(Ω, T ) with respect
to the subdivision T up to composite order s as follows

Hs(Ω, T ) = {u ∈ L2(Ω) : u|κ ∈ Hsκ(κ) ∀κ ∈ T } .

For u ∈ H1(Ω, T ), we define the broken gradient ∇hu by (∇hu)|κ = ∇ (u|κ) , κ ∈ T ,
which will be used to construct the forthcoming DG-FEM.

1.2.4. Trace operators

For any element κ ∈ T , we denote by ∂κ the union of (d − 1)-dimensional open faces of
κ. Then, the inflow and outflow parts of ∂κ are defined as follows

∂−κ = {x ∈ ∂κ, b(x) · nκ(x) < 0} , ∂+κ = {x ∈ ∂κ, b(x) · nκ(x) ≥ 0} ,
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respectively, where nκ(x) denotes the unit outward normal vector to ∂κ at x ∈ ∂κ. Given
κ ∈ T , the trace of a function v ∈ H1(Ω, T ) on ∂−κ, relative to κ, is denoted by v+κ .
Further, if ∂−κ\Γ is nonempty, then for x ∈ ∂−κ\Γ there exits a unique κ′ ∈ T such
that x ∈ ∂+κ

′; with this notation, we denote by v−κ the trace of v|κ′ on ∂−κ\Γ. Hence the
upwind jump of the (scalar-valued) function v across a face F ⊂ ∂−κ\Γ is denoted by

⌊v⌋ := v+κ − v−κ .

Next, we introduce some additional trace operators. Let κi and κj be two adjacent
elements of T and let x be an arbitrary point on the interior face F ⊂ Γint given by
F = ∂κi ∩ ∂κj. We write ni and nj to denote the outward unit normal vectors on F ,
relative to ∂κi and ∂κj, respectively. Furthermore, let v and q be scalarand vector-valued
functions, which are smooth inside each element κi and κj. By (vi,qi) and (vj,qj), we
denote the traces of (v,q) on F taken from within the interior of κi and κj, respectively.
The averages of v and q at x ∈ F are given by

{{v}} := 1

2
(vi + vj) , {{q}} := 1

2
(qi + qj) ,

respectively. Similarly, the jump of v and q at x ∈ F ⊂ Γint are given by

JvK := vini + vjnj, JqK := qi · ni + qj · nj,

respectively. On a boundary face F ⊂ Γ, such that F ⊂ ∂κi, κi ∈ T , we set

{{v}} = vi, {{q}} = qi, JvK = vini JqK = qi · ni,

with ni denoting the unit outward normal vector on the boundary Γ.

Remark 1.1. The jump operator JK is independent of face orientation, while the sign of
the upwind jump operator ⌊·⌋ depends on the direction of the flow.

1.2.5. Interior penalty discontinuous Galerkin method

In this section, we introduce the hp-version DG-FEM discretization of the model problem
(1.2), (1.3). For simplicity of presentation, we suppose that the entries of the diffusion
tensor a are constant on each element κ ∈ T , i.e.,

a ∈
[
S0
T
]d×d

sym
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Our results can easily be extended to the case of general a ∈ L∞(Ω)d×d
sym based on employ-

ing the modified DG-FEM proposed in [87]. In the following,
√
a denotes the (positive

semidefinite) square-root of the symmetric tensor a; further, āκ := |√a|22|κ, where | · |2
denotes the l2-norm.

The interior penalty DG-FEM is given by: find uh ∈ Sp
T such that

B (uh, vh) = ℓ (vh)

for all vh ∈ Sp
T . Here, the bilinear form B(·, ·) : Sp

T × Sp
T → R is defined as the sum of

two parts:
B(u, v) := Bar(u, v) +Bd(u, v)

where the bilinear form Bar(·, ·) accounts for the advection and reaction terms:

Bar(u, v) :=
∑
κ∈T

∫
κ

(b · ∇u+ cu)v dx

−
∑
κ∈T

∫
∂−κ\Γ

(b · n)⌊u⌋v+ds−
∑
κ∈T

∫
∂−κ∩(ΓD∪Γ−)

(b · n)u+v+ds.

(1.4)

The bilinear form Bd(·, ·) takes care of the diffusion term:

Bd(u, v) :=
∑
κ∈T

∫
κ

a∇u · ∇v dx+

∫
Γint∪ΓD

σJuK · JvKds

−
∫
Γint∪ΓD

({{a∇hu}} · JvK + {{a∇hv}} · JuK) ds
(1.5)

Furthermore, the linear functional ℓ : Sp
T → R is defined by

ℓ(v) :=
∑
κ∈T

∫
κ

fv dx−
∑
κ∈T

∫
∂−κ∩(ΓD∪Γ−)

(b · n)gDv+ds

−
∫
ΓD

gD ((a∇hv) · n− σv) ds+

∫
ΓN

gNv ds

(1.6)

The nonnegative function σ ∈ L∞ (Γint ∪ ΓD) appearing in (1.5) and (1.6) is referred to
as the discontinuity penalization parameter and it depends on the diffusion tensor a and
the discretization parameters. In particular, let σ : Γ\ΓN → R+be defined facewise by

σ(x) :=

 αmaxκ∈{κ1,κ2}

{
CINV (pκ, κ, F ) āκp2κ|F |

|κ|

}
, x ∈ F ⊂ Γint, F = ∂κ1 ∩ ∂κ2,

α CINV (pκ, κ, F ) āκp2κ|F |
|κ| , x ∈ F ⊂ ΓD, F = ∂κ ∩ ΓD,
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with α > 0 large enough, and independent of pκ, |F |, and |κ|. CINV is the inverse trace
inequality constant defined as in [51].

1.2.6. Mesh assumptions

Assumption 1.1. The subdivision T is shape regular in the sense of [58], i.e., there exists
a positive constant Cshape, independent of the mesh parameters, such that:

∀κ ∈ T , hκ

ρκ
≤ Cshape,

with ρκ denoting the diameter of the largest ball contained in κ.

Assumption 1.2. There exists a positive constant CF , independent of the mesh param-
eters, such that

max
κ∈T

(card{F ⊂ Γ ∪ Γint : F ⊂ ∂κ}) ≤ CF .

Remark 1.2. We note that Assumption 4.2 naturally imposes the condition that the num-
ber of hanging nodes and the number of faces that each element κ in the finite element
mesh T possesses is uniformly bounded under mesh refinement.

As in [50], we require the existence of the following coverings of the mesh.

Definition 1.1. A (typically overlapping) covering T# = {K} related to the polytopic
mesh T is a set of shape-regular d-simplices K, such that for each κ ∈ T , there exists
a K ∈ T#, with κ ⊂ K. Given T#, we denote by Ω# the covering domain given by
Ω# := (∪K∈T#K̄)◦, where, for a closed set D ⊂ Rd, D◦ denotes the interior of D.

Assumption 1.3. There exists a covering T# of T and a positive constant OΩ, indepen-
dent of the mesh parameters, such that the subdivision T satisfies

max
κ∈T
Oκ ≤ OΩ,

where, for each κ ∈ T ,

Oκ := card {κ′ ∈ T : κ′ ∩ K′ = ∅,K ∈ T#such thatκ ⊂ K}.

As a consequence, we deduce that

diam(K) ≤ Cdiamhκ,
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for each pair κ ∈ T , K ∈ T#, with κ ⊂ K, for a constant Cdiam > 0, uniformly with
respect to the mesh size.

We note that Assumption 1.3 ensures that the amount of overlap present in the cover-
ing T# remains bounded as the computational mesh T is refined. The proceeding hp-
approximation results and inverse estimates for polytopic elements are based on referring
back to d-dimensional simplices, where standard results can be applied; see, for example,
[24, 25, 57, 122].

Definition 1.2. For each element κ in the computational mesh T , we define the family
Fκ

b of all possible d-dimensional simplices contained in κ and having at least one face
in common with κ. The notation κF

b will be used to indicate a simplex belonging to Fκ
b

and sharing with κ ∈ T a given face F . Functions defined on Ω can be extended to the
covering domain Ω# based on employing the following extension operator, cf. [137].

Definition 1.3. We let T̃ denote the subset of elements κ, κ ∈ T , such that each κ ∈ T̃
can be covered by at most mT shape-regular simplices Ki, i = 1, . . . ,mT , such that

dist (κ, ∂Ki) > Cas diam (Ki) /p
2
κ,

and
|Ki| ≥ cas|κ|

for all i = 1, . . . ,mT , for some mT ∈ N and Cas, cas > 0, independent of κ and T , where
pκ denotes the polynomial degree associated with element κ, κ ∈ T .

Assumption 1.4. Every polytopic element κ ∈ T \T̃ , admits a sub-triangulation into at
most nT shaperegular simplices si, i = 1, 2, . . . , nT , such that κ̄ = ∪nT

i=1si and

|si| ≥ Ĉ|κ|

for all i = 1, . . . , nT , for some nT ∈ N and ĉ > 0, independent of κ and T .

1.2.7. Error analysis

We introduce the DG-FEM-norm ||| · |||DG as the sum of two parts as follows:

|||v|||2DG := |||v|||2ar + |||v|||2d,
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where

|||v|||2ar :=
∑
κ∈T

(
∥c0v∥2L2(κ)

+
1

2

∥∥v+∥∥2
∂−κ∩(ΓD∪Γ−)

+
1

2

∥∥v+ − v−
∥∥2
∂−κ\Γ +

1

2

∥∥v+∥∥2
∂+κ∩Γ

)

with c0 as in (2.5), and

|||v|||2d :=
∑
κ∈T

∥√a∇v∥2L2(κ)
+

∫
Γint ∪ΓD

σ|JvK|2 ds.

Here, ∥ · ∥τ , τ ⊂ ∂κ, denotes the (semi)norm associated with the (semi)inner product
(v, w)τ =

∫
τ
|b · n|vw ds. Under the considered assumtions it is possible to prove that

|||u− uh|||DG ≤ C
hs−1

pl−
3
2

∥u∥Hl(Ω),

where u is the exact solution (1.2) and (1.3), uh is the numerical solution obtained em-
ploying the PolyDG scheme, C is a suitable constant, h is the meshsize, p is the polinomial
degree and s = min{p+1, l}, l > 1+d/2. This coincides with the analogous result derived
in [36] for standard meshes consisting of simplices or tensorproduct elements. This error
bound is h optimal and p suboptimal by p1/2.

1.3. Polytopal discontinuous Galerkin discretization

of the transient Stokes problem

We consider the transient Stokes problem which reads as follows: given a final time T > 0,
f a (regular) forcing term, and µ and ρ the viscosity and density of the fluid, find the
velocity u = u(t) and the pressure p = p(t) such that, for all t ∈ (0, T ],

ρ∂tu− µ∆u+∇p = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω

(1.7)

Problem (1.7) is supplemented with sufficiently regular initial conditions u(x, 0) = u0(x)

in Ω. To guarantee the well-posedness of the problem, we prescribe that p ∈ L2
0(Ω), where

L2
0(Ω) is the space of L2(Ω) functions with zero average over Ω.

We introduce the functional spaces

V =
{
v ∈

[
H1(Ω)

]d
, d = 2, 3, such that v|∂Ω = 0

}
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and Q = L2
0(Ω) and endow them with the norms

∥v∥V :=
∥∥∥µ 1

2∇v
∥∥∥
L2(Ω)

and ∥q∥Q := ∥q∥L2(Ω).

The weak formulation of problem (1.7) reads as follows: find (u, p) ∈ V ×Q, such that,
for all t ∈ (0, T ]

(ρ∂tu,v)Ω + a(u,v) + b(p,v)− b(q,u) = (f ,v)Ω ∀(v, q) ∈ V ×Q, (1.8)

where

a : V × V → R, a(u,v) =
∫
Ω
µ∇u : ∇v, b : Q× V → R, b(p,v) = −

∫
Ω
p∇ · v,

and (·, ·)Ω denotes the L2-inner product over the domain Ω. It is well-known that the
bilinear form b(·, ·) satisfies a continuous inf-sup condition; see, e.g., [39]. More precisely,
there exists a universal positive constant depending only on Ω such that, to all q ∈ L2

0(Ω),
we associate a function vq ∈ V satisfying ∇ · vq = q and

β ∥vq∥V ≤ ∥q∥L2(Ω).

1.3.1. Polygonal discontinuous Galerkin semi-discrete approxi-

mation

First, we introduce the necessary notation and key analytical results required for the
definition and analysis of PolyDG semi-discrete approximation of the transient Stokes
problem. For more details see [20].

We introduce a mesh Th composed of polytopic elements K of arbitrary shape. We indicate
with hK the diameter of the element K. We define an interface to be either the intersection
of the (d − 1)-dimensional facets of two neighboring elements or the intersection of the
(d− 1) dimensional facets of an element with the boundary of Ω. When d = 2, interfaces
coincide with edges and consist of line segments; in presence of hanging nodes, a single line
segment can contain more than one interface. When d = 3, we assume that each interface
consists of a general planar polygon that we assume that can be further decomposed
into a set of co-planar triangles, denoted as faces. With this notation, we collect all the
(d − 1)-dimensional faces in the set Fh, i.e., any face F ∈ Fh is always defined as a set
of (d− 1)-dimensional simplices (line segments or triangles); cf. [50]. We also decompose
the faces Fh into Fh = F i

h∪F b
h, where F i

h denotes the set of interior faces and F b
h denotes

the set of boundary faces. To avoid technicalities, in the following we assume that ρ and
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µ are piecewise constant over the mesh.

For given integers ℓ,m ≥ 1, we introduce the DG finite element spaces

Vℓ
h =

{
v ∈

[
L2(Ω)

]d
: v|K ∈

[
Pℓ(K)

]d ∀K ∈ Th} ,

Qm
h =

{
q ∈ L2

0(Ω) : q|K ∈ Pm(K)∀K ∈ Th
}
,

where Pk(K), k ≥ 1, denotes the space of polynomials defined over the element K ∈ Th
of total degree at most k. In practice, the shape functions and the degrees of freedom
are Springer directly generated on the physical element K ∈ Th with the "bounding box"
technique; see, e.g., [50].

Given s > 1/2, associated with any mesh Th, we introduce the broken Sobolev space
Hs (Th) = {v ∈ L2(Ω)|v|K ∈ Hs(K) for all K ∈ Th}. The standard Dirichlet trace oper-
ator is well defined on the skeleton of the mesh for functions in Hs (Tn). We define the
stabilization functions σv ∈ L∞ (Fh) and σp ∈ L∞ (Fh) as follows.

Definition 1.4. We define the functions σv : Fh → R and σp : F i
h → R as

σv|F =

 γv maxK+,K−

{
ℓ2µ
hK

}
F ∈ F i

h,

γv
ℓ2µ
hK

F ∈ F b
h,

σp

∣∣∣∣∣
F

= γp min
K+,K−

{
hK

m

}
F ∈ F i

h,

where γv and γp are two universal positive constants, and ℓ and m denote the polynomial
approximation degrees for the velocity and the pressure, respectively.

Next, we introduce three bilinear forms that are instrumental for the construction of the
DG method. More precisely, we define

ah(u,v) =

∫
Ω

µ∇hu : ∇hv −
∑
F∈Fh

∫
F

µ{{∇hu}} : JvK

−
∑
F∈Fh

∫
F

µJuK : {{∇hv}}+
∑
F∈Fh

∫
F

σvJuK : JvK

bh(p,v) =−
∫
Ω

p∇h · v +
∑
F∈Fh

∫
F

{{pI}} : JvK,

sh(p, q) =
∑
F∈Fi

h

∫
F

σpJpK · JqK

where ∇h is the piecewise broken gradient operator, while the average operator {{·}} and
jump operator [[·]] were defined previously in Section 1.2.4. The bilinear form sh(p, q)

represents the pressure stabilization term and σp plays the role of penalty parameter.
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Given f ∈ [L2(Ω)]
d, the semi-discrete PolyDG approximation of (1.8) reads as follows:

for any t ∈ (0, T ], find (uh, ph) ∈ Vℓ
h ×Qm

h such that

(ρ∂tuh,vh)Ω + ah (uh,vh) + bh (ph,vh)− bh (qh,uh) + sh (ph, qh) = (f ,vh)Ω

for all (vh, qh) ∈ Vℓ
h ×Qm

h .

1.3.2. Error analysis of the stationary Stokes problem

We now consider the stationary Stokes problem, i.e (1.7) with ρ = 0. On the product
space Vℓ

h ×Qm
h , we define the norm

∥(vh, qh)∥2E = ∥vh∥2Vℓ
h
+ ∥qh∥2Qm

h
∀ (vh, qh) ∈ Vℓ

h ×Qm
h ,

where

∥vh∥2Vℓ
h
=
∑

K∈Tk

∥∥µ1/2∇hvh

∥∥2
L2(K)

+
∥∥∥σ1/2

v JvhK
∥∥∥2
L2(Fh)

∀vh ∈ Vℓ
h,

∥qh∥2Qm
h
= ∥qh∥2L2(Ω) + |qh|

2
j , |qh|2j = sh (qh, qh) ∀qh ∈ Qm

h .

We also introduce the spaces

X = Vℓ
h +

([
H2(Ω)

]d ∩ [H1
0 (Ω)

]d)
, M = Qm

h +
(
H1(Ω) ∩ L2

0(Ω)
)

for the velocity and pressure, respectively. We endow X ×M with the energy norm

∥(v, q)∥2X×M = ∥(v, q)∥2E +
∑
F∈Fh

∥∥σ−1/2
v {pI}

∥∥2
L2(F )

+
∑
F∈Fh

∥∥σ−1/2
v {∇hu}

∥∥2
L2(F )

.

The following error estimate holds

∥(u− uh, p− ph)∥X×M ≲
1

βh

hs−1

mr−3/2

(
∥Eu∥Hr(∪K∈ThK)

+ ∥Ep∥Hr−1(∪K∈ThK)

)
where m is the polynomial degrees of the discretization, s = min{m + 1, r}, βh is the
inf-sup constant described in [20] and E : Hℓ(Ω)→ Hℓ(Rd), ℓ ≥ 0 is the Stein extension
operator for Sobolev spaces on Lipschitz domains introduced in [137].
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1.4. Polygonal discontinuous Galerkin multigrid for-

mulation of the Poisson problem

We consider the weak formulation of the Poisson problem, subject to homogeneous Dirich-
let boundary conditions: find u ∈ V = H2(Ω) ∩H1

0 (Ω) such that

A(u, v) =
∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ V, (1.9)

with Ω ⊂ Rd, d = 2, 3, a convex polygonal/polyhedral domain with Lipschitz boundary
and f ∈ L2(Ω). The unique solution u ∈ V of problem (1.9) satisfies

∥u∥H2(Ω) ≤ C∥f∥L2(Ω).

In view of the forthcoming multigrid analysis, let {Tj}Jj=1 be a sequence of tessellation
of the domain Ω, each of which is characterized by disjoint open polytopic elements κ

of diameter hκ, such that Ω̄ =
⋃

κ∈Tj κ̄, j = 1, . . . , J . The mesh size of Tj is denoted by
hj = maxκ∈Tj hκ. For the sake of simplicity, we assume that on each level the mesh Tj
is quasi-uniform. To each Tj we associate the corresponding discontinuous finite element
space Vj, defined as

Vj =
{
v ∈ L2(Ω) : v|κ ∈ Ppj(κ), κ ∈ Tj

}
,

where Ppj(κ) denotes the space of polynomials of total degree at most pj ≥ 1 on κ ∈ Tj.

Remark 1.3. For the sake of brevity we use the notation x ≲ y to mean x ≤ Cy, where
C > 0 is a constant independent from the discretization parameters. Similarly we write
x ≳ y in lieu of x ≥ Cy, while x ≈ y is used if both x ≲ y and x ≳ y hold.

A suitable choice of {Tj}Jj=1 and {Vj}Jj=1 leads to the non-nested hp-multigrid schemes.
This method is based on employing a set of non-nested polytopic partitions {Tj}Jj=1, such
that the coarse level Tj−1 is independent from Tj, with the only constraint

hj−1 ≲ hj ≤ hj−1 ∀j = 2, . . . , J.

We also assume that the polynomial degree varies from one level to another such that

pj−1 ≤ pj ≲ pj−1 ∀j = 2, . . . , J.

wereAdditional assumptions on the grids {Tj}Jj=1 were outlined in Section 1.2.6.
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1.4.1. Discontinuous Galerkin formulation

Let Rj : [L
1 (Fj)]

d → [Vj]
d be the lifting operator defined as∫

Ω

Rj(q) · η = −
∫
Fj

q{{η}}ds ∀η ∈ [Vj]
d ,

cf. [22], where Fj is the set of faces of mesh Tj. We introduce the bilinear form Aj(·, ·) :
Vj × Vj → R corresponding to the symmetric interior penalty DG method on the j-th
level is defined by

Aj(u, v) =
∑
κ∈Tj

∫
κ

[∇u · ∇v +Rj(JuK) · ∇v +Rj(JvK) · ∇u] dx

+
∑
F∈Fj

∫
F

σjJuK · JvKds,

where, according to [8, 81], σj ∈ L∞ (Fj) denotes the interior penalty stabilization func-
tion, which is defined by

σj(x) = Cj
σ

p2j
{hκ}H

, x ∈ F ∈ Fj,

with Cj
σ > 0 independent of pj, |F | and |κ|, and where {·}H is the harmonic average given

by

{hκ}H =


2hκ+hκ−
hκ++hκ−

, F ∈ F I
j , F̄ ⊂ ∂κ+ ∩ ∂κ−,

hκ, F ∈ FB
j , F ⊂ ∂κ̄ ∩ ∂Ω̄.

Remark 1.4. Formulation (5) is based on the lifting operators Rj and allows to introduce
the discrete gradient operator Gj : Vj → [Vj]

d, defined as

Gj(v) = ∇jv +Rj(JvK) ∀j = 1, . . . , J,

where ∇j is the piecewise gradient operator on the space Vj.

Our goal is to develop non-nested V -cycle multigrid schemes to solve the following problem
posed on the finest level VJ : find uJ ∈ VJ such that

AJ (uJ , vJ) =

∫
Ω

fvJ dx ∀vJ ∈ VJ . (1.10)
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1.4.2. The BPX-framework for the V-cycle algorithms

The analysis presented in this section is based on the general multigrid theoretical frame-
work of [42] for multigrid methods with non-nested spaces and non-inherited bilinear
forms. In order to develop a geometric multigrid, the discretization at each level Vj fol-
lows the one already presented in [12], where a W -cycle multigrid method based on nested
subspaces is considered. For more details see [8]. The key ingredient in the construction
of our proposed multigrid schemes is the inter-grid transfer operators.

First, we introduce the operators Aj : Vj → Vj, defined as

(Ajw, v)L2(Ω) = Aj(w, v) ∀w, v ∈ Vj, j = 1, . . . , J, (1.11)

and we denote by Λj ∈ R the maximum eigenvalue of Aj, j = 2, . . . , J . Moreover, let Idj

be the identity operator on the level Vj. The smoothing scheme, which is chosen to be
the Richardson iteration, is given by

Bj = Λj Idj j = 2, . . . , J.

The prolongation operator connecting the coarser space Vj−1 to the finer space Vj is
denoted by Ijj−1. Since the two spaces are non-nested, i.e. Vj−1 ̸⊂ Vj, it cannot be
chosen as the natural injection operator. The most natural way to define the prolongation
operator is the L2-projection, i.e. Ijj−1 : Vj−1 → Vj(

Ijj−1vH , wh

)
L2(Ω)

= (vH , wh)L2(Ω) ∀wh ∈ Vj,

The restriction operator Ij−1
j : Vj → Vj−1 is defined as the adjoint of Ijj−1 with respect to

the L2(Ω)-inner product, i.e.,

(
Ij−1
j wh, vH

)
L2(Ω)

=
(
wh, I

j
j−1vH

)
L2(Ω)

∀vH ∈ Vj−1.

For our analysis, we also need to introduce the operator P j−1
j : Vj → Vj−1

Aj−1

(
P j−1
j wh, vH

)
= Aj

(
wh, I

j
j−1vH

)
∀vH ∈ Vj−1, wh ∈ Vj.

According to (1.11), problem (1.10) can be written in the following equivalent form: find
uJ ∈ VJ such that

AJuJ = fJ , (1.12)
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where fJ ∈ VJ is defined as (fJ , v)L2(Ω) =
∫
Ω
fvdx ∀v ∈ VJ . Given an initial guess u0 ∈ VJ ,

and choosing the parameters m1,m2 ∈ N, the multigrid V -cycle iteration algorithm for
the approximation of uJ is outlined in Algorithm 1.1.

Algorithm 1.1 Multigrid V-cycle iteration for the solution of problem (1.12)
1: Initialize u0 ∈ Vj

2: for k = 0,1,... do
3: uk+1 = MGV (J, fJ , uk,m1,m2)

4: uk = uk+1

5: end for

Algorithm 1.2 One iteration of the Multigrid V-cycle scheme
1: if j = 1 then
2: MGν(1, f, z0,m1,m2)=A−1

1 f

3: else
4: Pre-smoothing :
5: for i = 1, ...,m1 do
6: z(i) = z(i−1) +B−1

j (g − Ajz
(i−1))

7: end for
8: Coarse grid correction:
9: rj+1 = Ij−1

j (f − Ajz
(m1))

10: ej+1 = MGν(j − 1, rj−1, 0,m1,m2)

11: z(m1+1) = z(m1) + Ijj−1ej−1

12: Post-smoothing :
13: for i = m1 + 2, ...,m1 +m2 + 1 do
14: z(i) = z(i−1) +B−1

j (g − Ajz
(i−1))

15: end for
16: MGν(J, f, z0,m1,m2) = zm1+m2+1

17: end if

In particular, MGV (J, fJ , uk,m1,m2) represents the approximate solution obtained after
one iteration of our non-nested V -cycle scheme, which is defined by induction: if we
consider the general problem of finding z ∈ Vj such that

Ajz = g, (1.13)

with j ∈ {2, . . . , J} and g ∈ L2(Ω), then MGV (j, g, z0,m1,m2) represents the approxi-



1| Numerical methods for polytopal grids 29

mate solution of (1.13) obtained after one iteration of the non-nested V -cycle scheme with
initial guess z0 ∈ Vj and m1,m2 pre-smoothing and post-smoothing steps, respectively.
The recursive procedure is outlined in Algorithm 1.2, where we also observe that on the
level j = 1 the problem is solved exactly.

1.4.3. Additive Schwarz smoother

In order to improve the performance of our V-cycle algorithm, we define in this section a
domain decomposition preconditioner that can be used as a smoothing operator in place
of the Richardson one. To this aim, let Tj and Tj−1 be a pair of consecutive (non-nested)
coarse/fine meshes, satisfying the grid assumptions given in Section 1.2.6. We next in-
troduce the local and coarse solvers, that are the key ingredients in the definition of the
smoother on the space Vj, j = 2, . . . , J .

Local Solvers. Let us consider the finest mesh Tj with cardinality Nj, then for each
element κi ∈ Tj, we define a local space V i

j as the restriction of the DG finite element
space Vj to the element κi ∈ Tj :

V i
j = Vj|κi

≡ Ppj (κi) ∀i = 1, . . . , Nj,

and for each local space, the associated local bilinear form is defined by

Ai
j : V

i
j × V i

j → R, Ai
j (ui, vi) = Aj

(
RT

i ui, R
T
i vi
)
∀ui, vi ∈ V i,

where RT
i : V i

j → Vj denotes the classical extension by-zero operator from the local space
V i
j to the global Vj.

Coarse Solver. The natural choice in our contest is to define the coarse space V 0
j to

be exactly the same used for the Coarse grid correction step of the V -cycle algorithm
introduced in Sect. 4, that is

V 0
j = Vj−1 ≡

{
v ∈ L2(Ω) : v|κ ∈ Ppj−1

(κ), κ ∈ Tj−1

}
,

the bilinear form on V 0
j is then given by

A0
j : V

0
j × V 0

j → R, A0
j (u0, v0) = Aj−1 (u0, v0) ∀u0, v0 ∈ V 0

j

Here, we define the injection operator from V 0
j to Vj as the prolongation operator in-
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troduced in Sect. 4, that is RT
0 : V 0

j → Vj, R
T
0 = Ijj−1. By introducing the projection

operators Pi = RT
i P̃i : Vj → Vj, i = 0, 1, . . . , Nj, where

P̃i : Vj → V i
j , Ai

j

(
P̃ivh, wi

)
= Aj

(
vh, R

T
i wi

)
∀wi ∈ V i

j , i = 1, . . . , Nj,

P̃0 : Vj → V 0
j , A0

j

(
P̃0vh, w0

)
= Aj

(
vh, R

T
0w0

)
∀w0 ∈ V 0

j

the additive Schwarz operator is defined by Pad =
∑Nj

i=0

(
RT

i

(
Ai

j

)−1
Ri

)
Aj ≡ B−1

ad Aj,

where B−1
ad =

∑Nj

i=0

(
RT

i

(
Ai

j

)−1
Ri

)
is the preconditioner. Then, the Additive Schwarz

smoothing operator with m steps consists in performing m iterations of the Preconditioned
Conjugate Gradient method using Bad as preconditioner. In Algorithm 1.3 we show the
V -cycle multigrid method using Pad as a smoother

Algorithm 1.3 One iteration of Multigrid V-cycle scheme with AS-smoother
1: if j = 1 then
2: MGAS(1, f, z0,m1,m2)=A−1

1 f

3: else
4: Pre-smoothing :
5: z(m1) = ASPCG(Aj, z0, g,m1)

6: Coarse grid correction:
7: rj+1 = Ij−1

j (f − Ajz
(m1))

8: ej+1 = MGAS(j − 1, rj−1, 0,m1,m2)

9: z(m1+1) = z(m1) + Ijj−1ej−1

10: Post-smoothing :
11: z(m1+m2+1) = ASPCG(Aj, z

m1+1, g,m2)

12: MGν(J, f, z0,m1,m2) = zm1+m2+1

13: end if

Here, MAS (j, g, z0,m1,m2) denotes the approximate solution of Ajz = g obtained after
one iteration, with initial guess z0 and m1,m2 pre- and post-smoothing steps, respectively.
The smoothing step is given by the algorithm ASPCG, i.e., z = ASPCG (A, z0, g,m)

represents the output of m steps of Preconditioned Conjugate Gradient method applied
to the linear system of equations Ax = g, by using Bas as preconditioner and starting
from the initial guess z0.
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2| Machine learning techniques
for refinement and
agglomeration

In this chapter we introduce different ML techniques that can be employed for grid refine-
ment and agglomeration. The former can be re-framed as an image classification problem,
while the latter can be recast as a graph partitioning problem, as we will see more in de-
tail in the next chapters. In particular, we will introduce different architectures of neural
networks and the k-means algorithm, to be employed within supervised and unsupervised
learning frameworks.

2.1. Supervised learning for image classification

Consider a two dimensional gray-scale image, represented by a tensor B ∈ Rm×n, m, n ≥
1, and the corresponding label vector y = ([y]j)j=1,..,ℓ ∈ [0, 1]ℓ, where ℓ ≥ 2 is the total
number of classes, and [y]j is the probability of B to belong to the class j for j = 1 : ℓ.
In a supervised learning framework, we are given a dataset of desired input-output couples
{(Bi, yi)}Ni=1, where N is number of labelled data. We consider then an image classifier
represented by a function of the from F : Rm×n → (0, 1)ℓ, which in our case will be a
CNN, parameterized by w ∈ RM where M ≥ 1 is the number of parameters. Our goal is
to tune w so that F minimizes the data misfit, i.e.

min
w∈RM

∑
i∈I

l(F (Bi), yi),

where I is a subset of {1, 2, ..., N} and l is the cross-entropy loss function defined as

l(F (B), y) =
ℓ∑

j=1

−[y]j log[F (B)]j.
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This optimization phase is also called “learning" or “training phase". During this phase, a
known shortcoming is “overfitting": the model fits very well the data used in the training
phase, but performs poorly on new data. For this reason, the data set is usually splitted
into: i) training set: used to tune the parameters during the training phase; ii) validation
set: used to monitor the model capabilities on different data during the training phase.
The training is halted if the error on the validation set starts to increase; iii) test set:
used to access the actual model performance on new data after the training.
While the training phase can be computationally demanding, because of the large amount
of data and parameters to tune, it needs to be performed off line once and for all. Instead,
classifying a new image using a pre-trained model is computationally fast: it requires only
to evaluate F on a new input. The predicted label is the one with the highest estimated
probability.

2.1.1. Convolutional neural networks

CNNs are parameterized functions, in our case of the form

CNN : Rm×n → (0, 1)ℓ, m, n, ℓ ≥ 1,

constructed by composition of simpler functions called “layers of neurons". We are now
going to introduce different types of layers:

Image convolutional layers. Linear mappings of the form Conv : Rm×n×c → Rm×n×h̄

with m,n, c, h̄ ≥ 1, where m and n are the size of the input image, c is the number of
channels, e.g. c = 3 for a colored image, and h̄ is the number of features maps. For an
image B ∈ Rm×n and a kernel K ∈ R(2k+1)×(2k+1) the convolution operator ∗ is defined as

[K ∗B]i,j =
k∑

p,q=−k

[K]k+1+p,k+1+q[B]i+p,j+q, i = 1 : m, j = 1 : n,

with zero padding, i.e. Bi+p,j+q = 0 when indexes are out of range. This operation can be
viewed as a filter scanning through image B, extracting local features that depend only on
small subregions of the image. This is effective because a key property of images is that
close pixels are more strongly correlated than distant ones. The scanning filter mechanism
provides the basis for the invariance of the output to translations and distortions of the
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input image [38]. The convolutional layer is defined as

[Conv(B)]i =
c∑

j=1

[K]:,:,i,j ∗ [B]:,:,j + [b]i1, i = 1 : h̄,

where the colon index denotes that all the indexes along that dimension are considered,
1 ∈ Rm×n is the m × n matrix with all entries equal to 1, K ∈ R(2k+1)×(2k+1)×h̄×c is a
kernel matrix and b ∈ Rh̄ is a bias vector of coefficients to be tuned.

Batch normalization. Batch normalization layers (BNorm) are linear mappings used
to speed up training and reduce the sensitivity to network initialization [103].

Pooling layers. Mappings used to perform down-sampling, such as

Pool : Rm×n×c → R⌈m
s
⌉×⌈n

s
⌉×c m,n, c ≥ 1,

[Pool(B)]i,j,t = max
p,q=1:k

Bs(i−1)+p,s(j−1)+q,t

with s ≥ 1 and zero padding. They improve the invariance of the output with respect to
translations of the input.

Activation functions. Mappings used to introduce non-linearity, such as the rectified
linear unit [RELU(x)]i = max(0, xi) or the hyperbolic tangent [tanh (x)]i =

exi−e−xi

exi+e−xi
.

Dense layers. Generic linear mappings of the form Linear : Rm×n×c → Rℓ, n,m, c, ℓ ≥
1 defined by parameters to be tuned. They are used to separate image features extracted
in the previous layers.

Softmax. We define the function SoftmaxRℓ → (0, 1)ℓ, where ℓ ≥ 1 is the number
output classes, [Softmax(x)]i = exi∑ℓ

j=1 e
xj

. They are used to assign a probability to each
class.

All of the above operations (convolution, pooling, ...) naturally extend to the three
dimensional case, i.e. when dealing with images B ∈ Rn×n×n made of voxels and not
pixels. In practise, subsequent application of convolutional, activation and pooling layers
may be used to obtain a larger degree of invariance to input transformations such as
rotations, distortions, etc.
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Figure 2.1: Example of graph partitioning into three sets. Left: original graph. Right: parti-
tioned graph into three subsets S1, S2, S3.

2.2. Unsupervised learning for graph partitioning

Let N > 0 be the number of graph nodes. Given a graph G = (V,E), where V = {vi}Ni=1

and E = {e(vi, vj) : vi, vj ∈ V } are the sets of nodes and the set of edges, respectively.
The problem of graph partitioning consists in finding M disjoint sets of nodes S1, ..., SM

such that ∪Mi=1Si = V and ∩Mi=1Si = ∅, see, e.g., Figure 2.1. We restrict our framework
to undirected graphs, i.e. e(vi, vj) ∈ E ⇐⇒ e(vj, vi) ∈ E. We will use the following
notation:

• A ∈ RN×N is the adjacency matrix, i.e. Ai,j = 1 if e(vi, vj) ∈ E and 0 otherwise;

• X ∈ RN×F is the features matrix of the nodes, which may represent any information
such as coordinates, where F is the number of features;

• N (vi) = {vj ∈ V : e(vi, vj) ∈ E} denotes the neighborhood of the i-th node,
containing the nodes vj directly adjacent to vi.

We can define the cut of a graph, representing the number of edges connecting the disjoint
sets of nodes resulting from the paritioned graph. In the case of two partitions, it can be
defined as:

cut(S1, S2) = |{e(vi, vj) ∈ E : vi ∈ S1, vj ∈ S2}|, (2.1)

and can be easily generalized to the case of M partitions, as

cut(S1, ..., SM) =
1

2

M∑
k=1

cut(Sk, S
C
k ) with SC

k = V \ Sk. (2.2)

The normalized cut is defined as

Ncut(S1, ..., SM) =
M∑
k=1

cut(Sk, S
C
k )

vol(Sk, V )
, (2.3)
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where the volume of the partition Sk is defined as

vol(Sk, V ) = |{e(vi, vj) ∈ E : vi ∈ Sk, vj ∈ V }|. (2.4)

It represents the total degree of all nodes of the k-th partition. Depending on the appli-
cation of interest, different notions of volume can be used. The normalized cut, contrary
to the standard cut, allows to take into account partitions where the number of nodes is
balanced between the different sets. Let Yij be the probability for node i of belonging to
partition j. The expected cut, given two partitions Sk and its complement SC

k , is defined
as

E[cut(Sk, S
C
k )] =

N∑
i=1

∑
vj∈N (vi)

Yik(1− Yjk) =
N∑
i=1

N∑
j=1

Yik(1− YkjT )Aij. (2.5)

Let D be the column vector of the degrees of the nodes, i.e. Di = vol({vi}, V ). Then

E[vol(Sk, V )] = (Y TD)k = Γk. (2.6)

The expected normalized cut can be defined as

E[Ncut(S1, ..., SM)] =
∑

(Y ⊘ Γ)(1− Y )T ⊙ A, (2.7)

where ⊘ and ⊙ denote the element-wise division and multiplication, respectively, and the
summation is over all the entries of the resulting matrix.

In a unsupervised learning framework, we are given an unlabelled dataset, in our case
of the form {(Ai, X i)}NG

i=1 where NG ≥ 1 is the number of graphs in the database, for
which we want to find a different representation. For the case of mesh agglomeration,
these graphs represent the elements connectivity of different computational grids. We
consider then a node classifier F , which in our case will be a GNN, parameterized by a
set of weights W , that takes as input the adjacency matrix A and the nodes features X of
a graph and outputs the probability Yij for node i of belonging to partition j. Our goal
is to tune W so that F minimizes the following loss function

L =

NG∑
i=1

ℓ(Ai, Y i;W ), (2.8)



36 2| Machine learning techniques for refinement and agglomeration

Figure 2.2: General GNN framework, consisting of an input graph G together with its features
matrix X, and an output hidden representation H related to the same graph structure.

where Y i = F (Ai, X i;W ) and

ℓ(A, Y ;W ) =
M∑
k=1

N∑
i,j=1

Yik(1− Y T
kj)Aij

Γk

(2.9)

is the expected normalized cut of the graph.

2.2.1. Graph neural networks

GNNs are deep learning architectures specifically meant to work with graph-structured
data within the framework of Geometrical Deep Learning, that concerns the application
of neural networks to non-Euclidean data structures. The recent success of GNNs was
mainly caused by the central role played by CNNs architectures for many applications,
especially computer vision [2, 114]. Indeed, GNNs can be viewed as the generalisation of
CNNs, since the latter are designed to work on specific lattice graphs, while the former
can applied to graph any sort of irregular sparsity pattern. In addition to the mappings
defined in Section 2.1.1, the following layers can also be combined to construct the GNN
architecture.

Graph convolutional layers. These layers take as input a graph G = (V,E), con-
sisting of an adjacency matrix A together with features attached to nodes, edges or the
global graph, and returns a graph with the same connectivity structure while progressively
transforming the information of the features, as shown in Figure 2.2. These mappings are
permutation-invariant with respect to the order of the nodes. Let X denote the nodes
features matrix, or the initial representations, related of the input graph G, and let Hk

denote the hidden representation of those features after applying the k-th convolutional
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layer. At step k, the hidden representation Hk
i for the node vi is computed as:

aki = Φk({Hk−1
j : vj ∈ N (vi)}),

Hk
i = Ψk(Hk−1

i , aki ),

(2.10)

(2.11)

where H0 = X for the initial layer, Φ is the aggregation function that defines how the
information coming from the neighborhood N (vi) of node vi is aggregated, and Ψ is the
combination function that defines how the aggregated information aki is combined with
the one stored in vi. Different definitions of aggregation and combination functions leads
to different GNN architectures. In particular, we re-frame equations (2.10) and (2.11) by
considering the mean aggregation function, as follows:

H l+1
i = σ(H l

iW
l
1 + (meanj∈N (vi) H

l
j)W

l
2), (2.12)

where σ(·) is a non-linear activation function, such as the REctified Linear Unit (ReLU)
or the hyperbolic tangent (tanh), and W k

1 ,W
k
2 ∈ RFk×Fk+1 are weight matrices associated

to the l-th layer, representing a trainable linear transformation, where Fk and Fk+1 are
the features dimensions for the current and next layers, respectively. We refer to (2.12) as
SAmpling-and-aggreGatE Convolutional (SAGEConv) layer [94] followed by activation
function σ. Such layers also account for the possibility of sub-sampling the neighbourhood
of a node during the aggregation process, leveraging the information coming from features
to better generalize to unseen nodes, while keeping the computational cost under control.

Input normalization layer. We consider a mapping of the form INorm : RN×F →
RN×F , where N is the number of nodes and F is the number of features, that normalizes
the input feature matrix X = [x1| . . . |xF ]. The normalization is performed differently for
each type of feature, i.e. column-wise: for strictly positive features, such as the mesh
elements areas, we simply rescale to [0, 1]

x̃i =
xi

max(xi)
, i = 1, ..., F,

while for other features, such as barycentric coordinates, we first center them, by sub-
tracting the mean, and then rescale to [−1, 1]

x̃i =
yi

max(|yi|)
, yi = xi −mean(xi), i = 1, ..., F.
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2.3. The k-means clustering algorithm

The k-means clustering algorithm [95, 115, 118], is an iterative procedure for partitioning
a set of input points in Rn, where n ≥ 1 is the number of features, into k parts, as
described in Algorithm 2.1. It is an unsupervised learning algorithm, as no labels are
provided together with the data. It relies on the definition of k centroids and each point
is assigned to the closest centroid. The location of the centroids is chosen in such a way
to minimize the euclidean distance between centroids and points within the clusters.

Algorithm 2.1 k-means clustering
Input: set of points {xi}Ni=1 ⊂ Rn, number of clusters k.
Output: set of labels for each point {ℓi}Ni=1.

1: Randomly sample k points and label them centroids c1, c2, ..., ck.
2: Compute labels {ℓi}Ni=1 by assigning each point to the cluster with the closest centroid

in L2 norm.
3: Compute the average of points in each cluster to obtain new centroids c1, c2, ..., ck.
4: Repeat steps 3 and 4 until cluster assignments do not change, or the maximum number

of iterations is reached.
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3| Refinement of polygonal grids
using convolutional neural
networks

In this chapter1, we propose a new strategy to handle polygonal grid refinement based
on Convolutional Neural Networks (CNNs). CNNs are powerful function approximators
used in ML, that are particularly well suited for image classification when clearly defined
rules cannot be deduced. We show that CNNs can be successfully employed to identify
correctly the "shape" of a polygonal element without resorting to any geometric property.
This information can then be exploited to apply tailored refinement strategies for different
families of polygons. We reacall that this approach has several advantages:

• It helps preserving the mesh quality, since it can be easily tailored for different types
of elements.

• It can be combined with suitable (user-defined) refinement strategies.

• It is independent of the numerical method employed to discretize the underlying
differential model.

• The overall computational costs are kept low, since the training phase of a CNN is
performed off line and it is independent of the differential model at hand.

The proposed approach is general and can be extended in three dimension, provided that
suitable refinement strategies are available for polyhedra. We show that CNNs can be
used effectively to boost either existing refinement criteria, such as the Mid-Point (MP)
strategy, that consists in connecting the edges midpoints of the polygon with its centroid,
and we also propose a refinement algorithm that employs pre-defined refinement rules on
regular polygons. We refer to these paradigms as CNN-enhanced refinement strategies. To
demonstrate the capabilities of the proposed approach we consider a second-order model
problem discretized by either PolyDG methods and VEMs and we test the two CNN-

1The results of the thesis are original and are contained in [4].
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Figure 3.1: Refinement strategies for triangular, quadrilateral, pentagonal and hexagonal poly-
gons. The vertices of the original polygon K are marked with black dots.

enhanced refinement strategies based on polygons shape recognition. For both the CNNs-
enhanced refinement strategies we demonstrate their effectiveness through an analysis of
quality metrics and accuracy of the discretization methods.

3.1. Polygon classification using convolutional neural

networks

In this section we discuss the problem of correctly identify the "shape" of a general poly-
gon, in order to later apply a suitable refinement strategy according to the chosen label
of the classification. We start by observing that for polygons with "regular" shapes,
e.g. triangles, squares, pentagons, hexagons and so on, we can define ad-hoc refinement
strategies. For example, satisfactory refinement strategies for triangular and quadrilat-
eral elements can be designed in two dimensions, as shown in Figure 3.1 (left). If the
element K is a triangle, the midpoint of each edge is connected to form four triangles; if
K is a square, the midpoint of each edge is connected with the centroid of the vertices of
the polygon (to which we will refer as "centroid", for short), i.e. the arithmetical average
of the vertices coordinates, to form four squares. For a regular polygon K with more
than fours edges, suitable refinement strategies can also be devised, see e.g. [111] and
Figure 3.1 (right). The idea is to:

1. Construct a suitably scaled and rotated polygon K̂ with centroid that coincide with
the centroid of the initial polygon K.

2. Connect the vertices of K̂ with the midpoints of the edges K, forming a pentagon
for each vertex of the original polygon K.

This strategy induces a partition with as many elements as the number of vertices of the
original polygon K plus one. The above refinement strategies for regular polygons have
the following advantages:

• They produce regular structures, thus preserving mesh quality.
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Figure 3.2: Refinement using Voronoi tessellation. The vertices of the original polygon K are
marked with full dots, while seeds are marked with empty dots.

• They enforce a modular structure, as the new elements have the same structure of
the original one, easing future refinements.

• They keep mesh complexity low, as they add few vertices and edges.

• They are simple to be applied and have a low computational cost.

The problem of refining a general polygonal element is still subject to ongoing research.
A possible strategy consist of dividing the polygon along a chosen direction into two sub-
elements [37]; this strategy is very simple and has an affordable computational cost, and
it also seems to be robust and to preserve elements regularity. Because of its simplicity,
however, this strategy can hardly exploit particular structures of the initial polygon.

Another possibility is to use a Voronoi tessellation [100], where some points, called seeds,
are chosen inside the polygon K and each element of the new partition is the set of points
which are closer to a specific seed, as shown in Figure 3.2. It is not obvious how many
seeds to use and where to place them, but the resulting mesh elements are fairly rounded.
The overall algorithm has a consistent but reasonable computational cost.

Another choice is to use the Mid-Point (MP) strategy, which consist in connecting the
midpoint of each edge of K with the centroid of K, as shown in Figure 3.3 (top). This
strategy is very simple and has a low computational cost. Modularity is enforced, in the
sense that the resulting elements of the mesh are all quadrilaterals. Notice that nodes are
added to adjacent elements, therefore chaining the way those elements are refined unless
suitable (geometric) checks are included, as shown in Figure 3.4. The main drawback
of this strategy is that it potentially disrupts mesh regularity and the number of mesh
elements increases very rapidly. Therefore, which refinement strategy is the most effective
depends on the problem at hand and the stability properties of the numerical scheme used
for its approximation.
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Figure 3.3: Top: the two polygons have been refined based on employing the "plain" MP rules.
Bottom: the two polygons have been first classified to belong to the class of "triangular" and
"quadrilateral" element, respectively, and then refined accordingly. The vertices of the original
polygons are marked with black dots.

Figure 3.4: Left: the initial grid. Middle: the MP refinement strategy has been applied to the
square on the left, therefore adding one node to the adjacent square on the right. Right: the
MP refinement strategy has been applied also to the square on the right, dividing it into five
sub-elements. The vertices of the grids that are employed to apply the MP refinement strategy
of each stage are marked with black dots.

In order to suitably drive these refinement criteria, we propose to use CNNs to predict to
which "class of equivalence" a given polygon belongs to. For example in Figure 3.3 (top)
we show two elements refined using the MP strategy. They are clearly a quadrilateral
and a pentagon, respectively, but their shapes are very similar to a triangle and a square
respectively, and hence they should be refined as in Figure 3.3 (bottom). Loosely speak-
ing, we are trying to access whether the shape of the given polygon is "more similar" to
a triangle, or a square, or a pentagon, and so on. The general algorithm is the following:

1. Let P = {P1, P2, ... Pm} be a set of possible polygons to be refined and let
R = {R1, R2, ... Rn} be a set of possible refinement strategies.

2. We build a classifier F : P → R in such a way that suitable mesh quality metrics are
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Figure 3.5: Illustrative examples of polygons belonging to the class of "squares". They have
been obtained by adding small distortions or extra aligned vertices to the reference square, plus
rotations and scalings in some cases. The vertices are marked with black dots.

Figure 3.6: Binary image of a pentagon of size 64 × 64 pixels. Each pixel has value 1 (white
pixel) if it is inside the polygon and 0 otherwise (black pixel). The binary images of each mesh
element are then employed to classify the shape of the element, avoiding the automatic and
exclusive use of geometric information.

preserved [23, 136] (quality metrics will be described later in Section 3.3). The set
of all polygons mapped into the same refinement strategy is a "class of equivalence".

In principle, any classifier F may be used. However, understating the specific relevance
of different geometric features of a general polygon (e.g. number of edges, area, etc...)
might not be enough to operate a suitable classification. Instead, we can construct a
database of polygons that can be used to "train" our classifier F . In order to construct
such database we proceed as follows. Starting from the "reference" polygon in a class (e.g.
the reference triangle for the class "triangles", the reference square for the class "squares"
and so on) we generate a set of perturbed elements that still belong to the same class and
are obtained by adding new vertices and/or adding noise to them, introducing rotations
and so on. An illustrative example in the case of the class "squares" is show in Figure 3.5.
Training a function with labelled data is known as "supervised learning", and CNNs are
particularly well suited to deal with image classification problems in this context. Indeed,
because of the inherently "image classification" nature of this problem, polygons can be
easily converted into binary images: each pixel assumes value 1 if it is inside the polygon
and 0 otherwise, as shown in Figure 3.6.

A binary image of a polygon can be efficiently generated as follows:
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1. Scale and translate the original polygon into the reference box (0, 1)2.

2. Construct a grid with the desired number of pixels.

3. From each edge of the polygon sample properly spaced points and assign value 1
to pixel containing those points. This will define an inner and an outer region of
pixels.

4. Assign value 1 to each pixels in the inner region: starting from an inner pixel,
recursively assign value 1 to neighbouring pixels until other pixels with value 1 are
met.

For the sake of computational efficiency, this process may also be performed approxi-
mately to a certain extent. Indeed, the neural network directly learns from the image
representation of the polygon and, if trained properly, it should be robust with respect to
small distortions.

Identifying the "shape" of a polygonal element based on its geometrical properties is also
possible using the so-called Shape Analysis (see e.g. [80]). This approach relies on rotating
and translating the original element so as to minimize a suitable distance function, called
"Procrustes distance", from a reference shape. The reference shape with the smallest
Procrustes distance is then selected. This is a viable option in two dimensions, because
the vertices of a polygon can be naturally ordered clock-wise, whereas in three dimensions
it has much higher computational cost. Despite the fact that different classification algo-
rithms may be more effective for different situations, depending on the requirements on
accuracy, generalization and computational costs, we decided to use a ML based approach
because:

• The behaviour of the classifier may be tuned using examples. Therefore, an explicit
description of the reference shape is not required. This allows to define very general
"classes of equivalence". For example, an alternative database may be generated as
follows:

– pick a polygon and apply different refinement strategies

– rank the outcomes according to some criterion;

– assign the label corresponding to the refinement strategy which attained the
highest score.

• If a new set of elements is not classified as desired, a simple solution is to label
thoses samples and include them in the training process of the CNN. Solving this
problem using Shape Analysis is more complex, because the set of possible reference
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Figure 3.7: Simplified scheme of a CNN architecture employed for classification of the shape of
polygons. The large squares represent the image channels after applying a convolution layer or
a pooling layer, while the small squares represent layer filters scanning through every channel.
After applying a convolution layer the number of channels is multiplied by the number of feature
maps, while after applying a pooling layer the size of each channel diminishes accordingly. Circles
represent neurons, one for each input and output, and connections represent linear dependencies.
Finally, labels are represented using geometrical shapes.

shapes need to be re-design.

• Labeling a new sample using a neural network is computationally efficient, especially
when dealing with multiple classes: the CNN extracts key features from the image,
which are then used to assign the label. Instead, using a Shape Analysis approach
the new sample is compared with every reference shape separately."

In particular, we adopt the supervised learning approach for image classification described
in section 2.1. In this case, for polygons classification B ∈ {0, 1}m×n, i.e images are binary.
Moreover, in our case the classes are given by the label "triangle", "square", "pentagon"
and so on. Finally, a visual representation of a CNN is shown in Figure 3.7 for the case
of regular polygons classification.

3.2. Convolutional neural networks-enhanced refine-

ment strategies

In this section we present two strategies to refine a general polygon that exploit a pre-
classification step of the polygon shape. More specifically, we assume that a CNN for
automatic classification of the polygon label is given. The first strategy consists in en-
hancing the classical MP algorithm, whereas the second strategy exploits the refinement
criteria for regular polygons illustrated in Section 3.1.
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L = 3 (triangle) L = 4 (quad) L = 5 (pentagon) L = 6 (hexagon)

Figure 3.8: Samples of polygons refined using the MP (top), CNN-MP (middle) and CNN-RP
(bottom) refinement strategies. The elements have been classified using the CNN algorithm
with labels L = 3, 4, 5, 6, respectively. The vertices of the original polygons are marked with
black dots.

3.2.1. A convolutional neural network-enhanced midpoint strat-
egy

Assume we are given a general polygon P to be refined and its label L, obtained using
a CNN for classification of polygon shapes. Here L ≥ 3 is an integer, where L = 3

corresponds to the label "triangle", L = 4 corresponds to the label "square", and so
on. If the polygon P has a large number of (possibly aligned) vertices, applying the MP
strategy may lead to a rapid deterioration of the shape regularity of the refined elements.
In order to reduce the number of elements produced via refinement and to improve their
quality, a possible strategy is to enhance via CNNs the MP refinement strategy, and apply
the MP refinement strategy not to the original polygon P but to a suitable approximate
polygon P̂ with a number of vertices L identified by the CNN classification algorithm, as
described in Algorithms 3.1 and 3.2.
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Algorithm 3.1 CNN-enhanced Mid-Point (CNN-MP) refinement strategy
Input: polygon P

Output: partition of P into polygonal sub-elements

1: Convert P , after a proper scaling, to a binary image as shown in Figure 3.6.
2: Apply a CNN for classification of the polygon shape and obtain its label L ≥ 3.
3: Based on L, identify the refinement points on the boundary of P , as described in

Algorithm 3.2.
4: Connect the refinement points of P to its centroid cP .

Algorithm 3.2 Identification of the refinement points
Input: polygon P , label L ≥ 3

Output: refinement points on the boundary of P

1: Build a polygon P̂ suitably approximating P : select L vertices v̂1, v̂2, ...v̂L, among the
vertices of P , that maximize

∑L
i,j=1 ||v̂i − v̂j||.

2: Compute the centroid cP of P , the edge midpoints of P and the edge midpoints
{m̂i}Li=1 of P̂ .

3: For every edge midpoint m̂i of P̂ : find the closest point to m̂i and cP , among the
vertices and the edges midpoints of P .

Examples of refined polygons using the MP strategy are shown in Figure 3.8 (top) whereas
the analogous ones obtained employing the CNN-enhanced Mid-Point (CNN-MP) refine-
ment strategy are shown in Figure 3.8 (middle). We point out that the computational
cost of the CNN-MP strategy is very low. Moreover, parallelism is enforced in a stronger
sense: the CNN does not distinguish between one edge of a polygon and two aligned
edges, solving the problem of refining adjacent elements pointed out in Figure 3.4.

3.2.2. A new "reference polygon" based refinement strategy

Assume, as before, that we are given a general polygon P to be refined together with its
label L ≥ 3, that can be obtained employing a CNN classification algorithm. If the given
polygon is a reference polygon we could refine it based on employing the refinement strate-
gies described in Section 3.1 and illustrated in Figure 3.1, where the cases L = 3, 4, 5, 6

are reported. Our goal is to extend these strategies so that they can be applied to general
polygons. In order to do that, the idea of the algorithm is to first compute the refine-
ment points of P , as before, and then connect them using the refinement strategy for the
class L. More precisely, our new CNN-enhanced Reference Polygon (CNN-RP) refinement
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strategy is described in Algorithms 2 and 3 and illustrated in Figure 3.8 (bottom). Notice
that lines 1-2-3 in Algorithm 3.3 are the same as in Algorithm 3.1.

Algorithm 3.3 CNN-enhanced Reference Polygon (CNN-RP) refinement strategy
Input: polygon P

Output: partition of P into polygonal sub-elements

1: Convert P , after a proper scaling, to a binary image as shown in Figure 3.6.
2: Apply a CNN for classification of the polygon shape and obtain its label L ≥ 3.
3: Based on L, identify the refinement points on the boundary of P , as described in

Algorithm 3.2.
4: if L = 3 then
5: Connect the refinement points of P so as to form triangular sub-elements.
6: end if
7: if L = 4 then
8: Connect the refinement points of P to its centroid, so as to form quadrilateral

sub-elements.
9: end if

10: if L ≥ 5 then
11: Construct inside of P a suitably scaled and rotated regular polygon with L vertices

and with the same centroid of P . Connect the vertices of the inner regular polygon
with the refinement points of the outer polygon P , so as to form sub-elements as
shown in Figure 3.1.

12: end if

This strategy can be applied off line with a low computational cost and has the advantage
to enforce parallelism as each mesh element can be refined independently.

Notice that for a non-convex polygon, the CNN-RP and the CNN-MP strategies do not
guarantee in general to generate a valid refined element, because the centroid could lie
outside the polygon. In practise, they work well even if the polygon is "slightly" non-
convex. However, in case of a non-valid refinement, it is always possible to first subdivide
the polygon into two elements, possibly of comparable size, by connecting two of its
vertices. In general, non-valid refinements may be detected because they are not valid
partitions, i.e. when the new elements are overlapping or when they do not cover the
original element. In practise, one may simply check whether or not some points lie inside
the original polygon and whether or not edges are intersecting each other.
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3.3. Quality metrics

In order to evaluate the quality of the proposed refinement strategies, we recall some of
the quality metrics introduced in [23]. The diameter of a domain D is defined, as usual, as
diam(D) := sup{|x− y|, x, y ∈ D}. Given a polygonal mesh, i.e. a set of non-overlapping
polygonal regions {Pi}NP

i=1, NP ≥ 1, that covers a domain Ω, we can define the mesh size
h = maxi=1:NP

diam(Pi). For a mesh element Pi, the Uniformity Factor (UF) is defined
as UFi =

diam(Pi)
h

, i = 1, ..., NP . This metric takes values in [0, 1].

For a polygon P , we also introduce the following quality metrics, taken from [23]:

1. Circle Ratio (CR): ratio between the radius of the inscribed circle and the radius of
the circumscribed circle of P :

max{B(r)⊂P} r

min{P⊂B(r)} r
,

where B(r) is a ball of radius r. For the practical purpose of measuring the roundness
of an element the radius of the circumscribed circle has been approximated with
diam(P )/2.

2. Area-Perimeter Ratio (APR):

4π area(P )

perimeter(P )2
.

3. Minmum Angle (MA): minimum inner angle of P , normalized by 180◦.

4. Edge Ratio (ER): ratio between the shortest and the longest edge of P .

5. Normalized Point Distance (NPD): minimum distance between any two vertices of
P , divided by the diameter of the circumscribed circle of P .

These metrics are scale-independent and take values in [0, 1]. The more regular the
polygons are, the larger CR, APR and MA are. Large values of ER and NPD also
indicate that the polygon is well proportioned and not skewed. However, small values of
ER and NPD do not necessarily mean that the element is not shaped-regular, as shown
in Figure 3.9.
Notice that some quality metrics are not as important as others. For example, for several
polytopal methods it is known that a small Edge Ratio does not necessarily deteriorates
the accuracy of the method [35, 44, 79, 121].
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Figure 3.9: A polygon with a small edge. Although its shape is regular, ER and NPD metrics
assume small values, depending on the size of the smallest edge.

3.4. Convolutional neural network training

The CNN architecture we used for polygons classification is given by
CNN : {0, 1}64×64 → (0, 1)ℓ, where

CNN = Conv(k = 1, h̄ = 2) → BNorm→ ReLU→ Pool(k = 2, s = 2)→
Conv(k = 1, h̄ = 4)→ BNorm→ ReLU→ Pool(k = 2, s = 2)→
Conv(k = 1, h̄ = 8)→ BNorm→ ReLU→ Pool(k = 2, s = 2)→
Conv(k = 1, h̄ = 16)→ BNorm→ ReLU→ Pool(k = 2, s = 2)→
Conv(k = 1, h̄ = 32)→ BNorm→ ReLU→ Pool(k = 2, s = 2)→
Conv(k = 1, h̄ = 64)→ BNorm→ ReLU→ Linear→ Softmax,

where k, h̄, s are defined as in Section 2.1.1. This choice of a deep architecture is moti-
vated by the fact that many convolutional and pooling layers are needed to enforce the
invariance to any possible rotation of the input polygon. The size of the images was
selected to be 64 × 64 pixels, i.e. a resolution large enough to apply five pooling layers,
whose effect is to down-sample the image. It was empirically observed that a larger res-
olution was not needed for the datasets we are going to consider. This is motivated by
the fact that the approximation properties of neural networks generally depend on the
dimension of the manifold where data are, and not on the dimension of the input space
(see e.g. [126]). A larger resolution maybe needed in order to be able to differentiate
between polygons characterized by smaller angles, e.g. to correctly distinguish between a
regular polygon with 9 sides an one with 10 sides.
For each class, we generated 20.000 images transforming regular polygons by adding edges
and noise to the vertices. Since we will consider datasets with ℓ = 4 and ℓ = 6 classes,
the total number of images will be respectively 80.000 and 120.000. We set training, val-
idation and test sets equal to 60%-20%-20% of the whole dataset, respectively. To train
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Figure 3.10: Confusion matrices for polygons classification. Left: the number of classes is ℓ = 6
and the target classes vary from L = 3 (triangles) to L = 8 (octagons). Right: the number of
classes is ℓ = 4 and the target classes vary from L = 3 (triangles) to L = 6 (hexagons). The
prediction accuracy for each target class decreases as more target classes are considered.

the neural networks we used the Adam (adaptive moment estimation) optimizer, see e.g.
[109].
Initially we selected the number of target classes to be equal to ℓ = 6, i.e. polygons are
sampled from triangles to octagons. We show the confusion matrix in Figure 3.10 (left).
The same results obtained with ℓ = 4, i.e. target classes varying from L = 3 (triangles) to
L = 6 (hexagons), are shown in Figure 3.10 (right). From these results it seems that the
prediction accuracy is better in the case of a smaller set of target classes. This is expected,
as for example a regular octagon is much more similar, in terms of angles amplitude and
edges length, to a regular heptagon than to a regular triangle. Moreover, for polygons
with many edges more pixels might be required in order to appreciate the differences
between them. In the following numerical experiments we have decided to choose ℓ = 4,
as this choice seems to balance the effectiveness of our classification algorithm with the
computational cost. We also remark that for the following reasons:

• Refining heptagons and octagons as if they were hexagons does not seem to affect
dramatically the quality of the refinement.
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• Ad-hoc refinement strategies for polygons with many edges seem to be less effective
because more sub-elements are produced.

• A considerable additional computational effort might be required to include more
classes.

• The more classes we use, the easier the possibility of a misclassification error is and
hence to end up with a less robust refinement procedure.

Considering polygon classes ranging from triangles to hexagons yields a satisfactory ac-
curacy of 93.2% as shown in Figure 3.10 (right). Consider also that an accuracy close to
100% is not realistic because when distorting for example a pentagon by adding noise to
its vertices there is a considerable probability to turn it into something indistinguishable
from a slightly distorted "square", which therefore we would like to classify as "square"
even though the original label is "pentagon".
"Hexagons" and "pentagons" are the most misclassified elements, when classified as "pen-
tagons" and "squares" by the CNN, respectively. In both cases, applying the wrong re-
finement strategy should not yield dramatic differences in terms of elements quality, as
for example it would instead misclassifying an "hexagon" as a "triangle". Moreover, an
effective refinement algorithm should be robust to some extent with respect to misclas-
sification errors. These remarks will be confirmed by numerical experiments, shown in
Section 3.6
Thanks to the limited number of dataset samples and network parameters, the whole al-
gorithm (dataset generation, CNN training and testing) took approximately six minutes
using MATLAB2019b on a Windows OS 10 Pro 64-bit, Intel(R) Core(TM) i7-8750H CPU
(2.20GHz / 2.21GHz) and 16 GB RAM memory.
Improving the accuracy of the CNN using more data and/or a network with more layers is
possible. However, the dataset will probably not be fully representative of mesh elements
on which the CNN is going to be applied, because it is artificially generated. Therefore,
attempting to achieve a very high accuracy may cause the CNN to overfit such dataset
and hence to generalize poorly on real mesh elements. A different approach would be
using directly real mesh elements to train the CNN. However, in this case one should be
able to design a strategy to label elements automatically.

3.5. Validation on a set of polygonal meshes

In this section we compare the performance of the proposed algorithms. We consider four
different coarse grids of the domain (0, 1)2: a grid of triangles, a Voronoi grid, a smoothed
Voronoi grid obtained with Polymesher [139], and a grid made of non-convex elements. In
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# mesh elements triangles Voronoi smoothed Voronoi non-convex
initial grid 32 9 10 14

MP 6371 2719 3328 4502
CNN-RP 2048 685 784 1574
CNN-MP 1201 536 667 849

Table 3.1: Final number of elements for each mesh shown in Figure 3.11: a grid of triangles,
a Voronoi grid, a smoothed Voronoi grid and a grid made of non-convex elements have been
uniformly refined using the Midp-Point (MP), the CNN-enhanced Mid-Point (CNN-MP) and the
CNN-enhanced Reference Polygon (CNN-RP) strategies. On average, the MP strategy produced
3 or 4 times more elements than the CNN-RP strategy, and 5 times more elements than CNN-
MP strategy.

Figure 3.11 these grids have been successively refined uniformly, i.e. each mesh element
has been refined, for three times using the MP, the CNN-MP and the CNN-RP strategies.
The final number of mesh elements is shown in Table 3.1. We observe that on average
the MP strategy produced 3 or 4 times more elements than the CNN-RP strategy, and 5
times more than CNN-MP strategy.

In Figure 3.12 we show the computed quality metrics described in Section 3.3 on the
grids of Figure 3.11 (triangles, Voronoi, smoothed Voronoi, non-convex). Despite the fact
that the performance are considerably grid dependent, the CNN-RP strategy and the
CNN-MP strategy seem to perform in a comparable way. Moreover, the CNN-RP and
the CNN-MP strategies perform consistently better than the MP strategy, since their
distributions are generally more concentrated toward the value 1.

3.6. Testing CNN-based refinement strategies with

PolyDG and virtual elements discretizations

In this section we test the effectiveness of the proposed refinement strategies, to be used
in combination with polygonal finite element discretizations. To this aim we consider
PolyDG and Virtual Element discretizations of the following model problem: find u ∈
H1

0 (Ω) such that ∫
Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω), (3.1)

with f ∈ L2(Ω) a given forcing term. The workflow is as follows:

1. Generate a grid for Ω.

2. Compute numerically the solution of problem (3.1) using either the VEM [30, 31,
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Figure 3.11: In the first column, coarse grids of the domain Ω = (0, 1)2: a grid of triangles,
a Voronoi grid, a smoothed Voronoi grid, and a grid made of non-convex elements. Second
to fourth columns: refined grids obtained after three steps of uniform refinement based on
employing the MP (second column), the CNN-RP (third column) and the CNN-MP (fourth
column) strategies. Each row corresponds to the same initial grid, while each column corresponds
to the same refinement strategy.
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Figure 3.12: Computed quality metrics (Uniformity Factor, Circle Ratio, Minimum Angle, Edge
Ratio and Normalized Point Distance) for the refined grids reported in Figure 3.11 (second to
fourth column) and obtained based on employing different refinement strategies (MP, CNN-MP,
CNN-RP).
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33, 34] or the PolyDG method [10, 13, 28, 50, 53, 99].

3. Compute the error. In the VEM case the error is measured using the discrete H1
0 -

like norm (see [31], for details), while in the PolyDG case the error is computed
using the DG norm (see [22, 63], for details)

∥v∥2DG =
∑
P

∥∇v∥2L2(P ) +
∑
F

∥γ1/2JvK∥2L2(F ),

where γ is the stabilization function (that depends on the discretization parameters
and is chosen as in [50]), P is a polygonal mesh element and F is an element face.
The jump operator J·K is defined as in [22].

4. Use the fixed fraction refinement strategy to refine a fraction r of the number of
elements. To refine the marked elements we employ one of the proposed strategies.
Here, in order to investigate the effect of the proposed refinement strategies, we did
not employ any a posteriori estimator of the error, but we computed element-wise
the local error based on employing the exact solution.

3.6.1. Uniformly refined grids

When r = 1, the grid is refined uniformly, i.e. at each refinement step each mesh element is
refined. The forcing term f in (3.1) is selected in such a way that the exact solution is given
by u(x, y) = sin(πx) sin(πy). The grids obtained after three steps of uniform refinement
are those already reported in Figure 3.11. In Figure 3.13 we show the computed errors
as a function of the number of degrees of freedom. We observe that the CNN-enhanced
strategies (both MP and RP ones) outperform the plain MP rule. The difference is more
evident for VEMs than for PolyDG approximations. This different sensitivity to mesh
distortions may be due to the fact that VEM are hybrid methods with unknowns on the
elements boundary.
Generating the binary image of a polygon has a computational cost that scales linearly
with the number of edges of a polygon and with the squared root of the total number of
pixels. Evaluating online the CNN has a computational cost that depends on the number
pixels of the input image (and on the classification problem at hand). With our current
implementation and for the considered benchmarks, classifying the shape of every mesh
element takes on average approximately 3% the time of solving the numerical problem
over the refined grid. However, this ratio will decrease if meshes with more elements
are considered, because except for particular cases the average number of edges of a mesh
element will remain approximately constant and the number of pixels will remain constant,
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while solving the numerical problem has a cost which in general scales more than linearly
with the number of degrees of freedom.

In Figure 3.14 we compare the performance of the currently used CNN with accuracy 93%
and of a CNN with accuracy 80%. As we can see, the PolyDG method does not seem
very sensitive to the CNN accuracy, while the VEM seems more sensitive but performance
seem not to always improve consistently over the selected grids.

3.6.2. Adaptively refined grids

In this case we selected r = 0.3. The forcing term f in (3.1) is selected in such a way that
the exact solution is u(x, y) = (1 − e−10x)(x − 1) sin(πy), that exhibits a boundary layer
along x = 0. Figure 3.15 shows the computed grids after three steps of refinement for the
PolyDG case. Very similar grids have been obtained with Virtual Element discretizations.

In Figure 3.16 we show the computed errors as a function of the number of degrees
of freedom for both Virtual Element and PolyDG discretizations. The CNN-enhanced
strategies (both MP and RP ones) outperform the plain MP rule. The difference is more
evident for VEMs than for PolyDG approximations.

3.6.3. Application to an advection-diffusion problem

We now consider the following advection-diffusion problem:{
−∆u+ div(βu) = f in Ω

u = 0 on ∂Ω

where Ω = (0, 1)2 and β = [1 0]T is a constant velocity filed. We choose the forcing term
f in such a way that the exact solution is (x − 1)(1 − exp(2x)) sin(πy), and solve this
problem using PolyDG method, both in the uniform refinement case (coarse grids in the
first column of Figure 3.11), and in the adaptive refinement case with fixed refinement
fraction of 30% (fine grids in the first column of Figure 3.15). In Figure 3.17 we show the
computed errors using the DG norm as a function of the number of degrees of freedom.
As we can see, the CNN-enhanced strategies (both MP and RP ones) perform better than
the plain MP rule.
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Figure 3.13: Test case of Section 3.6.1. Computed errors as a function of the number of degrees
of freedom. Each row corresponds to the same initial grid (triangles, Voronoi, smoothed Voronoi,
non-convex) refined uniformly with the proposed refinement strategies (MP, CNN-RP and CNN-
MP), while each column corresponds to a different numerical method (VEM left and PolyDG
right).
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Figure 3.14: Test case of Section 3.6.1. Performance comparison of the currently used CNN
with accuracy 93% and of a CNN with accuracy 80%. Computed errors as a function of the
number of degrees of freedom. Each row corresponds to the same initial grid (triangles, Voronoi,
smoothed Voronoi, non-convex) uniformly refined with the CNN-RP and CNN-MP refinement
strategies, respectively. Each column corresponds to a different numerical method (VEM left
and PolyDG right).
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Figure 3.15: Adaptively refined grids for the test case of Section 3.6.2. Each row corresponds to
the same initial grid (triangles, Voronoi, smoothed Voronoi, non-convex), while the second-fourth
columns correspond to the different refinement strategies (MP, CNN-RP, CNN-MP). Three
successively adaptive refinement steps have been performed, with a fixed fraction refinement
criterion (refinement fraction r set equal to 30%).
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Figure 3.16: Test case of Section 3.6.2. Computed errors as a function of the number of degrees
of freedom. Each row corresponds to the same initial grid (triangles, Voronoi, smoothed Voronoi,
non-convex) refined adaptively with a fixed fraction refinement criterion (refinement fraction r
set equal to 30%) with different strategies (MP, CNN-RP and CNN-MP), while each column
corresponds to a different numerical method (VEM left and PolyDG right).
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Figure 3.17: Advection-diffusion problem of Section 3.6.3. Computed errors using the DG norm
as a function of the number of degrees of freedom. Each row corresponds to the same initial
grid (triangles, Voronoi, smoothed Voronoi, non-convex) refined uniformly with the proposed
refinement strategies (MP, CNN-RP and CNN-MP). First column: uniform refinement case over
the coarse grids in the first column of Figure 3.11. Second column: adaptive refinement case
with fixed refinement fraction of 30% of mesh elements over the fine grids in the first column of
Figure 3.15.
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3.6.4. Application to the Stokes problem

We now consider the following Stokes problem, which describes the motion of an incom-
pressible viscous flow: 

∂tu−∆u+∇p = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω

where Ω = (0, 1)2, u : Ω → R2 is the velocity, p : Ω → R is the pressure, f : Ω → R2 is
the forcing term. We choose f in such a way that the exact solution is

u =

[
− cos(2πx) sin(2πy)

sin(2πx) cos(2πy)

]
, p = 1− e−x(x−1)(x−0.5)2−y(y−1)(y−0.5)2 ,

and solve it using PolyDG method, both in the uniform refinement (coarse grids in the
first column of Figure 3.11), and in the adaptive refinement case with fixed refinement
fraction of 40% (fine grids in the first column of Figure 3.15). In Figure 3.18 we show the
computed errors in the H1-broken norm of the velocity and L2-norm of the pressure as
a function of the number of degrees of freedom. As it is clear from the results of Figure
3.18, the CNN-enhanced strategies (both MP and RP ones) perform better than the plain
MP rule.

3.7. Concluding remarks

We proposed a new paradigm based on CNNs to enhance both existing refinement cri-
teria and new refinement procedures, withing polygonal finite element discretizations of
partial differential equations. In particular, we introduced two refinement strategies for
polygonal elements, named "CNN-RP strategy" and "CNN-MP strategy". The former
proposes ad-hoc refinement strategies based on reference polygons, while the latter is an
improved version of the known MP strategy. These strategies exploit a CNN to suitably
classify the "shape" of a polygon in order to later apply an ad-hoc refinement strategy.
This approach has the advantage to be made of interchangeable pieces: any algorithm
can be employed to classify mesh elements, as well as any refinement strategy can be
employed to refine a polygon with a given label.
We have shown that correctly classifying elements shape based on employing CNNs can
improve consistently and significantly the quality of the grids and the accuracy of polyg-
onal finite element methods employed for the discretization. Specifically, this has been
measured in terms of less elements produced on average at each refinement step, in terms
of improved quality of the mesh elements according to different quality metrics, and in



64 3| Refinement of polygonal grids using convolutional neural networks

uniform refinement adaptive refinement

tr
ia

ng
le

s

102 103 104 105

10−0.5

100

100.5 −1/2

Degrees of freedom

MP
CNN-RP
CNN-MP

103 104
10−0.2

100

100.2

100.4 −1/2

Degrees of freedom

MP
CNN-RP
CNN-MP

V
or

on
oi

102 103 104

100

101

−1/2

Degrees of freedom

MP
CNN-RP
CNN-MP

103 104

10−0.2

100

100.2

100.4
−1/2

Degrees of freedom

MP
CNN-RP
CNN-MP

sm
oo

th
ed

V
or

on
oi

102 103 104
10−0.5

100

100.5
−1/2

Degrees of freedom

MP
CNN-RP
CNN-MP

102 103 104

10−0.2

100

100.2

100.4

−1/2

Degrees of freedom

MP
CNN-RP
CNN-MP

no
n-

co
nv

ex

102 103 104 105
10−0.5

100

100.5

−1/2

Degrees of freedom

MP
CNN-RP
CNN-MP

103 104 105
10−0.4

10−0.2

100

100.2

100.4

−1/2

Degrees of freedom

MP
CNN-RP
CNN-MP

Figure 3.18: Stokes problem of Section 3.6.4. Computed errors in the H1-broken norm of the
velocity and L2-norm of the pressure as a function of the number of degrees of freedom. Each
row corresponds to the same initial grid (triangles, Voronoi, smoothed Voronoi, non-convex)
refined uniformly with the proposed refinement strategies (MP, CNN-RP and CNN-MP). First
column: uniform refinement case over the coarse grids in the first column of Figure 3.11. Second
column: adaptive refinement case with fixed refinement fraction of 40% of mesh elements over
the fine grids in the first column of Figure 3.15.
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terms of improved accuracy using numerical methods such as PolyDG methods and VEMs.
These results show that classifying correctly the shape of a polygonal element plays a key
role in which refinement strategy to choose, allowing to extend and to boost existing
strategies. Moreover, this classification step has a very limited computational cost when
using a pre-trained CNN. The latter can be made off-line once and for all, independently
of the differential model under consideration.
As noticed in [78], having skewed meshes can sometimes be beneficial to polytopal meth-
ods with hybrid unknowns, if the skewness is compatible with the diffusion anisotropy.
We believe that our method may be extended so as to generate distorted elements by
including the anisotropy directions into the shape recognition phase. Assume to dispose
of a refinement strategy for "squares", which consists in diving the element into other four
"squares", and for "rectangles", which consists in diving the element into two "squares".
Assume you have to refine square (0, 1)2 and that the anisotropy directions are aligned
with the axes. Before processing the shape of the element, you may skew the element along
the anisotropy directions according to the magnitude of anisotropy, therefore turning the
square into a rectangle. In this way the original square will be classified as "rectangle"
and divided into two rectangles skewed in the desired direction. When applying the same
strategy on the new rectangles, they will be deformed into "squares", and therefore refined
into four elements skewed in the desired direction.
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4| Machine learning-based
refinement strategies for
polyhedral grids

In this chapter1, we propose different strategies to handle polyhedral grid refinement,
that exploit ML techniques to extract information about the "shape" of mesh elements
in order to refine them accordingly. Starting from the approach developed in Chapter 3
in two dimensions, here we address the three-dimensional case. In particular, we employ
the k-means clustering algorithm [95, 115] to partition the points of the polyhedron to
be refined. Learning a clustered representation allows to better handle situations where
elements have no particular structure, while preserving the quality of the grid. This
strategy is a variation of the well known Centroidal Voronoi Tessellation [82, 117]. We also
explore how to enhance existing refinement strategies, including the k-means, using CNNs,
powerful function approximators successfully employed in many areas of ML, especially
computer vision [2, 114]. We show that CNNs can be employed to identify correctly
the "shape" of a polyhedron, without resorting to the explicit calculation of geometric
properties which may be expensive in three dimensions. This information can then be
exploited to design tailored strategies for different families of polyhedra. According to the
classification, the most suitable refinement strategy is then selected among the available
ones, therefore enhancing performance. We recall that the proposed approach has several
advantages:

• it helps preserving structure and quality of the mesh, since it can be easily tailored
for different types of elements;

• it can be combined with suitable user-defined refinement criteria, including the k-
means strategy;

• it is independent of the differential model at hand and of the numerical method
employed for the discretization;

1The results of the thesis are original and are contained in [6].
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Figure 4.1: A Voronoi tessellation (top left) and a CVT (top right) of a cube and their exploded
versions (bottom). “Small" edges and faces are generated.

• the overall computational cost is kept low, since CNNs can be trained offline once
and for all.

To investigate the capabilities of the proposed approaches, we consider a second-order
model problem discretized by the VEM and the PolyDG method. We measure effective-
ness through an analysis of quality metrics and accuracy of the discretization error.

4.1. Refinement strategies

A polyhedral mesh can be generated, e.g., by standard triangulation algorithms or by hex-
ahedral elements in the structured case. Another possibility is to use a Voronoi Tessella-
tion [100]: suitable points, called seeds, are chosen inside the polyhedron and each element
of the new partition is the set of points which are closer to a specific seed (see Figure 4.1
left column). A Centroidal Voronoi Tessellation (CVT) [82, 117] is a Voronoi tessellation
whose seeds are the centroids (centers of mass) of the corresponding new elements (see
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Figure 4.1 right column). This strategy produces elements which are shape-regular and
of similar size (these properties will be more formally addressed in Section 4.3). However,
it has a considerable computational cost and it may produce elements with many small
edges and faces, which implies higher costs in terms of memory storage and algorithm
complexity. Moreover, although small edges and faces do not necessarily deteriorate the
accuracy of numerical methods, they are in general not beneficial [35, 44, 79, 121]. As we
will see in the following, these algorithms for grids generation can be adapted to perform
mesh refinement.

In order to refine a three dimensional polyhedron a possible strategy is to subdivide
the polyhedron along a chosen preferential direction [37]. It has a low computational cost
and allows to adjust the cutting plane at each iteration. For instance it is possible to
choose such plane so that we avoid small edges and consequently yield simpler mesh ele-
ments. In particular, we propose the general refinement strategy described in Algorithm
4.1, where the “size” or “diameter” of a polyhedron P ⊂ R3 is defined, as usual, as

diam(P ) = sup{||x− y||, x, y ∈ P},

where || · || is the standard Euclidean distance. We also recall that given a polyhedral
mesh, i.e., a set of non-overlapping polyhedra {Pi}NP

i=1, NP ≥ 1 that covers a domain Ω,
the mesh size is defined as

h = max
i=1,...,NP

diam(Pi).

Possible ways of choosing the cutting plane in step 1 will be discussed in Section 4.1.1.

Algorithm 4.1 General refinement strategy of a polyhedron P

Input: polyhedral element P to refine, plane tolerance tol, maximum number of
elements nmax, target size h̄

Output: partition of P into polyhedral sub-elements

1: Choose a plane along which to slice the element.
2: If there are vertices closer than the user-defined tolerance tol to the plane, adjust the

plane so that it passes thought at least the three closest ones.
3: If the plane passes the “validity check”, slice the element into two sub-elements, oth-

erwise use the “emergency strategy”. Until there are less than nmax elements, repeat
the above steps for each element with a size above h̄.

The “validity check” in step 3, to see if it is possible to slice the element along the chosen
plane, may encompass several requirements:
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Figure 4.2: Left: a non-convex polyhedron is obtained from a cube (transparent) by removing
a pyramid (red). Right: the polyhedron is sliced along a plane generating two polyhedra, one
of which has a hole.

Geometrical. Avoid generating elements with holes and other degenerations, which
may occur if the polyhedron is non-convex (see Figure 4.2).

Numerical. Avoid generating small edges and faces according to a prescribed threshold,
which may still occur because in step 2 a plane can only be adjusted to pass from 3 points.

If the chosen plane does not pass the “validity check” a possible “emergency strategy” is
the following: consider small perturbations of position and orientation of the original
plane, until a valid configuration is found.

4.1.1. Choosing the cutting direction

Several strategies can be designed by making different choices of the cutting direction in
step 1 of Algorithm 4.1. In Figure 4.3 the proposed strategies are applied on a tetrahedron.
Notice that which strategy is the most effective may depend on several factors, such as
the initial geometry of the mesh, the quality of the refined elements, the computational
cost, the stability of the numerical scheme, or the regularity of the solution.

Diameter strategy. The diameter of a polyhedron is identified by the two farthest
apart vertices of the element, say v1 and v2. The cutting plane has origin x0 = (v1+v2)/2

and is orthogonal to the direction of the diameter, i.e., it has normal n = (v2− v1)/||v2−
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Figure 4.3: A tetrahedron is refined using diameter, k-means and “classical" strategies (top row)
and their exploded versions (bottom row).

v1||. This is a greedy algorithm to halve the size of the element. It has the advantage
of easily computing the cutting plane, but it may produce skewed elements because the
overall shape of the polyhedron is not taken into account.

K-means strategy. Points belonging to the polyhedron are grouped into two clusters
using the k-means algorithm [95, 115] and are then separated by the cutting plane, as
described in Algorithm 4.2. This is equivalent to a CVT with only two seeds. This
strategy produces rounded elements of similar size, but it has a higher computational cost.
In principle, different clustering algorithms may be used to learn different representations
of the element, such as hierarchical clustering [104, 123] or self-organizing maps [105, 134].
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Algorithm 4.2 K-means cutting plane
Input: polyhedron P to refine, number of grid points n

Output: cutting plane of P

1: Construct a grid of n of points inside the smallest domain of the form [x1, x2]×[y1, y2]×
[z1, z2] which contains P .

2: Remove the points of the grid outside P [112], which can be done efficiently when P

is convex.
3: Randomly sample two points and label them centroids c1 and c2.
4: Assign each point to the cluster with the closest centroid in L2 norm.
5: Compute the average of points in each cluster to obtain two new centroid c1 and c2.
6: Repeat steps 4 and 5 until cluster assignments do not change, or the maximum number

of iterations is reached.
7: The cutting plane has normal n = (c2 − c1)/||c2 − c1|| and origin x0 = (c1 + c2)/2.

"Classical" strategies. If the shape of the polyhedron is known (up to rotation, scal-
ing, stretching or reflection) it is possible to design tailored refinement strategies using
multiple cutting planes. This is the case of tetrahedra, cubes and prisms, which are
employed in classical FEMs. These refinement strategies, shown in Figure 4.4, produce
regular elements at low computational cost. Moreover, since the new elements have the
same shape as the original one, the algorithm can be applied recursively. Strategies for
other polyhedral element can be designed. The main drawback is that these strategies
cannot be applied if the shape of the polyhedron is unknown.

4.2. Enhancing refinement strategies using Convolu-

tional Neural Networks

Consider elements at the top row of Figure 4.5 from left to right:

1. A tetrahedron where a corner has been cut. This situation may arise when slicing
a background mesh, e.g., in order to model a fracture or a soil discontinuity.

2. A prism where one of its faces is divided into two triangles, due to the presence
of non-matching grids. This situation can arise each time a neighbouring mesh
element is refined, because this may require to partition a face which is shared by
two elements.

3. An element of a CVT. These tessellations are employed for meshing irregular do-
mains with few regular elements.
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Figure 4.4: “Classical" refinement strategies for a tetrahdron, a prism and a cube (top row) and
their exploded version (bottom row), employed in classical FEMs.

Figure 4.5: Top row: four polyhedra are classified as "tetrahedron", "prism", "cube" and
"other", according to their overall shape and not to their geometrical description. Bottom
row: the polyhedra are refined with the corresponding "classical" strategies according to their
labels (columns 1-3) and the k-means strategy (column 4).
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4. A skewed element with no particular structure. These elements can be found in
standard Voronoi tessellations, or may appear even after refining a regular element.

Despite the fact that the geometrical representations of elements 1-3 in Figure 4.5 do
not match any classical polyhedron, their overall shapes are similar to a tetrahedron, a
prism and a cube, respectively. Therefore refining them with the corresponding shape
strategies would produce regular elements at low computational cost. This can be done
by computing cutting directions on a “reference shape” which can be constructed using
Algorithm 4.3.

Algorithm 4.3 Computing the reference shape
Input: polyhedron P , shape type S (tetrahedron, cube, prism, ...)
Output: reference shape of P

1: Find n vertices of the polyhedron far apart from each other and from the centroid of
the element, using the farthest first traversal algorithm [113], where n is the number
of vertices of S.

2: Apply the convex hull algorithm [27] to the n vertices to obtain a triangulated surface.

3: Merge the m couples of neighbouring triangles of the surface whose angle is closest to
180◦, where m is the number of quadrilateral faces of S.

The last element does not have a particular shape, and therefore we apply the k-means
strategy, which is more robust and flexible even though more expensive. The refined
elements are shown at the bottom row of Figure 4.5. However, in order to apply the
correct strategy for each element, we need an algorithm to access whether the shape of a
polyhedron is more similar to a tetrahedron, a prism, a cube or none of these. We will
use labels “tetrahedron”, “prism”, “cube” and “other”, respectively, and we will refer to
such labels as “equivalence classes”. More in general, given a set of polyhedra to refine,
P = {P1, P2, ...}, and a set of possible refinement strategies, R = {R1, R2, ..., Rn}, we
want to find a classifier F : P → R that assigns to every polyhedron the most effective
refinement strategy in terms of quality of the refined elements and computational cost.
The effectiveness will be measured with suitable metrics later in Section 4.3.
When neighbouring elements need to be refined, e.g. when refining uniformly a mesh, a
possible issue is how to split their interfaces in a compatible manner, in order to avoid
small faces which are not in general beneficial for numerical methods [35, 44, 79, 121]. In
order to solve this problem, ad-hoc criteria that consider the shape of multiple elements
simultaneously could certainly be designed. However, taking into account potentially
many elements would certainly raise considerably the online computational cost of the
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approach, and would also require effort in terms of design complexity of the algorithm.
Therefore, in such cases our approach consists in designing a suitable "validity check"
that avoids small faces in step 3 of Algorithm 4.1. In such a way, more iterations may be
required to find a valid plane but the online cost would remain contained, because we are
still considering one element at a time.

4.2.1. Polyhedra classification using conovolutional neural net-
works

In principle, any classifier may be used for polyhedra. However, considering geometrical
properties of the element alone, such as connectivity and area of the faces, may be too
complex to operate a suitable classification: for example, the element labeled as “tetra-
hedron” in Figure 4.5 is actually a deformed prism. Approaches like Shape Analysis [80],
which relies on applying transformations the polyhedron in order to match a reference
shape, are too expensive in three-dimensions and seem to lack of the required flexibility:
for example there is no reference shape for class “other”. Instead, providing samples of
polyhedra together with the desired label can be easily done: for classes "tetrahedron",
"prism" and "cube" we start from the corresponding regular polyhedra and then apply
small deformations and rotations, while for class "other" we consider polyhedra from
several Voronoi tessellations. This database can be used to “train” our function, i.e., to
tune its parameters in order to obtain the desired classifier. This framework, which ex-
ploits labeled data, is known as “supervised learning” and CNNs are powerful function
approximators in the context of image classification. Indeed, the most intuitive way to
asses the shape of an object is by visual inspection and polyhedra can be easily converted
into binary images: each pixel assumes value 1 inside the polyhedron and 0 outside [112]
(see Figure 4.6), which can be done efficiently in the convex case. Mathematically, while
the geometrical representation of a polyhedron is given by its boundary, the information
about the overall shape is given by the distribution of its volume, i.e., the location of
its pixels. Notice that a three-dimensional image contains the same information (up to a
scaling and a translation) required by the k-means algorithm, which is a form of “unsuper-
vised” learning because only unlabeled data are provided. The proposed CNN-enhanced
refinement strategy is described in Algorithm 4.4.
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Figure 4.6: A pyramid (left) and its three-dimensional image (right). Pixels have value 1 inside
the polyhedron (represented with cubes) and 0 outside (not represented).

Algorithm 4.4 CNN-enhanced refinement strategy
Input:polyhedron P to refine
Output: partition of P into polyhedral sub-elements

1: Construct a binary image of P . Classify the image using a CNN and obtain the label
L.

2: if L = "tetrahedron", "prism" or "cube" then
3: Apply Algorithm 4.3 to compute the corresponding reference shape.
4: Compute the cutting directions on the reference shape using the corresponding

"classical" strategy.
5: Refine P by applying the cutting directions using Algorithm 4.1.
6: end if
7: if L = "other" then
8: Refine P using the k-means strategy, i.e., computing the cutting directions using

Algorithm 4.2 and then using Algorithm 4.1.
9: end if

In general, the use of CNNs should be seen as tool to enhance existing refinement strate-
gies, not as a refinement strategy on its own in competition with the others. In the case
of "classical" strategies, the CNN is extending their domain of applicability to general
polyhedra, which would not be possible otherwise.

4.2.2. Convolutional neural network training

We adopt the framework of supervised learning for image classification using CNNs de-
scribed in 2.1. In particular, we consider three dimensional binary images of the form
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B ∈ {0, 1}n×n×n, n ≥ 1,.
We have used a database of 22500 binary images of size 16 × 16 × 16 pixels, with la-
bels "tetrahedron", "prism", "cube" and "other". The data were divided into training,
validation and test set with ratios 60%-20%-20% respectively. They were generated as
follows:

• for classes "tetrahedron", "prism" and "cube" we generated 6000 images each, start-
ing from the corresponding regular polyhedra, and then randomly applying pertur-
bations, such as rotation, scaling, stretching and reflection;

• for the class "other" we generated 4500 images from elements of several Voronoi
tessellations, where seeds have been randomly located.

We generated less images for class "other", because among all of the randomly generated
Voronoi elements, some of them will be actually deformed tetrahedra, prisms and cubes.
In these doubtful situations, the CNN will be more likely to classify polyhedra as having
a particular shape rather assigning them label "other". Indeed, the CNN is capable to
learn the whole data distribution, including the relative frequency of each class. In this
way, we resort to the k-means only when really needed.
Generating data which are representative of the application of interest is the most critical
part of the process: the CNN can easily misclassify new samples if they are too different
from the training set, even if the accuracy on the test set is extremely high. In three
dimensions, the variability of polyhedra is high and generating representative sample is
much more complex than in the two-dimensional case [4]. It is important to have a class
"other" to which unknown polyhedra will be assigned, in order to treat them with a robust
backup strategy, such as the k-means. This should not discourage from using "classical"
strategies, because when employed they are likely to produce regular elements.
Adding other shapes to the refinement process, such as "pyramid" or "icosahedron", is
certainly possible. This would ultimately improve performance, as the refinement algo-
rithm should be capable to handle in a tailored manner a wider range of configurations.
This implies generating a larger database of images and training a network with more
parameters. However, in the two dimensional version of this problem [4] it was observed
that a large amount of shapes does not dramatically improve performance. In this work,
we have selected only the shapes "tetrahedron", "cube" and "prism" because when re-
fined they produce sub-elements with the same shape of the original one. This facilitates
successive refinements and helps preserving the mesh structure.
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The CNN architecture we used is CNN : {0, 1}16×16×16 → (0, 1)4, where

CNN = Conv(f̄ = 8,m = 8)→ ReLU→ Pool(f̄ = 2, s = 2)→
Conv(f̄ = 4,m = 8)→ ReLU→ Pool(f̄ = 2, s = 2)→
Conv(f̄ = 2,m = 8)→ ReLU→ Pool(f̄ = 2, s = 2)→
Linear→ Softmax,

where Conv(f̄ , s) is convolutional layer with filter size f̄ (i.e. a window f̄ × f̄ × f̄) and
m feature maps, Pool(f̄ , s) is an avergage pooling layer with filter size f̄ and stride s,
ReLU and Linear were defined the previous Section 2.1.1, and for any two compatible
functions f1 and f2 the arrow notation is defined as f1 → f2 = f2 ◦ f1. We employed
average pooling layers, rather than max pooling layers, because they have the effect to
blurry and coarse-grain image features. This has been done in order to focus the CNN
on the overall shape of the polyhedron, and not on small scale details and corners. Three
sequences of Conv − ReLU − Pool layers seem to be sufficient to enforce invariance
with respect to rotations of the input polyhedron. The size of the images is 16× 16× 16

pixels, i.e., a resolution large enough to apply 3 pooling layers, whose effect is to halve
the size of the image across all the dimensions. Such a small resolution allows to quickly
generate and classify the image of a polyhedron, which is important in an online setting.
Moreover, a smaller CNN is more likely to be robust with respect to samples very different
from the training data. It was empirically observed that a larger resolution was not
needed for the considered dataset. This is motivated by the fact that the approximation
properties of neural networks generally depend on the dimension of the data manifold,
not on the dimension of the input space [126]. A larger resolution may be needed to
classify polyhedra characterized by smaller scale features, e.g., to correctly distinguish
between a dodecahedron and an icosahedron. As shown in Figure 4.7, the class “other"
is reasonably the most misclassified, because it includes polyhedra with very different
shapes, some of which are actually deformed tetrahedra, prisms and cubes. We trained
the CNN using the Adam optimizer [109], with mini-batch size 128, data shuffling every
epoch, L2 regularization coefficient 0.1 and learn rate 10−3. 50 epochs of training take
approximately 15 minutes with MATLAB2020b on a Windows OS 10 Pro 64-bit, CPU
NVidia GeForce GTX 1050 Ti and 8244Mb Video RAM. Further training does not seem
to improve performance.



4| Machine learning-based refinement strategies for polyhedral grids 79

Figure 4.7: Confusion matrix for polyhedra classification using a CNN. Class “other" is reason-
ably the most misclassified, because it includes polyhedra with very different shapes, some of
which are actually deformed tetrahedra, prisms and cubes.

4.3. Validation on a set of polyhedral grids

In this section we compare the performance of the proposed algorithms. To evaluate the
quality of the refined grids, we employ the following quality metrics introduced in [23]:

• Uniformity Factor (UF): ratio between the diameter of an element P and the mesh
size

UF(P ) =
diam(P )

h
.

This metric takes values in [0, 1]. The higher its value is the more mesh elements
have comparable sizes.

• Ball Ratio (BR): ratio between the radius of the inscribed ball and the radius of the
circumscribed ball of a polyhedron P

BR(P ) =
max{B(r)⊂P} r

min{P⊂B(r)} r
,

where B(r) is a ball of radius r. For the practical purpose of measuring the roundness
of an element the radius of the circumscribed ball has been approximated with
diam(P )/2. This metric takes values in [0, 1]. The higher its value is the more
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rounded mesh elements are.

Moreover, to measure the computational complexity of the different refinement strategies,
for the refined grids we will consider the number of vertices, of edges, of faces, of elements,
the total refinement time and the average refinement time per element.
In the following, we apply Algorithm 4.1 to a polyhedron P using a tolerance tol =

diam(P ) ·10−3, a maximum number of elements nmax = 8 (needed to apply the “classical”
refinement strategy for cubes), and a target size h̄ = diam(P )/2. Concerning the k-means
strategy, we apply Algorithm 4.2 using a grid of n = 203 points, which is comparable to
the size of 163 pixels required by the CNN. This value of n may seem high, but it is needed
in order compute the cutting plane with a satisfactory accuracy. Indeed, many grid points
lie outside the polyhedron and therefore they are not included in the computation of the
clusters, which is also the most expensive part of the process. We consider five different
coarse grids of domain (0, 1)3: a grid of tetrahedra, a grid of cubes, a grid of prisms,
a Voronoi grid with random seeds location, and a CVT. In Figure 4.8 these grids have
been refined uniformly, i.e., each mesh element has been refined, for three times using the
diameter strategy (diameter), the k-means strategy (k-means) and the CNN-enhanced
strategy (CNN). As we can see, the initial mesh geometry seems to be disrupted by the
diameter strategy, approximately preserved by the k-means strategy, and well preserved
by the CNN-enhanced strategy.
In Figure 4.9 we show the computed quality metrics for the uniformly refined grids. As
we can see, in general quality metrics are lower for the diameter strategy. The k-means
strategy produces elements with higher BR, while the CNN-enhanced strategy with higher
of UF, although in many cases both of them are comparable.
In Figure 4.10 we show, for all the considered grids, the number of vertices, edges, faces,
elements, the total refinement time and the average refinement time per element. These
results have been obtained by using MATLAB2020b on a Windows OS 10 Pro 64-bit,
Intel(R) Core(TM) i7-8750H CPU (2.20GHz / 2.21GHz) and 16 GB RAM memory. As
we can see, in general the diameter strategy has the highest computational complexity,
which is comparable to the one of the k-means strategy. The diameter strategy is supposed
to be the fastest in computing the cutting direction, but, because it produces low quality
elements with lost of vertices, the refinement time becomes comparable with that of the
k-means strategy. The CNN-enhanced strategy outperforms both of them in terms of
number of geometrical entities and computational time. It is worth noticing that in the
CVT the CNN-enhanced strategy achieves higher or comparable quality with respect to
the k-means strategy (Figure 4.9 bottom) in much less time. This is because the CNN
is classifying CVT elements as “cubes”, therefore reducing the computational cost. This
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Figure 4.8: In the first column, coarse grids of domain (0, 1)3: a grid of tetrahedra, a grid of
cubes, a grid of prisms, a Voronoi grid with random seeds location, and a CVT. Second to fourth
columns: refined grids obtained after three steps of uniform refinement based on employing the
k-means strategy (k-means) and the CNN-enhanced strategy (CNN). Each row corresponds to
the same initial grid, while each column corresponds to the same refinement strategy.
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Figure 4.9: Histograms of the computed quality metrics (UF and BR on the x-axis and per-
centage of grid elements on the y-axis) for the refined grids reported in Figure 4.8 (second to
fourth column), obtained based on employing different refinement strategies (diameter, k-means,
CNN).
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Figure 4.10: Statistics of computational complexity (number of vertices, edges, faces, elements,
total refinement time and average refinement time per element) for the refined grids reported in
Figure 4.8 (second to fourth column), obtained based on employing different refinement strategies
(diameter, k-means, CNN). Lower values mean lower complexity in terms of memory storage
and computational cost of the algorithms.
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means that the CNN is generalizing properly on new samples, because CVT elements
were not included in the training set.

Summary. The diameter strategy has the simplest implementation but it produces
low quality elements, raising the computational cost. The k-means strategy produces
the most rounded elements and performs better in unstructured grids. It is robust but
has a considerable computational cost. The CNN-enhanced strategy well preservers the
mesh structure, producing simple elements of uniform size at a low computational cost.
However, it is less effective on unstructured grids.

4.3.1. Application to agglomerated meshes

In this section we consider the mesh of a hinge, shown in Figure 4.11, obtained by ag-
glomerating a grid of tetrahedra using PARMETIS [107]. Such a mesh contains holes and
small features. Moreover, elements maybe stretched and non-convex, because they have
been obtained through a process of agglomeration. In Figure 4.12 we show an example
of a non-convex element from the mesh (left) obtained during the agglomeration process
and its corresponding refinement based on employing the diameter, the k-means and the
CNN strategies (of Figure 4.12, from left to right). As we can see the diameter strategy,
which does not take into account the non-convexity of the element, produces elements
with pronounced non-convex spikes, contrary to the k-means and the CNN strategies.
In this case, we decided not to re-train the CNN including non-convex elements in the
database, in order to test its generalization capabilities in a more “extreme" setting.
In Figure 4.13 we show the computed quality metrics after one step of uniform refinement
of the considered mesh. The k-means strategy attains the highest BR and compara-
ble performance with the diameter strategy. The CNN and diameter strategies provide
comparable results. We highlight the following comments:

• The considered mesh contains agglomerated elements which are not deliberately
present in the training database of the CNN. On the contrary, the k-means strategy
is expected to perform well even in unknown scenarios, because it does not require
prior knowledge on the shape of mesh elements. Obviously, it always possible to
tune the behaviour of the CNN strategy by including agglomerated elements in the
training database.

• The CNN strategy classifies 52% of the elements as "tetrahedron", 47% as "other"
and 1% as "prism". Such a distribution of labels is probably due to the fact that the
considered mesh was obtained starting from a mesh tetrahedra, from which many
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Figure 4.11: Mesh of the hinge geometry taken into account. Each color corresponds to one of
the 9361 agglomerated sets of tetrahedra.

features may have been preserved during the process of agglomeration. Therefore,
on the one hand the CNN may be trying to enforce a tetrahedral structure, while
on the other hand trying to enforce more roundness using the k-means strategy for
those elements with no particular structure. The presence of multiple structures
may therefore have a stronger impact the UF metric and a lighter impact on the
BR metric. Indeed, the chosen quality metrics may not take into account some
important aspects of the mesh, such as the presence of multiple structures or of
small spikes such as the ones shown in Figure 4.12.

In Figure 4.14 we show the computed statistics of computational complexity. As we can
see, the ML strategies perform slightly better than the diameter strategy in terms of
mesh complexity. Moreover, the computational cost of the CNN strategy is lower than
the cost of the diameter strategy, while the one of the k-means strategy is comparable or
higher. The advantage in using ML strategies is not as evident as in the Figures 4.9 and
4.10 because in that case three refinement steps were performed, while in this case only
one. Indeed, refining a mesh element while preserving its quality greatly eases in case of
sequential refinements, increasing exponentially the benefits of using ML strategies.
This example shows that, in new scenarios, generalization capabilities of CNNs should be
assessed.
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Figure 4.12: A non-convex element from the mesh of a hinge is refined (left) is refined using
the diameter, the k-means and the CNN strategy (second to fourth figures). The k-means
and the CNN strategy produce the same result because the CNN has classified the element as
"other", hence also applying the k-means strategy. The diameter strategy, which does not take
into account the non-convexity of the element, produces elements with pronounced non-convex
spikes, contrary to the other two strategies.

Figure 4.13: Histograms of the computed quality metrics (UF and BR on the x-axis and percent-
age of grid elements on the y-axis) for the refined grid of the hinge, obtained based on employing
different refinement strategies (diameter, k-means, CNN).
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Figure 4.14: Statistics of computational complexity (number of vertices, edges, faces, elements,
total refinement time and average refinement time per element) for the refined grid of the
hinge, obtained based on employing different refinement strategies (diameter, k-means, CNN).
Lower values mean lower complexity in terms of memory storage and computational cost of the
algorithms.

4.4. Applications to VEM and PolyDG method

In this section we test the effectiveness of the proposed refinement strategies within poly-
hedral finite element discretizations. We consider the Virtual Element Method (VEM)
[30, 31, 33, 34, 66, 68] and the Polygonal Discontinuous Galerkin (PolyDG) method
[10, 13, 28, 50, 53, 99] to solve a standard Laplacian problem in 3D: find u ∈ H1

0 (Ω)

such that ∫
Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω), (4.1)

with f ∈ L2(Ω) a given forcing term. We take Ω = (0, 1)3 and consider a uniform
refinement process in Section 4.4.1, and an adaptive a priori mesh adaptation procedure
in Section 4.4.2. In both cases, given a grid of the domain Ω we compute numerically
the solution of problem (4.1) using either the VEM or the PolyDG method. Then we
compute the error: in the VEM case in the discrete H1 seminorm

|v|2H1 :=
∑
P

|v − Π∇
k v|2H1 , (4.2)
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where Π∇
k is the standard VEM projection operator defined via the H1 [31], while in the

PolyDG case we take the DG norm

∥v∥2DG =
∑
P

∥∇v∥2L2(P ) +
∑
F

∥γ1/2JvK∥2L2(F ), (4.3)

where P is a polyhedral mesh element and F is a polygonal element face [22, 63]. Here
γ = αp2/Cel is the stabilization function, where α is the penalty parameter, p is the
polynomial degree used for the approximation, and Cel is a function of the shape of the
element and is chosen as in [50]. The jump operator J·K, which measures the discontinuity
of v across elements, is defined as in [22].

4.4.1. Uniform refinement

In this Section we consider a uniform refinement process, i.e., at each refinement step each
mesh element is refined. The forcing term f in (4.1) is selected in such a way that the
exact solution is given by

u(x, y) = sin(πx) sin(πy) sin(πz).

The grids obtained after three steps of uniform refinement are those already reported in
Figure 4.8 (second to fourth column).
We now consider the PolyDG method applied to the grid of cubes for different values
of the penalty parameter α, using polynomials of degree 1. Larger values of α penalize
more discontinuities of the solution, rather than its gradient. In Figure 4.15 we show the
computed relative errors as a function of the number of degrees of freedom.

As we can see, the CNN-enhance strategy is more effective for α = 2, while the diam-
eter strategy for α = 10. In order to guarantee convergence, α needs to be larger than
a threshold that depends on the shape of the elements. For example, α = 2 works for
the CNN-enhanced strategy, because it preserves the cube structure of the grid, but not
for the other strategies. Since computing the threshold is in general too complex, in the
following we will use α = 5.
In Figure 4.16 we show the computed relative errors as a function of the number of de-
grees of freedom for both VEM and PolyDG method with the lowest-order approximation
degree. More specifically, a VEM scheme with a polynomial consistency equal to 1 and
a PolyDG approach that considers polynomials of degree 1 on edges, faces and volumes.
Although this relative error could seem too high, the convergence rate are already the
expected one and we limit ourselves to these three uniform refinement steps.
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α = 2 α = 5 α = 10

Figure 4.15: Uniform refinement test case of Section 4.4.1. Computed relative errors as a function
of the number of degrees of freedom. The PolyDG method is applied to the grid of cubes for
different values of the penalty parameter α = 2, 5, 10, using polynomials of degree 1. The choice
of the most effective refinement strategy (diameter, k-means, CNN) depends on the value of α.

When using the PoyDG method, the CNN-enhanced strategy is the most effective in the
tetrahedral grid, while the diameter strategy in all the other cases. To maximize the
performance, one may design a CNN-enhanced strategy that classifies polyhedra into two
classes only, namely “tetrahedron” and “other”, in order to apply the “classical" strategy
in the former case and the diameter strategy in the latter. However, considering that the
performance of the different strategies are overall comparable and also that these results
may vary depending on the choice of α, further analysis would be required in order to
effectively exploit the use of ML techniques when employing the PolyDG method. On
the contrary, in the VEM case, the CNN-enhanced strategy significantly outperforms the
others, followed by the k-means strategy. At each step the error obtained with the CNN-
enhanced refinement is associated with a lower number of degrees of freedom. Indeed, the
error lines are shifted to the left. This sensitivity to mesh distortions may be due to the
fact that the VEM is a hybrid method, with unknowns on the elements boundary. On
the contrary, the robustness of the PolyDG method to mesh distortions may be due to
the fact that the degrees of freedom are interior to the elements. In Figure 4.17 we show
that the same results hold in the VEM case also for approximation orders 2 and 3.

4.4.2. Adaptive refinement

In this section we consider an adaptive refinement process. In particular, we proceed as
follows:

1. Given a grid of the domain Ω we compute numerically the solution of problem (4.1)
using either the VEM method or the PolyDG.

2. We compute the error with respect to the exact solution considering the H1 semi-
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Figure 4.16: Uniform refinement test case of Section 4.4.1. Computed relative errors as a
function of the number of degrees of freedom. Each row corresponds to the same initial grid
refined uniformly with the proposed refinement strategies (diameter, k-means, CNN), while each
column corresponds to a different numerical method (VEM left and PolyDG right).



4| Machine learning-based refinement strategies for polyhedral grids 91

VEM order 2 order 3
te

tr
ah

d
er

a
cu

b
es

p
ri

sm
V

or
on

oi
C

V
T

Figure 4.17: Uniform refinement test case of Section 4.4.1. Computed relative errors as a
function of the number of degrees of freedom. Each row corresponds to the same initial grid
refined uniformly with the proposed refinement strategies (diameter, k-means, CNN), while
column corresponds to employing the VEM of order 2 and 3.
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norm error, Equation (4.2), and the DG norm, Equation (4.3) for VEM and PolyDG
case, respectively. Notice that we did not employ any a posteriori estimator of the
error, since we would like to investigate the effect of the proposed refinement strate-
gies.

3. We refine a fixed fraction r of elements with the highest error. To refine the marked
elements we employ one of the proposed strategies (diameter, k-means, CNN).

The forcing term f in (4.1) is selected in such a way that the exact solution is given by

u(x, y) = (1− e−10x)(x− 1) sin(πy) sin(πz),

that exhibits a boundary layer along x = 0. We take as initial grids the first ones of the
previous example and we repeat Steps 1-3 for four times using refinement ratio r = 0.4.
The adapted meshes employing the PolyDG method are shown in Figure 4.18, similar
grids are obtained with VEM. In Figures 4.19 and 4.20 we show the computed relative
errors for the PolyDG method of degree 1 and the VEM of orders 1, 2 and 3. Results
are analogous to the uniform refinement case: in the VEM case there is a clear advantage
in using the CNN-enhanced refinement strategy. Also in this case at each step the error
obtained with the CNN-enhanced refinement is associated with a lower number of degrees
of freedom: the error lines are shifted to the left. In the PolyDG case all strategies have
comparable performance.

4.5. Concluding remarks

We proposed the extension to three dimensions of a paradigm based on ML techniques to
enhance existing polygonal grid refinement strategies [4], within polyhedral finite element
discretizations of partial differential equations. In particular, the k-means algorithm is
used to learn a clustered representation of the element that is used to perform the par-
tition. This strategy is a variation of the well known Centroidal Voronoi Tessellation. It
produces shape-regular elements and it is robust when applied on unstructured grids.
Another approach consists in using a CNN as a classifier for polyhedra, that associates
to each element the most suitable refinement criterion, including the k-means. This ap-
proach has the advantage of being modular: any refinement strategy can be employed, as
well as any numerical method can be used to solve the differential problem. Moreover,
the CNN has low computational cost once trained, which makes it appealing especially
in three dimensions where processing mesh elements is much more expensive than in two
dimensions. The use of CNNs allows to exploit strategies explicitly based on the “shape”
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Figure 4.18: Adaptive refinement test case of Section 4.4.2. Each row corresponds to the same
initial grid (tetrahedra, cubes, prisms, Voronoi, CVT), while each column corresponds to the
same refinement strategy (diameter, k-means, CNN). Three steps of adaptive refinement have
been performed, with a fixed fraction refinement criterion of r = 0.4.
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Figure 4.19: Adaptive refinement test case of Section 4.4.1. Computed relative errors as a
function of the number of degrees of freedom. Each row corresponds to the same initial grid
refined uniformly with the proposed refinement strategies (diameter, k-means, CNN), while each
column corresponds to a different numerical method (VEM left and PolyDG right).
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Figure 4.20: Adaptive refinement test case of Section 4.4.1. Computed relative errors as a
function of the number of degrees of freedom. Each row corresponds to the same initial grid
refined uniformly with the proposed refinement strategies (diameter, k-means, CNN), while
column corresponds to employing the VEM of order 2 and 3.



96 4| Machine learning-based refinement strategies for polyhedral grids

of the polyhedron, which would not be possible otherwise unless explicit and costly geo-
metrical checks are performed. As a result, the initial structure and quality of the grid
is preserved, significantly lowering the computational cost and the number of vertices,
edges and faces required to refine the mesh. These ML-enhanced refinement strategies
are particularly beneficial for the VEM, which is sensitive to mesh distortions and/or
vertex proliferation, as the error is decreasing faster using the same number of degrees
of freedom. On the other hand, as expected the PolyDG method is less sensitive as the
discretization space is not associated with any geometrical entity.
In terms of future research, the use of a posteriori error estimators to drive the refinement
process is under investigation. Possible applications include, e.g., fluid flow in heteroge-
neous porous media [40, 41].
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5| Agglomeration of polygonal
grids using graph neural
networks

In this chapter1, we propose the use of Graph Neural Networks (GNNs) [85, 86, 94, 114,
143], deep learning architectures specifically meant to work with graph-structured data,
to efficiently handle polygonal mesh agglomeration. Mesh agglomeration, i.e. the process
of merging neighbouring elements to obtain a coarse grid, can be naturally performed
when dealing with polygonal and polyhedral grids, due to the flexibility in the definition
of mesh elements. This operation has multiple applications in the numerical solution of
partial differential equations, for example:

• it can be used, with adaptive procedures, to reduce the number of degrees of freedom
where not needed because in certain parts of the domain the error is already under
control;

• it can be used to generate a hierarchy of (nested) coarser grids starting from a fine
mesh of a complex physical domain of interest, in order to employ them in multigrid
solvers [5, 12, 15, 28, 29, 55, 144] to accelerate the converge of iterative algebraic;

• it can be employed together with domain decomposition techniques [7, 11, 84, 141] to
obtain a meaningful decomposition of the domain, starting from a fine discretization.

The problem of mesh agglomeration can be re-framed as a graph partitioning problem,
by exploiting the connectivity structure of the mesh. By exploiting such a representa-
tion, GNNs can be applied to solve a node classification problem, where each element is
assigned to a cluster, which corresponds an element of the agglomerated mesh. GNNs
can process naturally and simultaneously both the graph structure of mesh and the geo-
metrical information that can be attached to the nodes, such the elements areas or their
barycentric coordinates. This is not the case of other approaches such as METIS [106],

1The results of the thesis are original and are contained in [9]
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a standard solver for graph partitioning which can process only the graph information,
or k-means, which can process only the geometrical information. The proposed GNN-
based algorithms exploit an unsupervised training procedure, where parameters are set
to minimize the expected value of the normalized cut, over a database of polygonal grids.
To investigate the capabilities of the proposed approaches, we consider a second-order
model problem discretized by the PolyDG method in a multigrid framework. We measure
effectiveness through an analysis of quality metrics and number of iterations of the the
algebraic iterative solver. We also consider the generalization capabilities over a human
brain MRI scan section.

5.1. Mesh agglomeration strategies

We recall that the problem of mesh agglomeration can be re-framed as a graph partitioning
problem, by exploiting the connectivity structure of the mesh. In particular, the graph
representation of the mesh is obtained by assigning a node to each element of the mesh,
and connecting with an edge the pair of nodes which are relative to adjacent elements in
the original mesh, i.e. polygons that share at least one edge. Moreover, features can be
assigned to each node, storing geometrical information such as the area of the element
or its barycentric coordinates. Finally, partitioning the nodes of the mesh into proper
clusters using a suitable algorithm allows to obtain an agglomerated representation of the
original mesh.

5.1.1. METIS

A standard algorithm for partitioning large graphs or meshes and computing fill-reducing
orderings of sparse matrices is METIS [106]. As depicted in Figure 5.1, METIS graph
partitioning algorithm is based on a multi-level graph bisection procedure, consisting of
the following main steps:

1. Graph coarsening phase: from the input graph successively smaller graphs are de-
rived by collapsing adjacent pairs of vertices, until the size of the graph is sufficiently
small.

2. Initial partitioning phase: a partition of the coarsest graph is computed my mini-
mizing the edge cut.

3. Uncoarsening phase: the partitioning of the smallest graph is projected back to
the successively larger graphs, by assigning the pairs of vertices that were collapsed
together to the same partition.
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Figure 5.1: Scheme of the METIS graph bisection algorithm, taken from [106].

4. Refinement phase: after each uncoarsening step the partition is refined, adjusting
nodes close to the interface of the two sets.

Once the graph has been divided into two sets, METIS applies the same algorithm recur-
sively on the new sub-graphs, until the desired number of sets is reached.

5.1.2. Machine learning-based graph partitioning

We propose to employ ML-based bisection models of the form M(G,X) = Y , that take
as input a graph G together with a set of features X attached to each node, such as
the barycentric coordinates or the area of the mesh elements, and output the vector of
probabilities Y of each node belonging to cluster 1 or cluster 2. In order to apply such
models for mesh agglomeration, we can use Algorithm 5.1, that recursively bisect the
connectivity graph of the input mesh until the agglomerated elements have the desired
size. We recall that the diameter of a domain D is defined, as usual, as diam(D) :=

sup{|x − y|, x, y ∈ D}. Given a polygonal mesh, i.e. a set of non-overlapping polygonal
regions Th = {Pi}NP

i=1, NP ≥ 1, that covers a domain Ω, we can define the mesh size
h = maxi=1:NP

diam(Pi). Algorithm 5.1 automatically generates a hierarchy of nested
grids with different sizes, to be employed e.g. within multigrid solvers. If the model M
does not return a valid partition Y , e.g., because within a set the graph is not connected,
a suitable fixing procedure is required. This can be done, for example, by considering the
largest suitable connected components as new clusters. Possible choices for the bisection
modelM are, but not limited to, the k-means clustering algorithm and GNNs, as we will
see in the following.
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Algorithm 5.1 General mesh agglomeration strategy
Input: mesh Th, target mesh size h∗, bisection modelM.
Output: agglomerated mesh Th∗ .

Function agglomerate (Th, h∗)
1: if diam(Th) ≤ h∗ then
2: return Th
3: else
4: Extract the connectivity graph G and features X from Th
5: Y ←M(G,X)
6: Refine partition Y , by minimizing the length of the boundary of the agglomerated

polygons.
7: Partition Th into sub-meshes T (1)

h , T (2)
h according to Y .

8: T (1)
h∗ ← agglomerate(T (1)

h , h∗)

9: T (2)
h∗ ← agglomerate(T (2)

h , h∗)

10: Th∗ ← merge T (1)
h∗ , T (2)

h∗

11: end if

5.1.3. The k-means clustering algorithm

n order to apply the k-means algorithm for graph bisection within Algorithm 5.1, we sim-
ply use Algorithm 2.1 employing only two clusters and using as features the barycentric
coordinates of the mesh elements. This strategy tends to produces "rounded" (star-
shaped) agglomerated elements of similar size. Notice that no information on the connec-
tivity graph is taken into account directly. However, for a regular mesh with elements of
similar size, barycentric coordinates are usually strongly correlated with elements being
adjacent.

5.2. Graph neural networks-based agglomeration

In order to perform grid agglomeration by exploiting effectively both the graph represen-
tation and the geometrical features of meshes, we employ GNNs as bisection model in
Algorithm 5.1. Examples of GNNs-based models directly applied to the original grid are
[85, 86], which employ additional processing based on the graph spectrum to perform a
preliminary embedding step, in order to extract features that can later be fed to a GNN-
based partitioning module. In our case, the graph extraction of geometrical features such
the elements area or their barycentric coordinates can be leveraged to perform a classi-
fication task, therefore avoiding the need for an additional spectral embedding module.
The graph-bisection model performs a classification task, by taking as input the graph
G = (V,E) and the features related to its nodes X ∈ RN×F , and outputting a probability
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Figure 5.2: General framework for mesh agglomeration via GNNs.

tensor Y ∈ RN×2, where Yij represents the probability that the node vi ∈ V belongs to the
partition Sj, with j = 1, 2. This approach can be obviously generalized to an arbitrary
number of partitions. However, this would require a specific GNN model for each fixed
number of classes, while the 2-classes case can be easily extended to a multi-class case
by recursively calling the bisection model on the graphs of each partition. The general
framework for mesh agglomeration via GNNs is shown in Figure 5.2.

5.2.1. Graph neural network training

The input features matrix is X ∈ RN×3, where the first columns contains the area of each
mesh element followed by the two coordinates of its barycenter. The GNN architecture
we employed first applies a INorm layer, then four SAGEConv layer with features di-
mensions 64, then three Linear layer with progressively decreasing output dimensions
(32, 8 and 2) and finally a Softmax layer. Each SAGEConv layer is followed by a tanh
activation function to keep the features inside the interval [−1, 1], so that the geometri-
cal information regarding the re-scaled coordinates will be kept in the same domain, as
information flows through the layers. To further simplify the classification process, the
INorm layer also rotates of 90 degrees the barycentric coordinates if the input mesh is
more stretched along the y axis rather than the x axis. The resulting model consists of
approximately 28k parameters, where roughly 25k resulting from the SAGEConv layers
and the remaining from the Linear layers. A scheme of the described GNN model is
shown in Figure 5.3.

The training of the models has been performed by employing an unsupervised approach
by minimizing the expected normalized cut, as described in Section 2.2. To perform the
training a train and a validation datasets were generated. The training dataset consists of
meshes of the following type: grids of regular squares, grids of regular triangles, grids of
triangles with random perturbation of the vertices, grids of Voronoi with random location
of the seeds. The database is composed of 800 meshes, with 200 meshes per type, while
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Figure 5.3: GNN model structure, consisting of a normalization module, responsible of rescaling
the features extracted from the input mesh, and of a partitioning module made of a stack of
graph convolutions and a dense classifier. The output is a matrix of probabilities Y ∈ RN×2,
containing the probabilities of belonging either to one of the two classes for each node.

the validation dataset consists of 200 meshes, 50 per type. The cardinality of the datasets
has been chosen to keep a 80-20 split ratio between train and validation respectively.
Training has been performed using the Adam optimizer [109] with a learning rate 1e-5,
L2 regularization coefficient 1e-5 and mini-batch size 4. Training was performed for 300
epochs in approximately 35 minutes on Google Colab cloud platform, using a 2.20GHz
Intel Xeon processor, with 12GB of RAM memory and NVIDIA Tesla T4 GPU with 16GB
of GDDR6 memory.

5.3. Validation on a set of polyhedral grids

In this section we compare the performance of the proposed algorithms. To evaluate the
quality of the refined grids, we employ the Uniformity Factor (UF) and Circle Ratio (CR)
quality metrics[23] introduced in Section 3.3. We consider four different grids of domain
(0, 1)2: a grid of regular triangles, a grid of triangles with random location of the vertices,
a Voronoi grid with random location of the seeds, and a grid of regular squares. In Figure
5.4 these grids have been agglomerated using METIS, k-means and GNNs strategies. For
METIS the target number of mesh elements is N0/16, where N0 is the initial number
of elements, while for k-means and GNN the target mesh size in Algorithm 5.1 is h0/4,
where h0 is the initial mesh size. As we can see, the k-means and the GNN algorithms are
capable to recover a regular grid of squares when starting from regular meshes (triangles
and squares), while this is not the case for METIS. In Figure 5.5 we show the box plots of
the computed quality metrics for the selected grids. In general, quality metrics are lower
for the METIS algorithm, while k-means and GNNs have comparable performance. This
is further confirmed by Tables 5.1 and 5.2, where we report the average values of UF and
CR. In particular, the performance difference is much more evident for regular grids. In
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Figure 5.4: Initial grids (first column) and corresponding agglomerated versions (second to
fourth column) obtained based on employing different strategies. Each row corresponds to the
same initial grid (from top to bottom: regular triangles, random triangles, Voronoi, squares)
while each column corresponds to the same agglomeration strategy (from left to right: initial
grids, METIS, k-means, GNN).

UF metis k-means GNN
triangles 0.7648 1.0000 1.0000
random 0.6115 0.7003 0.7418
Voronoi 0.7605 0.8105 0.8225
squares 0.7725 1.0000 1.0000

Table 5.1: Average values of the UF for the agglomerated grids reported in Figure 5.4, obtained
based on employing different agglomeration strategies (METIS, k-means, GNN).
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Figure 5.5: Box plots of the computed quality metrics (UF and CR) for the agglomerated
grids reported in Figure 5.4 (second to fourth column), obtained based on employing different
agglomeration strategies (METIS, k-means, GNN). Some box plots collapse into a single line
because the corresponding metric has the same value for all mesh elements.

CR metis k-means GNN
triangles 0.3447 0.7071 0.7071
random 0.3399 0.4190 0.3928
Voronoi 0.3056 0.4509 0.4845
squares 0.3733 0.7071 0.7071

Table 5.2: Average values of the CR for the agglomerated grids reported in Figure 5.4, obtained
based on employing different agglomeration strategies (METIS, k-means, GNN).
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UF relative k-means/metis GNN/metis
triangles 1.3076 1.3076
random 1.1452 1.2130
Voronoi 1.0658 1.0815
squares 1.2945 1.2945

Table 5.3: Relative UF: performance improvement with respect to METIS, i.e., ratio between
the average UF of the ML-strategies (k-means and GNN) and METIS, for the agglomerated
grids reported in Figure 5.4.

CR relative k-means/metis GNN/metis
triangles 2.0512 2.0512
random 1.2327 1.1554
Voronoi 1.4755 1.5853
squares 1.8940 1.8940

Table 5.4: Relative CR: performance improvement with respect to METIS, i.e., ratio between
the average CR of the ML-strategies (k-means and GNN) and METIS, for the agglomerated
grids reported in Figure 5.4.

Tables 5.3 and 5.4 we also report the relative performance with respect to METIS, i.e., the
ratio between the average UF and CR metrics of the ML-strategies (k-means and GNN)
and METIS. This further highlights the gain is using ML-based strategies. In general,
ML-based strategies (either the k-means and the GNN algorithms), seem to preserve the
initial geometry and quality of the grids, because the geometric information attached to
the nodes is taken into account, making them suitable for adaptive mesh coarsening. This
is not the case for the METIS algorithm, because it processes only the information coming
from the graph topology of the mesh.

5.3.1. Application to a computational mesh stemming from a

human brain MRI-scan

In order to further test the generalization capabilities of our models, we apply them on a
much more complex domain with respect to the meshes considered so far. In particular,
we consider the mesh of a section of a human brain coming from an MRI-scan, consisting
of 14372 triangular elements. The domain is highly non-convex and presents many con-
strictions and narrowed sections. We agglomerated such a grid using METIS, k-means
and GNN algorithms: the result is reported in Figure 5.6. For k-means and GNN the
target mesh size in Algorithm 5.1 is 0.2D, where D is the maximum distance between
any two vertices of the initial mesh. For METIS the target number of mesh elements is
50, which corresponds approximately to the same mesh size. In Figure 5.7 we show also
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Figure 5.6: Agglomerated meshes using different strategies (METIS, k-means, GNN), starting
from an initial grid of a human brain MRI-scan, consisting of 14372 triangular elements as shown
in the top-left figure.
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Figure 5.7: Box plots of the computed quality metrics (UF and CR) for the agglomerated MRI
brain scan meshes reported in Figure 5.6, obtained based on employing different agglomeration
strategies (METIS, k-means, GNN).

metric metis k-means GNN
UF 0.7808 0.7875 0.7672
CR 0.4134 0.5146 0.4841

UF relative 1 1.0085 0.9826
CR relative 1 1.2449 1.1712

Table 5.5: Average and relative values (with respect to METIS) of the UF and the CR for
different agglomeration methods (METIS, k-means, GNN), applied to the section of the MRI
brain scan, for the agglomerated MRI brain scan meshes reported in Figure 5.6.

the corresponding box plots of the quality metrics and in Table 5.5 we report the average
values. As we can see, performance are comparable in terms of UF, while the ML-based
strategies achieve on average a higher "roundness", measured in terms of CR. This indi-
cates good generalization capabilities of the GNN algorithm, as the considered mesh was
very different from the ones included in the training set, both in terms of shape, dimen-
sions and number of elements. The k-means reasonably performs slightly better than the
GNN, because it does not require prior information coming from a database at the cost
of having a higher online computational cost, as we will see in the next section.

5.3.2. Runtime performance

The main advantage in using Neural Network-based solutions is the low computational
cost for online inference, with respect to k-means or METIS. We measured the computa-
tional cost of the different graph partitioning algorithms on 21 random Voronoi meshes
with an increasing number of elements from 25 to 5000. Since the runtimes are not de-
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Figure 5.8: Runtime performance for different graph bisection models (METIS, k-means, GNN)
as a function of the number of nodes in the connectivity graph of Voronoi meshes. The y-axis
is in logarithmic scale.

terministic, we performed a sampling of 20 runtimes for each mesh. Results are shown in
Figure 5.8. As we can see, the GNN algorithm outperforms the METIS and the k-means
ones. For a mesh with 5000 elements we have that GNN is 4.4836 times faster than Metis
and 3.5670 times faster than k-means. Such a performance improvement is expected to
grow asymptotically, due to the fact that the computational complexity of the Neural
Network mainly scales with the dimension of the data manifold [126], while METIS and
k-means mainly scale with the dimension of the graph. Being able to compute the solution
in fast manner, even with a slight loss of accuracy, can be particularly beneficial when
using multigrid scheme as preconditioners.

5.4. Applications to agglomeration-based multigrid

methods

In this section we test the effectiveness of the proposed agglomeration strategies, to be
used in combination with polygonal finite element discretizations within a MultiGrid
(MG) framework [5, 12, 15, 28, 29, 55, 144]. We consider the following model problem:
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grids ℓ
Agglomeration-based MG CGmetis k-means GNN

2 21 9 9
triangles 3 21 9 9 114

4 21 9 9
2 46 41 32

random 3 46 41 32 655
4 46 41 32
2 19 16 15

Voronoi 3 19 16 15 348
4 19 16 15
2 20 17 17

squares 3 20 17 17 109
4 20 17 17

Table 5.6: Iteration count of the MG algorithm to reduce the (relative) residual below 10−6

employing different initial grids (triangles, random, Voronoi, squares) agglomerated with differ-
ent strategies (METIS, k-means, GNN) with ℓ = 2, 3, 4, p = 1, m = 3. As a comparison, the
iteration count of the Conjugate Gradient (CG) method are reported in the last column.

find u ∈ V = H2(Ω) ∩ H1
0(Ω) such that∫

Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ V, (5.1)

with Ω and f ∈ L2(Ω) the forcing term, selected in such a way that the exact solution is
given by u(x, y) = sin(πx) sin(πy). We consider the V-cycle MG algorithm with additive
Schwarz smoothing within a PolyDG discretization framework [5], described in Section
1.4. We employ the initial grids shown in the first column of Figure 5.4 (triangles, random,
Voronoi, squares), agglomerated using the proposed strategies (METIS, k-means, GNNs).
In particular, for each initial mesh we construct three agglomerated grids of increasing
size: for METIS the target numbers of mesh elements are N0/64, N0/16, N0/4, where N0

is the initial number of elements, while for k-means and GNN the target mesh sizes in
Algorithm 5.1 are h0/8, h0/4, h0/2, where h0 is the initial mesh size. These correspond to
the different levels of the V-cycle algorithm, where level 1 corresponds to the initial grid
(level 3 grids are the ones reported in Figure 5.4). As performance metric, we consider
the Iteration count of the MG algorithm to reduce the (relative) residual below 10−6 in
solving the algebraic formulation of problem (5.1). We vary the following parameters:
number of levels employed ℓ, polynomial degree p, number of smoothing steps m (with
m = m1 = m2 in Algorithm 1.3). In Table 5.6 we report the iteration count when varying
the number of levels ℓ = 2, 3, 4 with m = 3 and p = 1.
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grids ℓ
Agglomeration-based MG CGmetis k-means GNN

triangles 3 230 67 67 1144 227 66 66

random 3 706 551 405 6554 708 577 407

Voronoi 3 154 143 129 3484 154 143 131

squares 3 178 162 162 1094 180 162 162

Table 5.7: Iteration count of the MG algorithm to reduce the (relative) residual below 10−6 em-
ploying different initial grids (triangles, random, Voronoi, squares) agglomerated with different
strategies (METIS, k-means, GNN) with ℓ = 3, 4, p = 1, m = 1. As a comparison, the iteration
count of the Conjugate Gradient (CG) method are reported in the last column.

We can observe the following:

• The iteration count of the MG methods are significantly lower than the ones the
of the classical Conjugate Gradient (CG) method, meaning the considered MG
implementation is indeed effective.

• The iteration count of the k-means and GNN algorithms are lower than the ones of
METIS, meaning the higher grid quality provided by the ML-based agglomeration
strategies can help accelerating the convergence of the numerical method, with GNN
having the best performance.

• The iteration count required when varying the number of levels ℓ is constant, mean-
ing it is independent of the granularity of the underlying grid and therefore scalable
in terms of mesh size.

In Table 5.7 we also consider the case for m = 1. Despite using such a low value, the
MG method still converges in all cases. As expected, the iteration count increases but
the iteration count of the ML strategies is still lower with respect to the ones of the CG,
while this is not the case for the METIS algorithm.
In Table 5.8 we report the iteration count when varying the number of smoothing steps
m = 3, 5 with ℓ = 3 and p = 1. As we can see, when the number of steps increases
the iteration count decreases, as well as the performance difference between the different
methods. In Table 5.9 we report the iteration count when varying the polynomial dgree
p = 1, 2, 3 with ℓ = 3 and m = 3. As expected, since m is fixed, when p increases also the
iteration count increases, because more degrees of freedom are involved in the formulation
of the problem [5].
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grids m Agglomeration-based MG CGmetis k-means GNN

triangles 3 21 9 9 1145 10 5 5

random 3 46 41 32 6555 20 18 15

Voronoi 3 19 16 15 3485 10 8 8

squares 3 20 17 17 1095 9 8 8

Table 5.8: Iteration count of the MG algorithm to reduce the (relative) residual below 10−6 em-
ploying different initial grids (triangles, random, Voronoi, squares) agglomerated with different
strategies (METIS, k-means, GNN) with ℓ = 3, p = 1, m = 3, 5. As a comparison, the iteration
count of the Conjugate Gradient (CG) method are reported in the last column.

grids p Agglomeration-based MG CGmetis k-means GNN
1 21 9 9 114

triangles 2 49 10 10 355
3 63 17 17 1101
1 46 41 32 655

random 2 89 76 53 4425
3 115 102 64 9893
1 19 16 15 348

Voronoi 2 36 25 25 987
3 39 33 27 3235
1 20 17 17 109

squares 2 45 34 34 365
3 46 52 52 703

Table 5.9: Iteration count of the MG algorithm to reduce the (relative) residual below 10−6

employing different initial grids (triangles, random, Voronoi, squares) agglomerated with differ-
ent strategies (METIS, k-means, GNN) with ℓ = 3, p = 1, 2, 3, m = 3. As a comparison, the
iteration count of the Conjugate Gradient (CG) method are reported in the last column.
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In general, the considered experiments highlights that when employing ML-based agglom-
eration strategies a lower iteration count is required by the MG solver with respect to
METIS, thanks to the higher quality of the produced grids, with GNN having the best
performance.

5.5. Concluding remarks

In this chapter, we presented a new ML-based framework to efficiently handle the open
problem of mesh agglomeration for polygonal grids. We first re-framed the problem of
mesh agglomeration as a graph partitioning problem, by exploiting the graph representa-
tion of the connectivity structure of mesh elements. We then developed in this context a
framework to employ ML-based strategies, such as k-means and GNNs which can exploit
the geometrical information of the grid. We trained GNNs to perform graph partitioning
over a suitably constructed database of meshes. We compared the performance of the
ML-based strategies with METIS, a classical algorithm for graph partitioning, over a set
of different grids, featuring also complex real domains such a brain MRI-scan. Results
show that ML-based strategies are more robust and can better preserve mesh quality,
making them suitable for adaptive mesh coarsening. We also employed the proposed al-
gorithms in the context MG methods in PolyDG framework, showing a lower iteration
count for ML-based strategies, with GNN having the best performance. Indeed, GNNs
have the advantage to process naturally and simultaneously both the graph structure of
mesh and the geometrical information, such the elements areas or their barycentric coor-
dinates. This is not the case of METIS [106], which is meant to process only the graph
information, or k-means, which can process only the geometrical information. Moreover,
GNNs have a significantly lower online computational cost. Being able to compute the
solution in fast manner, even with a slight loss of accuracy, can be particularly beneficial
when using multigrid scheme as preconditioners.
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impedance problem

In this chapter1, we explore the use of Variational Physics-Informed Neural Networks
(VPINNs) to solve the one-dimensional Helmholtz impedance problem. In particular,
neural networks are used to minimize the residual of the weak formulation of the problem.
The main reason to use artificial neural networks to tackle the Helmholtz problem resides
in their powerful approximation properties for highly oscillatory functions, which are of
particular interest for the chosen application. Indeed, the required number of parameters
of the network, in particular the number of its layers, scales logarithmically with respect
to the considered frequency.

This work is still in a preliminary phase, and many numerical experiments still need to
be performed in order to actually access the feasibility of the approach.

6.1. Variational formulation

The Helmholtz equation has the general form

−∇2u(x)− k2u(x) = f(x), x ∈ Ω,

where k ∈ R+ is called wavenumber. Larger values of the wavenumber result in more
oscillatory solutions. This equation often arises in various physical problems such as
seismology [3] and acoustics [138].

1The results of the thesis are original and are contained in [97].
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In this work, we will consider the one-dimensional Helmholtz equation with impedance
boundary conditions


−u′′(x)− k2u(x) = f(x), x ∈ Ω = (a, b),

−u′(a)− ıku(a) = ga,

+u′(b)− ıku(b) = gb,

(6.1)

with ga, gb ∈ C. The Helmholtz equation with impedance boundary conditions is well-
posed, and has a unique complex solution. The classical variational formulation of (6.1)
reads: find u ∈ H1(Ω) such that

a(u, v) = l(v) ∀v ∈ H1(Ω),

where a : H1(Ω)×H1(Ω)→ C and l : H1(Ω)→ C are defined as

a(u, v) =

∫ b

a

u′v′dx− k2

∫ b

a

uvdx− ık(u(a)v(a) + u(b)v(b))

l(v) =

∫ b

a

fvdx+ gav(a) + gbv(b)

However, when the wavenumber is large the above formulation is sign-indefinite, in the
sense that the bilinear forms cannot be bounded below by a positive multiple of the
appropriate norm squared. This indefiniteness has implications for both the analysis and
the practical implementation of finite element methods. To overcome this limitation, an
alternative variational formulation is proposed in [119]. In particular, let us consider the
Hilbert space V := H2(Ω) with the inner product (., .)V : V × V → C defined as

(u, v)V :=k2(u, v)L2(Ω) + (u′, v′)L2(Ω) + k−2 (u′′, v′′)L2(Ω)

+ 2k2(u(a)v(a) + u(b)v(b))

+ k2
(
u′(a)v′(a) + u′(b)v′(b)

)
, u, v ∈ V

and the induced norm ∥ · ∥V :=
√
(., .)V , where (., .)L2(Ω) corresponds to the L2(Ω)-inner

product in Ω. For k, β ∈ R+, we define the sesquilinear form a : V × V → C as

a(u, v) :=

∫
Ω

u′v′dx+ k2

∫
Ω

uv̄dx+

∫
Ω

(
Mu+

A

k2
Lu
)
Lvdx

− ık(Mv(b)u(b) +Mv(a)u(a))− v′Mu
∣∣
∂Ω
− xk2uv̄

∣∣
∂Ω

+ xu′v′
∣∣
∂Ω

(6.2)
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and the linear form l : V → C as

l(v) :=

∫
Ω

(
Mv − A

k2
Lv
)
fdx+Mv(b)gb +Mv(a)ga (6.3)

where A ∈ R+and the operatorsM and L are defined as

Mv := xv′ − ıkβv

Lv := v′′ + k2v

As before, the new vartiaional problem reads: find u ∈ V such that a(u, v) = l(v) for all
v ∈ V . It can be proved that setting β = 1 and A = 1/3 makes the sesquilinear form
a : V × V → C V -elliptic (or coercive) according to

R{a(u, v)} ≥ γ∥v∥2V ∀v ∈ V,

where γ = 1
6

and R{·} indicates the real part. Notice that the ellipiticity constant is
independent of the wavenumber, making this formulation stable for high frequencies.

6.2. Variational physics-informed neural networks

Physics-Informed Neural Networks (PINNs) [128] make use of prior knowledge that stems
from the physics of the system as a regularization method to narrow the range of the
admissible solutions. The approach consists in using a neural network to directly approx-
imate the solution of the differential problem, by optimizing its parameters based on a
suitable loss function that takes into account the residual in strong form the of PDE,
the initial conditions and the boundary conditions. The equation is enforce strictly in
quadrature points inside the domain.

Variational Physics-Informed Neural Networks (VPINNs) [108] are a variation of the
PINNs scheme where the residual is taken in variational form, instead of using it in
strong form. This Petrov-Galerkin formulation of the PINNs scheme makes use of the
space of the neural networks as trial space, while as a test space different choices can be
made, such as trigonometric functions, Legendre polynomials, Lagrangian basis functions
or also neural networks.

Let N be the space of neural networks and VK = span{v1, v2, · · · , vK} be the space of
the test functions. The VPINNs formulation of the Helmholtz impedance problem reads:
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find uN ∈ N that minimizes

L (uN) =
1

K

K∑
k=1

|a (uN , vk)− l (vk)|2 ,

where a(·, ·) and l(·) are defined respectively in equations (6.2) and (6.3). Notice that no
additional artificial loss terms are needed to satisfy the impedance boundary conditions,
contrary to the case of Dirichlet boundary conditions, which would require to introduce
additional parameters to weight the correspondent contribution.

The integrals appearing in this formulation can be discretized using different quadrature
rules, such as Legendre-Gauss-Lobatto, of the form

∫ b

a

f(x)dx ≃
Nq∑
i=1

wif (xi) ,

where {wi}Nq

i=1 and {xi}Nq

i=1 are respectively the quadrature weights and nodes. When
using test functions with local support, such as Lagrangian basis functions, the quadrature
points should be chosen within the support, in order to improve accuracy.

Compared to classical PINNs, this approach has the following advantages:

• by using test functions with local support, the learning of the solution can be more
easily controlled in a local and stable manner;

• it less likely to fall in local minima, because the differential equation is not evaluate
point-wise but globally;

• it is more natural from the point of view of the theory of PDEs, allowing to exploit
formulations that can be written only in variational form, which is the case of the
formulation of the Helmholtz problem described in Section 6.1;

• ultimately, it can reduce the training time of the neural network and it can increase
the accuracy of the solution.

6.2.1. Approximation using deep neural networks

Let N be the space of a fully-connected multilayer perceptron (MLP) with 1 node at
the input layer, N nodes on each of D hidden layers and 2 nodes at the output layer, as
depicted in Figure 6.1. The two-dimensional output represents the real and the imaginary
parts of the solution: uN(x) = uN,1(x)+ıuN,2(x). For this generic architecture of the MLP,
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Figure 6.1: MLP with 4 hidden layer and N = 6 for the solution of the Helmholtz problem.

each element of the the two-dimensional solution could be expressed as

uN,i = ci0 +
N∑
j=1

cijσ
(
hD ◦ hD−1 ◦ · · · ◦ h1(x)

)
, i ∈ {1, 2}

where σ(x) is a non-linear activation function and the output of the hidden layers {hd}Dd=1

are defined as

h1
i = σ

(
w1

i x+ b1i
)
,

hd
i = σ

(
N∑

n=1

wd
i,nh

d−1
n + bdi

)
, d = 2, · · · , D.

Because the considered weak formulation of the Helmholtz problems involves computing
the second order derivatives of the solution, we employ σ(x) = tanh(x) in order to have
uN smooth.

Definition 6.1. For D ∈ R+, let the set SD ⊆ C∞([−D,D],R) be given by

SD =
{
f ∈ C∞([−D,D],R) :

∥∥f (n)(x)
∥∥
L∞[−D,D]

≤ n!, for all n ∈ N0

}
Consider now the following oscillatory texture, of particular interest as potential solution
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of the Helmholtz problem, of the form

u(x) = cos(kg(x))h(x), (6.4)

with k ∈ R+, g, h ∈ SD. Thanks to the approximation properties of neural networks, in
order to approximate (6.4) up to a desired tolerance, the number of layers of constant
width required scales logarithmically with respect to k, as shown in [69, 125] (see also
[92, 93, 146]). This is not the case for the FEM applied to weak formulation of the
Helmholtz impedance problem descibed in Section 6.1, as analyzed in [76]. Indeed, in this
case in order to start observing a convergent behaviour for such a scheme, the number of
basis functions needs to be greater than a threshold which scales linearly with the wave
number.

6.3. Training strategies

Despite the powerful theoretical approximation properties of neural networks, in practice
training remains the main limitation to the applicability of this approach, due to the
presence of multiple local minima in the loss function and of the expensive optimization
processes. In order to alleviate this problem, we propose the following strategies, to be
possibly used in combination.

6.3.1. Hybrid training

Usually gradient based algorithms, such as Adam [109], are applied to train instinctively
all of the parameters of the network, because of their non-linear dependence from the
loss function. However, the parameters of the output layer of the network may be found,
deepening on the considered loss function, by using a least-squares approach. In partic-
ular, the weights of the last layer are computed as the real and imaginary part of the
least-square solution of the system of equations

Ac = f

where A ∈ CK×(N+1) and f ∈ CN+1 are define as

Ai,j = a
(
σ(hD

j ), vi
)

j ≤ N,

AN+1,j = a(1, vj)

fi = l (vi)
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for i = 1, 2, . . . , K. By alternating the training of these "linear" parameters and of
the remaining "non-linear" ones, it is possible to speed up the training process. This
approach is described in [65] and it is analogous with the concept of adaptive basis for
classical FEMs. The basis functions are represented by {σ(hd)}Dd=1 in the neural network
architecture.

6.3.2. Physics-based initialization

An important factor for training a neural network is the initialization of the parameters
[116]. Consider a shallow neural network, i.e. with one hidden layer, with N nodes.
We initialize the weights of such layer as w1

i = k, where k is the wave number of the
equation. The biases are initialized as b1i = −w1

i x
∗
i , where x∗

i for i = 1, 2, . . . , N is
uniformly distributed on the interval Ω. With this initialization, the output of the shallow
network could be expressed as

uN,i = ci0 +
N∑
j=1

cijh
1
j = ci0 +

N∑
j=1

cijσ
(
k
(
x− x∗

j

))
.

Finally, the linear parameters of the layers can be initialized using the least squares
approach described in Section 6.3.1. This kind of initialization is particularly well suited
for oscillatory solutions with leading frequency k.

6.3.3. Adaptive mesh refinement

This approach is based on the following analogies with classical FEMs:

• deep neural networks with ReLU activation function are piece-wise linear, corre-
sponding to linear finite elements [96];

• the partition of the physical domain induced by the neural network, determined by
where the function changes its trend, corresponds to the mesh;

• the loss function, computed locally for the different mesh elements induced by the
neural network, corresponds to an estimator of the error.

Inspired by classical FEMs [49], it is possible introduce a scheme of the following form:

1. solve: train the neural network to solve the desired problem;

2. estimate: estimate the error by computing the loss function for each mesh element;

3. refine: insert new neurons, by initializing its weights in such a way to partition the
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desired fraction α of elements with the highest estimated error.

The idea is that by refining the mesh induced by the neural network, we obtain an
initialization with a richer space of basis functions where needed.

The dual of this approach consists in performing adaptive mesh refinement to enlarge
the test space, using again the loss function as error estimator. The refinement can be
performed in the classical sense if the test space is defined through a mesh, as for standard
Lagrangian basis functions.

6.3.4. Incremental frequency approach

Consider functions
f : (x, y)T → (cos(x), sin(x))T ,

g : (x, y)T → (2xy, x2 − y2)T .

By exploiting trigonometric identities we can double the initial frequency by composition

sin(2x) = 2 sin(x) cos(x),

cos(2x) = cos2(x)− sin2(x),

g ◦ f : (x, y)T → (sin(2x), cos(2x))T .

The process can be repeated by iterative composition with g. With two shallow neural
networks it is possible to well approximates both f and g, and their composition is a
neural network with two hidden layers. This means that by adding a single layer to a
pretrained neural network it is possible to double its frequency content. Therefore, the
incremental frequency approach to solve the Helmholtz problem for frequency k consists
in using as initialization the neural network solution of the same problem for frequency
k/2, with an additional final layer of neurons. This process can be applied iteratively and
the initial problem can be solve using a shallow neural network. The first shallow network
can be initialized using the physics-based approach of Section 6.3.2, while the additional
layers of the following networks can be initialized using the adaptive refinement approach
of Section 6.3.3.

6.3.5. Generative adversarial networks

This approach is based on the idea of learning both the trial and the test space si-
multaneously. This allows to select effectively few test functions, hence simplifying the
optimization problem, improving the accuracy and reducing the computational cost. To
accomplish this we employ the Orthogonal Greedy Algorithm [135], by repeating the
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following steps until convergence is reached:

1. Given a test space, we train a neural network for the trial space, that minimizes the
loss function to approximate the solution. For a fixed value of the basis functions,
i.e. of the non-linear network parameters, it is sufficient to apply the least squares
approach of Section 6.3.1.

2. Given the candidate solution of step 1, we train a neural network for the test space,
that maximizes the loss function to find the direction along which the error is largest.
This direction should be normalized and it is supposed to be orthogonal with respect
to the space of basis functions currently employed.

3. The trained test networks is used both to enrich the space of test functions and as
additional basis function to initialize the next trial network.

This process allows to incrementally the build a space of basis functions which is optimal
for the considered problem. The concept of neural networks competing to minimize and
maximize the loss is analogous to the one of Generative Adversarial Networks (GANs)
[64, 90, 145], where a generative network tries to learn the data distribution in order to
generate new samples, while a discriminative network tries to distinguish the candidates
produced by the generator from the true data.

6.4. Numerical experiments

As a first exploratory test case, in the following numerical experiments we considered the
approximation problem

min
uN

1

K

K∑
k=1

∣∣∣∣∫
Ω

(uN(x)− f(x))vk(x)

∣∣∣∣2 . (6.5)

6.4.1. Adaptive mesh refinement

We consider the following solution of (6.5)

f(x) =
√
x, x ∈ [0, 1]. (6.6)

We want employ a shallow neural network and Lagrangian test functions, together with
the following adaptive refinement strategy:

1. Train a neural network to minimize (6.5).
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2. Compute the loss element-wise for the test space mesh.

3. Refine 20% of the element with the highest error, therefore increasing the number
of test functions.

4. Add one neuron to the trial neural network for each new element.

5. Repeat steps 1-4 until convergence.

We employed an initial number of N = 4 neurons and K = 10 hat functions. After
4 iteration of the adaptive procedure the relative L2 error is 2.0204e-02 and results are
shown in Figure 6.2. As we can see, mesh nodes in test space are clustering close to zero,
where f(x) is singular. The same experiment has been repeated in the deep case, i.e. by
adding one hidden layer each time in the refinement process, keeping the width of the
network constant. Results are completely analogous.

Figure 6.2: Left: shallow neural network solution of (6.5) and (6.6), after 4 iterations of the
adaptive refinement procedure. Right: mesh nodes of the refined test space.

6.4.2. Physics-based initialization and hybrid training

We consider the class of solutions of (6.5)

f(x) = x2 sin(a cos(x)2), x ∈ [0, π], (6.7)

for different values of the leading frequency a ∈ R+, with uN a shallow neural network
and {vk}Kk=1 equally spaced Lagrangian basis functions. We employ both a physics-based
initialization and hybrid training, described in Sections 6.3.2 and 6.3.1. As we can see in
Figure 6.3, employing a physics based initialization already yields a very good approxi-
mation of the solution, with a relive L2 error of order 10−1. Then, by employing a hybrid
training strategy it is possible to improve the accuracy of one order of magnitude.
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Figure 6.3: Solution of (6.5) and (6.7) for frequency a = 25, N = 25 neurons, K = 3a = 75 basis
functions. Left: solution after the physics-based initialization, with relative L2 error 2.0444e-01.
Right: solution after 1000 iterations of hybrid training, with relative L2 error 4.4297e-02.

neurons\frequency 25 50 100
10 6.9004e-01 8.0182e-01 8.0304e-01
50 1.7119e-02 4.9621e-02 6.3034e-01
100 6.7817e-04 2.0629e-02 5.2678e-02
150 7.2992e-04 1.0146e-03 2.4594e-02
200 7.9429e-04 5.6830e-04 1.5395e-02

Table 6.1: Relative L2 errors for the solution of (6.5) and (6.7), for different values of the
frequency a and number of neurons N . In all cases the number of basis functions is K = 3a.

This approach seems robust even for high frequencies, e.g. a = 300 shown in Figure
6.4. This is further confirmed from results in Table 6.1. As expected, as the frequency
grows more neurons are required to reach the same accuracy. At the same time however,
using more neurons means solving a more complex optimization problem, which is why
for frequency a = 25 the error even increases a bit when using 200 neurons instead of 150.

6.4.3. Generative adversarial networks with incremental frequency

We consider the class of solutions of (6.5)

f(x) = sin(ax), x ∈ [0, π], (6.8)

for different values of frequency a ∈ R+, with equally spaced Lagrangian basis func-
tions. We employed a GANs approach to incrementally build the optimal space of basis
functions. For frequency a = 1, the convergence plots are repented in Figure 6.5, in
agreement with the theoretical estimates of classical FEMs, while the constructed space
of basis functions is represented in Figure 6.6.
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Figure 6.4: Solution of problem (6.5) and (6.7) for frequency a = 100, N = 200 neurons,
K = 3a = 300 basis functions. Physics-based initialization and hybrid training have been
employed. Relative L2 error: 1.5395e-02.

Figure 6.5: Relative L2 error (left) and H1 error (right) vs the number of basis functions, using
the GANs approach to solve (6.5) and (6.8) for frequency a = 1.
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Figure 6.6: Test space constructed using the GANs approach to solve (6.5) and (6.8) for fre-
quency a = 1.

basis functions\frequency 1 2 4
1 3.76e-01 4.72e-01 1.06e+00
2 2.24e-01 4.92e-01 1.14e+00
3 9.11e-02 1.85e-01 1.11e+00
4 3.42e-02 8.93e-02 1.08e+00
5 3.23e-02 8.24e-02 1.07e+00

Table 6.2: Relative L2 error as function of the number of basis functions and the frequency,
using GANs with an incremental frequency approach to solve (6.5) and (6.8).

The GANs strategy has been combined with an incremental frequency approach, resolving
in order frequencies 1, 2 and 4. As shown in Tables 6.2 and 6.3, while convergence is
observed moving from frequency 1 to frequency 2, the method fails moving to frequency
4. Indeed, when applying this approach, tuning of training paramters must be done with
care and it is still subject of ongoing research.

6.5. Concluding remarks

The VPINNs strategy proposed to solve the Helmholtz impedance problem for high fre-
quency is appealing from a theoretical point of view, in terms of approximation power of
the numerical solution. Training still remains the major issue for the applicability of this
methods. The strategies presented to simplify the optimization problem draw interesting
parallelism between neural networks and finite elements, from which both worlds could
greatly benefit in terms of computational efficiency and interpretability. For example, the
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basis functions\frequency 1 2 4
1 5.81e-01 7.30e-01 9.06e-01
2 2.91e-01 5.78e-01 7.80e-01
3 2.11e-01 3.27e-01 7.76e-01
4 1.67e-01 2.58e-01 7.81e-01
5 1.63e-01 2.43e-01 8.11e-01

Table 6.3: Relative H1 error as function of the number of basis functions and the frequency,
using GANs with an incremental frequency approach to solve (6.5) and (6.8).

concept of adaptive mesh refinement from FEMs has been applied to VPINNs in order
to improve convergence. Vice-versa, the concept of GANs has been an applied to build
a problem-informed FEM basis, in order to reduce the computational cost. All of the
considered training strategies seem promising tools to solve the VPINNs formulation of
the Helmholtz impedance problem, to be carefully combined and studied in terms of ro-
bustness. This work is still in a preliminary phase, and many numerical experiments still
need to be performed in order to actually access the feasibility of the approach.
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In this thesis we presented a ML-based framework to efficiently handle the open problems
of mesh refinement and agglomeration within polytopal finite element discretizations of
differential problems. It is based on the concept of learning the geometrical information
contained in the shape of mesh elements in an automatic and cost effective manner, in
order to tailor the approach a wide range of possible situations which would not be possible
using classical strategies.

The novelty of the proposed methods consist in boosting and generalising classical meth-
ods for mesh refinement and agglomeration using Deep Neural Network architectures
and the k-means clustering algorithm. Advantages include computational efficiency, han-
dling a wider range of data variability, independence from the differential model and the
numerical method at hand, flexibility in exploiting additional geometrical information,
exploitation of predefined classical algorithms, memory saving and higher grid quality.

At first, we developed in two dimensions a new paradigm based on CNNs to enhance both
existing refinement criteria and new refinement procedures, withing polygonal finite ele-
ment discretizations of Partial Differential Equations. We introduced two CNN-enhanced
refinement strategies, respectively based on boosting the classical Midpoint strategy and
on generalizing the refinement strategies for regular polygons to any element shape. These
strategies exploit a CNN to suitably classify the "shape" of a polygon in order to later ap-
ply an ad-hoc refinement strategy, by choosing among the available ones. This approach
has the advantage to be made of interchangeable pieces: any algorithm can be employed
to classify mesh elements, as well as any refinement strategy can be employed to refine
a polygon with a given label. As a result, the quality of the grids consistently and sig-
nificantly improves, together with the accuracy of polygonal finite element methods (DG
and VEM) employed for the discretization. Moreover, this classification step has a very
limited computational cost when using a pre-trained CNN. The latter can be made offline
once and for all, independently of the differential model under consideration.
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We developed the non-trivial extension to three dimensions of the above ML-based paradigm
for polygonal grid refinement, to exploit it within polyhedral finite element discretizations
of Partial Differential Equations. By doing so we inherit the benefits of the two dimen-
sional approach. In particular, the computational efficiency of CNNs plays even a more
important role in three dimensions: it allows to exploit strategies explicitly based on
the shape of the polyhedron, which would not be possible otherwise unless explicit and
costly geometrical checks are performed. Due to the very high variability of the shapes of
polyhedra in three dimensions, an approach based solely on the supervised learning using
CNNs does not seem enough to effectively tackle the problem, because of the impossibility
to generate an exhaustive database of "shapes" for the training. This calls for the need
of unsupervised learning approaches, that do not require prior labelled data, at the cost
of performing more computations online. In particular, the k-means algorithm is used to
learn a clustered representation of the element that is used to perform the partition. It
produces shape-regular elements and it is robust when applied on unstructured grids. The
flexibility of CNNs allows to combine them with other strategies, including the k-means
algorithm and making the overall approach robust. As a result, the initial structure and
quality of the grid is preserved, significantly lowering the computational cost and the
number of vertices, edges and faces required to refine the mesh. These ML-enhanced
refinement strategies are particularly beneficial for the VEM and for the PolyDG method.

Then, we developed a GNN-based approach to tackle the problem of polygonal grids
agglomeration. This is achieved by exploiting the graph representation of the connec-
tivity structure of mesh elements. GNNs have the advantage to process naturally and
simultaneously both the graph structure of mesh and the geometrical information, such
the elements areas or their barycentric coordinates, contrary to METIS [106] or k-means.
Performance in terms of quality metrics is enhanced, with GNNs featuring a lower compu-
tational cost online. Such models also show a high degree of generalization when applied
to more complex geometries and capability of preserving the grids quality. The effective-
ness of these strategies is measured also when applied to multigrid solvers in a PolyDG
framework.

Finally, we introduced the use of VPINNs to solve the one-dimensional Helmholtz impedance
problem. Such approach is appealing for high frequency from a theoretical point of view,
thanks to the approximation power of neural networks. We presented different training
strategies to simplify the optimization problem, exploiting parallelism between neural
networks and finite elements, and performed some preliminary numerical experiments.
This work is still in a preliminary phase, and many numerical experiments still need to
be performed in order to actually access the feasibility of the approach.



7| Conclusions and future developments 129

The results of the thesis are original and are contained in [4, 6, 9, 97].

Future developments that arise from the work carried out in this thesis are the following.

• Concerning mesh refinement, it would be of great interest to tackle also the anisotropic
case. Indeed, as noticed in [78], having skewed meshes can sometimes be beneficial
to polytopal methods with hybrid unknowns, if the skewness is compatible with the
diffusion anisotropy. We believe that our method may be extended so as to generate
distorted elements by including the anisotropy directions into the shape recognition
phase. This extension would certainly require to process information coming from
the physical problem at hand, therefore loosing a bit in generality of the approach.
However, this additional information can be naturally and automatically processed
by neural networks, without having to perform a consistent change in the refinement
framework.

• Concerning mesh agglomeration, further improvements certainly include fostering
the generalization capabilities of the GNNs, by generating a larger database of grids
or by considering different geometrical features, such as quality metrics or error es-
timators. Another possibility is to reframe the approach in a reinforcement learning
framework, as proposed by [86]. The extension to three dimensional agglomeration
strategies should certainly be explored. It is worth noticing that all of the proposed
agglomeration strategies can be applied to the three dimensional case with little or
no modification, as they mainly rely on the connectivity graph structure of the mesh,
which is a dimensionless entity, or on geometrical quantities with natural extensions
such the area/volume of polytopes or their barycentric coordinates. The described
approach could also be employed within domain decomposition techniques, and MG
schemes as preconditioner.

• From a point of view of the applications, the effect of using a posteriori error esti-
mators to drive the refinement and agglomeration processes should be investigated.
Indeed, in the adaptive refinement case we did not employ any a posteriori estima-
tor of the error but the actual error of the numerical solution, since we wanted to
investigate the direct effect of the proposed refinement strategies. This simplifying
assumption cannot hold in practice where the true solution is unknown.

• Other discretization frameworks other than the PolyDG and VEM could also be
automatically considered, such as the Hybrid High-Order method, the mimetic finite
difference method, or the hybridizable discontinuous Galerkin method.

• This work explored the capabilities of a ML based framework for handling polytopal
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grids mainly considering idealized test cases. More complex and real applications
should certainly be considered in order to effectively test the capabilities of this
approach, for example geophysical numerical simulations, including fluid-structure
interaction with complex and moving geometries. Preliminary results of agglomer-
ation of the brain obtained from medical images are encouraging.

• Finally, the work on VPINNs to solve the Helmholtz impedance problem is still in
a preliminary phase. The effectiveness and the robustness of the proposed training
strategies still needs to be studied and validated through extensive numerical ex-
periments. Moreover, an efficient implementation of this approach is required, to
practically explore its computational limitations for very high frequencies.
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