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attivamente alla mia crescita, che mi è stata sempre vicino e che riesce ad esserlo

anche ora che siamo lontani; la nonna a cui ho sempre voluto bene, che me ne ha

sempre voluto e per la quale sono stato e continuerò ad essere speciale.
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perché sono quegli amici irrinunciabili, quelli che in tutti questi anni mi hanno
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Infine, vorrei ringraziare lo zio Pino, al quale ho dedicato questa tesi, perché
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Nomenclature

Variables Description
d Dimension of the system
ξ Vector of position coordinates
ξ∗ Vector of target coordinates
Rd Set of real numbers
ε Perturbations
Θ Vector of motion parameters
π Prior
µ Mean value
Σ Covariance matrix
qerr Error between measured and desired joint configuration

P(ξt,n, ξ̇t,n; Θ) Probability Density Function

P(ξt,n, ξ̇t,n|k) Conditional probability density function
V Lyapunov function

f(x), g(x) Function
J Cost function
N Number of demonstrations in the training set
K Number of Gaussian functions
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Notations

Notation Description

(̇) First time derivative

(̈) Second time derivative

(̂) Estimated value
()k Value considering the kth Gaussian function
()T Value transposed
()t,n Value of the tth datapoint of the nth demonstration
()ξ Sub vector/matrix of indices 1:d
()ξ̇ Sub vector/matrix of indices d+1:2d

()ξξ̇ Sub matrix of indices (1:d,d+1:2d)

()ξ̇ξ Sub matrix of indices (d+1:2d,1:d)

8



Acronyms

Acronym Description
SEDS Stable Estimator of Dynamical Systems

DS Dynamical System
ODE Ordinary Differential Equation
BIC Bayesian Information Criterion
DIC Deviance Information Criterion
AIC Akaike Information Criterion
EM Expectation Maximization

MSE Mean Square Error
NLP Non-Linear Programming
SQP Successive Quadratic Programming

GMM Gaussian Mixture Model
GMR Gaussian Mixture Regression
RMS Root Mean Square

FWHM Full Width at Half Maximum
PDF Probability Density Function
GPR Gaussian Process Regression

LWPR Locally Weighted Projection Regression
MAP Maximum A Posteriori
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Abstract

Robotics is one of the sectors that has made enormous strides in recent decades;

the possibility of being able to reproduce human actions and movements, from the

simplest to the most complex, can become of vital importance in various aspects

of daily life. The possibility of constructing and being able to perfectly control a

robotic object can also have infinite potential in numerous fields of application,

for example in medicine to create increasingly realistic prostheses and able to

best replicate the functionality of a limb; as in space or research fields, to carry

out actions that would be too risky or even impossible for a human being. The

purpose of this thesis is to provide a method capable of teaching a robot certain

movements and making it able not only to reproduce them, but also to create

new ones based on the needs and obstacles that it may encounter along its path.

To do this, the proposed method uses SEDS algorithms that allow to model the

dynamics of these movements in an efficient and, above all, faithful way; the

reliability of this method will be shown by verifying that the robot considered is

actually capable of reproducing movements between two designated positions.
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Sommario

La robotica è uno dei settori che ha fatto enormi passi avanti negli ultimi

decenni; la possibilità di poter riprodurre azioni e movimenti umani, da quelli

più semplici a quelli più complessi, può diventare di vitale importanza in vari

aspetti della vita quotidiana. Essere in grado di costruire e poter controllare

ala perfezione un oggetto robotizzato può inoltre avere un infinito potenziale in

numerosi campi di applicazione, ad esempio in medicina per creare protesi sempre

più realistiche e in grado di replicare al meglio le funzionalità di un arto; come

anche in campo spaziale o di ricerca, per operare azioni che per un essere umano

sarebbero troppo rischiose se non addirittura impossibili. Lo scopo di questa tesi è

di fornire un metodo in grado di insegnare ad un robot dei determinati movimenti

e renderlo in grado non solo di riprodurli, ma anche di idearne di nuovi in base

alle necessità e agli ostacoli che esso può incontrare lungo il proprio cammino. Per

fare ciò il metodo che viene proposto utilizza gli algoritmi SEDS che permettono

di modellizzare la dinamica di questi movimenti in modo efficiente e, soprattutto,

fedele; verrà in seguito mostrata l’affidabilità di tale metodo verificando che il

robot considerato sia effettivamente in grado di riprodurre movimenti tra due

posizioni designate.
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1 Introduction

The purpose of this work is to provide a method capable to make a robot

learn discrete motions starting from a given set of demonstrations. In modelling,

demonstrations are defined as point-to-point motions and describe different paths

of different shapes but all of them reach the same final point (target) and are

constrained in order to grant global asymptotic stability in that point. The final

goal is to obtain a model capable to create new trajectories, always inside the

same operational space of demonstrations and with the same characteristics of

the initial set.

Procedure starts with the definition of a set of trajectories, taken randomly

considering different paths of different shapes, that represents the motion I want

to teach to the robot. I fix different starting points in the operational space ran-

domly and define different trajectories with different behaviours with the only

condition that all of them have to converge to the same target, in this work also

taken randomly but that can be obviously fixed with a known point for a specific

mission in case of necessity. After that I make some initial computations on all

data points and define a non-linear autonomous dynamical system (from now on

defined as DS) fixing some constraints in order to guarantee the global asymptotic

stability at the target. At this point, I propose a learning method able to com-

pute some time independent parameters from the initial set via an optimization

problem under non-linear constraints; this method is called Stable Estimator of

Dynamical Systems or SEDS. An advantage of setting these conditions on stability

and time invariance is that I make the system capable of responding immediately

to perturbations encountered during motion.

As already clarified, the process starts from the definition of an initial set

of demonstrations, defined through a direct modelization of their trajectories in

the operational space; indeed, to activate robot’s learning process, I use a method

called ’Programming by Demonstration’, or PbD. This method is based on provid-

ing examples of the task of point-to-point motions that are previously defined from

the robot’s point of view; in this work initial motions are defined by programming

their trajectories in the operational space but, with the correct instruments, they

can be demonstrated by the user guiding the robot passively by back-driving or

tele-operating it. Following I have to define what I need to imitate of these demon-

strations and find a system to extract the generic characteristics of the dynamics.
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For this purpose, I select the characteristics that are invariants across demonstra-

tions; these characteristics should contain the main features of the desired task

and need to be investigated considering some variations within a neighbourhood

around the covered area.

The goal of this work is to obtain a proper model from demonstrations and

verify its validity making it create new trajectories, starting from initial points

different from the initial ones, capable to follow a path really close to the ones

defined by demonstrations while converging to the same target point, obviously

maintaining the condition of global asymptotic stability.

In following chapters I will discuss the entire procedure and explain in details

all tools and algorithms used in the process. In Chapter 2 I will present the

method I chose for this work, its concept and some of the theoretic aspects neces-

sary for its application; in Chapter 3 I will expose the practical procedure of the

method, defining constraints, fixing approximations and describing the optimiza-

tion method I chose; Chapter 4 will present the design of the robot I considered

and the model created in order to validate the results obtained by the use of algo-

rithms while, in Chapter 5, all results and graphs obtained will be described and

commented.

Figure 1: Katana-T robotic arm
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2 SEDS: Concept and Theory

The SEDS method is proposed to make the robot learn discrete motions from

a set of initial demonstrations and the reason to this circumstance is that it grants

many advantages with respect to other methods.

Traditional means of encoding trajectories are based on spline decomposition

after averaging across training trajectories, however these methods give a poor

estimation of non-linear trajectories and are heavily dependent on time; this last

aspect is the most troublesome because time dependency makes these techniques

very sensitive to both temporal and spatial perturbations. SEDS method directly

overcome this deficiency by considering only motion parameters that are time

invariant, making its system robust against all types of perturbations.

Other approaches to statistical estimations use methods like Gaussian Process

Regression (GPR), Locally Weighted Projection Regression (LWPR), or Gaussian

Mixture Regression (GMR); however between all these methods, none optimize

under constraint of making the system stable. In practice, they fail to ensure

global stability, and they also rarely ensure local stability; this may converge to

spurious attractors or miss the target. Unlike them, SEDS method works with

some constraints set in order to guarantee the global asymptotic stability at the

target.

2.1 Formalism

The encoding of point-to-point motions is formulated as a control law operated

by an autonomous dynamical system. Let’s consider a state variable ξ ∈ Rd that

can be used to define a discrete motion of a robotic system in an unique way and

let define the set of the N given demonstrations as instances of a global motion

model, driven by an ordinary differential equation, of first order and autonomous

(ODE). I can define this global motion as

ξ̇ = f(ξ) + ε (1)

where f is a nonlinear continuous function, continuously differentiable with a sin-

gle equilibrium point ξ̇∗ = f(ξ∗) = 0, θ is the set of parameters that I will consider

while running the SEDS algorithms and ε represents the zero mean Gaussian noise.
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This last term considers both inaccuracies coming from sensor measurements and

errors from imperfect demonstrations.

Function f can be described using a set θ of parameters obtainable from the

initial demonstrations using differential statistical approaches; thanks to this step,

I can denote the noise-free estimation of f as f̂ , so that the estimation of the global

motion will be

ξ̇ = f̂(ξ) (2)

According to these first two formulae, I can make two observations: first that the

control law given by (2) generates trajectories without intersections and second

that the motion of the system is defined uniquely by ξ, so its choice is a crucial

point for the entire work.

Statistical approaches to modeling robot motions have become increasingly

popular as a means to deal with noise inherent in any mechanical system. They

have proved to be interesting alternatives to classical control and planning ap-

proaches when the underlying model cannot be well estimated. Existing ap-

proaches to the statistical estimation of f in (1) use either Gaussian Process

Regression (GPR), Locally Weighted Projection Regression (LWPR), or Gaus-

sian Mixture Regression (GMR), where the parameters of the Gaussian Mixture

are optimized through Expectation Maximization (EM). GMR and GPR methods

find an optimal model of f̂ by maximizing the likelihood that the complete model

represents the data well, while LWPR method minimizes the mean-square error

between the estimates and the data.

Because all of the aforementioned methods do not optimize under the con-

straint of making the system stable at the attractor, they are not guaranteed to

result in a stable estimate of the motion. In practice, they all fail to ensure the

global stability and most of the time the local stability of f̂ , and thus may con-

verge to a spurious attractor or completely miss the target; these errors are due to

the fact that there is yet no theoretical solution for ensuring stability of arbitrary

non-linear autonomous DS.

The use of DS is really advantageous, and the particular reason to this circum-

stance is that it makes a robot capable to adapt its trajectory instantly against

perturbations; a controller driven by a DS is strong against perturbations because

17



it incorporates all possible solutions to reach target inside one single function f̂ .

Perturbations may either be due to a sudden displacement of the target with re-

spect to robot or to delays in the execution of the tasks; I will refer to these two

types as spatial and temporal perturbations respectively.

2.2 Model

During process motion is represented in a kinematic coordinates system and I

assume that exists a low-level controller capable to convert its kinematic variables

into motor commands. In figure 2 is presented a schematic view of the entire

system, composed by two main loop paths. The inner loop consists in two blocks:

a system block that models robot’s dynamics and gives as outputs the robot’s

joint angles and their time derivatives, described by q, q̇ and q̈; and a controller

that generates the motor commands, described by u, required to follow the desired

motion.

Figure 2: Scheme of the double-loop DS

The outer loop takes q from the robot dynamics and a forward kinematics

block changes it into Cartesian coordinates of the end effector, described by ξ,

then a second system block represents the dynamic of the desired positions of the

end effector considering both ξ and the set of parameters θ that are obtained from

the N initial demonstrations. The output of this second dynamics are ξ and ξ̇ of

18



the desired motion that are converted back to robot’s joint angles before entering

the first loop; here the desired results are confronted with the ones of the robot

dynamics and, through the MSE method, this makes the controller able to define

the u needed to make the motion closer and closer to the desired one.

Considering this architecture, both inner and outer loops need to be stable.

Stability for inner loop requires the system to be input-to-state stable and the

output should remain bounded, while outer loop stability is already ensured when

learning the system.

The learning block determines a stable estimate of the DS that is used as the

controller of the outer-loop path; but I assume this controller as not necessarily

accurate because I want to focus my interest on designing a learning block that

ensures stability. Learning process is data driven and uses a set of demonstrated

trajectories in order to determine the parameters θ of my system; it proceeds as

an optimization problem, that needs to satisfy asymptotic stability at the target.

Both the optimization problem and the constraints necessary in order to grant

asymptotic stability to DS will be detailed later, both in Chapter 3

2.3 Gaussian Functions

In mathematics, a Gaussian function is a function of the form

f(x) = a · exp

(
−(x− b)2

2c2

)
considering arbitrary real constants a, b and a non zero c; the graph of a Gaus-

sian has a characteristic symmetric ”bell curve” shape. Parameter a represents

the height of the curve’s peak, parameter b defines the position of the center of the

peak while parameter c, also known as standard deviation, or sometimes called

Gaussian RMS width, controls the width of the ”bell”.

These functions are frequently used to represent the probability density func-

tion of a normally distributed random variable with expected value µ = b and

variance σ2 = c2; presenting a form like:

g(x) =
1

σ
√

2π
exp

(
−1

2

(x− µ)2

σ2

)
They are also widely used in statistics to describe a normal distributions, in
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signal processing to define filters and in mathematics to solve heat and diffusion

equations. Gaussian functions arise by composing the exponential function with

a concave quadratic function:

f(x) = eαx
2+βx+γ

where: α = −0.5/c2

β = b/c2

γ = 0.5(log(a)− b2)/c2

and their logarithm is a concave quadratic function.

Parameter c is related to the full width at half maximum (FWHM) of the peak

according to FWHM = 2
√

2 ln 2 c ≈ 2.35482c, so function can also be expressed

in terms of the FWHM, described by w:

f(x) = a · exp

(
−4 · (log 2)(x− b)2

w2

)
The most common method for estimating the Gaussian parameters is to take

the logarithm of the data and fit a parabola to the resulting data set. While this

provides a simple curve fitting procedure, the resulting algorithm may be biased

by excessively weighting small data values, which can produce large errors. This

problem can be partially compensated by reducing the weight of small data values,

but this too can be biased. In order to remove the bias, one can instead use an

iterative procedure, in which weights are updated at each step.

Once one has an algorithm for estimating the Gaussian function parameters,

it is also important to know how precise those estimations are; any least squares

estimation algorithm can provide numerical estimates for the variance of each

parameter.

2.4 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a parametric probability density func-

tion represented as a weighted sum of Gaussian component densities. They are

commonly used as a model of the probability distribution of continuous mea-

surements or features in a biometric system, such as vocal-tract related spectral

features. GMM parameters are estimated from training data using the iterative
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Expectation Maximization algorithm (EM) or the Maximum A Posteriori (MAP)

estimation from a well-trained prior model.

Considering a generic dataset, the goal is to find sets of points that appear close

together, defining µ as the mean (or centroid) of the cluster. A popular clustering

algorithm is known as K-means, which will follow an iterative approach to update

the parameters of each cluster; more specifically, it will compute the means of

each cluster, and then calculate their distance to each data point. This process

is repeated until some convergence criterion is met, for example when no further

changes in the cluster assignments are seen. One important characteristic of K-

means is that it is a hard clustering method, which means that it will associate

each point to one and only one cluster. A limitation to this approach is that

there is no uncertainty measure or probability that gives informations about how

much a data point is associated with a specific cluster; GMMs try to overcome

this limitation.

A Gaussian Mixture is a function that is comprised of several Gaussians, each

identified by k ∈ 1, . . . K, where K is the number of clusters of the dataset consid-

ered. Each Gaussian k in the mixture is comprised of the following parameters: a

mean µ that defines its centre, a covariance Σ that defines its width, and a mixing

probability π that defines how big or small the Gaussian function will be.

The mixing coefficients are themselves probabilities and must meet this con-

dition:

K∑
k=1

πk = 1

Next step is to determine the optimal values of these parameters and to achieve

this I must ensure that each Gaussian fits the data points belonging to each cluster.

In general, the Gaussian density function is given by:

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
Where x represents vector of data points, D the number of dimensions of each

data point, µ and Σ are the mean and covariance. Next, by finding the log of this

equation, differentiating it with respect to the mean and covariance and equating

it to zero, I will be able to find the optimal values for these parameters, and the

solutions will correspond to the Maximum Likelihood Estimates (MLE).
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2.5 Expectation Maximization Algorithm

Maximum Estimation is an approach to density estimation for a data set by

searching across probability distributions and their parameters; it is a general and

effective approach that underlies many machine learning algorithms, although it

requires that the training data set is complete, so that all relevant interacting

random variables are present.

The Expectation Maximization algorithm is an approach for performing max-

imum likelihood estimation in the presence of latent variables; it does this by first

estimating the values for the latent variables, then optimizing the model, and after

that repeating these two steps until convergence. It is an effective and general

approach and is most commonly used for density estimation with missing data,

such as clustering algorithms like the Gaussian Mixture Model.

It describes an iterative approach that works on two steps: first step attempts

to estimate the missing or latent variables and for this reason it’s called estimation-

step or E-step, while the second one attempts to optimize the parameters of the

model to best explain the data, and it’s called maximization-step or M-step.

This algorithm has a wide range of application, although is most well known

in machine learning for use in unsupervised learning problems, such as density

estimation and clustering; in fact, the most discussed application of the EM algo-

rithm is for clustering with a mixture model, a model comprised of an unspecified

combination of multiple probability distribution functions. A statistical proce-

dure or learning algorithm is used to estimate the parameters of the probability

distributions to best fit the density of a given training data set; the Gaussian Mix-

ture Model, or GMM, is a mixture model that uses a combination of Gaussian

probability distributions and requires the estimation of the mean and standard

deviation parameters for each.

Let’s now consider an example: looking at a random variable Y and a mea-

surement vector y = (y1, . . . , yN)T , the probability of receiving some measurement

yi is given by the probability density function (PDF) p(yi|Θ), where the PDF is

governed by the parameter Θ. The probability of having received the whole series

of measurements is then

p(y|Θ) =
N∏
i=1

p(yi|Θ)

The likelihood function is defined as L(Θ) = p(y|Θ),and the maximum like-
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lihood (ML) estimation of Θ is found by maximizing L. Often, it is easier to

maximize the log-likelihood

log L(Θ) = log p(y|Θ)

= log

N∏
i=1

p(yi|Θ) =
N∑
i=1

logp(yi|Θ)

because since the logarithm is a strictly increasing function, L and log(L) have

the same maximum.

The EM algorithm facilitate parameter estimation by introducing the so called

hidden random variables, which are not observed and therefore define the unob-

served data; instead of looking at complete data, the algorithm can facilitate even

more computation by dealing with unobserved data. In fact the EM algorithm

faces the presence of hidden variables by first finding an estimate for the likelihood

function, and then maximizing the whole term; in order to find this estimate, each

entry of z is a realization of a hidden random variable.

Its expectation given the observed data y is:

E[log LC(Θ)|y,Θ(i)]

The EM algorithm maximizes this expectation:

Θ(i+1) = argmax
Θ

E[log LC(Θ)|y,Θ(i)]

Compared to the ML approach which involves just maximizing a log likelihood,

the EM algorithm makes one step in between: the calculation of the expectation;

this is denoted as the expectation step. In the maximization step, a new update

Θ(i+1) for Θ is found, that it maximizes the whole term. This whole procedure is

repeated until some stopping criteria becomes very small.
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3 Learning Approach

3.1 Set of Demonstrations

First step is to define the set of N demonstrations from which start all the

analysis and computations in order to find the desired motion parameters. I fixed

them by selecting some random points in the operational space and considering

them as the starting points of my demonstrations; for this work I fixed nine trajec-

tories, that describe different paths and different shapes. Coordinates of starting

points and target point are reported in table 1, notice also that starting points

are divided according to the shape of their corresponding trajectory.

Target Linear Circular Sinusoidal

{17 -31 -13} start 1 {-13 -8 20} start 4 {-16 -8 -38} start 7 {-45 20 -47}
start 2 {-30 5 17} start 5 {46 49 50} start 8 {24 17 6}
start 3 {-1 45 -33} start 6 {42 -20 -33} start 9 {-23 4 39}

Table 1: Coordinates of target and starting points

Also target point has been fixed randomly in the operational space but, obvi-

ously, if the task requires to reach a point of known coordinates, it can be easily

fixed with the desired destination. As told before, I fixed the demonstrations rep-

resenting three different shapes, three tarjectories represent a linear case, three

represent a circular case and last three represent a sinusoidal case; all of them

are defined in order to converge to the target. However, as can be seen in figure

3, trajectories that follow the sinusoidal behaviour don’t converge exactly to the

target; for this cases I increased the number of data-points that describes the

trajectories and made a computation about the distance between each point of

their trajectories and the target, making them stop after reaching that point that

results to be the closest to target.

24



Figure 3: Training Set used to create the model

3.2 Algorithms

Having demonstrations, I can model f̂ by using a finite mixture of Gaussian

functions in a probabilistic framework. Using mixture models is a common ap-

proach for density approximation and it allows to define an appropriate model

through an exchange between model complexity and variations of the available

training data.

Mixture modeling is a method that builds a representation of the data density

through a fixed number of mixture components; an optimal number of components

could be found using different procedures, the most common are the Bayesian

Information Criterion (BIC), the Deviance Information Criterion (DIC) or the

Akaike Information Criterion (AIC).

While non-parametric methods offer an optimal regression they suffer for di-

mensionality, indeed the estimate regressor f̂ grows linearly with the number of

data, making itself poor for the re-computation of trajectories according to per-

turbations. To overcome this problem, I can use different techniques to reduce

the dependency among the number of data points; however these techniques de-

termine the optimal number of data points and become parametric.

By estimating f through a finite mixture of Gaussian functions, the unknown

parameters that I need to compute for f̂ become the priors πk, the mean values µk

25



and the covariance matrices Σk, where k = 1, ...., K indicates the parameter value

considering the kth Gaussian function; then I can collect all these parameters inside

one single vector θ and define it as θk={πk, µk,Σk}, or θ={θ1...θK} considering

all parameters of all Gaussian functions.

3.2.1 Procedure

Starting from the demonstrations presented in 3.1 first step is to compute their

first time derivative so that I have all necessary materials to estimate parameters.

I fix a known time step to be considered for all demonstrations and made com-

putation considering a forward approximation and setting velocities for last data

points equal to zero (supposing that the end effector will stop once it reaches

the target). From this preprocess I obtain trajectories and their corresponding

velocities for all data point of all demonstrations.

At this point I can make a first estimation for the desired motion parameters by

using the EM method, an iterative method used to find local maximum likelihood

or maximum a posteriori (MAP).

Now let’s see how the motion parameters appear and how they are computed.

Considering the kth Gaussian function, the priors appear to be a scalar for each

Gaussian, while the mean values and the covariance matrices are defined as:

µk =

(
µkξ
µk
ξ̇

)
, Σk =

(
Σk
ξ Σk

ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
(3)

Given a generic set of N demonstrations, described by position and velocity

vectors {ξt,n, ξ̇t,n}T
n,N

t=0,n=1 where t and n refers to the tth trajectory data point of the

nth demonstration, each recorded point in the trajectories [ξt,n; ξ̇t,n] is associated

with a probability density function (PDF) P(ξt,n, ξ̇t,n) that can be defined as:

P(ξt,n, ξ̇t,n; θ) =
K∑
k=1

P(k)P(ξt,n, ξ̇t,n|k)

{
∀n ∈ 1 . . . N

t ∈ 0 . . . T n
(4)

where P(k) = πk represents the prior for the kth Gaussian function, and

P(ξt,n, ξ̇t,n|k) is the conditional probability density function that can be computed

from the following formula
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P(ξt,n, ξ̇t,n|k) = N (ξt,n, ξ̇t,n;µk,Σk)

=
1√

(2π)2d|Σk|
e−

1
2

([ξt,n,ξ̇t,n]−µk)T (Σk)−1([ξt,n,ξ̇t,n]−µk) (5)

Taking the posterior mean estimate of P(ξ̇|ξ) yields

ξ̇ =
K∑
k=1

P(k)P(ξ|k)∑K
i=1P(i)P(ξ|i)

(µk
ξ̇

+ Σk
ξ̇ξ

(Σk
ξ )
−1(ξ − µkξ )) (6)

Notation of equation (6) can be simplified through a change of variables and

some new arrangements by defining
Ak = Σk

ξ̇ξ
(Σk

ξ )
−1

bk = µk
ξ̇
− Akµkξ

hk(ξ) = P(k)P(ξ|k)∑K
i=1 P(i)P(ξ|i)

(7)

Then, substituting (7) into (6) brings to

ξ̇ = f̂(ξ) =
K∑
k=1

hk(ξ)(Akξ + bk) (8)

At this point f̂ is expressed as a nonlinear sum of linear DS. According to equa-

tion (8) I can say that the nonlinear weighting terms hk(ξ), where 0 < hk ≤ 1,

give a measure of the relative influence of each Gaussian function locally; due to

this terms the resulting function f(ξ) is nonlinear and flexible enough to model a

wide variety of motions. If I estimate this mixture using classical methods, such as

the EM technique mentioned before, I cannot guarantee the asymptotic stability

of the system, so I have to determine sufficient conditions on the learning param-

eters θ to ensure asymptotic stability of f̂(ξ); conditions that will be presented

and discussed in Section 3.4.

Now what I need to do is determine a procedure to compute the unknown
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parameters from equation (8), θ = {π1 . . . πK ;µ1 . . . µK ; Σ1 . . .ΣK}, such that the

resulting model is globally asymptotically stable. As already said, the learning

algorithm that I propose is called SEDS and is based on computing optimal values

of θ by solving an optimization problem under the constraint of global asymptotic

stability. Two different methods are provided to solve the optimization problem:

the Mean Square Error (MSE) method and the log-likelihood method.

3.2.2 MSE method

The MSE method can be summarized as

min
θ
J(θ) =

1

2T

N∑
n=1

Tn∑
t=0

‖ ˆ̇ξt,n − ξ̇t,n‖2 (9)

where ˆ̇ξt,n = f̂(ξt,n) and subjected to

(a) bk = −Akξ∗

(b) Ak + (Ak)T < 0

(c) Σk > 0

(d) 0 < πk ≤ 1

(e)
∑K

k=1 π
k = 1

∀k ∈ 1 . . . K (10)

The first two constraints in (10) are stability conditions, while the last three

are imposed by the nature of the Gaussian mixture model to ensure that Σk are

positive definite matrices, priors πk are positive scalars smaller than or equal to

one, and sum of all priors is equal to one.

This method can be formulated as a non-linear programming (NLP) problem and

can be solved using standard constrained optimization techniques; in this work I

use a successive quadratic programming (SQP) approach that relies on a quasi-

Newton method to solve the optimization problem.

SQP minimizes a quadratic approximation of the Lagrangian function over a linear

approximation of the constraints. This implementation has several advantages:

firstly, I have an analytic expression of the derivatives, that grants a significant

improvement of performances; and secondly, the code is customized to solve my

specific problem.
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A feasible solution to these NLP problems always exists. An efficient feasible

initial guess for the optimization parameters is given by an algorithm capable

of transforming covariance matrices obtained from demonstrations so that they

satisfy optimization constraints given by (10b) and (10c); after that it computes

an initial mean guess, given by

µ̃k
ξ̇

= Σ̃k
ξ̇ξ

(Σ̃k
ξ )
−1(µ̃kξ − ξ∗) (11)

and gives as output the initial guesses of the optimization parameters θ. Then,

starting from this estimation of πk, µk and Σk, with k = 1 . . . K, the solver tries

to optimize values of θ in order to minimize the cost function J .

Since the NLP problem is non convex, I cannot ensure that the result is the

globally optimal solution; solvers are usually sensitive to initialization process of

parameters and will often converge to a series of local minima. However, running

algorithms with the initial guesses described before usually brings to a good local

minimum.

To choose the optimal set of Gaussians I use the BIC, that grants a good trade off

between optimizing the model’s probability and the number of parameters that

are needed to encode the data

BIC = T J(θ) +
np
2
log(T ) (12)

where J(θ) is the cost function of the model that is computed using (9), and

np is the total number of free parameters.

In the case of MSE approach the number of parameters to be estimated is

K(1 + 3d(d+ 1)) since when constructing f̂ , the term Σk
ξ̇

is not used and can be

omitted during optimization.
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3.2.3 Likelihood method

The alternative method to MSE presented before is the log-Likelihood method,

that can be described by

min
θ
J(θ) = − 1

T

N∑
n=1

Tn∑
t=0

logP(ξt,n, ξ̇t,n|θ) (13)

where P(ξt,n, ξ̇t,n|θ) is given by (4), and T =
∑N

n=1 T
n is the total number of

training data points; constraints are the same for MSE case, given by (10).

Likelihood method has the same characteristics of MSE, it can be formulated

as a NLP problem and solved using SQP approach; the main difference is in the

number of parameters that have to be estimated. In Likelihood case I cannot omit

Σk and the total number of parameters to estimate becomes K(1+3d+2d2), where

K is the number of Gaussian Functions considered and d describes system dimen-

sions; however, their number can be reduced since the constraints given by (10a)

provide an explicit formulation to compute µk
ξ̇

from other parameters, so the total

number of parameters to construct a GMM with K Gaussians is K(1+2d(d+1)).

Anyway, for both approaches, learning grows linearly with the number of Gaus-

sians and quadratically with dimensions.
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3.3 Computation analysis

In previous section I exposed the theory behind this work, describing physical

environments, procedures and main formulae involved; but now I need to present

some of the expedients and precautions that I considered during numerical com-

putations. All computations can be grouped in three parts to be operated in the

same order of the following list:

- Time Derivatives

- Expectation Maximization

- Mean Square Error

First part requires simply a reorganization of data coming form the set of

demonstrations that I already described in 3.1 and the computation of their first

time derivatives; in order to do that, I selected as computational method a simple

finite difference approximation method, of course after fixing a constant time step.

Second step is to operate the EM method described in 2.5; this portion didn’t

require any specific approximation for computing the initial guesses, excepting for

the ones already described previously and correlated to stability problems of the

system.

Third and last part operates the real computation of motion parameters fol-

lowing the MSE method detailed in 3.2.2 and, about that, I need to make a

clarification. Once the cost function is defined, in order to solve the problem re-

lated to it’s minimum values, I used a function already present in the software

library named fmincon; this function implements four different algorithms but I

selected the SQP algorithm to solve the constrained system for the reasons already

discussed.
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3.4 Stability Analysis

A formal definition of stability could be given by the following sentence: the

function f̂ is globally asymptotically stable at the target ξ∗ if f(ξ∗) = 0 and the

generated motion converges asymptotically to ξ∗, as

lim
t→∞

ξt = ξ∗ ∀ξ0 ∈ Rd (14)

f̂ is locally asymptotically stable if it converges to ξ∗ only when ξ0 is contained

in a subspace D ⊂ Rd. Nonlinear DS are inclined to instabilities; so ensuring that

the estimate f̂ results in asymptotically stable trajectories, that are trajectories

convergent asymptotically to the attractor, is a fundamental requirement for f̂ to

provide a useful control policy. In this work I formulate the problem to estimate

f and its parameters θ as a constrained optimization problem, for which I maxi-

mize the accuracy of the reconstruction while guaranteeing its global asymptotic

stability at the target.

Stability analysis of DS is a wide subject, which can generally be divided into

linear and nonlinear cases. Considering a linear DS, that can be written as

ξ̇ = Aξ + b (15)

its asymptotic stability can be granted by simply requiring the eigenvalues of

the matrix A to be negative. For nonlinear DS, instead, the stability analysis is a

lot more complex and still an open question; pay also attention to the fact that

the intuition that the nonlinear function f(ξ) should be stable if all eigenvalues

of matrices Ak, with k = 1 . . . K, have strictly negative real parts is not properly

true; the reason to this circumstance is that also if single matrices Ak determines

a stable system, their combination could not grant stability for the entire system.

Next, I determine sufficient conditions to ensure global asymptotic stability of

a series of nonlinear DS given by (6).

Theorem: Assuming that the state trajectory evolves according to (8), the

function that is described by it is globally asymptotically stable at the target ξ∗
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in Rd if {
(a) bk = −Akξ∗

(b) Ak + (Ak)T < 0
∀k = 1 . . . K (16)

where (Ak)T is the transpose of Ak, and < 0 refers to the negative definiteness

of a matrix.

I start the demonstration of this theorem recalling the Lyapunov conditions

for asymptotic stability of an arbitrary DS.

Lyapunov Stability Theorem: A DS that is determined by the function ξ =

f(ξ) is globally asymptotically stable at the point ξ∗ if there exists a continuous

and continuously differentiable Lyapunov function V (ξ) : Rd → R such that
(a) V (ξ) = 0 ∀ξ ∈ Rd, ξ 6= ξ∗

(b) V̇ (ξ) = 0 ∀ξ ∈ Rd, ξ 6= ξ∗

(c) V (ξ∗) = 0 V̇ (ξ∗) = 0

(17)

Note that V̇ is a function of both ξ and ξ∗; and remembering that ξ∗ can be

expressed in terms of ξ using (8), I can say that function V̇ only depends on ξ.

Consider a Lyapunov function V (ξ) of the form

V (ξ) =
1

2
(ξ − ξ∗)T (ξ − ξ∗) (18)

I can immediately observe that V (ξ) is a quadratic function and that it satisfies

condition (17a). Condition given by (17b) follows from taking the first derivative

with respect to time; then I have

V̇ (ξ) =
dV

dt
=
dV

dξ

dξ

dt

=
1

2

d

dξ
((ξ − ξ∗)T (ξ − ξ∗))ξ̇

= (ξ − ξ∗)T ξ∗ = (ξ − ξ∗)T f̂(ξ)
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= (ξ − ξ∗)T
K∑
k=1

hk(ξ)(Akξ + bk)︸ ︷︷ ︸
=ξ̇ (from(8))

= (ξ − ξ∗)T
K∑
k=1

hk(ξ)(Ak(ξ − ξ∗) + Akξ∗ + bk︸ ︷︷ ︸
=0 (from(11a))

)

= (ξ − ξ∗)T
K∑
k=1

hk(ξ)Ak(ξ − ξ∗)

=
K∑
k=1

hk(ξ)︸ ︷︷ ︸
hk>0

(ξ − ξ∗)TAk(ξ − ξ∗)︸ ︷︷ ︸
<0

< 0 ∀ξ ∈ Rd, ξ 6= ξ∗ (19)

Conditions given by (17c) are satisfied when substituting ξ = ξ∗ into (18) and

(19)

V (ξ∗) =
1

2
(ξ − ξ∗)T (ξ − ξ∗)

∣∣∣∣
ξ=ξ∗

= 0 (20)

V̇ (ξ∗) =
K∑
k=1

hk(ξ)(ξ − ξ∗)Ak(ξ − ξ∗)
∣∣∣∣
ξ=ξ∗

= 0 (21)

Therefore, an arbitrary ODE function ξ̇ = f̂(ξ), given by (8), is globally

asymptotically stable if conditions of (16) are satisfied. Conditions (16a) and

(16b) are sufficient to ensure that an arbitrary nonlinear function that is given

by (8) is globally asymptotically stable at the target ξ∗. This type of model is

advantageous because it grants that, starting from any point in the space, the

trajectory always converges to the target.
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4 Simulation

4.1 Concept

Once all computations have been completed, I obtained the motion parameters

that should make the robot capable to learn the desired trajectory, in order to take

it from a random starting point to the fixed target; however I’m not completely

sure that the numerical results acquired are valid to make my model work correctly.

In order to verify results, I need to reproduce the model already described in

2.2 and shown in figure 2; by selecting a new random starting point and setting a

precise robot design, already shown in Section 4.2, I created and run a dynamic

simulation using Simulink software. This time, the learning parameters are known,

and I can use them to compute both position and velocity of the desired motion

through the methods detailed previously in Section 3.2.2.

4.2 Robot Design

The robot geometry that I chose to use in this work is almost the same of

the one used in another work of similar goal. I designed my robot following the

geometry of a PUMA560 robotic arm, shown in figure 4, considering the same

movement capability; however, my arm has only three free joints with respect to

the six joint of PUMA.

According to my final goal, three free joints are sufficient, in fact for this work

I don’t need to reach target with a defined orientation of the end effector, but I

simply need to reach it; first joint is the one that makes link 1 of the robot capable

to rotate around axis z of the triad located in the origin while both second and

third joints make their corresponding links rotate the new z axis of their triads

(same direction of axis x of origin triad) so that the end effector can reach any

point inside the workspace.

Numerical geometric values for my robot arm has been fixed according to the

definition of my workspace, usually should be the opposite but because I don’t

have any physical constrain for it I decided to adapt geometry to space. In table

2 are reported the main geometric values of my design, called Denavit-Hartenberg

parameters; each column describes one of these parameters that are, respectively,

the twist angle αi−1, angle between zi−1 and zi measured about xi−1, the link
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length ai−1, distance between zi−1 and zi measured along xi−1, the offset length

di, distance between xi−1 and xi measured along zi, and the joint angle θi, angle

from xi−1 to xi measured about zi; this last angle is unknown because it’s the

angle that defines the configuration of the robotic arm that will be computed

later. Note also that parameters defined with ()i refers to the same triad of the

joint I am considering, while the ones defined with ()i−1 refers to the previous one.

i αi−1 ai−1 di θi
1 0 0 0 θ1

2 π/2 0 5 θ2

3 0 45 0 θ3

end-effector 0 45 0 -

Table 2: DH parameters

Figure 4: Puma560 robotic arm
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4.3 Simulation Model

Figure 5 shows the model I created for validating my numerical results; it

presents eight operational blocks, some directly obtained form software’s library

and others coded manually, all representing entirely the assumptions and formulae

of this work.

Figure 5: Simulink Model

4.3.1 Robot Dynamics

The inner loop can be easily modeled just with the Robot’s Dynamics block,

findable in the software library; the only alteration needed is to define the exact

design of the robot arm that I want to consider for simulation, in this case the

one I modeled. This block expresses the entire dynamics of the robot computing

immediately the joints accelerations of all free joints, expressed in radiant per

seconds square. Simply through a two step integration I can obtain also joints

velocities and configurations.
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Figure 6: Robot’s Dynamics Block

4.3.2 Forward Kinematics

These part represents the conversion from the joint space to the Cartesian

space through the use of the Forward Kinematics; the most important step is the

computation of the transformation matrix, necessary to convert coordinates. In

fact, to proceed with the learning algorithms and the computation of the desired

motion, I need velocities and positions expressed in Cartesian space. The trans-

formation matrix also gives informations about the orientation of the end effector

defined by the angles of roll, pitch and yaw, obtainable from the rotation part of

this matrix.

Figure 7: Forward Kinematics Block
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4.3.3 Dynamic System

This is the only main operational block of the entire simulation, and the par-

ticular reason to this circumstance is that it coded all the learning algorithms and

methods that has been shown in Chapter 3. Following all formulas and all con-

straints this block computes the desired motion velocity, considering the numerical

values of parameters that I obtained before.

Figure 8: Dynamic System Block

4.3.4 Inverse Kinematics

This operational part is exactly the opposite of forward kinematics; while

before I obtained the orientation angles and the coordinates of the end effector

in the Cartesian space from the transformation matrix, now I need do recreate

that matrix, but, of course, considering the new position coordinates found from

previous block, the ones describing the desired motion and no more the measured

one. The result of this operation is that I change again to the joint space obtaining

the orientation of joints for the desired configuration.
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Figure 9: Inverse Kinematics Block

4.3.5 Controller

The controller subsystem is not as complex as it could seem in figure 10, the

purpose of considering a controller in the model is to make a direct confrontation

between the measured motion and the desired one in order to find a proper torque

action to be applied to the robot and make it adjust its position as close as possible

to the desired one.

The final applied torque is composed by considering a summation of multiple

torques, given by three different sources: one obtained considering gravity, one

considering the actual velocity of the end effector and last one obtained directly

from comparison between motions. Torques given by gravity and velocity are

easily computed using the corresponding block and summed together, a bit longer

is the computation of the third component.

Having as inputs the desired and measured joints orientation and the mea-

sured joint velocity I can confront them directly in order to verify how much the

controller need to modify the actual robot motion. First step is to compute the

difference between measured and desired motions operating the following equa-

tions {
qerr = qm − qd
q̇err = q̇m − q̇d

(22)

where qm and qd refers respectively to measured and desired joints configu-

rations and same for velocities; second step is to use an existing block to obtain
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Figure 10: Controller Subsystem

system’s mass matrix, that I need for final computation. In fact, to find the torque

due to motion discrepancy I use the following generic controller equation

q̈d −Kdq̇err −Kpqerr (23)

where Kd and Kp are two scalar values defining the weights of the proportional

and the derivative components of the controller on torque definition. Now with all

three components the final torque to be applied to the robotic system is obtained

by summing them together.

According to the definitions above, I selected a PD controller for this work, I

decided to use this type and not a PID controller because, during computations,

I observed that the system was able to follow the desired motions even without

taking in consideration the integration component of the error.

4.3.6 Stop Simulation Subsystem

I left this operational subsystem as the last one and the particular reason to this

circumstance is that it describes an approximation that I decided to consider in

the simulation process; I use this subsystem to make a quick comparison between
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the actual position of the end effector and the fixed target that it has to reach.

Computing the distance between them I know how far my end-effector is with

respect to the desired target and because it is possible that, following the new

computed trajectory, the end-effector will never reach exactly target’s coordinates,

I decided to set a tolerance value that is compared with this distance at each

iteration. Once the end-effector reaches a position sufficiently close to target,

with a distance smaller than tolerance from the computational point of view,

simulation stops.

Figure 11: Stop Simulation Subsystem
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5 Results

The final results that has been obtained are exactly what I was expecting;

making the model run using the motion parameters obtained from first computa-

tions made the robot I designed capable of drawing new trajectories, completely

different from the ones used as initial demonstrations, but reflecting some aspects

of their shapes. Starting from a new random point, always inside the workspace

Figure 12: Trajectories computed using SEDS

of my robot, the system is able to define a precise trajectory characterised by a

path that is a mixture of the ones of the demonstration trajectories and capable

to make the robot reach the same target point. In figure 12 a bunch of trajectories

computed by the model is presented and, as can be seen, all of them perfectly

reach the target following a path different from the others; this is the first and

direct proof that the learning method I proposed is working.

In the following figures I present some other aspects of the new computed

trajectories, all significant to observe the correct functioning of the learning algo-

rithms and of the model.
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Next figures represent the behaviour of the joints configurations computed

from the inverse kinematics according to time of the simulation; as can be seen all

of them have a first part of settlement and then stabilize on the configuration that

describes the robot’s end effector positioned in the target. The graphs show also

that configurations reach relatively quickly the value of stabilization and continue

almost linearly, this is given by the fact that position is really close to the target

but still hasn’t reach the minimum distance that I set to stop the simulation.
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Figure 13: Trend of joints configuration according to simulation time

In figure 14 I wanted to show the behaviour of the distance between target

point and the position of the end effector measured at each time iteration; as I

expected the graph has a decreasing trend in time, this means that the system

has been modelled correctly, capable to correct its motion in order to make the

end effector follow the desired trajectory till it reaches the target.
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Figure 14: Distance between target and measured positions according to time
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Another significant aspect that is worth seeing is the confrontation between the

measured position and the desired one for each new trajectory; this comparison is

useful to immediately see if the system succeeded in modeling correctly the motion

or if the two trajectories are completely disconnected from each other; figure 15

shows this comparison. As shown almost all cases present an initial discrepancy

between desired and measured trajectory, but the fact that they never move away

drastically and that they successfully realign proves that the model adjusts its

motion correctly
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Figure 15: Comparison between measured and desired positions
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6 Conclusions

In this work, I presented a method to learn arbitrary discrete motions by mod-

eling them as a nonlinear autonomous DS, proposing a method called SEDS to

learn the time invariant parameters of a GMM by solving an optimization problem

under strict stability constraint and considering two possible objective functions

for this optimization problem: the MSE and Likelihood.

Both models benefit from the inherent characteristics of autonomous DS, like

online adaptation to both temporal and spatial perturbations; however, each ob-

jective function has its own advantages and disadvantages. As already said in

3.2.2 and in 3.2.3 I decided to use the MSE cost function because, though it’s

slightly more time consuming since it requires computing GMR at each iteration

for all training data points, however, it requires fewer parameters than the likeli-

hood one which makes the algorithm faster for a three or more dimension case or

when considering a higher number of components. Considering a fixed number of

Gaussian functions, the former usually results in having a more accurate model,

while the latter is faster to train.

The stability conditions at the basis of SEDS are sufficient conditions to ensure

global asymptotic stability of nonlinear motions when modeled with a mixture

of Gaussian functions; although these global stability conditions might be too

stringent to accurately model some complex motions.

Considering the work presented, choices made and according to the results

obtained, I can affirm that the method presented is valid to comply the initial

requests, that it is sufficiently efficient during numerical resolution and that it

provides acceptable and adequate results for the fulfillment of the task
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Appendix A

Motion parameters numerical results

Parameters
K

1 2 3 4 5 6

π 0,2250 0,3295 0,2186 0,1211 1,5674e-13 0,1019

µ

13.8726 -1.8045 11.2366 -20.3471 70.6065 52.2679
-34.0091 -14.6182 0.4762 -13.1531 19.7984 -31.1325
-29.2338 6.1256 -13.2506 -30.0170 43.4873 3.4361
0.1602 0.5835 0.4470 1.6185 -13.2094 -2.7911
0.4248 -0.1029 -0.2712 -1.7373 -2.0262 0.0436
1.1226 -0.3158 0.0176 0.0021 -12.5010 -1.4673

Table 3: Numerical results of Priors and Mean Values
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Parameter
K
1

Σ

412.279 2.692e-06 -2.325e-06 -20.8497 0 0
-3.1475e-06 74.789 3.947e-05 0 -10.744 0
-9.1524e-06 -1.1695e-05 78.655 0 0 -5.432

-20.850 8.1576e-05 -8.629e-06 2.9022 0 0
-1.2717e-05 -10.744 1.9934e-04 0 4.388 0
-1.0597e-04 -3.2557e-04 -5.4322 0 0 1.151

2
152.590 5.409e-06 6.4407e-06 -4.673 0 0

2.5697e-06 105.7727 -3.815e-06 0 -0.595 0
5.5244e-06 -8.4086e-06 154.7917 0 0 -2.482

-4.6767 8.532e-05 9.3106e-05 88.6928 0 0
-4.2505e-05 -0.606 9.7254e-05 0 115.805 0
1.312e-04 -2.5445e-04 -2.488 0 0 0.248

3
49.752 -9.2673e-06 -1.9665e-05 -3.846 0 0

1.2665e-05 380.652 4.129e-06 0 -3.132 0
-1.3463e-05 7.3582e-06 126.9904 0 0 -9.527

-3.8468 -2.4985e-04 -9.2155e-05 150.1814 0 0
3.1622e-04 -3.1352 2.0002e-04 0 3.6596 0
-1.4257e-05 6.428e-05 -9.5275 0 0 0.9525

4
342.4765 9.8079e-07 9.9456e-06 -14.8397 0 0

1.0753e-06 244.8652 2.0432e-05 0 -23.794 0
1.5586e-06 1.7576e-06 96.3332 0 0 -3.2e-15
-14.8403 -1.017e-04 1.9354e-04 339.366 0 0

-4.443e-05 -23.7944 1.928e-04 0 501.5464 0
-8.6544e-05 9.8592e-05 -0.0135 0 0 1.0e-05

5
110.964 1.1192e-05 4.2247e-05 -27.3883 0 0

-7.5304e-07 364.167 -2.3812e-05 0 -14.486 0
-5.704e-05 1.638e-05 57.6426 0 0 -12.770
-27.3884 1.5776e-05 7.538e-05 8.6373 0 0

-2.0202e-04 -14.4871 2.3997e-04 0 1.022 0
-3.6406e-04 2.2454e-04 -12.7699 0 0 3.513

6
347.6965 6.722e-05 2.8747e-05 -27.4935 0 0

1.0645e-05 42.6105 4.1762e-05 0 -14.851 0
1.325e-05 7.238e-05 143.347 0 0 -12.775
-27.4935 4.632e-04 1.7561e-04 2.7761 0 0

-5.7405e-05 -14.851 -7.1024e-05 0 9.003 0
-1.8782e-05 6.6171e-05 -12.775 0 0 1.415

Table 4: Numerical results of Covariance Matrices
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Appendix B

Transformation matrix

The transformation matrix obtained from the Forward Kinematics has the

following aspect

TN =


nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1


where n, o and a are unit vectors identifying the orientations of the end ef-

fector, and respectively defining direction of x, y and z; while p is a vector that

defines the location of the origin in an hypothetical nth coordinate system (in this

work it defines directly position of the end effector in Cartesian space).

In the case of IK, I already know the end effector coordinates, and knowing

how the transformation matrix is composed I can easily compute the angles that

describes joints orientation. Considering a polar robot, I have

T =


c(θ1)c(θ2) s(θ1) c(θ1)s(θ2) dc(θ1)s(θ2)

s(θ1)c(θ2) −c(θ1) s(θ1)s(θ2) ds(θ1)s(θ2)

s(θ2) 0 −c(θ2) −dc(θ2)

0 0 0 1

 =


nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1


with c and s that are respectively cosines and sines of joint angles θ1 and θ2

and d is the distance between the two joints. From this equation I just consider

the following linear system


d cos(θ1) sin(θ2) = px

d sin(θ1) sin(θ2) = py

−d cos(θ2) = pz

and I solve it finding θ1 and θ2, the angles that defines the end effector position

in joints space.
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