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Sommario

Una rappresentazione nuova delle superfici di rugosità, che sfrutta tecniche di analisi
di forma statistica e di apprendimento automatico (AA), viene presentata in questo
lavoro.
Viene generato un database di geometrie di rugosità che permette di investigare l’effet-
to di diverse proprietà topografiche. L’altezza superficiale di tali geometrie, scalate in
unità viscosa, è scritta come combinazione lineare delle autofunzioni dell’operatore di
Laplace-Beltrami (LB), discretizzato su una parete piana di riferimento con le stesse
dimensioni fisiche e risoluzione di griglia delle superfici ruvide. I coefficienti di tali
equazioni sono poi calcolati con il metodo Least Absolute Shrinkage and Selection
Operator (LASSO), che individua i predittori (autofunzioni di LB) rilevanti nella
definizione delle differenti geometrie. Infine, si valuta la possibilità di calcolare una
correlazione universale di rugosità, che lega l’altezza di rugosità del granello di sabbia
equivalente ks relativa ad una superficie ruvida alle sue proprietà topografiche, e
che rappresenta il principale obiettivo dell’approccio stato dell’arte di affrontare il
problema di rugosità.
Questo lavoro propone una rappresentazione fisicamente affidabile della rugosità
attraverso un modello che utilizza un numero relativamente piccolo di predittori,
rappresentando così un input efficiente per diverse applicazioni di AA, come la predi-
zione di modelli attraverso reti neurali addestrate, che potrebbero rappresentare lo
strumento principale di analisi della rugosità negli studi futuri.

Parole Chiave: Rugosità; Statistica; Laplace-Beltrami; LASSO; Correlazione; Ap-
prendimento automatico.
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Abstract

A new representation of roughness, which exploits statistical shape analysis and
machine learning (ML) techniques, is here presented.
A geometric database is generated to investigate the effect of several topographical
features. The surface elevation of these geometries, scaled in viscous units, is written
as a linear combination of the eigenfunctions of the Laplace-Beltrami (LB) operator,
discretized on a reference smooth wall with the same physical domain sizes and grid
resolution of the rough surfaces. Coefficients of these equations are then computed
with the Least Absolute Shrinkage and Selection Operator (LASSO) method, which
highlights the relevant predictors (LB eigenfunction) in the definition of the different
geometries. Lastly, it is assessed the possibility of computing a universal roughness
correlation tying the equivalent sand-grain roughness height ks related to a rough
surface to its topographical properties, which is the main goal of the state-of-art
approach to address the roughness problem.
This works proposes a physically reliable representation of roughness by means of a
model which uses a relatively small number of predictors, thus representing an efficient
input for many ML applications, as model predictions through neural networks, that
might represent the main tool to analyse roughness in future works.

Key Words: Roughness; Statistics; Laplace-Beltrami; LASSO; Correlation; Ma-
chine Learning.
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Chapter 1

Introduction

The roughness problem formulation is presented in section 1.1 to understand the
relationship between roughness topography and drag behaviour, while section 1.2
reports the outline of the paper.

1.1 Roughness problem

In fluid mechanics, whether a surface is smooth or rough is judged by the flow occurring
next to it. For turbulent flows, a surface must be considered rough if its topographical
features are large enough to disrupt the smallest eddies near the wall, thus altering
the transfer of mass, momentum and heat [6]. Each roughness topography affects flow
differently, making prediction of performance-critical quantities (e.g. drag and heat
transfer) insufficiently reliable, with uncertainties costing billions of dollars per year.
As such, roughness is still an active research area [17]. The main challenge has been
the large number of relevant topographies and the cost associated with testing each
of them to identify key roughness parameters and quantify their influence. However,
recent advances in computations and experiments have allowed to reach unprecedented
levels of detail and accuracy. Specifically, these studies have systematically highlighted
the effects of different topographical properties and explored the far reaches of the
Moody chart, which has been - and it still is - the most widely used tool for the
prediction of skin friction in flows over rough walls [9].
The roughness problem setup is depicted in figure 1.1. The desired output is the
wall shear stress τw [N/m2] or the wall heat flux qw [W/m2], given any roughness
topography described by a physical scale k, here chosen to be the maximum peak-
to-trough roughness height kt; flow at wall-normal distance y characterized by mean
velocity U(y), mean temperature Θ(y) and boundary-layer thickness δ; fluid properties
such as kinematic viscosity ν [m2/s], thermal diffusivity α [1/K], density ρ [kg/m3]

and specific heat at constant pressure cp [6]. Each unit of measure is expressed
in the SI reference. In dimensionless form, introducing the subscript + to denote
viscous-friction scaling, the problem can be stated as finding τw/(ρU2/2) = 2/(U+2)

and qw/(ρcpUΘ) = 1/(U+Θ+) as function of y+, k+ and Pr. In this case, the friction-
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Chapter 1. Introduction

Figure 1.1. Inset : The setup of the roughness problem. Main figure: A close-up view of the
rectangular region of roughness topography in the inset.

scaled mean velocity is U+ ≡ U/uτ and the friction-scaled mean temperature is
Θ+ ≡ Θ/θτ , with uτ ≡ (τw/ρ)1/2 and θτ ≡ (qw/ρcpuτ ) being the friction velocity and
the friction temperature, respectively. Lastly, y+ ≡ yuτ/ν is the viscous-scaled wall
distance, k+ ≡ kuτ/ν is the roughness Reynolds number and Pr ≡ ν/α is the Prandtl
number. The basic formulation here presented is preserved if the problem is posed,
for pipe or channel flows of cross section

∫
dA, using the bulk velocity Ub ≡

∫
UdA,

mixed mean temperature Θm ≡
∫
UΘdA/

∫
UdA and pipe radius of half channel δ,

or, for boundary layers, using the freestream velocity Uδ ≡ U(y = δ), temperature
Θδ ≡ Θ(y = δ) and boundary-layer thickness δ [6].
In the close-up view, h describes the roughness height function. Its average position
is located at y = h, from which the variation h’ is measured. The roughness sublayer
(y < yr) is a region near the wall in which the flow is influenced by the local roughness
topography. In the region above it (log layer), the time-averaged flow (blue streamlines)
is spatially homogeneous, meaning that smooth- and rough-wall turbulence behave
similarly, accordingly to the Outer-Layer Similarity [31] theory. Specifically, this
important assumption, on which all predictive models rely, declares that friction-scaled
turbulent relative motions in the outer layer are independent of the surface condition
at sufficiently high Reynolds numbers and large scale separations. Lastly, a key
parameter to be considered is the wall offset d, which is a wall-normal coordinate
depending on both the roughness topography and k+. The outer turbulent flow does
not perceive its origin to be at y = 0 but at y = d. Specifically, for drag reduction
roughness (e.g. riblets), the virtual origin of the flow velocity profile is known as the
"protrusion height" [22]. This quantity, if properly dimensionless for the period of the
corrugation, is a purely geometric parameter which depends only on the shape of the
wall corrugations.
To address the roughness problem, many works in literature, e.g. [7–9, 24], have tried
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1.2. Outline

to tie either the roughness function ∆U+, i.e. the shift at matched y+ of the velocity
profile in the log layer relative to that of the smooth wall, or ks, a hydraulic scale -
described in Chapter 2 - which can be directly computed from ∆U+ in the fully-rough
regime, to some roughness topographical properties. However, "an all-encompassing
equation relating ks to topography remains elusive" [6]. Furthermore, advances in
this framework are only linked to an improved appreciation of key topographical
parameters. The main purpose of this work is thus to analyse roughness from a different
point of view, proposing a method which uses statistical shape analysis and machine
learning (ML) techniques. Specifically, a powerful tool to study surfaces, which has
applications across multiple domains including statistical shape analysis [1, 13], shape
correspondences [14] and co-segmentation [37], is exploited. This method allows to
compare rough surfaces independently from their topographical properties, and offers
a representation of these geometries which is suitable for several ML applications, e.g.
feature extraction and model prediction, in which many recent works, e.g. [18,21], are
acquiring a growing interest.

1.2 Outline

The layout of this paper is outlined as follows. Chapter 2 describes the state-of-art
approach to address the roughness problem, underlying its underpinnings and limits.
Chapter 3 reports an innovative representation of roughness. In particular, section 3.1
describes the database generation procedure, while section 3.2 proposes the method
on which this work relies. The application of this method to the computed dataset
and the results obtained accordingly are then presented in Chapter 4 . Lastly, final
conclusions are exposed, along with the main possible future developments of this
work.

3





Chapter 2

Roughness

The state-of-art approach to address the roughness problem is described in section 2.1.
Consequently, the main topographical features, which this method aims to correlate
with the roughness function ∆U+ related to a rough surface, are summarized in
section 2.2. Lastly, some of the most widely used roughness correlations are briefly
discussed in section 2.3.

2.1 State-of-art

For fully-developed turbulent wall-bounded flows over smooth and isothermal walls,
the viscous sublayer is scaled by ν/uτ , and when the roughness height k is small
relative to this scale (k+ � 1), roughness is submerged below the viscous sublayer
and thus the surface appears smooth to the flow. Then, if the outer Reynolds number
is sufficiently large (δ � ν/uτ ), an inertial range where viscosity does not evidently
matter (y � ν/uτ ) emerges near the wall which is independent from the outer-flow
geometry [6]. In this region, the velocity profile can be computed through the log law
equation:

U+
S = (1/k) ln y+ + A (2.1)

where the subscript S stands for smooth conditions, k (≈ 0.4) is the von Kármán
constant and A(≈ 5) indicates the log-law intercept, universal for smooth walls
(k+ � 1). A similar relation can be obtained even if the surface is rough such that
k+ is no longer small, but the log-law intercept becomes function of both roughness
topography and roughness Reynolds number:

U+
R = (1/k) ln (y/k) +B(k+) (2.2)

where the subscript R stands for rough conditions. If viscous effects can be neglected,
then for k+ � 1 the intercept B approaches a finite value B(∞) which is independent
of roughness Reynolds number but depends only on roughness topography.
Equation 2.2 suggests that the unknown function B(k+), which can be computed by
subtracting 2.1 to 2.2, determines the effect of a rough surface on the flow occurring
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Chapter 2. Roughness

next to it. It is thus obtained a relation for the roughness function ∆U+:

∆U+(k+) = U+
S − U

+
R = (1/k) ln k+ + A−B(k+) (2.3)

∆U+ describes the momentum deficit resulting from surface roughness and thus
represent a measure of drag penalty relative to a smooth wall [12]. Surfaces with
∆U+ = 0 are hydrodynamically smooth since viscosity damps out the perturbations
caused by roughness, whereas drag increases or reduces for ∆U+ > 0 and ∆U+ < 0,
respectively.
A roughness Reynolds number k+ must be set to solve equation 2.3. As such, the
equivalent sand-grain roughness ks on a surface, inspired by the pioneering studies
of Nikuradse [27], is introduced. This parameter is defined as the size of uniform,
close-packed sand grains on a hypothetical surface that would produce the same
friction factor as the surface of interest if exposed to the same flow in the fully-rough
regime. Based on this hydraulic scale, the roughness function for all surfaces can be
written as:

∆U+(k+
s ) = (1/k) ln k+

s + A−Bs(k
+
s ) (2.4)

where Bs(k
+
s ) is the unique log-law intercept of U+

R for uniform sand grains. In the
fully-rough regime, it assumes the limit value of Bs(∞) = 8.5.
Lastly, by adding a wake function W of strength Π, representing the departure of the
mean velocity profile from the log law in the outer layer (for wall-bounded turbulent
flows), it is possible to write the following expression for the mean velocity profile,
valid from the log region up to y = δ:

U+ = (1/k) ln y/ks +Bs(k
+
s ) + (Π/k)W (y/δ) (2.5)

At the edge of the boundary layer, U+ = U+
δ =

√
2/Cf , thus equation 2.5 reduces to

an implicit relation that can be solved to make full-scale predictions of skin friction
coefficient Cf (ks/δ, Reδ), known Bs as function of k+

s and Reδ = (δ · Uδ)/ν.

2.2 Surface properties

The critical point in making full-scale drag predictions regards the possibility to assign
ks, based only on topographical features:

ks = f(measured topographical properties) (2.6)

The ultimate challenge is to identify what is the bare-minimum set of invaluable
topographical properties, which should be clearly defined and measurable, required to
estimate the drag on a surface.
Although it is very difficult to characterize roughness from the wide range of geometric
morphologies, a correlation between surface topography and wall drag is likely to
require measures of (1) roughness height k; (2) frontal solidity λf , effective slope ES
or roughness density parameter Λs; (3) plan solidity λp or skewness Sk [6]. Finally,
clustering and directionality should also be accounted.
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2.2. Surface properties

• Roughness height
Some measure of roughness height is needed to relate a surface topography to
ks. In literature, the most adopted choices of this parameter include (a) average
roughness height ka ≡ 1/At

∫
|h′ |dA, where At is the total plan area; (b) root-

mean-square roughness height krms ≡
√

1/At
∫
h′2dA, i.e. standard deviation

of roughness elevation; (c) maximum peak-to-trough elevation kt. The former
two, involving area integrals, are less corrupted by extreme asperities and thus
represent more reliable measures of mean surface elevation. To partially address
the issue concerning the latter, kt is often replaced by a subsample-average
peak-to-trough roughness amplitude kz ≡ 1/N

∑N
i=1(kpi + kvi), where kpi + kvi

is the highest peak-to-trough height of the entire ith sample.

• Frontal projected area parameter
A parameter regarding the frontal projected area of roughness elements Af is
probably required. Frontal solidity λf , for an array of wall-mounted roughness
elements as depicted in Figure 2.1 [6], is simply computed as λf ≡ Af/At. It

Figure 2.1. Surface sketches to illustrate surface total plan area At and roughness element
frontal (Af ) and plan (Ap) area, as well as clustering and directionality. Empty
and filled arrows in sketch g indicate different flow directions.

measures the available area exposed to pressure drag. There are increasing ex-
panses of smooth-like conditions between isolated roughness elements (λf → 0);
similarly, very densely packed roughness elements are sheltered due to proximity
to neighbors. Between these regimes, there is a range, typically 0.1 < λf < 0.3,
where drag is maximum [17].
Ref. [35] proved that frontal solidity is equivalent to half of the mean absolute
streamwise gradient of the rough surface, ES ≡ 1/At

∫
|∂h

′

∂x
|dA, suggesting that

low λf could be considered as either sparsely packed (sketch b in figure 2.1)
or long-wavelength shallow roughness, as well as high λf could be thought
of as either densely packed (sketch d in figure 2.1) or short-wavelength steep
roughness.
Another choice for a roughness density parameter widely used in literature is

7



Chapter 2. Roughness

Λf ≡ λ−1
f (Af/Aw), where Aw is the total windward wetted surface area. Ac-

cordingly to [2], the local value of Λf is related to the local surface mean angle
αh ≡ arctan(∂h

′

∂x
) for small αh, and argued that the latter is a more appropriate

parameter to use in a roughness correlation as it is easier to measure using
available techniques. Since |αh| is approximately ES locally, only one of these
variables is sufficient for correlations.

• Plan area parameter
A plan area parameter is indispensable to distinguish between geometries with
different packing densities and element aspect ratios but with matched λf and
height, like those reported in sketches (b,c) in figure 2.1. When combined with
λf , plan solidity λp ≡ Ap/At gives indeed an indication about the aspect ratio
of the roughness elements. λp → 0 indicates sparsely packed arrangements,
whereas λp → 1 imply dense roughness. For wall-mounted cubes, λp is related
to surface skewness Sk ≡ (1/At

∫
h

′3dA)/k3
rms, a measure of the asymmetry

in surface elevation distribution. However, this relationship does not hold in
general and Sk, unlike λp, is easy to calculate for irregular surfaces [9], thus
representing a more suitable parameter for converting from topography to ks.

• Clustering and directionality
All the topographical parameters described until now fail to capture clustering
and directionality. For examples, sketches (e,f) and (f,g) in figure 2.1 show a
comparison between surfaces with the same (ka, λf , λp) and all higher-order mo-
ments (due to their identical elevation distributions), yet different arrangements
and levels of directionality, respectively. In both cases, different outcomes on
the flow are expected.
Ref. [34] analysed surfaces with identical topographical properties, but varying
degrees of clustering, discovering a decrease in ∆U+ with increased clustering.
Similarly, ref. [9] realised that, for geometries with matched krms, monodisperse
roughness elements lead to a larger ks than polydisperse ones. The concept of
directionality is instead due to either surface shape or alignment of roughness
elements. Sketch f in figure 2.1 shows an isotropic roughness, in the sense that
drag is relatively invariant to flow direction, while the anisotropic surface in
sketch g has aligned elements, thus the pressure drag is expected to be very
different if the flow came from the direction of the open and closed arrow. In
particular, ref. [3] shown that spanwise-aligned surface patterns tend to have a
higher drag penalty than streamwise alignments. Generally, random roughness
is isotropic, while a regular surface is often anisotropic, with high directionality
leading to atypical drag behaviours [6].
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2.3. Surface correlations

2.3 Surface correlations

There are in general two types of correlation in literature: those directly predicting ks
and those predicting ∆U+ [38].
For transitionally-rough flows, the latter group is more suitable since ks is essentially
defined only when the flow is fully-rough. Ref. [35] proposed a correlation to predict
∆U+ based on a roughness parameter λT :

∆U+ = αTλT + βT ; (2.7)

λT = ln(
Af
At

)[1 + 0.09 ln(
Lcorrx

kz
)(

4krms
kz

)−0.44e−0.074Sk

where αT = 1.4699 and βT = 8.0394 are empirical constants, while Lcorrx refers to the
roughness length scale where the streamwise auto-correlation drops under 0.2.
In ref. [5], a correlation based on 3D sinusoidal roughness data in both transitionally-
(eq. 2.8) and fully-rough (2.9) regimes is developed:

∆U+ =
1

k
log(k+

a ) + 1.12 log(ES) + 1.47; (2.8)

ks/ka = 7.3kaES
0.45 (2.9)

For fully-rough flows, several predictive correlations for ks/k have been formulated
using different measures for k and different choices of the parameters explained in
section 2.2. Ref. [7] outlined a correlation based on [8]:

ks/kkrms =


2.48(1 + Sk)

2.24 Sk > 0

2.11 Sk = 0

2.73(2 + Sk)
−0.45 Sk < 0

(2.10)

Equation 2.10 was obtained using a wide range of roughness topographies, but it does
not include any slope measure, as suggested in the bare-minimum set in section 2.2.
This correlation was indeed predominantly written for surfaces with a relatively narrow
range of ES in which ks/krms is invariant [17], and the authors themselves suggested
to supplement it by a density parameter for sparse roughness.
Ref. [9] understood that a correlation based on surface height skewness and effective
slope can satisfactory predict ks normalized with the average maximum peak-to-trough
roughness height. They studied surfaces with both regular and irregular arrangements
and size distributions of roughness elements and proposed the following formulation:

ks/kz = (0.67S2
k + 0.93Sk + 1.3)[1.07(1− e−3.5ES)] (2.11)

Both equations 2.10 and 2.11 struggle with low-ES surfaces, but they both could
be extended to this range if long-wavelength contributions are filtered out prior to
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Chapter 2. Roughness

computing statistics [4].
In general, existing roughness correlations are developed based on a limited number
of data points covering a relatively narrow region of the parameter space, and their
use beyond these respective regions involves a dangerous degree of extrapolation [6].
For example, data from [23] suggest that, at fixed Sk, ks/k increases with ES for
ES < 0.3− 0.6, beyond which it eventually decreases in the dense fully-rough regime,
depending on the roughness topography. However, none of these correlations capture
this behaviour. Moreover, ref. [38] conducted Direct Numerical Simulation (DNS)
to study turbulent flows over irregular rough surfaces and assessed the roughness
correlations presented in this section, using their database. They realised that,
although none of the assessed correlations shows a dramatic loss of accuracy when
used outside of the parameter space of its original fitting data, the most successful
correlation can reproduce the values of ks from DNS only within a ±30% error, while
none of them shows a better predictive accuracy. Lastly, there are some challenging
topographies (e.g. dense, non-homogeneous, multiscale and wavy roughness) which
could not behave accordingly to the framework described in section 1.1 [6], making
results from the state-of-art approach to address the roughness problem completely
unreliable.
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Chapter 3

Method

An innovative representation of roughness, which does not try to tie ks related to a
rough surface to its topographical features, is here presented. Specifically, section 3.1
describes the database generation procedure, while section 3.2 proposes the method
which will be applied to the computed surfaces.

3.1 Database generation

The database generation procedure follows the guideline proposed in Chapter 3 of [9],
with some differences here discussed. Specifically, this work proposes a process which
allows systematic variations of moments of surface height probability density function
(PDF), surface slope, center locations and size distribution of roughness peaks. These
surfaces have indeed a similar root-mean-square roughness height (krms ≈ 0.045h)
and are characterized by several topographical parameters, including effective slope
ES, skewness Sk and kurtosis Ku ≡ (1/At

∫
h

′4dA)/k4
rms, in a relatively wide range

(0.3 ≤ ES ≤ 0.88, −0.34 ≤ Sk ≤ 0.66, 1.9 ≤ Ku ≤ 2.61). In this case, h is the
half-height of the channel used for carrying out the Direct Numerical Simulations
(DNS) on the rough geometries. To focus more attention on real roughness rather than
simply regular roughness element arrays, in addition to surface moments and effective
slope, a parameter ∆ is introduced to indicate the distribution of roughness element
sizes. In the special case of ∆ = 0, all elements are identical, while positive variations
of this parameters at constant values of the others allow to investigate whether and
how a roughness generated by identical elements differs from a generic roughness. It
is worth mentioning that these geometries are all statistically homogeneous, i.e. the
statistical properties do not depend on the origin of the coordinate system.
The goal of the roughness generation procedure is to generate a surface height function
k(x, z), with x and z being the streamwise and spanwise coordinates, respectively,
with prescribed statistical properties. To achieve it, axisymmetric roughness elements
with imposed shape and random size are distributed randomly on a reference flat
surface. The i-th element has a height of k(i)

p , a base diameter D(i) and is truncated
on top at d(i) = 0.1 ·D(i), accordingly to the original paper. The ratio of height to
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base diameter γ is constant between all elements. Index i varies from 1 to N , with
N being the total number of the elements. N is determined by dividing the whole
reference surface area (Lx · Lz, with Lx and Lz being the streamwise and spanwise
geometry lengths, respectively) by the average area occupied by one element - a circle
of radius β ·D(i). The profile of the i-th element is determined by the function:

Y = k(i)
p [1− ((r − d(i)/2)/(D(i)/2− d(i)/2))n] (3.1)

with Y and r being wall-normal and radial locations of the element wall surface,
respectively. The size of i-th element k(i)

p is determined using a random function with
normal distribution of mean value kp and standard deviation (∆/2.33) · kp, with ∆

being explicitly prescribed in the beginning of the roughness generation procedure.
Exponent n determines the element shapes, as shown in figure 3.1. If initial guesses

Figure 3.1. (Left) Element profile with n = 0.5; (Middle) n = 1 (conical); (Right) n = 1.5.
All the elements have the same kp and γ.

for the four input parameters (kp, γ, β, n) are made, the number of elements can be
computed as N = Lx·Lz

pi·(β·γ·kp)2/4
. At this point, each roughness element is distributed

individually on a flat surface of sizes (Lx, Lz) = (3h, 3h) using the MATLAB tool
griddata. The x and z position of the element centers is computed using a random
function with uniform distribution in the range of (0, 3h). Specifically, function
griddata interpolates the roughness element height into a mesh grid built on the
reference plate, whit resolution equal to that considered in the original paper (432
points along both streamwise and spanwise directions). Due to the randomness of
the center locations, some elements may intersect or even incorporate others. For
this reason, only the highest roughness size registered in each grid point is considered.
This passage differs from what is done in [9], where the Immersed Boundary Method
(IBM) based on [11] is used to implement roughness samples - separately generated in
MATLAB - on the wall. Furthermore, each sample considered in the original work
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has a size of (Lx, Lz) = (8H, 4H). The choice of using smaller domain sizes is due to
the fact that, in this case, a smaller number N of elements is required to match the
prescribed statistical values, thus reducing the computational time needed to generate
the surface. However, N must be sufficiently large in order to obtain a statistically
homogeneous geometry.
From this computed point cloud, a rough surface, corresponding to the initial guessed
parameters, is generated. For this surface, the statistical properties of interest
(krms, Sk, Ku, ES) can be numerically measured. These values are also computed for
the same geometries when rotated by 90 and 180 degrees, to check the homogeneity
constraint. The same values, within an uncertainty interval, are obtained, thus
confirming that Lx = Lz = 3h is an appropriate domain size. Similarly to the original
paper, if Sk and Ku do not match the prescribed values, n and β are used to adjust
them iteratively. Then, kp and γ can be used to scale krms and ES to their imposed
values. A change in kp and γ, indeed, only stretches the surface in vertical and
horizontal directions, respectively; hence, they do not affect other surface statistics [9].
However, if these two parameters change significantly from their initially guessed
values, the computed surface might be remarkably different from the original one. This
is due to some odd interpolations of griddata which can happen, for example, when
roughness elements, separated before the iteration, intersect, producing a new element
with a strange shape. In this case, griddata might locally register roughness heights
pretty different from that in output from the first iteration. It is thus necessary to
check the value of each statistical property at the end of the second iteration and keep
iterating the input parameters until (krms, Sk, Ku, ES) match all the corresponding
prescribed values within a given tolerance.
Following this procedure, twenty-five geometries are reproduced. Each sample is
named accordingly to the Xaabb convention. Letter X can take values of A, B, C and
D, each corresponding to one (Sk, Ku) pair; A, B and C all have Ku = 2.61± 5% and
Sk = 0.21± 5%, −0.34± 3% and 0.66± 2%, respectively. D has the same Sk of A but
Ku = 1.9± 2%. The two-digit number aa is equal to ∆ · 100 and takes either of the
values 00 (uniform peak size), 15, 35 or 70. Lastly, the two-digit number bb corresponds
to ES ·100 and ranges from 30±1% (least steep surface) to 88±1% (steepest surface).
A summary of all cases and their statistical properties is presented in table 3.1. Along
with the statistical values, the roughness height measurements described in section 2.2
are reported for each geometry. Specifically, the average roughness height, here
denoted as kp, is simply the mean of the normal distribution governing the element
peak sizes, while the average peak-to-trough roughness amplitude kz is computed
considering nine (1h · 1h) subsamples, similarly to the original paper. These values
match those presented in table 1 of [9] within a tolerance of 1% and 10% for statistical
properties and roughness height scales, respectively. From that table, for each rough
surface the roughness function ∆U+ is also taken, along with the prescribed Reτ ≡ uτh

ν

on which the DNS is carried out to compute that value of ∆U+. In this case, the
friction-Reynolds number Reτ ≡ uτh

ν
is defined considering the half-height of the
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Table 3.1. Surface parameters and main flow properties of all cases

Case krms/h Sk Ku ES ∆ kp/h kt/h kz/h Reτ ∆U+ k+s
A7088 0.0455 0.210 2.619 0.876 0.7 0.128 0.255 0.223 498 8.92 162.748
A7060 0.0452 0.209 2.620 0.602 0.7 0.127 0.242 0.214 496 8.67 146.892
A7040 0.0448 0.217 2.620 0.404 0.7 0.127 0.226 0.204 496 8.19 120.651
A7030 0.0454 0.219 2.620 0.303 0.7 0.128 0.235 0.196 496 7.67 97.485
A3588 0.0457 0.211 2.572 0.883 0.35 0.168 0.235 0.225 499 9.22 184.049
A1588 0.0454 0.209 2.551 0.880 0.15 0.186 0.221 0.214 497 9.45 202.249
A0088 0.0445 0.214 2.580 0.887 0.00 0.210 0.210 0.204 499 9.60 215.078
A0060 0.0450 0.211 2.620 0.602 0.00 0.211 0.211 0.200 499 9.54 209.852
A0040 0.0452 0.202 2.620 0.398 0.00 0.212 0.212 0.190 498 9.15 178.842
B7088 0.0455 -0.331 2.619 0.879 0.7 0.115 0.227 0.207 501 7.60 94.727
B7060 0.0447 -0.350 2.621 0.606 0.7 0.113 0.207 0.195 499 7.38 86.557
B7040 0.0451 -0.340 2.620 0.401 0.7 0.113 0.208 0.191 499 6.89 70.803
B7030 0.0449 -0.350 2.621 0.302 0.7 0.113 0.207 0.180 498 6.37 57.208
B3588 0.0450 -0.330 2.575 0.883 0.35 0.151 0.234 0.213 499 8.00 111.609
B1588 0.0456 -0.330 2.639 0.872 0.15 0.215 0.255 0.239 497 8.21 121.644
B0088 0.0443 -0.330 2.593 0.875 0.00 0.230 0.230 0.212 498 8.35 128.831
C7088 0.0448 0.660 2.642 0.888 0.7 0.120 0.238 0.214 502 9.49 205.593
C7060 0.0455 0.682 2.619 0.600 0.7 0.120 0.221 0.197 498 9.30 190.186
C7040 0.0453 0.652 2.624 0.400 0.7 0.118 0.226 0.193 499 8.37 129.892
C7030 0.0447 0.670 2.620 0.299 0.7 0.123 0.204 0.175 497 8.28 125.186
C3588 0.0449 0.670 2.601 0.879 0.35 0.153 0.223 0.208 497 9.68 222.249
C1588 0.0445 0.670 2.591 0.881 0.15 0.169 0.205 0.195 497 9.90 243.228
C0088 0.0447 0.672 2.622 0.884 0.00 0.175 0.175 0.175 496 10.09 262.933
D7088 0.0448 0.210 1.920 0.879 0.7 0.100 0.185 0.172 498 7.99 111.152
D0088 0.0445 0.220 1.881 0.887 0.00 0.149 0.149 0.149 501 8.76 152.414

computational channel box h as the reference height. It is indeed supposed that ∆U+

depends only on (krms/h, Sk, Ku, ES,∆) values on a surface if the latter is isotropic,
like those presented in both this work and the original one. As such, although the
samples here reproduced are geometrically different from those described in the original
work, due to their matched statistical properties, it is possible to transfer to the former
surfaces the ∆U+ values computed, carrying out a DNS, on the latter ones. Lastly,
the equivalent sand-grain roughness height (in viscous units) k+

s is directly computed
from ∆U+ through the equation 2.4.
It is worth noticing that, in ref. [9], thirty-four samples are generated, while this work
considers only twenty-five of them. However, the nine residual geometries include:

• Two samples (D0088s,D0088a) characterized by elements which are distributed
in regular arrays with staggered and aligned arrangements, respectively. This
work does not intend to analyse non-isotropic roughness.

• Four samples (A7020,B7020,C7020,A0020) with ES = 0.2 and one (A0030) with
a low value of both ∆ and ES. The database generation procedure highlights
the need to decrease the roughness element number N to decrease either ES
or ∆, at fixed values of the other statistics. These surfaces are not reproduced
in this work because an insufficient value of N would be required to match
their statistical properties with the prescribed domain sizes, thus violating the
statistical homogeneity constraint.

• Two samples (A3560,A3540) which do not add any significant information. To
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safe computational time, since the twenty-five geometries considered in this
work allow to investigate the effect of each topographical property of interest in
a sufficiently large range, these two surfaces are not reproduced.

3.2 Description of the method

A powerful tool to analyse and compare surfaces, which has applications across
multiple domains in computer graphics as introduced in Chapter 1, concerns the
discretization of the Laplace-Beltrami (LB) operator [32].
Let consider a functional space on each shape of interest (e.g. the Hilbert space
L2 of two square-integrable real-valued functions) such that a function defined on
that surface can be written as a linear combination of the space bases. There
are many possible choices of these bases, some of which can lead to a significant
reduction in representation complexity. Ref. [28] realised that the two most important
characteristics for choosing a basis might be compactness and stability. The former
implies that the most natural functions on a shape should be well approximated by
using a small number of basis elements, whereas the latter means that the space of
functions spanned by all linear combinations of basis functions must be stable under
small shape deformations.
A natural choice of basis in literature is the LB eigenfunctions. Specifically, let f be
a C2 real-valued function defined on a manifold M with Riemann metric. The LB
operator ∆ is the divergence of the gradient on manifold M :

∆f ≡ ∇ · ∇(f) (3.2)

Since the LB operator is self-adjoint and semi-positive definite [33], it admits an
orthonormal eigensystem (λi, φi), which is a basis of the space of two square-integrable
functions, with ∆φi = −λiφi. Furthermore, since λ0 ≤ λ1 ≤ ..., λi ≤ λi+1 ≤ ... ≤ +∞,
LB eigenfunctions φi are ordered by eigenvalues from "low frequency" to "higher
frequency", providing a natural multi-scale way to approximate functions between
surfaces. The most common discretization of the LB operator is the standard cotangent-
weight scheme [26, 29]. This method computes the first n LB eigenfunctions on a
shape, discretized with a 3D triangular mesh, by solving the linear system:

L = A−1W (3.3)

where A is a diagonal matrix of lumped area weights (mass) and W is a sparse
matrix of cotangent weights (stiffness). In this case, L is a matrix of dimension
(ngrid points, n), where L(i, j) contains the pointwise value of the j-th LB eigenfunction
in the grid-point (xi, zi, k(xi, zi)). The matrix equation 3.3 can be efficiently solved
with a sparse matrix eigensolver implemented in MATLAB. Its code is reported and
briefly discussed in Appendix A. Typically, n is fairly small [15], giving rise to compact
functional representation of shapes.
Figure 3.2 proposes the plot of the first seven LB eigenfunctions computed on one
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database roughness, named A7088, and a flat plate with identical domain sizes and
grid resolution. These functions are defined pointwise on a mesh grid. As such, if a
surface is discretized with a grid of ngrid−points points, then a LB eigenfunction φ is
a (1, ngrid−points) vector, where φi takes the pointwise value of that function in the
grid-point (xi, zi). It is thus possible to color all grid-points of a surface mesh with
their corresponding pointwise values of one LB eigenfunction. The first eigenfunction
is always constant, i.e. all grid-points are identically colored. A critical point in
the use of the Laplace-Beltrami operator is that individual eigenfunctions are known
to be unstable under perturbations, suffering from well-known phenomena such as
sign flipping and eigenfunction order changes [28]. For example, it is clear that
eigenfunctions of index "2" and "3" in figure 3.2 are inverted in the two geometries,
while the fifth eigenfunctions have flipped sign. However, the space of functions
spanned by the first n eigenfunctions of the LB operator is shown to be stable under
near-isometries as long as the nth and the (n+ 1)th eigenvalues are well separated [19].
In this case, it is thus possible to transfer functions from a surface (source) to another
surface (target), if written as a linear combination of the LB eigenfunctions computed
on the corresponding surface.

Figure 3.2. From left to right: first seven Laplace-Beltrami eigenfunctions computed on first
row : A7088; second row : smooth wall with the same domain dimensions and
grid resolution of the rough surface. Colored scale indicates pointwise values of
the LB basis.

Theoretically, all real-valued functions f definable on a surface can be exactly recovered
if an infinite number of the surface space bases is considered: f =

∑∞
i=1 αiφi. In

practice, the series must be truncated at the n-th basis: f ≈
∑n

i=1 αiφi. Coefficients
{αi} can be simply computed through the Ordinary Least Squares (OLS) approach,
which produces an estimation {α̂i} in such a way that the sum of squares of residuals
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is as small as possible, i.e. minimizes the following loss function:

LOLS(α̂i) = |f −
n∑
i=1

α̂iφi|2 (3.4)

The OLS method does not bother to use as few predictors (LB eigenfunctions) as
possible, since it only aims to minimize LOLS. However, there are many applications
in which a narrow number of predictors might be dominant, i.e. their coefficients have
a much higher absolute value, over the others. Moreover, many predictor variables
might be highly correlated with each other. In this scenario, it is well known that
the OLS estimator, despite being unbiased, has a huge variance [39]. To address this
issue, the general solution is to reduce variance at the cost of introducing some bias.
This approach is called regularization. In the case of interest, i.e. linear regression, it
translates in reducing the model complexity by reducing the number of predictors.
There are three main linear regression approaches:

• Ridge regression
The Ridge Regression [25] loss function is obtained by adding a term which
penalizes the size of parameter estimates in equation 3.4, in order to shrink
them towards zero:

LRidge(α̂i) = |f −
n∑
i=1

α̂iφi|2 + λ
m∑
j=1

α̂j
2 (3.5)

where λ is the regularization penalty. This method does not enforce coefficients
to be exactly zero, yet penalizes them if they are too far from zero, compelling
them to be small. As such, model complexity is decreased while keeping all
variables in the model.

• LASSO regression
The Least Absolute Shrinkage and Selection Operator (LASSO) [30] adds a
penalty on the absolute value of the coefficients. Consequently, for high values of
λ, many coefficients are exactly zero, which is never the case of ridge regression.
LASSO expression yields:

LLASSO(α̂i) = |f −
n∑
i=1

α̂iφi|2 + λ
m∑
j=1

|α̂j| (3.6)

• Elastic Net
Elastic Net [39] combines the penalties of Ridge and LASSO regressions to get
the best of both. As a matter of fact, Ridge regression works well when most of
predictors impact the response, while LASSO is more suitable when there is a
small number of significant parameters and the others are close to zero. Since
in many applications the true value of these parameters in unknown, it is often
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suggested to combine the previous two approaches. The Elastic Net formulation
is:

LENet(α̂i) =
|f −

∑n
i=1 α̂iφi|2

2n
+ λ(

1− γ
2

m∑
j=1

α̂j
2 +

γ

2

m∑
j=1

|α̂j|) (3.7)

where γ is the mixing parameter between Ridge (γ = 0) and LASSO (γ = 1).
In this case, both (λ, γ) values must be tuned.

The most critical point in each regression method is the choice of the value of λ.
There are two commonly adopted ways to solve this problem. A more traditional
method chooses λ such that some information criterion, e.g. Akaike (AIC) or Bayesian
(BIC), is the smallest [36]. On the other hand, a original, machine-learning approach
performs cross-validation and select the value of λ that minimizes the cross-validated
sum of squared-residuals [10]. Section B.2 in Appendix B reports the algorithm to find
this value. However, these are not the only ways to set this parameter and, generally,
the most suitable choice is really problem-dependent.
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Experiment and Results

The application of the method proposed in this work to the computed geometric
database is explained in section 4.1, while its results are presented and discussed in
section 4.2.

4.1 Application of the method

The roughness representation here presented is based on the simple idea that each
rough surface can be thought as a specific deformation of a smooth wall. Accordingly,
it is not necessary to identify and compute the key topographical properties of the
different roughness geometries, since all of them are directly transferred to the reference
flat plate. To achieve it, the guideline discussed in section 3.2 is followed. Specifically,
the surface elevation of the rough geometries is written as a linear combination of
the Laplace-Beltrami (LB) eigenfunctions computed on the smooth wall. Coefficients
of those linear systems are then computed with the method LASSO. Each step to
be carried out to outline the desired statistical representation of roughness is now
described.
Firstly, the roughness database generated in section 3.1 must be enlarged. Otherwise,
it cannot be considered statistically significant. As such, ten additional copies of
these surfaces are reproduced: five of them are obtained by shuffling element center
positions of the corresponding original geometry; the other five are computed with
a shuffle on its element height sizes. These shuffles do not change surface statistical
properties since the positioning of the elements, as well as their size distribution, do
not affect the PDF of k and its derivatives [9]. However, due to the odd behaviours of
the interpolating function griddata explained in section 3.1, some little adjustments
on the input parameters of the database generation procedure might be needed to
adequately match the prescribed statistics. In the particular case of uniform peak
sizes (∆ = 0), the shuffle on height distribution becomes meaningless since the surface
elements are all identical. The ten copies of these geometries are thus computed by
shuffling their element center positions.
Twenty-five shape collections are obtained, each of them containing one geometry
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with its ten statistical copies. To fairly compare the different rough surfaces, a flat
plate with the same domain sizes and grid resolution is generated. Rough geometries
are indeed characterized by a vector k of dimension (1, ngrid−points), representing their
surface elevation - relative to the mid plane - in each grid point. Due to identical
lengths and grid resolution, vectors k can be thought as the discretization of a real-
valued function defined on the reference smooth wall, which describes the grid points
deformation. Therefore, if the Laplace-Beltrami operator is discretized on the flat
plate, the vector k of each rough surface can be written as a linear combination
of the first n LB eigenfunctions, after truncating the series. Nevertheless, the first
LB eigenfunction on any surface is always constant and thus not included in this
procedure. One can write:

kroughness ≈
n∑
i=2

αiφiplane (4.1)

The rough surfaces and the smooth wall are scaled in viscous units prior to solving
equation 4.1. This step is needed to account the (slightly) different values of Reτ ≡ uτh

ν

on which the DNS, in the work [9], is carried out to compute ∆U+ on each rough
surface. In this case, to define the friction-Reynolds number Reτ , the "effective
channel half-height" h, i.e. the half-height of a smooth wall with the same cross-
sectional area of the computational box used to execute DNS, is chosen as the reference
length scale. The domain sizes (Lx, Lz, k) are thus multiplied by the prescribed Reτ
reported in table 3.1. The nominal value of Reτ = 500 is considered for the flat plate.
Unfortunately, this passage leads to a (small) numerical error. All the rough surfaces
and the reference plane have indeed identical physical domain sizes, thus different
lengths in viscous scaling if Reτ 6= 500 is considered. Since the LB eigenfunctions are
defined pointwise on the surface grid and differ if the surface dimensions change, the
reconstructed k is slightly different from the original one. However, each geometry
has Reτ ≈ 500 (ranging from 496 to 502), thus this error is expected to be negligible.
For completeness, section B.1 in Appendix B proposes a brief discussion of this topic.
Coefficients αi must be computed to solve equation 4.1. Firstly, the number n of
LB eigenfunctions beyond which the series is truncated must be set carefully. Dense
roughness topographies with very different peak sizes (ES = 0.6−0.88, ∆ = 0.7) might
have very small peaks represented more efficiently by high frequency eigenfunctions,
suggesting that n should not be too small. On the other hand, bases at very high
frequency could only be noisy if compared to the others. For this reason, it is
decided to set n = 500. In section B.2.1 of Appendix B, the same study is conducted
considering n = 300 and n = 1000. Subsequently, a method from those presented in
section 3.2 must be chosen to compute αi. There is a large number of predictors (LB
eigenfunctions) and thus, despite being uncorrelated by definition (space bases), the
OLS method is not a good choice. The LASSO approach is instead used. LASSO is
more suitable than Ridge regression since the former works better when considering a
problem with a lot of predictors, yet not all of them are expected to be important (the
case of interest), while Ridge should be preferred when there are few predictors, but
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all of them are considered relevant to predictions. Moreover, since the features are
known, there is no need to imply a Elastic Net approach, that would also require the
setting of the additional parameter γ. In this work, it is used λ = 1 as regularization
penalty value. As such, the two terms in equation 3.6, describing the least-squared
minimization and the model dimension reduction, respectively, have the same influence.
Appendix B.2.2 proposes the same study (with fixed n), when considering λ = 0.1,
which is very close to the solution of the machine-learning approach introduced in
section 3.2, and λ = 2, to understand how this parameter setting influences the final
results.
At this point, the equation 4.1 is solved, for all the eleven geometries of each shape
collection, using the MATLAB function lasso. Although the rough surfaces belonging
to the same collection are statistically equivalent, their LASSO coefficients will be
slightly different in both the highlighted predictors (coefficients indices) and their
weights (coefficients values). This is due to the fact that these surfaces are not
geometrically identical and thus will excite the LB eigenfunctions, which are defined in
the space domain, in a different manner. However, it is possible to outline a statistical
representation of a specific roughness, starting from its LASSO coefficients. Specifically,
each shape collection is now described as a matrix of dimensions (11 · n), where the
i-th row contains the n LASSO coefficients of the i-th surface of that collection. For
these surfaces, the four roughness height measures described in section 3.1 are then
computed (in viscous scaling). Their values are not reported for simplicity, but they
all match those of the corresponding original geometry within a tolerance of ±5%.
These scales are used to normalize the equivalent sand-grain height k+

s . Accordingly
to what is stated in section 3.2, a specific rough surface and its statistical copies can
indeed be labelled with the same value of ∆U+, i.e. the same k+

s . Four additional
vectors (ks/krms, ks/kp, ks/kt, ks/kz) of dimensions (11 · 1), each of them containing
a given normalization of k+

s related to the eleven surfaces of that collection, are
thus obtained. The desired representation of a specific roughness can be outlined
computing the linear correlation between one of these four vectors and the (11 · n)
matrix of the LASSO coefficients related to the shape collection describing that rough
surface. This step can be efficiently done by means of the MATLAB function corr. It
is worth noticing that this method tie ks related to a rough surface to the Laplace-
Beltrami eigenfunctions computed on a flat plate, rather than the topographical
properties of that roughness, as done by the state-of-art approach. As such, this
roughness representation is independent of the surface topographical features, allowing
to compare different surfaces in a simple and efficient way.
Lastly, the twenty-five different rough surfaces considered in this work must be
compared. Since each of them is now represented by a (1 · n) vector of correlation
coefficients, it is simply needed to build a (nshapes ·n) matrix, where each row contains
the correlation coefficients related to a specific roughness. To assess the possibility of
developing a universal roughness correlation for ∆U+, which is the main target of the
start-of-art method to address the roughness problem, the matrix rows are sorted into
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increasing ∆U+ order, i.e. the first row corresponds to the surface with lowest value
of ∆U+, while the last describes the roughness with the highest one. In this way, it is
possible to understand if surfaces with similar roughness function values (adjacent
matrix rows) are characterized by similar pattern of the correlation coefficients.

4.2 Results

The results of the experiment described in the previous section are here presented
and discussed.
Figure 4.1 shows selected rough surfaces computed in the database generation proce-
dure, described in section 3.1, to illustrate how variations of roughness parameters
affect the surface geometry. Figures 4.1b, 4.1c report two geometries with statistical
properties identical to those of the reference roughness (A0778), yet different skewness
value. This surfaces are characterized by roughness elements with very different
shapes, thus different outcomes on the flow, i.e. ∆U+ values, are expected. Ref. [16]
confirmed this theory, noting that peaked surfaces (Sk > 0) produce much more drag
than pitted surfaces (Sk < 0). In general, many works in literature, e.g. [7,20], showed
ks/krms increasing with Sk. Regarding the parameter ∆ (figures 4.1d, 4.1e), Ref. [9]
realised that, at constant values of surface moments and ES, a rough surface with
more uniform distribution of peak sizes (smaller ∆) causes a higher skin friction. They
gave a qualitative explanation of this concept stating that, with a decrease in ∆,
roughness geometry needs to reshape in a such way that its elements are sharper on
top and flatter near the root, bringing to a similar behaviour than those of increasing
Sk. Lastly, it is clear how lower-ES surfaces (figures 4.1f, 4.1g) are generated with a
smaller number of roughness elements. These geometries have a smaller value of ∆U+,
due to a more gradual transition from hydraulically-smooth to fully-rough regime [7].
Figure 4.2 reports the coefficients, computed with the LASSO method, of the linear
system 4.1, relating the surface elevation vector k of the rough surface A7088 (fig-
ure 4.2a) and its ten statistical copies (figure 4.2b) to the first 500 LB eigenfunctions
computed on the reference flat plate, considering λ = 1, as described in section 4.1.
As highlighted in figure 4.2a, LASSO cancels the effect of many eigenfunctions but
retains some of them at very high frequency, suggesting that truncating the series
at much lower values of n could neglect the presence of some important features.
On the other hand, exploring very high frequencies could drastically increase the
model complexity while adding very few information, or even only noise. A general
decrease of the absolute value of the LASSO coefficient with increasing frequency
(eigenfunction index) is indeed outlined. Figure 4.2b underlines that both center
positioning (first row) and size distribution (second row) influence the importance of
predictors in reconstructing the roughness elevation k, since these LASSO coefficients
(slightly) differ in both their absolute values and the highlighted functions. This is
due to the (small) geometrical differences between surfaces with matched statistical
properties. However, these coefficients seem to follow a general trend and thus, if a
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.1. Selected geometry samples. All dimensions are normalized with effective channel
half-height h. Colored scale indicates surface elevation. First row : (a) A7088
(reference geometry); second row : (b) B7088, (c) C7088 - geometries with the
same ES and ∆ as the reference one but different Sk; third row : (d) A3588, (e)
A0088 - geometries with the same Sk and ES as the reference one but different
∆; fourth row : (f) A7060, (g) A7040 - geometries with the same Sk and ∆ as the
reference one but different ES. Each sample has the same krms = 0.045h± 2%

and Ku = 2.61± 5%.

sufficiently large dataset is taken for each shape collection, it is possible to outline a
statistically significant description of the roughness represented by that collection.

23



Chapter 4. Experiment and Results

(a)

(b)

Figure 4.2. Absolute value of LASSO coefficients between surface elevation vectors of A7088
geometries and the first 500 LB eigenfunctions on the reference plane, computed
with λ = 1. (a) Original geometry; (b) first row : geometries obtained by
shuffling the reference A7088 center locations; second row : geometries obtained
by shuffling the reference A7088 peak sizes.

Figure 4.3 proposes a comparison between the different geometries analysed in this
work. Accordingly to the Xaabb convention described in section 3.1, each row cor-
responds to a specific letter X, i.e. a (Sk, Ku) pair, while each column represent a
different combination of the aabb numbers, i.e. a (∆, ES) pair. Surfaces with the
same statistical moments yet different effective slope ES show that, for decreasing
values of ES, LASSO retains few eigenfunctions and at lower frequencies, yet their
influence (i.e. the absolute value of their LASSO coefficient) is more relevant in
the reconstruction of k than that of the same predictors in the case of higher ES
values. A possible explanation of this result is that, for decreasing values of ES, the
surface becomes more wavy, i.e. the ratio of height to base diameter of the roughness
elements increase. Therefore, there is no need to exploit eigenfunctions at very high
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spatial frequency to catch these "large" peaks. Furthermore, the generation procedure
highlights that, to decrease ES while keeping the surface dimensions fixed, the total
number of elements must decrease. Less eigenfunctions are needed to represent less
elements. Conversely, the other statistical parameters do not exert a influence on
LASSO coefficients as clear as the effective slope and thus a further investigation is
required.

Figure 4.3. Absolute value of LASSO coefficients between surface elevation vectors of the
twenty-five database geometries and the first 500 LB eigenfunctions on the
reference plane, computed with λ = 1.

.

Figure 4.4 shows, for the shape collection representing roughness A7088, the absolute
value of the linear correlation coefficients between LASSO coefficients and the four
vectors regarding the different normalizations of ks, described in section 4.1, computed
for that collection. In this case, krms seems to be the most suitable choice to scale
ks. Indeed, as depicted in the first plot of figure 4.4, many predictors have a very
low correlation coefficient (≤ 0.4) in absolute value, yet few of them have a very high
one (≈ 0.9). This is the best possible scenario when developing a model complexity
reduction method, since only few features are supposed to be influential to the desired
output. This result can be explained by the nature of this particular geometry, which
has peaks with very different sizes, thus a statistical scale, which can "average" these
heights, is an appropriate choice. However, this method is applied to a large dataset
including rough surfaces with very different geometrical features, as highlighted in
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figure 4.1. As such, it is not guaranteed that the correlation based on a particular
roughness height scale is the best choice for all of those topographies.
The comparison between correlation coefficients of all the different geometries is

needed. Figure 4.5 reports, for each of these geometries, the same results of those
presented in figure 4.4 for the A7088. Specifically, each matrix corresponds to a
specific normalization of ks, while each matrix row represents the specific rough
surface labelling that row on the left. Matrix rows are sorted into increasing ∆U+

order, as discussed in section 4.1. Some important features that might be useful to
efficiently cluster different roughness topographies are outlined. A good choice of
the roughness height measurement for a shape collection is such that the correlation
based on this scale retains few predictors with high absolute value of their coefficients,
yet the others are either negligible or null. This constraint translates to few matrix
elements in figure 4.5 with colored scale approaching to ±1 (red or blue), while the
others are faded or white. Accordingly, the four figures highlight that geometries
with uniform peak sizes (∆ = 0) are well represented by geometrical scales kp, kt
(the same, in this case) and kz (slightly different due to the subsampling). This is
due to the fact that these particular surfaces are generated with roughness elements
that are all identical, thus a geometrical scale directly representing the height of
these elements is an appropriate choice. Moving towards multiscale roughness, i.e.
increasing ∆, krms becomes the most suitable choice. These geometries are indeed
characterized by elements with several sizes and some of them might be small enough
to be hydrodynamically irrelevant. These small scales can contaminate the peak
height statistics, thus a statistical scale that can "average" the different heights,
filtering extreme asperities, is appropriate. A similar statement can be claimed for low-
and high-ES surfaces. As explained earlier, the total number of roughness elements
must be decreased to achieve a smaller ES at fixed values of the other statistical
properties. As such, low-ES surfaces are characterized by few roughness elements
and, consequently, can be well represented by a geometrical scale. On the other hand,
high-ES surfaces are built using a large number of elements, thus it is preferable to
use a statistical scale, e.g. krms. These considerations demonstrate the efficacy of this
method in representing roughness in a reliable way. On the other hand, it is clear
how none of these correlations, based on the roughness height measures commonly
adopted in the state-of-art approaches, are such that surfaces with similar values of
the roughness function have also similar correlation coefficients. In particular, all of
these matrices highlight very different coefficients patterns between low- and high-ES
surfaces. The entire spectrum of low-ES surfaces is included into the first 300-350
(depending on which correlation is considered) LB eigenfunctions computed on the
reference smooth wall, since almost all the matrix entries beyond that indices are null.
In the case of dense roughness topographies, many predictors at very high frequencies
are instead characterized by very high correlation coefficients, suggesting that if a
larger value of n was considered, some important features might have been underlined
by this method. Actually, figure B.3 proposes the same work with n = 1000 and
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realises that only few predictors at index larger than 500 have a relevant correlation
coefficient, thus it is not worthy to double-size the model to catch them.
Accordingly to the results presented in figure 4.5, a universal correlation tying ∆U+

to any roughness topography is not feasible, due to the different coefficient patterns
between surfaces with similar values of ∆U+. However, the roughness representation
presented in this work allows to understand the limit of that approach. Figure 4.6
aligns three geometries (B7088, A7030, D7088) with very different topographical
properties, yet similar values of ∆U+. The flows occurring next to these surfaces are
characterized by a different intrinsic physics, as discussed at the beginning of this
section, due to variations of the statistical properties. These effects, if combined to
each other, can somehow bring to similar values of the roughness function, but the
method presented in this work, which proposes a statistical description of roughness
based only on its surface elevation, cannot catch these flow patterns. The key point
of this analysis is that even all the existing roughness correlations, which are based
only on the topographical properties of the rough surfaces described in section 2.2,
unavoidably fall into the same issue for the same reason.
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Figure 4.4. Absolute value of correlation coefficients between LASSO coefficients of the
A7088 collection and their (first row) ks/krms; (second row) ks/kp; (third row)
ks/kt; (fourth row) ks/kz vector.
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Figure 4.5. Correlation matrix between LASSO coefficients of all the different geometries
and their (first row) ks/krms; (second row) ks/kp; (third row) ks/kt; (fourth row)
ks/kz vectors. Colored scale indicates correlation coefficient values.
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Figure 4.6. Rough surfaces characterized by (left) ∆U+ = 7.60; (middle) ∆U+ = 7.67;
(right) ∆U+ = 7.99. All dimensions are normalized with effective channel
half-height h. Colored scale indicates surface elevation.

.
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Conclusions

This paper proposes an innovative representation of roughness, which offers many useful
information to efficiently cluster the different morphologies. Specifically, the surface
elevation of each rough geometry is written as a linear combination of the Laplace-
Beltrami (LB) eigenfunctions computed on a reference smooth wall. Coefficients of
these linear systems are then computed with the method LASSO. Accordingly to
the results obtained in this work, a relatively large number of these functions, with
some of them at very high frequency, is needed to properly describe the spectrum of
high-ES surfaces (dense roughness), while low-ES surfaces (long-wavelength or "wavy"
roughness) require a smaller number of predictors, without the need to exploit those
at the highest frequencies. A high number of surface peaks is indeed registered in the
former case, while only few roughness elements, with high ratios of height to base
diameter, characterize the latter surfaces. Furthermore, the equivalent sand-grain
roughness height ks related to a multiscale roughness is suitably normalized with a
statistical scale, e.g. the root-mean-square roughness height krms, while a geometrical
measure, e.g. the maximum peak-to-through elevation kt, is a more appropriate
choice for surfaces with uniform peak sizes. In these two scenarios, only the LASSO
coefficients of few predictors have indeed a high correlation coefficient (≈ 0.9) with the
given normalization of ks, while the others are characterized by a value which is small
(≤ 0.3) or null. This is due to the presence of surface peaks with either very different
heights, on which a statistical scale can filter extreme asperities (e.g. sufficiently small
scales to be considered hydrodynamically irrelevant), or identical sizes, on which a
geometrical scale can directly describe these measures.
There is the need to enlarge the dataset on which this method is applied. Despite
allowing systematic variations of the main surface properties in a relatively wide
range, these geometries, which are reproduced following the procedure presented in [9],
are not obtained by realistic surface measurements. The geometric scales of some of
the rough surfaces generated in this work, reported in table 3.1, reach a quarter of
channel height. As such, this paper actually deals with "roughness corrugations", with
expected turbulent motions different from those over superficial roughness. Moreover,
although some important features of naturally formed roughness, e.g. randomness in
the size and positioning of roughness peaks as well as many surface parameters, are
included, these geometries still contain many simplifications compared to real rough
surfaces. Due to high computational costs, a moderate friction-Reynolds number
(Reτ ≈ 500), where the separation of scales is not perfectly reached, was also chosen.
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The authors of the original paper suggested to use higher values in the next works, to
ensure that the fully-rough regime hypothesis, necessary to tie ks to ∆U+, is verified.
Lastly, this database, composed of eleven statistical copies of twenty-five different
rough surfaces, may bee too narrow to be considered statistically significant. These
issues might have brought a non-negligible numerical error on the results presented in
this work, thus the need to consider a larger database, possibly taken from realistic
measurements. As such, a recently developed roughness database, which contains
surface profiles and statistics, as well as experimental measurements and simulation
results for flows over a wide range of roughness topographies [6], can be downloaded
free on the web site http://roughnessdatabase.org/.
There are many future developments which naturally arise from this work. Firstly, the
surface representation here presented could be further improved. The weak point of
this formulation is indeed that each shape collection, composed of a specific geometry
with its ten statistical copies, is completely independent of the others. There are
many techniques along different computer graphics applications which exploit the
advantages in representing surfaces belonging to different collections. For example,
ref. [15] proposes to extract a limit shape in a collection. Although it is possible
to endow this "average shape" with a natural geometric structure, the limit shape
is directly computed in the frequency domain constructing a Canonical Consistent
Latent Basis (CCLB), as described in Algorithm 1 of [15]. Therefore, the surface
elevation vectors could be transferred to this limit shape rather than the reference
plane, and write k as a linear combination of the CCLB. This approach has many
advantages in terms of informativeness and computational efficiency and might become
a powerful tool to study and compare rough surfaces. On the other hand, this method
is way less intuitive and more complex than that proposed in this work, since it
requires to familiarize with the concept of functional map network [28]. Lastly, the
method proposed in this paper is well-suited to many machine learning techniques. In
particular, the limits of the state-of-art approach to address the roughness problem
are well known. As a matter of fact, a universal roughness correlation tying either
∆U+ or ks related to a rough surface to its topographical properties, which is the
main goal of that method, has not been developed yet, and it is probably not feasible.
Existing roughness correlations are computed only on a limited number of data
points (surfaces) covering a relatively narrow region of the parameter space [6], in
which the flows over these rough surfaces are supposed to have a similar physics.
Specifically, there are many flows characteristics, e.g. flow patterns around roughness
protuberances, flow separation locations, shear layers associated with the separation
bubbles, that cannot be catch neither by the existing correlations nor by this method.
The results of this experiment show indeed how very different roughness topographies,
which surely cause different outcomes on the flows over them, might have similar
values of ∆U+. However, there are many very recent papers, e.g. [18, 21], claiming
that a ML network trained to correlate these flow characteristics (as outputs) to
the roughness geometry (as inputs) might be an efficient tool for determining the
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Conclusions

sets of roughness geometrical features which are important for characterizing these
effects, thus reaching an unprecedented level of comprehension of roughness [38]. The
roughness representation here presented might be an efficient input of this network.
As a matter of fact, a physically reliable description of roughness is outlined through a
model which dimension can be set to adequately meet requirements of model accuracy
and model complexity. It is indeed possible to set a correlation coefficient value below
which the effect of the corresponding predictor, and thus its presence, can be neglected.
The lower is this value, the smaller is the considered number of predictors and the
higher is the lost information. This is a huge advantage when building inputs of a
ML network. Furthermore, the method described in this work allows to analyse and
compare rough surfaces independently from their topographical features, since it only
requires to know the surface elevation k of each rough surface and to compute the LB
eigenfunctions on the reference smooth wall. As such, there is no need to address the
critical point in the state-of-art framework, i.e. identify and measure the infamous
bare-minimum set of invaluable topographical properties (e.g. λf , λp, Sk, ...) required
to estimate the drag on a surface.

33





Appendix A

MATLAB Code to compute LB
eigenfunctions

The MATLAB algorithm to discretize the Laplace-Beltrami operator on a shape
by means of the Cotangent-Weight Scheme is here reported. The code follows the
procedure described in ref. [29].
Inputs of the compute_LB.m function are:

• S : MATLAB structure containing two fields: S.VERT, a [ngrid−points, 3] matrix
which columns contain the streamwise, wall-normal and spanwise (from left
to right) coordinates of each mesh grid-point; S.TRIV, a [ntriangles, 3] matix
describing the connectivity list of the 3D triangulation describing the surface,
i.e. indices of the grid-points defining each triangle.

• numEigs : number of LB eigenfunctions to compute.

This algorithm outputs two variables, saved as a specific field in the MATLAB structure
S : S.evecs, a [ngrid−points, n] matrix containing the first n LB eigenfunctions computed
on the shape S; S.evals, a [1, ngridpoints] containing their corresponding eigenvalues.

Listing A.1. Cotangent-Weight Scheme MATLAB algorithm

1 %% compute_LB.m
2 function S = compute_LB(S, numEigs)
3 % Function to compute the first numEigs Laplace -Beltrami eigenfunctions on
4 % the shape S.
5

6 fprintf(’Computing␣%d␣Eigenfunctions ...\n’,numEigs ); tic;
7

8 % COTANGENT_WEIGHT SCHEME
9 S.W = cotWeights(S.VERT ,S.TRIV);

10 S.A = diag(vertexAreas(S.VERT , S.TRIV ));
11

12 % GENERALIZED EIGENVALUE -PROBLEM.
13 [S.evecs ,tmp] = eigs(S.W,S.A,numEigs ,’SM’);
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14

15 % CHECK THAT ALL EIGENVALUES ARE REAL
16 tmp_full = diag(tmp);
17 tmp = abs(tmp_full );
18 if imag(tmp_full) == 0
19 fprintf(’All␣eigenvalues␣are␣real␣\n’)
20 else
21 fprintf(’Complex␣eigenvalues␣\n’)
22 end
23

24 % Eigenfunctions are sorted into increasing eigenvalue order.
25 [S.evals ,indices] = sort(tmp ,’ascend ’); clear tmp; clear tmp_full;
26 S.evecs = S.evecs(:,indices ); clear indices;
27

28 fprintf(’done.’);
29

30 end
31

32

33 %% cotWeights.m
34 function [W, A] = cotWeights(X, T)
35 % Function to compute the cotangent -weights matrix W.
36

37 % FIND ORIGINAL EDGE LENGTHS AND ANGLES
38 nv = size(X,1);
39 L1 = normv(X(T(:,2),:)-X(T(: ,3) ,:));
40 L2 = normv(X(T(:,1),:)-X(T(: ,3) ,:));
41 L3 = normv(X(T(:,1),:)-X(T(: ,2) ,:));
42 EL = [L1,L2 ,L3];
43 A1 = (L2.^2 + L3.^2 - L1.^2) ./ (2.*L2.*L3);
44 A2 = (L1.^2 + L3.^2 - L2.^2) ./ (2.*L1.*L3);
45 A3 = (L1.^2 + L2.^2 - L3.^2) ./ (2.*L1.*L2);
46 A = [A1,A2,A3];
47 A = acos(A);
48

49 % COTANGENT LAPLACIAN
50 I = [T(:,1);T(:,2);T(: ,3)];
51 J = [T(:,2);T(:,3);T(: ,1)];
52 S = 0.5* cot([A(:,3);A(:,1);A(: ,2)]);
53 In = [I;J;I;J];
54 Jn = [J;I;I;J];
55 Sn = [-S;-S;S;S];
56

57 W = sparse(double(In),double(Jn),double(Sn),nv,nv);
58
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59 end
60

61

62 %% normv.m
63 function nn = normv(v)
64 % Function to compute vector norm.
65 nn = sqrt(sum(v.^2 ,2));
66

67 end
68

69

70 %% vertexAreas.m
71 function [A,At] = vertexAreas(X, T)
72 % Function to compute lumped area -weights matrix A.
73

74 % TRIANGLE AREAS
75 N = cross(X(T(:,1),:)-X(T(:,2),:), X(T(:,1),:) - X(T(: ,3) ,:));
76 At = normv(N)/2;
77

78 % VERTEX AREAS
79 I = [T(:,1);T(:,2);T(: ,3)];
80 J = ones(size(I));
81 S = double ([At(:,1);At(:,1);At(: ,1)]);
82 nv = size(X,1);
83

84 A = sparse(I,J,S,nv ,1)/3;
85

86 end
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Details of the experiment

B.1 Numerical error

This section proposes a qualitative analysis of the numerical error computed whenever
the surface elevation k of a rough geometry is written as a linear combination of the
first n LB eigenfunctions discretized on a smooth wall with different domain dimensions
(in viscous units). About that, LASSO coefficients are computed between vector k
of all the rough surfaces and the first 500 LB eigenfunctions (without considering
the first one) discretized on the reference plane of dimensions either equal to that
of the corresponding geometries (case 1 ) or equal to (3h · 500, 3h · 500) (as done in
Chapter 4) (case 2 ). Figure B.1 reports the results obtained, in these two cases,
for the eleven A7088 geometries. As initially guessed, these results slightly differ in
both the highlighted eigenfunction indices and their LASSO coefficient. However, this
numerical error, which has to be introduced to fairly compare different surfaces, is
negligible for almost every predictor.
To quantify this error, the linear system 4.1 must be solved in the case 1. Then,

coefficients {αi}1 are transferred to the reference plane represented in case 2 through
a functional map C:

{αi}2 ≈ C{αi}1 (B.1)

The functional map C can be computed as C = Φ+
2 ΠT

21Φ1 [28], where Φ1 and Φ2 are
the matrices of the first 500 LB eigenfunctions computed on the flat plate in the
case 1 and case 2, respectively, while Π is a (ngrid−points2 , ngrid−points1) binary matrix
encoding the pointwise map T between the flat plate in case 2 and case 1 using:
Π21(p, q) = 1 if T (p) = q, 0 elsewhere. In the case of interest, Π = I (same grid
resolution) and Φ1 ≈ Φ2, thus making the numerical error in approximating {αi}1

with {αi}2 very small. However, this passage needs to be executed whenever the
rough surface and the flat plate have very different domain sizes (in viscous units)
and if the two do not share the same grid resolution.
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(a)

(b)

Figure B.1. Absolute value of LASSO coefficients between surface elevation vectors of A7088
geometries and the first 500 LB eigenfunctions on the reference plane, computed
with λ = 1. (a) Original geometry; (b) first row : geometries obtained by
shuffling the reference A7088 center locations; second row : geometries obtained
by shuffling the reference A7088 peak sizes. Blue points are computed when case
1 (explained in section B.1) is considered; orange points are computed when
case 2 is considered.

B.2 Parameters tuning

The same experiment conducted in Chapter 4 is here reproduced with different
values of the two characteristic parameters (n,λ). The purpose is to understand both
advantages and disadvantages in increasing or decreasing these values.

B.2.1 Effect of n

The first parameter to be set is the number n of LB eigenfunctions beyond which
the series 4.1 is truncated. This parameter should be chosen as the lowest value
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guaranteeing that all the important predictors for each shape collection are included.
The main work proposed to use n = 500; here, the same results are presented when
considering n = 300 and n = 1000.
Figure B.2 reports the matrices obtained with n = 300. Each correlation outlines that,
in all the twenty-five cases, the entire frequency spectrum is excited. Moreover, most
of the geometries need very relevant predictors at the highest frequencies, suggesting
that n = 300 is too low to describe the present surfaces. Many important features at
higher frequencies may have to be taken into account.
Figure B.3 presents the results computed with n = 1000. As assumed in Chapter 4,
these correlations highlight some features with high absolute value of their correlation
coefficient at very high index, especially for roughness topographies with ES = 0.88.
However, all the different geometries retain almost every important features within
the first 500 eigenfunctions, with a average "relevance trend" decreasing with the
increase of the eigenfunction frequency. As such, it is a good choice to truncate the
series at lower values of n (e.g. 500) and accept to loose information coming from few
relevant predictors, rather than double-size the model dimension, i.e. its complexity.

B.2.2 Effect of λ

It is here discussed the setting of the regularization penalty λ. This parameter has a
crucial importance since it establishes the weight of the penalization term, relative to
that of the OLS cost function, in equation 3.6. This section aims to point out that
the choice of λ is really problem-dependent, and one should take care on which is
the dominant constraint between model prediction accuracy, useful to develop model
predictions, and model complexity reduction.
A modern, machine learning approach to set λ solves a cross validation code. In this
case, one should choose a set of P values of λ to test, split the dataset into K folds,
and follow this algorithm:

• for p in 1 : P

– for k in 1 : K

∗ keep fold k as hold-out data
∗ use the remaining folds and λ = λp to estimate α̂LASSO
∗ predict hold-out data ftest,k = Φtest,kα̂LASSO

∗ computed a sum of squared residuals: SSRk = ‖f − ftest,k‖2

– end for k

– average SSR over the folds: SSRp = (1/K)
∑K

k=1 SSRk

• end for p

• choose optimal value λopt = argminpSSRp
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Appendix B. Details of the experiment

In MATLAB, it is possible to enable the input option ’CV’ in function lasso, and choose
the value of k to perform the k-fold cross-validation. A typical value of k is k = 10 [10].
Following this procedure, a possibly different value of λ is obtained for each of the
twenty-five geometries and their copies, but all of these values are approximately equal
to 0.1. Therefore, to fairly compare all the surfaces, the experiment is conducted
with λ = 0.1 and its results are presented in figure B.4. As initially guessed, this
value, which is an "average optimum" in terms of model accuracy, does not allow to
distinguish the relevant predictors for the different rough surfaces, similarly to OLS.
Consequently, it is not a good choice for the case of interest
The regularization penalty must be set to a higher value to reduce the model dimension
and highlight relevant features. However, an exaggerated λ might cancel at all some
important contributes, thus making the results completely unreliable. Figure B.5
shows the results obtained with λ = 2. It is clear how the LASSO algorithm retains
way less predictors than the case of λ = 1, especially for high-ES surfaces. Specifically,
an increase in the value of λ translates in a sort of "downward shift" of the LASSO
coefficients presented in figure 4.3, explaining why low-ES surfaces in figure B.5 retain
much more predictors than the high-ES ones. While the results obtained for the
former case might be useful, those obtained for the latter are certainly unreliable.
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Appendix B. Details of the experiment

Figure B.2. Correlation matrix between LASSO coefficients of all the different geometries
and their (first row) ks/krms; (second row) ks/kp; (third row) ks/kt; (fourth
row) ks/kz vectors. Coefficients are computed with λ = 1 and n = 300. Colored
scale indicates correlation coefficient values.
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Appendix B. Details of the experiment

Figure B.3. Correlation matrix between LASSO coefficients of all the different geometries
and their (first row) ks/krms; (second row) ks/kp; (third row) ks/kt; (fourth row)
ks/kz vectors. Coefficients are computed with λ = 1 and n = 1000. Colored
scale indicates correlation coefficient values.
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Appendix B. Details of the experiment

Figure B.4. Correlation matrix between LASSO coefficients of all the different geometries
and their (first row) ks/krms; (second row) ks/kp; (third row) ks/kt; (fourth row)
ks/kz vectors. Coefficients are computed with λ = 0.1 and n = 500. Colored
scale indicates correlation coefficient values.
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Appendix B. Details of the experiment

Figure B.5. Correlation matrix between LASSO coefficients of all the different geometries
and their (first row) ks/krms; (second row) ks/kp; (third row) ks/kt; (fourth
row) ks/kz vectors. Coefficients are computed with λ = 2 and n = 500. Colored
scale indicates correlation coefficient values.
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