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1. Introduction
Object tracking is the process of following mov-
ing entities in subsequent observations coming
from one or multiple sensors, with the aim of es-
timating and predicting their trajectories. Ac-
curate tracking in complex urban scenarios is
crucial for safety applications such as accident
mitigation, predictive traffic control and design
of safer infrastructure. In this work, a tracking
system based on Multiple Hypothesis Tracking
(MHT) will be implemented and tested in com-
plex urban scenarios. Together with developing
a tracking system, the aim of this thesis is to ad-
dress the problem of different road users that are
merged into a single track due to their proximity.
To tackle this issue, a strategy that uses the in-
formation contained in bounding boxes describ-
ing the objects in the scenario has been defined
and tested. The resulting tracker will be tested
on a given dataset that comprises a collection of
frames coming from one stereovision sensor de-
signed by Viscando AB, a Swedish company spe-
cializing in traffic data collection and analysis for
safe and smart mobility applications, in collabo-
ration with which this work has been produced.

The assumption of this work is that the combi-
nation of Multiple Hypothesis Tracking and the
probabilistic approach to discriminate merged
objects will generate an algorithm that is able
to outperform the conventional single hypothe-
sis tracker in solving the common problems that
a tracking system faces.

2. Multiple Hypothesis
Tracking

The tracking system that will be implemented
uses a Kalman Filter (KF) to build trajecto-
ries of the road users. In particular, the mo-
tion model that is at the basis of the KF is the
constant speed model. Although this type of
motion model does not account for variation in
speed and turning rate, it is nonetheless widely
used given its simplicity and its linearity, which
guarantees the convergence of the KF. Another
possible motion model that has the same prop-
erties is the constant acceleration one, which will
be compared with the constant speed one later
on.
A KF allows every type of tracking system to
perform two important steps: prediction of the
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next position of an object, based on the previous
positions and by means of the motion model and,
if the position is actually available, filtering of
the noise contained in the datum. These two
operations provide the tracking system with an
estimation of the position of the object in the
current frame. The second step, i.e., the filtering
step, is not possible if a position for the object is
not available in a given frame. In this case, the
position predicted by the KF will be considered
the actual one for the object.
The main difference between a Multiple Hypoth-
esis Tracking (MHT) system and a single hy-
pothesis tracker is that the former allows for
multiple trajectories for the same target and
eventually chooses the one that is most likely
to represent the real target’s trajectory based
on motion and appearance features and com-
patibility with the other existing tracks. As a
consequence, in a MHT framework, a track is a
hypothetical trajectory of the target that differs
from the other hypotheses of the same target in
the detections that it has been associated with.
Let’s now see the main steps that characterize a
MHT approach. The following implementation
is inspired by the work presented in [1]. As ev-
ery tracking system does, this algorithm iterates
over the frames of a given data set and performs,
on each frame, the operations that will follow.
The first step is the association between the ex-
isting track hypotheses and the detections com-
ing from a specific frame of a data set. Given the
i-th track, its next position at frame k, labeled
as Xi

k, is assumed to be normally distributed:

Xi
k ∼ N (x̂ik,Σ

i
k)

the mean x̂ik is the position predicted by the fil-
ter and the covariance Σi

k is the covariance of the
filter, both at time step k. This assumption al-
lows to identify the area in which the position of
the track is expected to fall at time step k, which
is called the "gating area" of the track. The
gating area of the track is given by the points
whose squared Mahalanobis distance from the
track’s predicted position x̂ik is smaller than a
fixed threshold:

d2 = (y − x̂ik)
T (Σi

k)
−1(y − x̂ik) ≤ dth (1)

The gating area is an ellipsoid which is delim-
ited by the level curve of the density function
of the random vector Xi

k. All the data points

from frame k, called detections, that fall into
this gating area are possible next positions of
the i-th track and will thus be associated with
it. If more than one detection falls into the gat-
ing area, then there will be new track hypothe-
ses for the target, one for each detection. The
best structure to represent the different track
hypotheses referring to the same object is a tree
structure: each node is a detection, one hypoth-
esis corresponds to a path from the root node to
one of the leaves, and every new detection asso-
ciated with an existing hypothesis spawns a new
branch of the tree. If a detection is not asso-
ciated with any existing track, it starts its own
tree, i.e., it is referred to a new target in the
scenario.
The second phase is the computation of the
score. To be able to choose the tracks that are
most likely to represent real targets, it is neces-
sary to assign a score to each of them. In this
work, the score of the track is based on both mo-
tion and appearance features. Considering, for
example, the i-th track hypothesis, its score at
frame k can be designed as follows:

Si(k) = ωmotS
i
mot(k) + ωappS

i
app(k)

where Smot and Sapp are denominated motion
score and appearance score. They are linked
to the evolution in position and appearance of
the track. Their weights depend on the imple-
mentation. In this work both weights are set
equal to one. Consider the i-th track and let
k be the index of the current frame, then it is
possible to show that the motion score can be
obtained through a recursive formula:

Si
mot(k) = ∆Si

mot(k) + Si
mot(k − 1)

∆Si
mot(k) = ln

(
V

(2π)
n
2

)
− 1

2
ln(|Σi

k|)−
1

2
d2

with d2 being the quantity in (1), V the im-
age area and n the dimension of the position
vector. Regarding the appearance score, it is
important to mention that the appearance in-
formation that is usually provided in this frame-
work is the bounding box of the object, which is
a box that should represent the dimension of the
object and its orientation in the space. As a con-
sequence, the proposed appearance score corre-
sponds to the Intersection over Union (IoU)
between the bounding box of the track and the

2



Executive summary Francesco Romeo

bounding box of the new associated detection,
labeled as bk. To maintain the recursive nature
of the score, the bounding box of the track cor-
responds to the bounding box of the detection
associated with the track in the previous frame
centered in the position predicted for the track
in the current frame, labeled as bk−1:

Si
app(k) = ∆Si

app(k) + Si
app(k − 1)

∆Si
app(k) =

V olume(bk−1) ∩ V olume(bk)

V olume(bk−1) ∪ V olume(bk)

Lastly, if a track has not been associated with
any detection, its score is updated with a neg-
ative quantity that depends on the probability
PD that an object will be detected by the algo-
rithm: ∆Si(k) = ln(1− PD).
The third step performed by the algorithm is the
computation of the best global hypothesis.
As a consequence of the previous step, each track
has a score. This score is now used to determine
the set of tracks that are more likely to repre-
sent real trajectories of the involved road users,
called the best global hypothesis. It is important
to say that two tracks are incompatible if they
share at least one detection. Two incompatible
tracks cannot coexist, so they cannot simulta-
neously be in the set of the best tracks. The
problem to address is the following: find the set
of compatible hypotheses with the highest sum
of their scores. This problem can be reformu-
lated as a Maximum-Weight Clique Prob-
lem (MWCP), which in this thesis is solved by
exploiting the algorithm explained in [2], which
gives an exact solution.
Now that the best global hypothesis is available,
it is possible to choose which track hypotheses
to retain and which to discard. The last step
is thus the pruning one. The terminology de-
rives from the fact that discarding a track cor-
responds, in the chosen representation, to prun-
ing a branch of a tree. A pruning strategy is
very important to keep the number of hypoth-
esis limited and reduce the computational com-
plexity of the algorithm. The pruning strategies
adopted in this work are the ones suggested in
[1]. The algorithm uses N-scan pruning to
prune, i.e. discard, tracks. This means that if a
tree doesn’t have any of its track hypotheses in
the best global hypothesis, then it is completely
pruned; if one track belonging to the tree is in
the best global hypothesis, then all the tracks

that at time step k − N differ from this track
are discarded. The underlying assumption that
an N-scan strategy has is that the ambiguities
in the detection association step for frames 1 to
k −N can be resolved after looking ahead for a
window of N frames. Moreover, if a tree grows
too much, only Nbest tracks are kept and the
others are discarded based on their scores.

3. Detect and Split Merged
Objects

One of the most common problems that a track-
ing system has to face is the presence of detec-
tions that refer to not only one target but two
or more. This can happen whenever two road
users are close to each other or one occludes
the other, causing the sensors to detect them
as one unique object. This issue causes tracks
to be interrupted or merged into a single track.
For this reason, a strategy to tackle this prob-
lem has been defined in this work alongside the
MHT algorithm. Each track has a collection of
detections that have been associated with it in
the past frames. Each detection contains infor-
mation on the position and size of the object,
represented by a bounding box. The collection
of the volumes of the bounding boxes of these de-
tections forms a dataset from which a confidence
interval for the volume of the underlying tar-
get can be obtained. In particular, a bootstrap
strategy is used to compute these confidence in-
tervals. This consists in sampling N times with
replacement a new dataset from the dataset of
volumes and in computing N times the sample
mean on the new dataset. As a result, N esti-
mates of the volume of the target are available.
These estimates can be used to build the empiri-
cal distribution of the sample mean, from which
an estimate of the quantiles of the distribution of
the sample mean is obtained. These estimated
quantiles provide a confidence interval for the
volume of the target, which is called the Boot-
strap Confidence Interval:

CIα(θ) = [2θ̂ − θ̂∗α/2, 2θ̂ − θ̂∗1−α/2] (2)

where θ is the volume of the target, θ̂ is the sam-
ple mean computed on the original dataset, θ̂∗α
is the estimated quantile and 1− α is the confi-
dence level, which in this work will be 95%. It
is worth mentioning that this confidence interval
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Figure 1: Frame number 10

has been built by means of the Plug-in Prin-
ciple, which allows to substitute the quantiles
of the unknown distribution of θ with the quan-
tiles of the distribution of the estimator θ̂, which
have been estimated through the empirical dis-
tribution.

4. Dataset and Implementation
of the Algorithm

As mentioned before, the proposed algorithm
will be tested on a provided dataset, which is
a collection of information from 1 stereovision
sensor, with detections corresponding to approx-
imately 750 frames, or one minute of activity, of
a roundabout in Kölliken, Switzerland. Data has
been previously processed to provide points in
3D as centers of detected objects, and bounding
boxes containing those objects. As a result, each
row of the dataset contains information on the
position and the bounding box related to a cer-
tain road user, together with the frame in which
the road user appears. This data set contains
the usual problems that a tracking system has
to face: objects occlusion, presence of detections
that are not referred to any road users but to
stationary objects, presence of obstacles (road
signs and statues in the middle of the round-
about) and detections that are missing. Figure
1 is an example of a frame in the data set, with
some of the aforementioned problems.
The implementation of the algorithm follows the
steps described in Section 2. The tracking sys-
tem iterates over the frames extracting from the
data set the detections belonging to each frame.
Then, the association step is performed consid-
ering these detections and all the tracks that
represent objects in the roundabout (called Ac-

tive or Pending, in case they were not associated
with any detection in the previous frames). In
this phase, an association between a track and
a detection is performed if and only if the de-
tection falls in the gating area of the track and
the Intersection over Union between the track
and the detection is larger than zero. Moreover,
if two tracks are associated with the same de-
tection, the bootstrap confidence intervals of the
volumes of the two tracks are computed to check
if the detection represents two merged objects.
If the volume of the associated detection is out-
side both the confidence intervals, then the de-
tection is labeled as two merged objects. If this
happens, the position of the track is updated
either with the position predicted by the filter
or with a weighted mean between the center of
the fused bounding box and the predicted po-
sition. Once the association phase is complete,
the score of the tracks is updated and the best
global hypothesis is computed. Using the best
global hypothesis, the tracks are pruned using
the strategies mentioned in Section 2.

5. Results
Now let’s analyze the results that the tracking
system gives on the dataset described in the pre-
vious section. Given the fact that ground-truth
trajectories are not available, it is not possible
to resort to the usual framework to assess the
quality of the tracker. As a consequence, the
performance of the tracker will be analyzed qual-
itatively, i.e., by showing which type of problems
the tracker is able to solve and which issues the
tracker struggles the most with. The results that
will be shown are related to the values of the pa-
rameters reported in the following table:

Parameters MHT
dth PD V N-scan Nbest

6 0.9 480000 5 100

Table 1: Values for parameters of MHT

The values are inspired by the implementation
of MHT in [1].
First of all, the algorithm is designed to ad-
dress the problem of the presence of merged ob-
jects. Looking at all cases of merged objects, it
is possible to say that the algorithm is able to
identify them and successfully solve them. The
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Figure 2: The scooter is crossing the street. The
closest motorcyclist is merged with the pedes-
trian in a unique detection.

main problematic behaviors that can arise from
this issue are the presence of interrupted tracks
or the occurrence of an identity switch between
tracks, i.e., a track that changes its target. Nei-
ther of those two problems arise thanks to the
strategy that uses bootstrap confidence inter-
vals. Figure 2 shows a frame of a scooter that is
crossing the street. The proximity of the scooter
with the other two road users (the motorcycles)
causes the sensor in the roundabout to detect
the scooter and one of the two motorcycles as
unique objects, as the figure shows.
The detection of the scooter will be merged sub-
sequently with the second motorcycle as well.
Despite the lack of three distinct detections for
the three road users for multiple frames, the al-
gorithm manages to keep the three trajectories
separated. As a result, in the output of the algo-
rithm, i.e., the best global hypothesis after 750
frames, there are three distinct tracks for these
three objects, an accomplishment that was not
achievable with a single hypothesis tracker.
Figure 3 shows a bird’s eye view of a part of the
three distinct tracks.
This situation is not an isolated one. The tracker
is able to recognize almost all cases of fused de-
tections and keep the tracks of the involved tar-
gets separate.
It is also important to mention that after the
fusion situation ends, the track of the scooter
is associated with a detection that is not the
closest one. In this case, using a Multiple Hy-
pothesis approach helped the tracker consider
not only the closest detection but also others

Figure 3: Tracks of the pedestrian and the two
motocyclists. They are separated despite the
presence of fused detections.

as possible next position of the track and se-
lect the one that is most likely to be the one
of the underlying target. This would not have
been possible with a single hypothesis tracker.
However, it is worth mentioning that only nine
tracks in the best global hypothesis are associ-
ated with a detection that is not the closest one,
and overall this happens in a total of 13 frames.
These digits make it clear that in most of the
cases in this scenario the best detection to be
associated with a track is the closest one. As a
consequence, the usage of Multiple Hypothesis
Tracking is not strictly necessary in most of the
cases, although it is very useful in these situa-
tions of fused detections if coupled with a proper
strategy, as previously shown.
In addition to this, there are also some cases of
detections that are labeled as fused even if they
do not represent two fused objects. This usu-
ally happens when tracks related to stationary
objects, and not road users, are then associated
with vehicles or when there are two detections
for the same vehicle for multiple frames. To
solve this issue and improve the accuracy of iden-
tifying merged objects tighter controls on when
to use the bootstrap confidence intervals should
be implemented. However, overall, it is possi-
ble to say that the tracker performs successfully
with real cases of merged objects.
A situation in which the tracker is not perform-
ing well is the case of occluded objects, which
are also very frequent in the dataset. The stat-
ues in the middle of the roundabout and the
road sign, visible in Figure 1, cause a lot of de-
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tections to be missing. In particular, in corre-
spondence with the road sign all the tracks are
interrupted. The occlusion does not last long,
but the requirement of having the Intersection
over Union bigger than zero in the association
phase is the main reason why these tracks are
interrupted. The constraint is necessary for the
algorithm in cases in which the covariance of the
filter is too large; thus, it is important to ana-
lyze this behavior to enhance the performances
of the tracker.
To conclude the analysis of the results of the
algorithm, it is important to mention that for 30
targets, the number of tracks that the algorithm
produced is 50. Among these tracks, there are
four cases of Identity Switch, that is, tracks
that change their targets, eleven cases of False
Positive tracks, that is, tracks that do not have
a road user as a target and there are only two
targets that do not have a corresponding track,
mainly because there are no detections available
for these targets for enough frames.

6. Additional Experiments
Among the additional experiments, it is worth
mentioning that the usage of kinematic con-
straints, i.e., constraints on speed or accelera-
tion, to limit the number of associations and
avoid unfeasible values of speed and accelera-
tion has been tested. The experiment led to the
conclusion that these constraints limit too much
the ability of the filter to capture the variability
of the data, creating a tracker that interrupts
multiple tracks due to the fact that the given
data are noisy. In general, it is better to avoid
this approach given the fact that detections are
never precise and often noisy.
Moreover, the constant acceleration motion
model has been tested in place of the constant
speed one, without giving significantly different
results. Table 2 shows a comparison between
the two trackers with the two different motion
models.
It is possible to say that on the given frame-
work the two motion models produce basically
the same output.

7. Conclusions
In this thesis, a Multiple Hypothesis Track-
ing approach coupled with a probabilistic ap-
proach to detect merged objects and keep their

CA model CS model

False Pos-
itives

9 11

ID
Switches

5 4

Non-
tracked
Objects

3 2

Table 2: Comparison of motion models

tracks separated has been proposed and tested
on a given dataset. The work shows that a
MHT approach is not strictly necessary in an
urban scenario that is not as crowded as an only
pedestrian one compared to a single hypothe-
sis tracker. Nevertheless, it can be very use-
ful in situations of merged objects if coupled
with a proper strategy. The strategy proposed
in this work exploits bootstrap confidence inter-
vals for the volumes of the objects that have
been merged to understand if there is a situ-
ation where two road users have been merged
together. This algorithm is able to detect all
the cases of merged objects and to solve them,
i.e., to keep the tracks of the involved targets
separated and not interrupt them.
Among the further improvements, it is worth
mentioning that the accuracy of the algorithm
in detecting fused objects can be enhanced us-
ing tighter constraints to guarantee that the con-
fidence intervals are used only when two road
users are possibly involved in a situation of
merged detections. In addition to this, the per-
formances of the tracker when objects are oc-
cluded needs to be improved.
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