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1. Introduction
Molecular Dynamics (MD) simulations play a
pivotal role in numerous scientific domains, with
the accuracy of these simulations being largely
dependent on the precision of Force Field (FF)
parameters. Traditional optimization methods
for these parameters, such as Gradient Descent
(GD), often encounter challenges like getting
stuck in local minima and difficulties in man-
aging high-dimensional parameter spaces [2].
This thesis introduces a groundbreaking Rein-
forcement Learning (RL) technique using the
Linear Q-function Approximation (LQFA) to
optimize FF equations. Unlike conventional Q-
learning that uses extensive Q-tables, the LQFA
method employs a linear function to approxi-
mate Q-values, effectively addressing the com-
putational challenges of vast state and action
spaces. The approach hinges on the weight ma-
trix initialization, ensuring the algorithm’s effi-
ciency and capturing state-action relationships
effectively [14] [6].
To simplify the computational landscape, the
methodology reduces the dimensionality of the
parameter space, focusing primarily on sigma
and epsilon parameters and limiting the num-
ber of atom types. The parameter space is vi-
sualized as an N-dimensional Cartesian coordi-

nate system, structured in a grid-like manner.
The results of this research highlighted a sig-
nificant improvement in the helicity of the Ala-
nine Oligopeptide (20-mer), an indicator of its
propensity to adopt a helical conformation. A
peak helicity nearing 9 was observed, indicating
the effectiveness of the LQFA approach. How-
ever, the maximal helicity value for this peptide
is 16 , representing an ideal state of parameter
optimization. This research, while noteworthy,
was executed under specific conditions to ease
computational demands. Future developments
and refinements are discussed, aiming to achieve
closer to the maximal helicity and fully realize
the peptide’s structural potential [15].
The algorithm’s efficacy was further validated
using real-world data, with the system’s helicity
being the primary evaluation metric. While the
examples provided were limited to four dimen-
sions, the algorithm inherently can handle even
larger dimensional spaces, with computational
processing time being the primary constraint. In
conclusion, this thesis offers a novel approach to
optimizing FF parameters in MD simulations us-
ing RL and LQFA, showcasing promising results
and setting the stage for future advancements in
the field.
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2. Preliminary: Molecular Dy-
namics

Molecular dynamics (MD) simulations are com-
putational tools used to simulate the motion and
behavior of atoms and molecules by solving their
equations of motion. These simulations are piv-
otal in fields like biochemistry and drug discov-
ery, aiding in understanding the structural dy-
namics of biomolecules, their folding pathways,
and interactions [1]. The primary objective of
this project is to enhance MD simulations by
combining top-down and bottom-up approaches,
especially when experimental data doesn’t align
with atomistic trajectories. A typical MD simu-
lation involves several steps [1]:

1. Initial Geometries: Using databases or
molecular modeling software to obtain or
create molecular structures.

2. Define Inter-Atomic Forces: Examining
forces through Force Field (FF) equations.

3. Simulation Box Setup: Defining a volume
to enclose the system, often using periodic
boundary conditions.

4. Energy Minimization: Adjusting atomic
positions to achieve a low-energy configu-
ration.

5. Equilibration: Allowing the system to sta-
bilize before data collection.

6. Production: Main simulation phase to
gather data for analysis.

7. Analysis: Processing and interpreting sim-
ulation data to gain insights.

Among these, defining inter-atomic forces (Step
2) and the analysis phase (Step 7) present unique
challenges. The former involves the intricate
task of selecting appropriate FF parameters and
equations, while the latter demands the process-
ing and interpretation of vast amounts of raw
data. Force Field (FF) in molecular modeling
is a mathematical model that describes inter-
atomic interactions during an MD simulation.
It encompasses both functional forms and pa-
rameter sets used to calculate a system’s po-
tential energy. The accuracy and reliability of
MD simulations heavily depend on the FF, mak-
ing it a critical component. In MD simula-
tions, interactions are categorized into bonded
and non-bonded types. Bonded interactions in-
clude bond stretching, angle bending, and tor-
sional rotation. Non-bonded interactions cover
van der Waals forces and electrostatic interac-

tions. The selection of FF parameters is com-
plex due to the vast parameter space. To ad-
dress this, the project focuses on a subset of
the most significant parameters during simula-
tions. This research specifically investigates the
parameters sigma (σ) and epsilon (ϵ) [9] [13]. To
streamline parameter selection, sensitivity anal-
ysis is employed using the ThermoDiff library in
Python. This technique calculates derivatives of
free energy concerning specific FF parameters.
The methodology produces a ’sensitivity matrix’
that guides the modification of model attributes
in line with existing data [10]. In conclusion, this
thesis delves deep into the intricacies of MD sim-
ulations, emphasizing the importance of Force
Field parameters and the challenges associated
with their optimization. The research aims to
enhance the accuracy and reliability of MD sim-
ulations, paving the way for more precise molec-
ular studies in various scientific domains. Total
Energy [7]:

E = Ebonded + Enon-bonded (1)
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3. Preliminary: Reinforcement
Learning

Reinforcement Learning (RL) is a machine
learning paradigm that focuses on an agent’s in-
teraction with its environment to achieve spe-
cific goals. The agent learns through this inter-
action, aiming to maximize cumulative rewards
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over time. The RL process involves components
such as the agent, environment, state, action,
reward, policy, value function, and optionally, a
model of the environment. RL has found appli-
cations in diverse areas, from robotics to game
playing and autonomous vehicles [14].
A significant focus of this thesis is on Q-learning,
a type of RL algorithm. Q-learning is an off-
policy learning method where the agent learns
the optimal value function, known as the Q-
function. This function represents the expected
cumulative reward for taking a particular action
in a given state and then following the optimal
policy. The Q-learning process involves initial-
izing a Q-table, balancing exploration and ex-
ploitation, selecting actions, and updating Q-
values using the Bellman equation [14].
However, for large state and action spaces, main-
taining a Q-table becomes computationally chal-
lenging. To address this, Linear Q-function Ap-
proximation (LQFA) is introduced. LQFA ap-
proximates Q-values using a linear function, rep-
resenting them as a linear combination of feature
values associated with state-action pairs. In-
stead of storing Q-values directly, LQFA uses
feature and weight vectors. The Q-value of a
state is then calculated as the scalar product of
these vectors, as shown in the equation [6]:

Q(s, a) =
n∑

i=0

fi(s, a) · wa
i

To implement LQFA in RL, two primary mod-
ifications are made to the standard algorithm:
initialization and update. Initialization involves
setting all weights to zero or assigning "good"
weights. The update step focuses on adjust-
ing the weights instead of Q-table values. The
weight update formula is [6]:

wa
i ← wa

i +α·
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
·fi(s, a)

In conclusion, this thesis delves into the intrica-
cies of RL, emphasizing Q-learning and the ad-
vantages of LQFA in handling large state and
action spaces. The research aims to provide
a comprehensive understanding of these tech-
niques and their applicability in real-world sce-
narios.

4. The Model
The primary objective of this research is to op-
timize the Force Field (FF) parameters using a
Reinforcement Learning (RL) approach. The fo-
cus is on the Q-function (QF) method, which
is adept at handling multiple parameters and
discovering the optimal solution in the solution
space. To manage the high dimensionality of the
problem, two parameter reduction steps are em-
ployed. Initially, the emphasis is on the sigma
and epsilon parameters due to their adjustable
nature. Subsequently, the number of atom types
in the system is reduced using sensitivity analy-
sis with the ThermoDiff library in Python.
To visualize the parameter optimization prob-
lem, an analogy to a video game is drawn. The
environment, analogous to the game setting, is
where the algorithm explores different param-
eter values. This environment is represented
as an N-dimensional Cartesian coordinate sys-
tem, with each dimension symbolizing a specific
parameter. To navigate this space, it’s trans-
formed into a grid-like structure, referred to as
an ND grid [11]. This discretization ensures a
more controlled exploration of parameter values.
Each configuration of parameters is termed a
’state’. For every state visited, a simulation runs
based on its parameter values. The outcome
of this simulation, varying based on the observ-
ables considered, serves as the reward. In this
research, the helicity calculation of an Alanine
Oligopeptide (20-mer) is utilized as a trial re-
ward function. In the broader application, this
will be replaced with a measure of agreement
between simulation estimates and experimental
reference values [3].
The agent in this RL setup is an abstraction of
the FF, interacting with the environment by re-
ceiving rewards, influencing the Q-function pa-
rameters, and deciding subsequent actions based
on a defined policy. The goal is to discover opti-
mal parameter values for the FF equation. Ac-
tions, in this context, are changes in parameter
values. The agent’s possible actions are influ-
enced by specific strategies, and these actions
can involve moving to a neighboring state’s lo-
cation.
The policy adopted combines a greedy-based ac-
tion with a 70% probability, Gradient Descent
(GD) with a 20% probability, and a random
walk with a 10% probability. This policy intro-
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duces diverse movements to the agent’s decision-
making, aiming to avoid over-fitting and en-
abling exploration of efficient paths in the simu-
lation. By integrating GD, the agent can find lo-
cal minima in the state space. However, reliance
on GD alone is not advisable due to potential
challenges like noisy gradients and a highly non-
linear reward function with multiple minima [12]
[4] [2].
The reward function quantifies the agreement
between simulation outcomes and experimental
data. It emphasizes larger discrepancies between
simulated targets and experimental data, ensur-
ing sensitivity to significant deviations. This
function offers a quantitative measure of how
closely the simulation aligns with real-world ex-
perimental data, making it a valuable tool for
refining the simulation’s accuracy.
The trajectory duration is a pivotal constant in
this research. It balances the need for observing
system changes over time while maintaining rea-
sonable simulation lengths. The time constant,
indicative of a system’s rate of change, is derived
from an exponential decay function. This con-
stant signifies the time required for the system
to decay to approximately 63.2% of its initial
state [5].
The Linear Q-function Approximation (LQFA)
is indispensable for managing extensive environ-
ments with numerous states. In our execution,
we deal with two distinct radii: a global-radius
and a local-radius. The global-radius defines the
ranges of the steps in each dimension, while the
local-radius determines the neighbors impacted
by any alterations in the current state [6].
Gradient Descent (GD) is an optimization
method employed to find the closest local ex-
trema of multidimensional functions. In the con-
text of molecular simulations, it’s used as an it-
erative optimization algorithm to minimize dis-
crepancies between simulated results and exper-
imental data. To apply GD for parameter op-
timization, sensitivity analysis is initially con-
ducted. This analysis calculates the local esti-
mate of the gradient, quantifying the impact of
individual parameters on the FF equation [4].
Lastly, essential initializations for our simula-
tion process include determining the number of
FF parameters, grid size, step size derived from
the PDB file analysis, weights matrix, local-
radius, and parameters of the Q-function and

GD. These initializations are crucial for the ef-
fective execution and optimization of the simu-
lation process [8] [16].

5. Results
The primary objective of this thesis was to op-
timize Force Field (FF) parameters using a Re-
inforcement Learning (RL) approach. The re-
search journey began with the foundational task
of setting up the necessary code for running sim-
ulations. This involved creating a trajectory, ap-
plying forces to the system, and observing atom
responses. Notably, certain atom types, like
solvents and ions, were excluded from sensitiv-
ity analysis to maintain focus on the molecule’s
structure and interactions.
The optimization algorithm scaled each gradi-
ent component by a learning rate, −αgr, which
determined the step size for optimization. This
learning rate was pivotal for the speed and accu-
racy of the algorithm’s convergence. The contin-
uous parameter space was discretized into a grid
to establish an environment for the RL model.
Each grid point represented a state, and the
magnitude of actions within the RL model was
influenced by the derivative values. Actions were
derived from gradients, and a loop was employed
to iteratively adjust the FF parameters based on
these actions.
A simplified example relying solely on Gradi-
ent Descent (GD) was executed to assess its ef-
fectiveness. The results showed that while GD
could guide the agent to a local maximum, the
maximum attainable helicity was not reached.
The research then transitioned to using artificial
rewards in a two-dimensional parameter space,
which was later expanded to an N-dimensional
space. The use of artificial rewards was to evalu-
ate the performance of the Q-learning algorithm.
The Linear Q-function Approximation (LQFA)
played a crucial role in the optimization of FF
parameters. The initialization of the weights
matrix in LQFA was of paramount importance
for the efficacy of the algorithm. The research
demonstrated that initializing the weights ma-
trix with high values promoted exploration of
various regions of the parameter space.
In the N-dimensional space tests, the agent suc-
cessfully localized desired areas within approxi-
mately 20 iterations. The algorithm effectively
distinguished high-potential areas from those
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with lower potential. The results prepared the
groundwork for extending the implementation
to accommodate an N-dimensional parameter
space.
The final segment of the research evaluated the
comprehensive algorithm using real-world data,
focusing on the system’s helicity as the pri-
mary metric. The complete LQFA was em-
ployed to identify optimal parameters within
an N-dimensional parameter space. The results
showed that the agent was capable of identify-
ing areas with high reward potential and distin-
guishing them from lower potential areas.
In conclusion, the research successfully demon-
strated the potential of combining Q-learning,
GD, and Random moves for optimizing FF pa-
rameters. The agent was able to pinpoint and
consistently track regions with high reward po-
tentials, making this approach promising for fu-
ture applications and studies.

6. Figures

Figure 1: Unhelix structure of Alanine
Oligopeptide (20-mer). Helicity is a crucial met-
ric for evaluating a system, as it directly re-
lates to the stability of the Alanine structure. A
higher degree of helicity often indicates a more
stable conformation of the Alanine Oligopep-
tide.

7. Conclusions
This research has pioneered the integration of
Reinforcement Learning (RL) with the Linear
Q-function Approximation (LQFA) to optimize
Force Field (FF) parameters in Molecular Dy-
namics (MD) simulations. Traditional methods,
such as Gradient Descent (GD), often faced chal-

Figure 2: helix structure of Alanine Oligopep-
tide (20-mer).

Figure 3: In the aforementioned figure, the out-
comes of the agent’s exploration-exploitation ac-
tivities on the Weights matrix associated with
each state, is illustrated. Areas depicted in
darker shades signify regions with a low prob-
ability of yielding high rewards. Conversely,
lighter shades indicate regions where there is a
higher likelihood of encountering substantial re-
wards.

lenges in high-dimensional parameter spaces.
The novel approach introduced in this thesis
effectively addresses these challenges by em-
ploying LQFA, which uses a linear function to
approximate Q-values, thereby managing vast
state and action spaces efficiently.
The methodology adopted streamlined the com-
putational landscape by reducing the dimension-
ality of the parameter space, focusing on key
parameters like sigma and epsilon. The results
showcased a marked improvement in the helicity
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Figure 4: The agent’s growth trajectory over
four states, achieving values of 6.82, 8.93, 8.17,
and 8.64, peaking near 9. This contrasts with
GD results from Section 3.1, where non-averaged
helicity peaked around 5. While GD alone can
lead to local maxima, integrating Q-learning,
GD, and Random moves enhances exploration.
This is evident as the agent diverges from ar-
eas like (7,3,5,7) to explore distant states such
as (10,2,3,5) due to random influences. After
identifying a peak, the algorithm’s knowledge
aids in pinpointing other promising regions, as
seen with a subsequent peak at (10,6,1,2) with
7.2. The exploration continues, revealing values
around 5.2 in states like (5,4,0,9), but a notable
drop is observed at (2,4,0,10).

of the Alanine Oligopeptide (20-mer), a mea-
sure of its structural conformation. While the
research achieved significant milestones, it also
highlighted areas for future exploration and re-
finement, aiming to achieve optimal helicity val-
ues.
Furthermore, the research emphasized the im-
portance of the initialization of the weights ma-
trix in LQFA and demonstrated its impact on
the algorithm’s efficiency. The algorithm’s ap-
plicability was further validated using real-world
data, emphasizing the system’s helicity as the
primary evaluation metric.
In essence, this thesis has laid a robust foun-
dation for the optimization of FF parame-
ters in MD simulations using a combination of
RL, LQFA, and GD. The results obtained are
promising, indicating the potential of this ap-
proach for future research and applications in
the realm of molecular simulations.
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