
POLITECNICO DI MILANO
Dipartimento di Elettronica, Informazione e Bioingegneria
Master of Science in Computer Science and Engineering

DESIGN AND
IMPLEMENTATION OF A

SOFTWARE PIPELINE FOR
MACHINE LEARNING ON

STREAMING DATA

Supervisor:
Prof. Francesco Musumeci
Co-Supervisor:
Prof. Massimo Tornatore

Candidate:
Matteo Formentin
Matricola 928164

Academic Year 2020-2021

Abstract

The application of machine learning (ML) methodologies in various

fields of everyday life has become prominent in recent years. ML models

are used in operational environments to perform many difficult tasks,

such as, traffic classification, automatic failure detection, image recog-

nition, that traditionally require specialized human expertise and effort

to be accomplished. ML models are becoming more and more accurate,

less prone to errors and able to highlight patterns that are hidden inside

data and not even an expert eye can find. One of the most challenging

objectives when deploying ML algorithms, besides developing the ML

models, is how to make such ML models efficiently work in an opera-

tional environment, e.g., where the scale of the data to handle grows

with the number of users and no service downtime can be tolerated. In

such cases, the hardware/software infrastructure that supports the ML

models should be able to scale and be resilient to software or hardware

failures. In this work, we propose a distributed, scalable and fault-

tolerant software pipeline that supports data ingestion and application

of ML models to streaming data. The proposed pipeline can support

thousands of data sources in a real environment and is built using state

of the art and open sources software that are chained to form a software

pipeline that achieves near real-time application of the machine learning

model. As an application environment of the developed data ingestion

pipeline, we consider the case of failure management in microwave net-

works, where the objective of ML models is to detect and to classify

failure in microwave equipment by only looking at the working logs of

the hardware that reports power measurement over the link. Finally, we

present the experimental results on this use case, concentrating on the

latency introduced by the pipeline components on a different number of

active data streams.

III

Abstract (Italiano)

Le applicazioni delle tecniche di machine Learning (ML) nei diversi set-

tori è diventata prominente negli ultimi anni. I modelli ML sono usati

in ambienti operazionali per eseguire compiti difficili non assolvibili da

algoritmi tradizionali e che spesso richiedono personale specializzato,

come la classificazione di traffico criptato, il riconoscimento automatico

dei guasti, o il riconoscimento delle immagini. I modelli ML sono sem-

pre più accurati e sono capaci di evidenziare pattern nascosti nei dati

che spesso neanche un occhio esperto riesce a trovare. Una delle sfide

più difficili nella progettazione di algoritmi ML, oltre allo sviluppo del

modello stesso, è come rendere il modello ML efficiente in un ambiente

operazionale, dove la dimensione dei dati da gestire cresce all’aumentare

degli utenti e dove non possono essere tollerate interruzioni del servizio.

In questi casi, l’infrastruttura che supporta l’esecuzione del modello

ML deve essere scalabile e resistente a guasti hardware e software. In

questo lavoro, proponiamo una pipeline software distribuita, scalabile

e resistente a guasti per supportare l’acquisizione e l’applicazione di

modelli ML a dati streaming. L’architettura proposta è in grado di

supportare migliaia di sorgenti dati e l’applicazione di modelli ML in

near real-time in ambienti reali ed è costruita usando software open

source concatenati in una pipeline software. Come caso di studio per la

pipeline sviluppata, consideriamo il caso della gestione dei guasti nelle

reti costituite da link a microonde, il cui obiettivo è di riconoscere e

classificare errori negli apparati di rete usando un modello ML che si

basa sui report di funzionamento e sulle misurazioni radio eseguite dai

link. Infine, presentiamo i risultati sperimentali in questo caso d’uso,

focalizzandoci sulla latenza tra la creazione e la classificazione dei re-

port di rete introdotta dai componenti della pipeline considerando una

quantità crescente di sorgenti dati attive.

V

Contents

1 Introduction 1

1.1 Related work . 4

1.2 Thesis outline . 4

2 Software used 7

2.1 Docker . 7

2.1.1 Containers and Virtual Machines 8

2.1.2 Images . 9

2.1.3 Containers Lifecycle 9

2.1.4 Networking . 10

2.1.5 Docker Compose 11

2.2 Apache Kafka . 13

2.2.1 Kafka architecture 13

2.2.2 Topic structure 14

2.2.3 Clustered deployment 14

2.2.4 Parallel processing of the topic 15

2.3 Logstash . 17

2.3.1 Data extraction 18

2.3.2 Data transformation 18

2.3.3 Data load . 19

2.3.4 Parallel processing 19

2.4 Elasticsearch . 20

2.4.1 Elasticsearch architecture 20

2.4.2 Difference from a database 20

2.4.3 Clustered deployment 21

2.4.4 Search and aggregation 23

2.5 Kibana . 24

2.5.1 Widget and dashboards 24

VII

2.5.2 Discover . 24

2.5.3 ELK stack monitor and management 25

2.6 Beats . 27

2.6.1 Filebeat and Metricbeat 27

2.7 Apache Spark . 28

2.7.1 Challenges in big data processing 28

2.7.2 Spark cluster . 29

2.7.3 Handling distributed data 30

2.7.4 Broadcast variable 31

2.7.5 Low-level unstructured Spark API 31

2.7.6 Structured Spark API 33

2.7.7 Distributed execution of jobs 33

2.8 Summary . 36

3 Design of a software pipeline for machine learning on

data streams 37

3.1 Software pipeline and streaming data 37

3.1.1 Main requirements for software pipelines 38

3.1.2 Notes on the pipeline development 41

3.2 Design of the data ingestion part 42

3.2.1 Collection of data 42

3.2.2 Queuing and buffering 43

3.2.3 Data cleaning and enrichment 45

3.2.4 Data storage . 46

3.3 Design of machine learning model application part of the

pipeline . 48

3.4 Performance metrics and health monitoring 50

3.4.1 Available metrics 51

3.5 Data visualization . 54

3.5.1 Stream visualization 54

3.5.2 Machine learning visualization 55

3.5.3 Metrics visualization 55

3.6 Summary . 55

4 Design of the pipeline for failure management in mi-

crowave networks 57

4.1 Machine-Learning-Based Failure management in microwave

networks . 57

VIII

4.1.1 Input dataset . 58

4.1.2 Machine learning model 60

4.2 Customization of the pipeline for failure management in

microwave networks . 63

4.2.1 Design of data ingestion 63

4.2.2 Deployment of the model 65

4.2.3 Design of data visualization 70

4.3 Summary . 71

5 Experimental results 73

5.1 Setup . 73

5.2 Performance indicators 74

5.2.1 End-to-end latency results 75

5.2.2 Breakdown of the end-to-end latency 76

6 Conclusion and future work 83

Bibliography 87

IX

X

List of Figures

2.1 Architecture of Docker in comparison with classical vir-

tualization. 9

2.2 Docker containers life cycle 10

2.3 Architecture of Apache Kafka. 14

2.4 Clustered deployment of Apache Kafka. 16

2.5 Logstash architecture. 17

2.6 Elasticsearch cluster. 22

2.7 Sample Kibana dashboard. 26

2.8 Spark cluster architecture. 30

2.9 Word count example. 32

2.10 Spark direct acyclic graph. 35

3.1 Pipeline overview. 39

3.2 Events publish on Kafka. 44

3.3 Parallel processing of topic. 47

4.1 Log windows. 62

4.2 Data ingestion part of the pipeline for failure manage-

ment in microwave network use case. 64

4.3 Datafrae created with the new batch queried from Elas-

ticsearch. 66

4.4 Aggregation of logs. 67

4.5 Filtering. 68

4.6 Windowing. 68

4.7 Classification. 69

4.8 Final dataframe with machine learning results. 70

4.9 Data visualization dashboard. 72

5.1 Correspondence between latency and the pipeline. 75

5.2 End-to-end latency plot 76

XI

5.3 Average Kafka latency plot. 78

5.4 Average Kafka latency time evolution, single batch. . . . 79

5.5 10 Links Kafka latency distribution. 79

5.6 100 Links Kafka latency distribution. 80

5.7 1000 Links Kafka latency distribution. 80

5.8 5000 Links Kafka latency distribution. 81

5.9 10000 Links Kafka latency distribution. 81

5.10 Average Spark latency plot. 82

5.11 Breakdown bar plot. 82

XII

Chapter 1

Introduction

The application of machine learning (ML) methodologies, thanks to

the increasing number of available frameworks, often open-source, is

becoming pervasive in many fields, from business analytics and finance

to the gallery of our phones. Also, the huge availability of training data,

driven by the high storage capacity of datacenters and modern data

collection systems, makes it possible to develop ML models that are

more accurate and less prone to errors. The machine learning diffusion

corresponds to an increasing amount of users and systems that access

the predictions provided by the ML model. This poses new challenges,

as the developed ML model has to be placed in the so-called operational

environment. Operational environments are typically not under the

control of the developers, in contrast to the development ones, which

are fully under control. The main difference is that it is difficult to

predict the scale of the data that the system could be required to handle

and that these values can change anytime. Also, hardware and software

systems can become faulty at any moment, but no downtime can be

tolerated in operational environments, as real users and systems rely

on the services provided by the ML infrastructure. To address these

two problems, the infrastructure that powers the ML model should be

scaled and replicated accordingly [10].

Another challenge of operational environments is that we are subject

to strict time requirements, often real-time, to avoid bottlenecks in the

system supported by the Ml model. Most of the time, the application

of ML models is only one element of a larger processing chain, called

a software pipeline. Pipelines are used to handle streaming data flows,

1

where the system receives the data, also called events or messages, to

be processed in real-time [11]. Events weights just a few kilobytes, and

they can be seen as a start-less, endless flow of data, making them very

difficult to handle. Streaming data are becoming the most common

type of data to handle, since they could be associated with web inter-

actions, like for example the clicks of a user on an e-commerce website,

or working logs, like the one produced by IoT devices. The applica-

tions that are chained in the pipeline perform one transformation step

on the inputs events and then forward the output to the next compo-

nent of the chain. If the machine learning application step requires too

much time, it could lead to blocking the full pipeline. While scaling the

infrastructure partially solves these issues, the problem should also be

addressed by running ML models on specialized software that enable

distributed low latency prediction on large amounts of data. Moni-

toring the performance and the status of the software in the pipeline

becomes fundamental to address the strict requirements imposed by the

nature of the operational environment: administrators must be able to

detect faulty applications and fast replace them, early recognize possible

bottlenecks and solve them as soon as possible. Monitoring requires a

specialized application and dedicated storage to support the collection

of the metrics, as well as a dedicated interface to analyze the collected

data.

Another important aspect of operational environments is how to

handle security, a problem that is often neglected in development phases.

Hacker attacks on operational systems are becoming more frequent,

making security one of the most important concerns for operational

environments where sensitive information is processed. We should be

able to ensure the so-called CIA triad [15]: Confidentiality, meaning

that all the communication between the processing steps must not be

read or made available to non-authorized entities, Integrity, the data

should be consisted and not altered by malicious users and Availability,

the ability of the system to be always working. Ensuring this property

in an operational environment is critical to avoid potential data leaks or

outage of the system by an attacker, so the securing of the stack of ap-

plications should be performed from the beginning of the development

process by applying security best practices like encryption and authen-

tication between parties. The software that is chosen should be well

2

known to have been developed with security as the first concern, what

is called security by design. Open-source applications have a greater

advantage over closed source ones when concerning security: being free

they are widely adopted and tested against vulnerabilities and bugs,

and since their code is publicly available it is usually peer-reviewed by

security experts.

To incorporate the aforementioned requirements in our framework,

we propose a software pipeline architecture supporting the application

of ML models in an operational environment in a scalable and fault-

tolerant way, and per- forming near real-time processing of streaming

data. The proposed design can support up to ten thousand data sources

in a real, unpredictable environment and is built using state of the art

and open sources software modules that are chained to form a software

pipeline. All the components support distributed deployment and are

compliant with security best practices: all the applications are designed

to run in a cluster to perform work distribution and parallel processing,

and they include encryption of exchanged data and authentication be-

tween parties. The proposed pipeline architecture is composed of four

parts:

• Data Ingestion: Applications that support the ingestion of the

data inside the system. It has four phases: buffering, preprocess-

ing and storage. This is the entry point for the streaming data

sources.

• Machine learning model application: stored data are batch-processed

with the machine learning model and the results are stored back.

• Data Visualization: allows users to look at the input data and

outcomes of data processing in a web-based interface.

• Health monitoring: monitors the status of the pipeline applica-

tions to detect bottlenecks or software failures and fast react to

them.

To make a reference implementation and to have a real use case

to test the developed pipeline, we consider the application of ML for

failure management in microwave networks and use a pre-developed ML

model that performs classification of failure causes in a real microwave

3

communication network. Nonetheless, the proposed design is general

and can be adapted to any kind of use case that involves applications

of ML on huge amounts of streaming data sources.

1.1 Related work

Software pipelines are becoming the standard to handle streaming data

sources in many different fields. In the networking field, one notable

example is [20], where the authors propose a method to collect net-

work telemetry using the Apache Kafka publish-subscribe pattern, an

approach that is also developed in this work, with the possible exten-

sion with machine learning consumers for further data analysis. Also

in [21], Kafka is used as the core application to implement the data

collection function of the Zero Touch Network and Service Management

(ZSM), an emerging architecture for automating network management.

In [18], a ML pipeline orchestrator is proposed to automatically man-

age and deploy the applications that compose the pipeline. In [19], the

authors present a general-purpose machine learning pipeline based on

microservices for log classification that is able to perform automatic

model training. In [14], an Apache Spark-based pipeline is used to han-

dle machine learning classification of streamed ECG (electrocardiogram)

data to detect anomalies in patients.

1.2 Thesis outline

The thesis is organized as follow:

In chapter 2, the software tools used to build the pipeline are intro-

duced.

In chapter 3, we describe the design of the pipeline in detail. First,

we introduce the data ingestion part, then we explain how to handle

the machine learning model applied to the data streams. Finally, we

describe how to monitor the pipeline performance and how to visualize

the machine learning application results.

4

In chapter 4, we introduce the failure management in microwave net-

works problem, and then we explain how the proposed pipeline archi-

tecture can be configured to suit this particular use case.

In chapter 5 we present the numerical results about the performance of

the pipeline, using as a test case the failure management in microwave

networks problem.

In chapter 6 we present the conclusions of our work and explore the

possible future research directions.

The documentation of the implementation of the pipeline for failure

management in microwave networks use-case is provided as an appendix

to this thesis.

5

6

Chapter 2

Software used

This chapter describes the main applications that are used to build the

pipeline. We highlight the main purpose and design characteristics of

each software that is chosen to be part of the pipeline architecture. We

also introduce Docker, the tool used for powering the infrastructure that

runs the pipeline.

2.1 Docker

Managing and maintain a cluster made of many applications is a big

challenge in deploying distributed systems. Some years ago the only

option to run multiple instances in parallel on limited hardware was

virtualization. Virtual Machines have the great advantage of enabling

hardware sharing with a fine-grained assignment of available resources,

but that comes at some cost. The main drawback of VMs is that they

are difficult to maintain since it is necessary to take care of the operating

system other than the software that they are intended to run. Running

a complete OS requires a huge amount of resources, and in case we need

another instance of an existing component to perform horizontal scal-

ing, another VM should be installed and configured to handle the new

requirements. All these limitations make a VM-based cluster unsuitable

for a development environment, where specifications can change at any

time and things are quite prone to break, but also for an operational en-

vironment, where fast scaling is needed to accommodate peaks of works

or react to the fault of a component.

Docker comes as a solution for all these limitations and adds some

7

extra features that are not available in traditional virtual machines,

such as image-based deployment, image registries and automatic stack

deployment, while at the same time it guarantees the complete isola-

tion between the different applications as provided by virtual machines.

for all these reasons Docker is the chosen engine to run our pipeline.

In the next sections, the main architecture and features of Docker are

presented, using as reference the official documentation [24].

2.1.1 Containers and Virtual Machines

The solution adopted by Docker to overcome the limitation of virtual

machines is to add another level of abstraction: while a traditional hy-

pervisor abstracts the underlain physical hardware, Docker abstraction

is placed at the operating system level. This is achieved by introducing

containers, a way to package an application with its required depen-

dencies such as additional binaries or libraries: for example, a Java ap-

plication could be packaged in a container that contains also the JVM

to run it. Each container is provided with an interface to a virtual

Linux operating system, making the containerized software believing it

is running on top of a reals OS: this will ensure that any existing applica-

tion could be run inside a container without requiring any modification

to the source code. Containers provide the same isolation allowed by

VMs, since each one runs in a different virtual environment, completely

disjoint from the others. The Docker engine is in charge of managing

the OS calls of the containerized application and of forwarding them

to the host operating system. Figure 2.1 highlights the main difference

between Docker and classical virtualization [2]: the most evident ad-

vantage is that despite the number of running applications is the same,

Docker requires just one operating system, which means only one sys-

tem to manage and keep updated and functional and lots of disk space

saved: since they do not include the OS, containers are lightweights

than virtual machines. This makes it possible to package every single

component of a cluster in a different container, something which will

be too costly for a VMs environment, allowing the so-called microser-

vices architecture [9]: this higher degree of isolation makes the system

much easier to manage and ensure no conflicts arises between software

installed on the same environment.

8

Figure 2.1: Architecture of Docker in comparison with classical virtual-
ization.

2.1.2 Images

The containers mechanism has another big advantage over virtual ma-

chines: being the application and its dependencies completely abstracted

by the OS, to define a container the only thing to do is to specify the

application to run and its dependencies. Docker implements a simple

solution to define how new containers should be created by using con-

tainers templates, called images. Images can be build by defining a

dockerfile, which declares how to install the application and the depen-

dencies that should be containerized with a bash style syntax. But the

real power of images is the public registry: there the images for almost

any available application can be found and easily instantiated as con-

tainers in just a few seconds. Thanks to the imaging system, scaling any

application by adding more instances requires no effort: it is sufficient

to create a new container starting from the required image.

2.1.3 Containers Lifecycle

To run a container, an image of it should be available. Images can be

created by running the docker build command with a dockerfile as an

argument or they can be downloaded from a registry if already available

9

using docker pull. Once the image is available, it can be instantiated as a

container with the docker run command. Figure 2.2 shows the life cycle

of containers. Multiple containers can be created from a single image,

allowing fast replication and horizontal scaling of the application. Every

time a container is created it starts in a ”clean” state that is the one

defined by the image. Soon after the boot, the container will hold a state

that reflects the computations done by the application and eventual file

system modifications, like files creation. Once a container is deleted,

everything different from the clean state is lost, and new containers are

created in the clean state. However, docker allows the persistence of the

file system by defining volumes that are mounted inside the container in

a particular directory. For example, a common operation is mounting

a configuration directory in all the containers created as instances of a

particular image: in this way, all of them can read and run the provided

configuration.

Figure 2.2: Docker containers life cycle. Image source: [24].

2.1.4 Networking

When a container is created, the default behaviour of Docker is to place

them in the default Docker network, a subnet bridged with the host

machine one that provides isolation with the rest of the network and

10

from other applications that runs on the machine. The user can create a

custom Docker network to better segment containers. For security rea-

sons, the Docker engine put a strict firewall on Docker network bridges

to block all the external requests, so that only containers that run inside

the same network can communicate with each other. To allows exter-

nal access to a network, Docker exploits a mechanism similar to NAT

port bindings between the container that should be accessed and the

IP address of the host machine. For example, consider a container that

exposes one service on port 80: port binding requires the host machine

to bind one of its free ports to the container port 80. If the host cho-

sen port is 8080, a client that is not on the docker network sends its

requests to the host machine IP address on port 8080 then the docker

engine forwards them to the right container on port 80.

2.1.5 Docker Compose

Docker makes running a full stack of applications as easy as download-

ing and running as containers the required images. To make this process

even simple, Docker Compose has been introduced to automate the te-

dious task of running too many docker run command with the right

settings. Compose allow defining the containers to run as well as their

parameters, networking settings and volumes to mount in a single file

that defines the entire cluster. Then it is sufficient to run the docker

compose command specifying the file to run and docker will take care

of running all the required operations to start the cluster. This enor-

mously simplifies the deployment in operational environments of stacks

of applications: it is sufficient to maintain a general-purpose Docker

machine, copy on it the docker-compose file and then run the docker

compose command. Docker Engine then automatically performs the

following operations:

1. Downloads the images of the containers from the provided registry

2. Creates a network with specified settings: this keeps other appli-

cation stacks running on the same host isolated

3. Creates volumes for containers persistence if needed

4. Instantiates as many containers as specified for each image, then it

11

connects them to the network, binds ports with host and mounts

the volumes if required.

As many clusters as needed could be created on the same host, Docker

Engine will take care of physical resources management.

12

2.2 Apache Kafka

Apache Kafka is an open-source distributed event streaming platform

originally developed at Linkedin. The main purpose of Kafka is to pro-

vide a message broker that interconnects different applications but can

also be used to provide distributed queues or buffers. Data streaming

refers to a use case where the data to process comes to the system in

real-time organized in chunks, also called messages or events. Streams

are difficult to handle since the rate of new events can change rapidly

in an unpredictable way. This makes the direct interconnection be-

tween different applications impossible to be performed classically like,

for example, using a mechanism such as API. This is needed because

if the load on one of the destinations is too high some messages could

be discarded since the application could have not the resources to get

and process it immediately. Also in a distributed environment where the

work could be shared by many instances (or nodes) of the same software,

it is necessary to have a load balance of the data to process between the

nodes and also some kind of coordination that ensures that the same

message is not processed two times by different instances. Apache Kafka

has been developed to provide all these kinds of functionality. The main

resource for this section is [22].

2.2.1 Kafka architecture

Kafka architecture is based on the publish-subscribe pattern: when a

new message should be sent to another application, the source one,

called publisher, publish the message on a specific topic [38]. A topic

is a unique name that identifies an independent queue inside Kafka.

The destination application, the subscriber, subscribes to the topic of

its interest and is notified when new data are available in the queue.

In this way, source and destination are completed decoupled and ab-

stracted. This provides three main advantages: first, there is a central

node that acts as a router and as an entry point for all the messages di-

rected to anywhere in the system, making it easy for anyone who needs

some specific stream, even coming from many different sources, to get

it simply by subscribing to that topic. Second, the message broker acts

as a buffer: the messages are always kept in the queue, and the sub-

scriber can read them when it has the available resources to process

13

them. Third, Kafka can also act as a load balancer between multiple

workers by exploiting its topic partition feature. Figure 2.3 shows the

architecture of a Kafka broker.

Figure 2.3: Architecture of Apache Kafka.

2.2.2 Topic structure

Kafka topics are organized as queues, but they differ from classical one

since once consumed the messages are not discarded. Instead, they are

kept in memory until a user-specified time has elapsed. This allows

many different subscribers to consume the same message in any desired

order. Kafka assigns to each message in the queue a unique progressive

index, called offset, to identify it. The consumer must provide Kafka

with the index of the message that it wants to read inside each request.

Topics are fault-tolerant by design: messages are kept also on the disk,

so if a crash appends, they can be recovered at the next start. Topics also

support a multiple broker split mechanism to provide fault tolerance,

called partitioning, that is discussed in the next section as part of the

clustered deployment of Kafka.

2.2.3 Clustered deployment

Kafka allows the distribution in a clustered environment, where multiple

instances of the broker allow workload split on the nodes. The load

sharing is based on the split of the topics on multiple partitions, each

one holding a subset of the messages that are published on the topics.

14

For each partition, one different broker is elected as a partition leader

and keep the primary partition while the other nodes in the cluster

keep a copy. Whenever a new publisher joins the topic, it is assigned

to a primary partition of the topic on the partition leader broker as

the destination for its messages. Partition mechanism allows both fault

tolerance and load sharing: whenever a broker fails, a new one is elected

as leader of the fault partitions and since it has already a copy of the

messages this operation is very fast. Load sharing is guaranteed on the

publisher side by assign to a different primary partition each producer,

on the subscriber side by reading the topics from multiple brokers to

get the full message queue. The number of partitions of a topic is a

configurable parameter, not tied to the number of brokers in the cluster:

also in a single instance deployment, there could be multiple partitions

for a topic to exploit consumer groups, discussed in the next session.

2.2.4 Parallel processing of the topic

Kafka topic partitions allow the processing of one distributed queue

by multiple subscribers that can consume different subsets of messages

in parallel. This multiplies the throughput of the system but requires

additional coordination between the subscriber and the brokers since

each message should be processed exactly one time by one consumer

only. This is done in Kafka by organizing the subscribers in consumer

groups. Each consumer group member read a partition of the topic but

the whole group consume the full amount of messages. Having many

consumer groups allows multiple groups to read copies of the queue, but

at the same time ensure that each member of the group read a subset

of them, enabling parallel processing of the messages.

15

Figure 2.4: Clustered deployment of Apache Kafka. The red highlighted
partitions are the leader one.

16

2.3 Logstash

Logstash is an ETL (Extract, Transform and Load) tool, designed to be

part of a software pipeline, as it performs an intermediate transforma-

tion step in the data processing of streamed data. The main purpose of

Logstash is to extract the data from a source, apply any kind of transfor-

mation and finally load them into the designed persistent data storage.

It has a deep integration with Elasticsearch for storage and Kibana for

data visualization. All three software are maintained by Elastic as the

ELK stack. Logstash is easily configurable by defining a pipeline con-

figuration file where the three ETL phases are defined. Main resource

for this section is [31].

Figure 2.5: Logstash architecture. Image source: [31].

17

2.3.1 Data extraction

The first phase of the ETL pipeline is the definition of the inputs for the

extraction of the data. Logstash is designed to work with streaming data

sources, where data flows in real-time inside the application. It supports

out of the box many common data sources, like Apache Kafka, SQL

database, HTTP request or custom protocols over TCP/UDP. From

each of these sources, it expects to have a flow of streaming events that

will be passed to the transformation phase.

2.3.2 Data transformation

After the definition of the inputs, the streaming events start to flow

inside Logstash. Incoming data can be divided into two categories [3]:

• Structured data: data comes organised in fields that can be in-

terpreted by a machine. This is the case when sources are SQL

databases, that are organized in tables, or JSON and XML.

• Unstructured data: in this case the data have no structure, and

although they can be easily understood by a human, they are

meaningless strings for a machine that does not know how to parse

them. This is the case for logs or HTTP requests.

To use the data for tasks like analysis, aggregation or machine learning

application, they must be structured. To handle unstructured sources,

Logstash includes a parsing engine, called Grok, that is used to derive a

structure from unstructured data. Grok includes out of the box patterns

to match most of the common formats, but it is also configurable by

hand by defining the regular expressions that match the fields to derive

[29]. For both the structured and unstructured cases, the incoming data

are then converted to JSON before going to the next phases. In case no

parsing has been applied to an unstructured source, a one field JSON

with the content of the event is emitted. Once structured, data can be

further manipulated, by applying one of the many plugins available for

the transformation phase, called filters. Examples spans from simple

operations like adding fields like timestamp or deleting sensitive data,

to more complex transformation likes data anonymize, where unique

id replace user identifier or IP geo-localization where IP addresses are

replaced with geographical location.

18

2.3.3 Data load

After the transformation of the data, Logstash sends them to the de-

signed data storage, called stash, as JSON documents. Despite Elastic-

search is the most used stash, as it is designed to work smoothly with

Logstash, data can be sent to a wide range of destinations, like no SQL

databases, S3 buckets or even pushed back to another Kafka queue.

2.3.4 Parallel processing

The specification of the ETL pipeline is completely stateless: each event

is a threat as independent from the previous and following ones, and no

information despite the one contained in the event itself is required to

apply the transformation phase. This makes it possible to process the

flow of data in parallel by multiple Logstash instances without requir-

ing any kind of coordination mechanism between the replica. For this

reason, Logstash does not include any mechanism to form and maintain

a cluster. To exploit parallelism, the data source must ensure that each

replica gets different subsets of the event to avoid duplicate processing

using a mechanism like Kafka partitions, discussed in section 2.2.4.

19

2.4 Elasticsearch

Elasticsearch is a distributed search engine, designed to store JSON

documents and optimised to perform full-text search and complex ag-

gregation on the stored data. Its main use cases include logs analytic,

web search and infrastructure monitor. Main resource for this section

is [26].

2.4.1 Elasticsearch architecture

Elasticsearch architecture is similar to the one of a No-SQL database,

despite it does not provide all functions of a database, like transactions.

Entries in Elasticsearch are schema-less JSON documents, which are

loaded already parsed and organized in fields from ingestion applications

like Logstash, discussed in the previous sections. JSON Documents have

a great expressive advantage over the classical tabular field organization:

they allow storing any kind of data structure, like arrays or nested

objects, without needing to normalize them to a one-column one-value

structure. Since Elasticsearch main purpose is to provide search over

documents, fields of the documents are text-indexes to provide near

real-time searching capabilities. Documents with something in common

are organized on indexes, like SQL rows are organised in tables. Indexes

are more flexible than tables, as Elasticsearch can handle thousands of

them without losing performance: it is common on logging applications

to have a separate index for each day, as search could be performed

between multiple indexes. Data ingestion and querying from external

applications are made possible by an HTTP REST API.

2.4.2 Difference from a database

Despite its No-SQL like structure, Elasticsearch is not intended to be

a database since it lacks one of the main future of a database, transac-

tions. A transaction is an operation on the data stored on a database,

like an insert or an update, that must have some precise properties,

summarised in the acronym ACID (Atomicity, Consistency, Integrity,

Durability) [1]. These properties ensure that concurrent operations on

documents do not place any incoherence in the database. The main

motivation for this lacks is that Elasticsearch is not intended to be a

20

primary database with records that are updated frequently, so having

a full-featured transaction mechanism on a cluster that is designed to

scale horizontally on hundreds of nodes will make operations slow since

distributed transactions require a huge amount of inter-nodes commu-

nication. Instead, Elasticsearch is optimised as a near real-time search

engine, so the main focus is on the speed of reads, an operation that

does not place any concern on consistency when concurrently executed

by many clients. Another missing feature is the relations capability, but

even if this feature is missed by most of the No-SQL databases, joins

can be implemented by the user in most of them. On Elasticsearch

there is no way to have something similar, since joins are the most ex-

pensive operations on a database, and this would impact too much on

search speed. Since Elasticsearch is often used in conjunction with a

classical database to have fast search and aggregation capabilities over

the stored data [28], to emulate a real join the relations between ta-

bles are denormalized: this will leads to duplicates data but allows the

maximum speed. Elasticsearch can be also used as primary storage in

the case of mostly read-only workloads, where retrieval and aggregation

speed is critical, like in the case of log analytics or monitoring of another

application.

2.4.3 Clustered deployment

Despite Elasticsearch could be used in a standalone mode, it is mostly

used in a clustered deployment: it is common for a distributed setup to

hold petabytes of data in hundreds of nodes. The replication mechanism

is based on the so-called shards, which are self-contained subsets of

documents that belong to the same logical index. A shard can be:

• Primary shard: this hold when the shard is the main copy of the

documents. When a search is performed, only primary shards are

targeted. For each shard, there is only one that is primary.

• Secondary shard: these are backup copies of primary shards, that

are kept on different nodes of the cluster. Each shard is indepen-

dently indexed from the others parts of the same index, making the

index only an abstracted logical grouping of shards. Elasticsearch

cluster coordinators, called masters, are in charge of balancing

the shards on the nodes of the cluster, to provide the maximum

21

availability and resiliency in case of disruption of the primary ones

as well as managing the creation of indexes and the join of new

nodes. If one master fails, another master is elected between the

nodes and the secondary shard are promoted to primary and bal-

anced on the cluster. Elasticsearch supports another replication

system, called cross-cluster replication. In this case, a secondary

dedicated site replicates the primary one: in case of unavailability

of the main datacenter, the backup one takes its place.

Figure 2.6: Elasticsearch cluster.

22

2.4.4 Search and aggregation

When new documents are added to Elasticsearch, they are automati-

cally indexed. Indexes are a data structure that allows fast retrievals of

specific documents without requiring to perform a full scan of the entire

store to find the desired data. Indexes on Elasticsearch are optimised to

perform full-text search on the fields of the documents, in contrast with

databases where the indexes are optimised to retrieves the numerical

key to having fast joins between tables. Full-text is the most common

type of search performed by humans when dealing with data: the user

provides a list of keywords and the engine provides the documents that

match them in one or more indexed fields. The data structure used

by Elasticsearch to index the stored documents is called inverted index

[7]: each word that appears in a particular index is associated with the

unique identifiers of the documents where that word appear. When the

user provides a keyword, all that is done is to find the correct entry in

the list of words and then retrieve the associated documents. Elastic-

search is also optimised to perform aggregation, a crucial operation in

data analysis, on the matched documents: this means applying func-

tions like sum, count, or average to get one value from many documents.

23

2.5 Kibana

Kibana is a data visualization framework part of the ELK stack. It fea-

tures a web-based interface to visualizes dashboards that can be pop-

ulated with widgets like charts, tables or even maps to show location-

based data. It requires Elasticsearch as source and engine to retrieve

and aggregate the data to be shown. Kibana is also used as a graphical

interface to monitor and manage all the ELK stack components. The

main resource for this section is [30].

2.5.1 Widget and dashboards

Kibana makes it easy to perform complex queries and aggregation from a

graphical web interface against Elasticsearch documents. Lens function

allows the creation of any kind of data visualization by selecting the

index to visualize, drag and drop the field on the graph and selecting the

aggregation function to use. Once created, the widget must be added to

a dashboard to be used. Dashboards are collections of widgets that can

be customised to deal with particular use cases or different users needs.

Kibana can suit the needs of both expert users, with a background

in data science, and non-expert users, that may need only some basic

information: multiple dashboards can be created to differentiate the

users, both by expertise and role inside the organization. For example,

the IT team can access data relative to infrastructure performance, while

analysts can access streams information.

2.5.2 Discover

Besides the dashboard view, Kibana allows expert users to perform a

free analysis of the data through the Discover function: data analysts

can select the index to visualise and perform aggregation through the

time with functions like sum, average, variance, correlation and many

more. This can be particularly useful to perform preliminary analysis

for machine learning model development, directly on the full data and

in real-time. Also, queries and aggregations designed in Discover can be

easily converted into a widget that can be made available to non-expert

users.

24

2.5.3 ELK stack monitor and management

Kibana serve also a centralised web interface to monitor and configure

the full elastic stack. Two main sections are available:

• Stack Management : Allows management of all the main elements

inside the ELK stack, like users roles and privileges, Elastcisearch

indexes, Logstash pipelines, security and backup settings, all in a

single web UI.

• Stack Monitoring : Allows the monitoring of the full ELK stack

from a single web interface. The data includes common metrics

like memory and disk usage, CPU load and custom metrics spe-

cific to the monitored applications. Also, a detailed breakdown

of Logstash pipelines is available, to detect problems in the ap-

plication of the filters to the data. Metrics collection is done by

Metricbeat, introduced in the next section, and the acquired data

are stored in a dedicated Elasticsearch index.

25

Figure 2.7: Sample Kibana dashboard.

26

2.6 Beats

Beats is a family of lightweight data shippers, developed by Elastic as

an add-on for the ELK stack. A data shipper is an agent that can

be installed on a server that runs another application to monitor the

operating system and the programs that run on top of it. Data collected

can be sent directly to Elasticsearch or published to a message broker

like Apache Kafka and then processed with an ETL tool like Logstash.

For our work two applications, Filebeat and Metricbeat, are used. Main

resource for this section is [25].

2.6.1 Filebeat and Metricbeat

Filebeat and Metricbeat are agents that collect data produced by other

applications on the same server where they are installed. They collect

two types of data: Filebeats collects logs, which are records of the oper-

ations performed by an application like for example access to a system,

while Metricbeat collects metrics of the applications, which are usage

statistics like used RAM or CPU, available Disk space and so on.

Both can be easily configured by specifying the destination of the

collected data and the format of the data to collect. Filebeat and Met-

ricbeat have dozens of modules that allows collecting and parsing many

common data sources: web server application like Apache or Nginx,

databases like MySQL, cloud engines like AWS or Google Cloud. Even

the ELK stack itself could be monitored by a dedicated ELK monitoring

stack: a common deployment of these two applications is using them in

combination with Elasticsearch for the storage and Kibana for the vi-

sualization. If the servers to monitor are many or with few resources, a

broker like Kafka is employed for queuing and the parsing and injection

are then offloaded to Logstash.

27

2.7 Apache Spark

Apache Spark is an in-memory distributed data processing engine used

to perform general-purpose computation on large amounts of data, com-

monly referred to as Big Data. It provides programming API to access

its functionality from Java, Scala and Python. Computation could be

performed on unstructured data using low-level API or on structured

data using an SQL like API, called SparkSQL. Main sources for this

section are [39] and [16]

2.7.1 Challenges in big data processing

Developing applications that handle big of data is challenging. It is

difficult to build them from scratch and it is better to use a dedicated

framework like Spark, as some issues will fast arise:

• Heterogeneous data sources : data can come from a plethora of

different sources, each one that has a different interface to ac-

cess them, examples are SQL or No-SQL databases, unstructured

sources like object storage systems, streaming data flows and many

more. Sparks provide a unified interface to handle all kind of data

sources.

• Size of the data: the term big data refers to the fact that the

data to process does not fit one machine memory, so it must be

distributed on multiple nodes. Spark provide a basic data struc-

ture called RDD (Resilient Distributed Dataset) that is build to

distribute large amounts of data on multiple Spark instances in a

fault-tolerant way. The great advantage of this data structure is

that data are kept in memory: this makes Spark operation very

fast if compared with alternative frameworks that keep data on

disk.

• Parallel processing of the data: Also data processing and not only

data storage should be performed in parallel on multiple machines

to exploit all the available power of the cluster. Spark has an API

that requires the programmer to define the operations to perform

on the dataset like if only one machine is processing the data.

Then the optimization engine automatically split the work into

28

smaller tasks and determine which operations can be performed

in parallel and handle task distribution on the nodes of the cluster.

2.7.2 Spark cluster

Spark computations take place on multiple nodes. Inside the cluster,

three main roles can be distinguished:

• Driver : This machine runs the program that is developed by the

user. The programmer can access Spark functions through an ob-

ject called Spark Session, which provides an entry point for all the

available APIs and the way to access the cluster. The driver is in

charge to plan how to execute the parallel computation by split-

ting jobs into atomic tasks that can be executed by the executors

on the workers. It contacts the master to request resources alloca-

tions on the workers to run the computation. The driver could be

the programmer PC on a development stage, but in operational

environments is usually a dedicated machine.

• Master : The master is responsible for coordinating the cluster,

managing the workers join and handle their eventual fault. The

driver asks the master to allocate resources to the workers to per-

form computations.

• Workers : Workers are responsibly to run the tasks requested by

the driver. The driver request resources to the master that asks

workers to available executor on them. An executor is one process

that can execute spark tasks, one worker has one executor for each

core. Once executors are allocated, the driver directly contacts

them to submit the tasks. Once the computation is done, results

are sent back to the driver which can terminate the session or send

other tasks.

Figure 2.8 shows the components of the cluster and the two phases of

the allocation of tasks to executors.

29

Figure 2.8: Spark cluster architecture.

2.7.3 Handling distributed data

RDD are the base data structure that represents an immutable, parti-

tioned collection of elements organised in rows that can be operated in

parallel on a Spark cluster. RDD partitions are distributed across the

workers of the cluster and each partition has backup copies on other

nodes to guarantee fault tolerance. Spark engine ensures that workers

are allocated tasks that should access data only on partitions that are

closer to them, minimizing the network bandwidth required for mov-

ing data between the nodes. RDD are unstructured data containers

that could contain everything, from files to tables or JSON documents.

Spark low-level operations, discussed in the next section, could lead to

the need of accessing partitions that are kept on other nodes. In this

30

case, the worker that needs that data directly ask the worker who holds

the partition for a copy of the data.

2.7.4 Broadcast variable

In a clustered environment there is no concept of global variables. A

variable is called global when it has scope inside the whole program:

since Spark applications are automatically decomposed in tasks exe-

cuted on multiple nodes, variables are scoped only inside the task that is

running on a specific node. RDD provides the data sharing between the

nodes, but they are suited for a huge amount of data and not for com-

mon programming variables, like objects. To handle this lack, Sparks

introduces broadcast variables : these variables are automatically dis-

tributed and always kept synced between all nodes inside the cluster.

This feature is usually used to distribute parameters or machine learning

models to perform parallel prediction on big data.

2.7.5 Low-level unstructured Spark API

Low-level Spark API is based on simple operations that take has param-

eter callbacks defined by the programmer, called user-defined functions,

that operates directly on the rows of the RDD. These three basic op-

erations could be chained together, since each function output another

intermediate RDD. These operations are:

• Map: For each entry in the RDD, the callback is applied and one

or more results are emitted, a common pattern is to output some

keys with associated values. The user-defined function takes one

parameter, the entry of the RDD, and emit one or a list of results.

Since the function is defined on a single entry of the RDD, maps

operations can be executed in parallel. For example, consider the

simple word count task in figure 2.9: if the number of occurrences

of a word in a file should be counted, the user-defined function

mapped to each entry could split the words of a single file, count

them and emit a list of words with the associated count.

• Reduce: Multiple RDD entries with the same key are reduced

into one value. The user-defined function gets two RDD entries

and outputs one value and is applied recursively until one value

31

is left. In the word count example, the intermediate word counts

are grouped by word and each group count is summed and finally,

one count per word is emitted.

• Filter : The entries of the RDD are filtered based on a condition.

In the word count, we can, for example, decide to consider only

files with a length greater or equal to a parameter.

By exploiting these basic operations, which together form the MapRe-

duce [12] pattern, any kind of aggregation or processing on any kind of

data could be defined.

Figure 2.9: Word count example. The different color represents different
nodes that works in parallel.

32

2.7.6 Structured Spark API

The problem with unstructured API is that user-defined functions are

like a black box for Spark optimization engine: only the programmer

knows what that function does to the data, making it impossible to run

any optimization on the task plan. Furthermore, since no structures are

associated with the data, neither the type of them is known: Spark must

threat them as raw bytes sequences, making any compression technique

application impossible. For this reason, unstructured APIs are rarely

used. To overcome these problems SparkSQL structured API is intro-

duced. SparkSQL provides an interface compatible with SQL syntax

to perform queries and common operations on the underline data with

predefined elementary SQL-like functions and it is built upon low-level

unstructured one as an abstraction level. Since RDD can only han-

dle unstructured data, a new data structure called DataFrame is built

upon RDD to handle structured data using tables with fixed schema

and type, like in a classical SQL database. Adding a set of predefined

elementary functions makes the Spark optimization engine knowing the

operations that are performed on the data, allowing an optimised oper-

ation plan that makes SparkSQL performs much better than low-level

user-defined functions [40]. High-level API has the same expressiveness

of user-defined function: map could be realised with the group by SQL

function, filtering with the where clause and for reduce aggregations a

huge number of functions like sum, average or count are already avail-

able. Despite using provided aggregation function is always preferable

for performance reasons, sometimes they do not cover all the use cases.

In this case, the programmer can still code custom user-defined func-

tions: an example of such a case is performing machine learning train-

ing or prediction on big data: since Spark supports Python, libraries

like Scikit-Learn or Tensorflow could be wrapped inside user-defined

functions and used to perform such tasks by exploiting the distributed

computation provided by Spark.

2.7.7 Distributed execution of jobs

Once the application is ready to be deployed, the driver machine op-

timization engine converts the application into a set of jobs that can

be executed in parallel, for example, operations on different RDD or

33

DataFrame could be run in parallel. Each job is represented as a DAG

(direct acyclic graph), a sequence of elementary actions, called stages,

that needs to be executed serially. In most cases what define the bound-

ary of a stage is the data transfer between partitions to perform that

stage. For example, a count executed after a group by is split into more

stages since the group by operations require moving the entries that

belong to each group to the node that handles that group. Only after

groups are made Spark can perform the aggregation in the next stages.

Each stage is then divided into tasks, the basic units of work that could

be run in parallel on multiple executors. Continuing the previous ex-

ample, each group could be handled in parallel by different executors

on different workers. After building the DAG, the driver contacts the

master to asks for available resources in the cluster, then the master al-

locates executors on the workers. Finally, the driver submits the tasks

to the executors. Once the computation is done, the executors send the

results back to the driver which assembles them into the outcome of the

stage, then another stage is initiated.

34

Figure 2.10: Spark direct acyclic graph (DAG).

35

2.8 Summary

In this section, we described the applications that are used in our work.

In the next chapter, we describe how the introduced applications are

used in the proposed machine learning pipeline architecture.

36

Chapter 3

Design of a software pipeline

for machine learning on data

streams

In this chapter, we describe how we design a general-purpose data in-

gestion pipeline supporting machine learning model deployment, that

can be applied to a variety of use cases. First, an overview of software

pipelines and streaming data is provided, then the proposed pipeline

architecture is described.

3.1 Software pipeline and streaming data

A software pipeline is a chain of applications that process a flow of

data sequentially, i.e., the output of one application is the input of the

following one. This structure is particularly suited to process streams

of data. Data streaming refers to limited amounts of data, also called

events, usually with the size of a few kilobytes, that is processed by the

various applications of the pipeline as soon as the source of data collects

it [11]. Streamed data are particularly difficult to handle, since they do

not have a start or an end, and their generation can be unpredictable.

If there are multiple sources of data, it can be impossible to know in

advance how many new data will reach the pipeline input in a given

instant. Some examples of streaming data are IoT data, the interaction

of users with a website, bank transactions or working logs of devices in

a communication network, which is the use case considered in our work.

37

The most common operations that are performed on streaming data are

processing, storage and visualization. However, due to the increasing

interest in online data processing enabled by efficient machine learning

algorithms and processing platforms, such as in the case of IoT device

data analysis, online payment fraud detection, online user tracking, of-

ten the ML data processing step is included in the pipelines, adding

further complexity to the infrastructure. In this chapter, we propose

a generic software pipeline that can be used to handle data streams,

which includes the classic pipeline operations as well as machine learn-

ing applications on streams of data. We divide the proposed pipeline

into four groups, that are analysed separately and are listed below:

• Data Ingestion: Applications that support the ingestion of the

data into the system. It has three sequential steps: buffering,

preprocessing and storage.

• Machine learning application: application of a machine learning

pre-trained ML model to the stream of data.

• Data Visualization: allows users to look at the data and to know

machine learning outcomes in a web-based interface.

• Health monitoring: monitors the status of the pipeline applica-

tions to detect bottlenecks or software failures and reacts to them.

In particular, the data ingestion and machine learning application

phases of the proposed pipeline are a particular case of a service function

chain [18] that can be defined as a vector T(a, b, c, d) where a=queuing,

b=data preprocessing, c=data storage, d=machine learning model ap-

plication. These steps will be detailed later in this chapter.

Figure 3.1 shows an overview of the proposed pipeline, with the

interaction between the components.

3.1.1 Main requirements for software pipelines

Running a software pipeline in an operational environment, where other

users rely on the services provided, poses additional problems compared

to a development environment. In particular, we focus on the following

main requirements, which are the most important for any distributed

system [8]:

38

F
ig

u
re

3.
1:

P
ip

el
in

e
ov

er
v
ie

w
.

39

1. Horizontal scalability : The pipeline should be able to handle thou-

sands of data sources that emit many independent streaming data

flows. The number of sources can change at any time, with more or

fewer data producers, so also the pipeline should be able to scale

accordingly. Horizontal scaling means adding more instances of

an application in parallel, in contrast with Vertical scaling, when

the hardware power of a single instance is incremented. Horizon-

tal scalability is always preferable over Vertical one, as a physical

machine supports a limited amount of upgrades and, more impor-

tantly, to perform power scaling, the machine must be powered

down, thus the main drawback of this technique is service outage.

2. Fault tolerance: The pipeline should be always working, even in

case of fault on systems or hardware, without losing any stored

data. This requirement is fundamental since there are users that

rely on the services provided by the pipeline, so no full-service

outage could be tolerated in an operational environment. Not

only the system should be always online, but being fault-tolerant

also means that in case of a disaster no data should be lost.

3. Concurrent access to the system: Having thousands of sources

that could potentially try to access the system at the same time

could lead to data loss and missed streaming events, due to the

system overload. The pipeline should be able to handle concurrent

access and peaks of work without losing performance.

4. Security : This is one of the most important requirements since

malicious attacks are becoming more and more frequent. An un-

secured pipeline could lead to stolen data or a full-service outage.

In an operating pipeline, guaranteeing the so-called CIA triad [15]

is key. Confidentiality ensures that communication between the

pipeline building blocks must not be read or made available to

non-authorized entities. Integrity concerned data consistency, i.e.,

data should be not altered by malicious users. Availability consists

of the ability of the system to be always working and is related

to fault tolerance discussed above. Security is handled both by

the application developers, which must ensure a vulnerability free

software and by the software users that must apply security best

40

practices when deploying it and must exploit all the security fea-

tures provided, like encryption on API communication or of the

stored data.

5. Near Real-Time: The processing of a packet of data should be as

fast as possible, as taking too much time could block the system.

The data ingestion pipeline proposed in the thesis aims to this

particular objective of near-real-time performance, with latency

in the order of seconds.

6. Parallel Execution: The streams of data that comes from differ-

ent sources can be often treated as independent, which means that

different streams can be processed in parallel. Even when some ag-

gregations between different sources is required, some parallelism

can be exploited after that operation. To get the maximum speed

and achieve near real-time processing, all the possible parallelism

must be exploited.

In the next sections, we describe the proposed pipeline design by ex-

plaining each section individually, with particular reference to how to

satisfy these requirements.

3.1.2 Notes on the pipeline development

The pipeline is fully developed using Docker as a virtualization tool,

to allow fast development in a resource-constricted environment. Each

application of the pipeline is already available as an image on the public

registry, so no installation effort is required. To have a fast and easy

boot of the entire cluster, a docker-compose file is provided with the full

specification of the pipeline. Details on Docker can be found in Section

2.1.

41

3.2 Design of the data ingestion part

The data ingestion part supports operations from the collection of the

data from the sources to the storage: it includes all the steps necessary to

prepare the data before the application of machine learning algorithms

and the analysis of obtained results after data processing. It is split into

the following phase, each corresponding to one different application in

the processing chain:

1. Collection of data: This is the only phase that is located outside

the datacenter where the pipeline is executed. In this phase, data

are extracted from the sources and sent to the pipeline. This step

is performed by Filebeat, introduced in Section 2.6.

2. Queuing and buffering : Data are published inside a queue where

they wait before being processed in the subsequent element of the

chain. This is the entry point of the pipeline for the streams of

data. Queueing and buffering are performed by Apache Kafka,

introduced in Section 2.2.

3. Data cleaning and enrichment (Preprocessing): Data inside the

queue are processed by an Extract, Transform and Load (ETL)

application that adds some metadata and loads them inside the

designed storage. This step is performed by Logstash, introduced

in Section 2.3.

4. Data storage: Processed data are kept in persistent storage sever,

to be processed by the machine learning model or analysed with

the data visualization tools. The storage application is Elastic-

search, introduced in Section 2.4.

3.2.1 Collection of data

Before entering the pipeline, the data must be extracted from the sources.

There are two ways to perform this operation. The first assumes that

the sources can publish data to a Kafka broker, in this case, it is suf-

ficient to transform the data into JSON and publish them as messages

on the Kafka broker (From now, we use the word message to iden-

tify the streaming events handled by Kafka, that includes the original

42

JSON data and some metadata used to manage the topic). This can be

the case of a new application that is developed to be compatible with

the pipeline, or of a legacy one that allows integration with custom-

developed plugins. In the case of a legacy application that is not com-

patible with Kafka, Filebeat can be used. It can be installed directly on

the same machine that produces data, if it runs on top of an operating

system, or on a second one that is placed onsite, like a small computing

device like a Raspberry Pi. Then, it allows extraction of any kind of

data with one of the dozen of modules already available, from textual

logs to more complex custom API polling. Filebeat directly integrates

with Kafka, so, once extracted, data are converted into Kafka streams.

3.2.2 Queuing and buffering

Once extracted from the sources, data are published on a predefined

topic on a Kafka broker in JSON format. Different topics could be

used to split different types of sources, allowing differentiated process-

ing in the next steps. The main purpose of placing a broker between

the sources and the pipeline is to provide a buffering queue. This is nec-

essary since, in case of peaks of incoming data or too many concurrent

accesses to the system that puts an excessive load on the next steps

of the chain, some data can be lost without a buffering stage. Kafka

can handle thousands of concurrent publish operations on a given topic,

dozens of times more than the processing capacities of the pipeline,

thus making Kafka an efficient buffer stage that ensures that the incom-

ing data are stored safely until an available application processes them.

However, buffering can only handle short overloaded time intervals, oth-

erwise, the buffer occupation grows indefinitely and the pipeline is not

able to handle the streams. To achieve fault tolerance and workload

distribution, in the proposed pipeline multiple brokers are clustered to-

gether and the topics are partitioned (see Section 2.2.4) to allow parallel

streams processing. In practice, each data source registers as a publisher

on the Kafka cluster that assigns a partition as the destination for the

published data, as shown in Fig. 3.2.

43

Figure 3.2: Events publish on Kafka.

44

3.2.3 Data cleaning and enrichment

After data has been published on the topic, they wait there until one

available Logstash instance process the events. In this step three main

operations, known as ETL pattern, are executed on each message in the

queue:

1. Extract : Logstash requests the next message queued in the topic

to the Kafka Broker.

2. Transform: Logstash applies the processing on the extracted event.

Logstash allows the definition of multiple transformations steps,

called filters, that includes common operations like parsing, anonymiz-

ing or enrichment and many more. One step that is always re-

quired to have compatibility with the machine learning model ap-

plication part of the pipeline, is to define a filter that adds the

spark processed field to each event, as it will become fundamental

to distinguish the data that have not already been processed by

the machine learning model. To apply the machine learning model

more complex processing steps can be required, like aggregation

between multiple data streams or events. Apply them directly in

this phase could create a huge bottleneck in the pipeline, so they

are done before the application of the ML model when data are

already in the storage, right before the machine learning model

(see Section 3.3). The main scope of Logstash in this phase is to

fast consume the Kafka topic and save the event into Elasticsearch

to not let the queue grow too much, so only basic processing can

be applied. Since no aggregation between events is performed,

no other messages are needed except the one that is been pro-

cessed. Also, the processing order of the events inside the queue

is not important, since each of them has a timestamp field already

applied by the source before publishing that allows reordering in

the next steps if required. These two properties allow parallel log

processing by multiple Logstash instances without requiring any

coordination between nodes, as detailed in section 2.3.4. As many

instances as needed could be fast instantiated by creating a new

Logstash Docker container, allowing a fast reaction to workloads

changes and making this solution horizontal scalable and fault-

tolerant. Parallel processing is supported by Kafka topic partition,

45

as detailed in sections 2.2.4: by placing all the Logstash instances

in the same consumer group and adding as many partitions of the

topic as the number of processing nodes, Kafka automatically dis-

tributes different events on the topic to each instance, as shown

in figure 3.3.

3. Load : Logstash stores the processed event inside the destination

index on Elasticsearch. As in the initial queuing, multiple desti-

nation indexes can be defined to separate different streams. One

common operation is to have separate Logstash configurations

that consume different topics, apply specific processing for that

stream and then store it inside a dedicated index.

3.2.4 Data storage

The destination of the data cleaning and enrichment is Elasticsearch,

where Logstash sends the transformed data into the destination index

exploiting the REST API. Elasticsearch is chosen since it allows fast

data aggregation and search, fundamental to perform data analysis. The

Elasticsearch query engine can run complex aggregations on the data

by using common operators like sum, average, count and so on. This

allows analysis of the data by the data science team, both through an

external application using the API or by using Kibana. Details on data

visualization in the pipeline on Section 3.5. Elasticsearch cluster should

support concurrent access, as four applications access the storage:

1. Data injection: multiple instances of Logstash load data inside

Elasticsearch.

2. Data visualization: The data science team can perform data anal-

ysis and aggregation over time mainly by using the Kibana graph-

ical interface, which uses Elasticsearch as the back-end.

3. Machine learning model application: When new events arrive,

Apache Spark downloads the new batch of stored events to ap-

ply the ML model, and then stores the results back.

4. Pipeline monitoring : The metrics of the pipeline components are

loaded inside Elasticsearch for monitoring purposes, where system

46

Figure 3.3: Parallel processing of topic.

administrators can explore the collected data using a dedicated

Kibana dashboard.

This huge amount of concurrent access could move the bottleneck from

the processing phase to the storage one. To avoid this, data storage is

handled in a distributed way on multiple nodes that shares the workload

and the data. Fault tolerance is ensured by the native Elasticsearch

sharding mechanism (see Section 2.4.3): in case of one node failure,

there is no data loss.

47

3.3 Design of machine learning model ap-

plication part of the pipeline

In the previous section, we described how the streams of data flow from

the sources to the persistent storage inside Elasticsearch. Once some

events have been stored, they are transferred to the prediction server to

be processed by the machine learning model. This kind of processing

is called batch. The most common operations performed on stream-

ing events are either classification when the events are assigned to one

discrete class of a predefined set, or regression when a real number is as-

sociated to the data stream as an output of the ML model, that has been

already trained on smaller datasets. In the proposed pipeline Apache

Spark is used as framework and computational engine to apply machine

learning to the data. Spark allows distributed computation on many

nodes, which translates into fast data preprocessing and prediction, al-

lowing near real-time ML model application. The distributed execution

makes also the prediction cluster fault-tolerant to failures and outages.

Since Sparks applications are written in Python, the framework sup-

ports all the existing libraries like Tensorflow and Scikit-Learn, so the

same tools used in development can be also used in the operational en-

vironment exploiting the power of the Spark optimization engine that

automatically determines which tasks could be executed in parallel and

distributes them among Spark nodes in the cluster. The Spark appli-

cation that runs the ML model is where most customization is needed

to adapt it to the use case. This is in some way unavoidable as any

machine learning model is different from the others, especially in the

data preprocessing phase, which cannot be abstracted from the particu-

lar data of the considered use case. The only operation that is equal in

any use case is the transfer of data from Elasticsearch to Spark and the

writing of machine learning outcomes back into the storage. In general,

the Spark application that runs the ML model inside the pipeline is

constituted by the following steps, that can be used as a guideline to

develop an application that suits the considered use case:

1. Request new data: Spark request a new batch of data to Elastic-

search from the index where they have been stored by Logstash.

The acquisition of data is done using the Elasticsearch-Spark li-

brary by Elastic [27], as Spark does not support Elasticsearch out

48

of the box. To determine the new data batch to collect and avoid

duplicate processing the field of the log spark processed is checked

to be false during the query to the Elasticsearch index, and it is

set to true after the computation. Collected data are automati-

cally converted into a Spark dataframe, the tabular format where

SparkSQL operations can be applied.

2. Preprocessing : Preprocessing of the acquired data to prepare them

for the ML model application. This step is the most use-case-

dependent and requires huge customization: common operations

are scaling around mean and variance, one-hot encoding of labels,

handling “null” values. Preprocessing should be done using the

SparkSQL API where possible, as they are the most efficient Spark

API, avoiding the as less efficient user-defined functions [40], but

this could be unfeasible as many common preprocessing operations

are not available in SQL. More details can be found in Section 2.7.

3. Prediction: The ML model is applied to the data. This phase

is quite standard and dependent on the chosen machine learning

library. It must be coded inside a Spark user-defined function,

that is applied to each row of the preprocessing dataframe.

4. Save results : Spark request Elasticsearch to update the original

batch data with the machine learning results. The operation called

upsert is performed on the Elasticsearch index: Spark checks if

each document needs to be updated, and updates only the fields

that have been changed. This is faster than sending back the full

processed batch. After these steps, Spark downloads a new batch

and performs all the operations again from the beginning.

49

3.4 Performance metrics and health mon-

itoring

Monitor the performance and the health of running applications is fun-

damental in any operational environment to detect and prevent mal-

functioning on the deployed software. Monitoring the performance of

an application means collecting metrics about its functioning and about

the hardware resources that it is using, while with the health of a dis-

tributed system, we refer to the working status of each software applica-

tion. An application is healthy when it is not in an error state and when

it can communicate with the other nodes in the cluster. In a distributed

software pipeline, two main problems could arise and must be detected

as soon as possible [13]:

• Fault of an instance: Any application can stop working at any

time. This does not result in a complete service outage, since all

the clustered deployment integrates some kind of fault protection,

but there is a limit in the number of instances that can simulta-

neously fail inside the cluster without having a full outage. So

we should be able to fast detect faulty containers, and fast re-

place them with a new instance. This issue is partially solved by

the Docker engine, which can detect containers where the running

application is in an error state and fast run a substitute one.

• Bottlenecks : This is a problem that arises when an application

processing rate is less than the produced data rate. When data

processing components are not able to handle all the received data,

some of them are discarded, thus causing service degradation. A

queuing system like Apache Kafka can limit this problem but only

for small time intervals, but if this persists the topic queue will

grow fast and can overflow. This problem is easily solved if de-

tected earlier with horizontal scaling of the application that is

causing the bottleneck.

Metrics collection is performed using Metricbeat, introduced in sec-

tion 2.6, the collected data are sent to Elasticsearch and they can be

visualised in a Kibana dashboard. In a real operational environment

it is common practice [33] to separate the cluster that is monitored, in

our case all the pipeline, and the monitoring cluster, that is in charge

50

of handling only the metrics collected. Since this leads to two different

Elasticsearch-Kibana stacks and we are working in a resource constraint

environment, we reuse the already-deployed instances and put the met-

rics in a dedicated index with a dedicated dashboard to visualise results.

Metrics visualization is explained in Section 3.5.3.

3.4.1 Available metrics

The collected data includes common metrics like memory and disk us-

age, CPU load and metrics specific to the monitored applications. Met-

ricbeats provides modules [32] that allow the collection of metrics from

the following applications of the pipeline:

• Docker metrics : They include all the statistics on the host that is

running the Docker engine, as well as on the running containers.

This module is fundamental to detect which containers are in an

error state as well as how many resources are available for adding

new instances of any application.

• Kafka metrics : They include statistics like the topic queue size,

the publish event rate, the connected publishers and subscribers

and the network bandwidth used by the application. The most

important one for bottlenecks detection is the consumer group lag

metric: it is defined as the difference between the total amount of

events in the queue and the offset (current index in the queue) of

the consumer group and corresponds to the number of messages

that the consumer group has still to process. Since the consumer

group in the pipeline is composed of Logstash applications that

store the data inside Elasticsearch, the consumer group lag is the

most important indicator of a bottleneck in the data ingestion part

of the pipeline. It should always ensure that the average lag is the

smallest as possible, else there could be an excessive load either on

Logstash or Elasticsearch and scaling of these applications could

be required.

• Logstash metrics : They reports three main metrics, events received

rate, the rate of new logs downloaded from Kafka, events emitted

rate, the rate of logs saved inside Elasticsearch and events latency,

the average time required to process a log. By analysing these

51

statistics it could be determined if Logstash has some problems:

in particular, events received rate less than the incoming message

rate of Kafka can mean that Logstash is a bottleneck. Also, a

huge events latency could mean that some of the processing steps

of Logstash are abnormally taking too long to complete. Also, a

breakdown of the transformation steps applied to data is provided

inside the Stack Management area of Kibana (Details in 3.5.3),

allowing an easy fix of these problems.

• Elasticsearch metrics : They include documents count for each

index, storage usage for the nodes, rate of data query, loads of

all the nodes and many others. These metrics allow detecting if

additional nodes are needed to support the ingestion. Also, the

health status of the indexes in the cluster is reported. Each index

can be in three health statuses:

– Green: If the shards of the index are replicated on many

nodes. This is the desired state that allows fault tolerance in

case of failure.

– Yellow : All the primary shards are assigned, but one or more

replica shards are unassigned and, if a node in the cluster

fails, some data could be unavailable. When an index is on

this status, the Elasticsearch master tries to rebuild the shard

replica and sends them to a node in the cluster.

– Red : This indicates a severe data loss and coincides with the

total unavailability of the index. This condition is irreversible

and needs recovery from a backup.

To ensure that Elasticsearch is healthy, all the indexes must al-

ways be in the green states, if a persistent yellow state is reported

maintenance to replace failed nodes can be required.

• Kibana metrics : They reports statistics of web access to dash-

boards and the latency to serve web pages. If many users rely

on Kibana to visualise the data, adding more instances can im-

prove the performance and speed of the data visualization web

front-end.

52

• Metricbeat metrics : Metricbeat can self-monitor, reporting fail-

ures in collecting metrics from other applications.

• Spark metrics : Metricbeat is not compatible with Spark, but to

overcome this issue the Spark Web UI can be used. It reports

detailed information on the running jobs and task execution on

each node, allows DAG visualization, as well as the time required

to perform each stage. To detect Spark bottlenecks, other than

web UI, the custom Spark lag metric is introduced. It is defined as

the count of data that have the spark processed field false, which

corresponds to the events that are still to process with the ML

model. It has a role similar to the Kafka consumer group lag for

topics queues in the detection of bottlenecks but for the machine

learning model application part of the pipeline. If this metric is

too high and constantly increase, a scaling of the Spark cluster is

needed. Finally, to measure the performance of the pipeline, the

latency metrics is defined as the time required to fully process one

log from the data ingestion to the prediction. It is calculated as

the difference of the timestamp added before publishing the event

to the pipeline from the source application and the time at when

Spark applies the ML model and is calculated by the Spark appli-

cation before sending classification results back. Latency metrics

are used to test the proposed design, so they are better detailed in

the experimental results chapter. These two metrics can be sim-

ply inserted into any kind of Spark application for any pipeline

use case.

53

3.5 Data visualization

What we have discussed until now is the so-called back-end, and con-

stitutes the core of the pipeline functionality, while data visualization

is the front-end, the point where users can access all the pipeline func-

tionality in an easy-to-use graphical interface. The front-end must be as

simple as possible, to completely hide the complexity of the back-end.

Users may not be interested in the details of the pipeline implementa-

tion, but they should be able to comprehensively exploit all the pipeline

functionality. Data visualization allows access to the three data types

available inside the data pipeline, described in the previous chapters:

• Stream visualization: Visualise the events that are stored inside

the pipeline on graphs and charts to perform real-time or historical

analysis of the data streams.

• Machine learning visualization: Visualise the results of the ML

model application.

• Metrics visualization: Visualise the collected metrics and monitor

the status of the pipeline.

The application used for visualization is Kibana, introduced in Sec-

tion 2.5, which works as the front-end of Elasticsearch, which executes

queries and aggregation and returns the data. Visualization of the data

is done through dashboards, populated with widgets like charts and

graphs, that can be customized to suit the use case. On the same dash-

board, multiple data categories can be mixed and different dashboards

can be created to differentiate users, to provide only data streams data

to non-technical users or pipeline metrics to the administrators. The

dashboards and their widgets are use case dependent and need to be

designed accordingly: Kibana allows easy dashboard creation with an

intuitive drag and drops approach.

3.5.1 Stream visualization

Analysing raw data can be useful both to the non-developer and to

data scientist: the former can visualize key insights of the streamed

data, for example, in an IoT use case, visualizing real-time or historical

sensors measures, while the latter can find complex patterns to exploit in

54

machine learning model design. Kibana allows both the use cases: Data

scientists can use the Discover section to perform free exploration on

the data using aggregation with functions like count, average, variance,

correlation and visualize results on charts and graphs, while for every-

day operation and monitoring a dedicated dashboard can be populated

with widgets that perform some pre-registered queries and aggregation

previously designed in Discover.

3.5.2 Machine learning visualization

Detailed ML model outcomes can be visualized on any kind of widget.

The design of visualization of machine learning is use case dependent,

mostly dependent on the type of ML model deployed.

3.5.3 Metrics visualization

Metrics collected through Metricbeats can be analysed to help in the de-

tection of failures or bottlenecks. Kibana provides two ways to visualise

metrics:

• Stack Monitoring : Metrics from the ELK stack (Elasticsearch,

Logstash, Kibana and Metricbeats) benefits of powerful prede-

fined instruments, and no custom dashboards are required. In

this section, the status of every application can be monitored,

from the CPU, RAM and disk statistics to application-specific

ones. Logstash is also provided with a tool to analyse the latency

of each step of the transformation phase.

• Custom dashboards : For other applications, the metrics can be

handled through the widgets in the dashboards. The only appli-

cation in the pipeline that cannot benefit from Stack Monitoring

is Apache Kafka, but we made a dedicated dashboard to show the

main parameters.

3.6 Summary

In this chapter, we explained the proposed pipeline architecture, from

data collection to machine learning ML model application on the col-

55

lected data, concluding with data visualization and performance mon-

itoring. In the next chapter, we show a reference implementation con-

sidering the failure management in microwave networks use case.

56

Chapter 4

Design of the pipeline for

failure management in

microwave networks

In this chapter, we explain the failure management in microwave net-

works problem, and we provide a reference implementation of the pipeline

on this use case. Since the logs provided by the equipment can be con-

sidered as streamed data, they are an ideal example for testing our

design. however, the proposed pipeline design can be applied to any

case that involves machine learning on data streams. A deeper treat of

failure management in microwave networks topic can be found on [17],

used also as a reference for the customization of the general pipeline

architecture. After the introduction to the topic, we explain how the

ML model developed to solve this problem is deployed in an operational

environment, exploiting the pipeline features. For each section of the

pipeline, introduced in the previous chapter, it is provided how it has

been customized to suit the fault management in microwave network

use case.

4.1 Machine-Learning-Based Failure man-

agement in microwave networks

Failure in microwave networks involves the detection of failures inside a

network composed of microwaves links and the subsequent classification

57

of the failure. A microwave radio link is a bidirectional point-to-point

connection between two geographical points, performed using equip-

ment placed in the line of sight that transmits on a high frequency [4].

The network is a real one deployed in Italy with equipment provided

by SIAE Microelettronica company, composed of 10841 links that pro-

vide status and power measurement logs once every 15 minutes in a

streaming fashion.

4.1.1 Input dataset

To test the functionality of the pipeline, a dataset of pre-registered logs

is employed to emulate the network. The information provided by the

links in the logs are:

• Measurement information: Information that identifies the link

that produces the log like the unique id of the link, branch (direc-

tion) of the measure, IP addresses of both ends of the link.

• Project information: Information of the settings of the link, fixed

in time. Contains equipment type, lowest and highest modula-

tion formats allowed in the link, ACM (Adaptive Code Modula-

tion) settings, nominal received and transmitted power, protection

scheme adopted, frequency and bandwidth of the link.

• G.828 performances : These fields contain information that con-

forms to the G.828 ITU standard [35], which describes the main

performance indicator to measure performance and availability of

radio links. In our use case three indicators are reported:

– ES, Errored Seconds : Number of one-second periods with

blocks of received data that have at least one error.

– SES, Severely Errored Seconds : Number of one second peri-

ods where at least 30% of the blocks have error.

– UAS, Unavailability Seconds : When ten or more consecutive

SES are detected, the link is declared unavailable. This field

measures the number of seconds in unavailable status.

• Propagation measures : Contain, for both the transmission direc-

tions of the link, the minimum and maximum transmitted and

58

received power and the lowest modulation reached in the 15 min-

utes window.

• Quality flags : Three flags indicate if the measures contained in

the log are reliable. Only the logs with all flags reporting correct

measurement are processed.

• Last second of the window measures : They provide the signal-to-

noise-ratio, the modulation used and the received power in the

last second before producing the log.

Table 4.1 shows the most important fields reported by the links.

Table 4.1: Selection of data reported by the links.

Reported data

Parameter Type Description

Idlink Measurement information Unique identifier of the link

Ramo Measurement information Identify the side of the link, A(0) or B(1)

Data Measurement information Time and date of log production

ip a Measurement information IP address of side A

ip b Measurement information IP address of side B

Ptx Project information Nominal transmitted power when the minimum

modulation format is used (dBm)

freqband Project information Link frequency

bandwidth Project information Link bandwidth

protection Project information Protection technique on link

LowThr Project information Minimum received power tolerated on the link with

any modulation format used (dBm)

Ptx Project information Nominal transmitted power when the minimum

modulation format is used (dBm)

Thr min Project information Minimum received power threshold tolerated by

the link with its current modulation format (dBm)

RxNominal Project information Nominal received power at the maximum modula-

tion format (dBm)

acmEngine Project information Flag that indicates if the ACM is enabled on a

given microwave link

59

ES G.828 Number of one-second periods with blocks of re-

ceived data that have at least one error

SES G.828 Number of one second periods where at least 30%

of the blocks have error

txMaxA Propagation measures Maximum power transmitted from site A in in the

15-minutes slot (dBm)

txminA Propagation measures Minimum power transmitted from site A in the

15-minutes slot (dBm)

rxmaxA Propagation measures Maximum power received at site A in the 15-

minutes slot (dBm)

rxminA Propagation measures Minimum power received at site A in the 15-

minutes slot (dBm)

txMaxB Propagation measures Maximum power transmitted from site B in in the

15-minutes slot (dBm)

txminB Propagation measures Minimum power transmitted from site B in the

15-minutes slot (dBm)

rxmaxB Propagation measures Maximum power received at site B in the 15-

minutes slot (dBm)

rxminB Propagation measures Minimum power received at site B in the 15-

minutes slot (dBm)

acmMax Propagation measures Lowest modulation reached in the 15 minutes mea-

sures

4.1.2 Machine learning model

The ML model used to perform classification has been developed on a

labelled subset of the previously described dataset. The labels are ap-

plied by domain experts to time windows of 45 minutes, i.e., consisting

of measures collected in three consecutive 15-minutes slots. Only win-

dows that report a UAS in the last slot are used for ML model training

since failures only occur if there has been an error. Therefore, the same

rationale is applied when using the ML model “in-field”, i.e., only win-

dows that report a UAS in the last position are classified. The following

60

six possible labels are used in the classifier, and correspond to different

failures in the radio equipment:

• Class 0, Deep Fading : It is a severe channel attenuation, that

makes communication between the two radio equipment impossi-

ble. This condition is random and can depend on geographical

position, seasonality or weather condition. Some of the possible

causes are the loss of the line of sight between the equipment,

caused for example by the vegetation, or severely adverse weather

conditions, that especially at higher frequencies can interfere with

the radio signal. Most of the time deep fading resolves alone, but

if it persists a field intervention could be required, for example, to

cut the vegetation.

• Class 1, Extra attenuation: In normal working conditions the

transmitted power should match the received one, with small dif-

ferences possible. When the gap is too high, the link is in the extra

attenuation status: this usually required technical intervention to

fix the problem, either on the field or remotely.

• Class 2, Interference: Interference is caused by other radio sources

that operate on a frequency band that overlaps with the link one,

making the signal noisy. This condition could be temporary, but if

it is persistent it could be needed to change the carrier frequency

of the link.

• Class 3, Low margin: A generic problem that is always caused

by human error in the configuration of the equipment, that has

not been performed as recommended by the producer. It could be

easily corrected by changing the equipment configuration.

• Class 4, Self-interference: The link transmission is full-duplex,

this means that the communication is bidirectional and both sides

of the link have a transmitter and a receiver. In normal working

condition, the two radio signal does not interfere each other since

they are on a different band. Sometimes, due to non-linearity

in the filtering electronic components, some frequencies that be-

long to the other radio path could be transmitted, causing self-

interference to the receiver on the same side. This problem always

61

arises as a consequence of bad link design and need intervention

to be fixed.

• Class 5, Hardware failures : This class includes all the generic

equipment faults that are not easily recognizable by just looking

at the radio measurements. They could be both temporary or

permanents failures, and they require human intervention, often

on the field, to locate the problem.

The ML model that has been developed is based on artificial neural

networks, with one hidden layer of 50 neurons. The framework used for

development is Scikit-Learn on Python. In order to be used, the ML

model requires preprocessing of the inputs logs. This is done sequen-

tially by applying the following steps:

1. Logs Windowing : The ML model requires windows of three logs

as input, with all the logs belonging to the same link. This corre-

sponds to 45 minutes of measures, where the last one must present

a UAS greater than zero. Windowing is performed by simply con-

catenating all the columns of the logs data. At the end of this

phase, useless information like link identifier and date and time

are discarded.

Figure 4.1: Log windows. Green log reports no error, while red one
have at least one UAS second.

2. Encoding of string attributes : The type of modulation used by

the link is transformed into an integer value, i.e., one progressive

number is assigned to each of the possible modulation types.

62

3. Fill missing values : Missing power measurement values are forced

to -150 dBm and 100 dBm for minimum/maximum received and

transmitted power, respectively. These values are chosen far from

the real minimum/maximum values so that the ML algorithm can

handle numerical values, still allowing the ML model to capture

the situation that such values have not been correctly collected in

the system.

4. Features normalization: Each feature of the dataset is scaled around

the mean and the variance, leading them to have a distribution

centred around zero and with variance between -1 and 1. This

greatly helps during training the ML model, as machine learning

algorithms perform better on normalized data [5].

4.2 Customization of the pipeline for fail-

ure management in microwave networks

In the next part, we show the customization of the pipeline to suit the

failure management in microwave networks use case. Each part refers

to the corresponding one introduced in the previous chapter.

4.2.1 Design of data ingestion

In this section, we focus on how we can configure the data ingestion part

of the pipeline to suit this specific use case. Figure 4.2 shows the data

ingestion part of the pipeline customized to suit the failure management

in microwave network use case.

Data sources

To deal with the failure management in microwave network use case,

small customization is required to the data ingestion part of the pipeline.

Most of the work has to be done on the sources, as they must be adapted

to the Kafka interface provided by the pipeline. In an operational en-

vironment, the network equipment could store the logs as files inside

a folder or send them to a centralized network controller. To support

this and also other possible cases, Filebeat could be used, since it al-

lows to get the logs using already available modules, like the file module

63

Figure 4.2: Data ingestion part of the pipeline for failure management
in microwave network use case.

or a custom one for specific equipment API. In the development of

the pipeline, we use the dataset described in section 4.1.1 to execute

simulations of the pipeline behaviour without needing any radio equip-

ment, since simulating with a huge number of physical hardware would

be unpractical with the hw/sw used in this work. Using this dataset,

we could potentially test the pipeline with 10841 different sources in a

very simple way. To simulate the log production by each link, we de-

velop a Python application, called Netsim, that injects the events in the

pipeline. Netsim allows choosing the number of links that produce logs

and the interval between each event, e.g., to simulate intervals smaller

than the original 15 minutes and perform a sort of “stress-test” for the

pipeline. To run Netsim, a folder with a CSV file for each of the links

is required, then the application sends each log to the Kafka broker

as a JSON message, emulating what would be done by Filebeat in an

operational environment.

Kafka and Elasticsearch configuration

Kafka and Elasticsearch are quite general-purpose, so the standard con-

figuration works well for most of the use cases. The configuration is only

64

updated with the correct topic and index name, in this case, both called

siae-pm. Finally, it should be configured the number of partitions of the

topic, that should match the number of Logstash instances to exploit

the parallel topic processing.

Logstash configuration

Logstash requires the configuration of all the three stages of ETL, how-

ever, extraction and load are the same for every use case and they only

require the modification of the source topic and the destination index,

which should match the Kafka and Elasticsearch configuration. The

transform phase is the one that requires to be customized and adapted

to the specific use case at hand. In our case, the following operations

are performed:

1. The “date” field, including date and time of the log, is parsed and

converted to the date format accepted by Elasticsearch, which

stores times in the Unix format. Then, the field is copied in

the @timestamp field. These steps are fundamental since Elas-

ticsearch requires the @timestamp field to perform aggregation on

time windows.

2. Quality flags fields are removed since they are useless for our pur-

pose.

3. Two fields to support machine learning classification are added:

spark processed of type Boolean, initialized to false, that will be

used to distinguish which logs have been already classified by the

machine learning model, and prediction field of type integer, ini-

tialized to -1 (means not classified), that will contain the predicted

class of failure.

4.2.2 Deployment of the model

Deploying the ML model in the pipeline as a Spark application is the

most use-case dependant step, as every ML model requires different pre-

possessing steps. In the next paragraphs, we describe how the Spark ap-

plication for the failure management in microwave networks ML model

is implemented, following the guide steps defined in the previous chap-

ter.

65

Request new data

The logs that are still to be processed are stored inside the siae-pm

index of Elasticsearch after been injected by Logstash. The logs that

have the field spark processed equal to false are collected inside a Spark

dataframe. Figure 4.3 shows an example of a new batch that is requested

from Elasticsearch, for a simpler visualization some fields are omitted.

The queried logs are automatically collected inside a Spark dataframe

in an SQL-like table.

Figure 4.3: Datafrae created with the new batch queried from Elastic-
search.

Data preprocessing

This is the phase where most of the work is done inside Spark. After

this phase, the data are clean and normalised, ready to be classified.

Preprocessing phases are the same as development, but some optimiza-

tion is applied to achieve better performance and make them compatible

with the batching system:

1. Aggregation: This is the most computationally expensive step, and

66

it is not required when developing the ML model since the data

are already grouped by link identifier. Logs are grouped based

on the idlink (identifier of the link) and branch (identifier of the

direction of the communication, two directions per link), then they

are ordered according to date and time. This step requires Spark

to move data between the nodes to make the groups, so it is also

the slowest one and cannot be executed in parallel with any of the

next phases. To aggregate the logs, the groupBy and the OrderBy

SparkSLQ functions are used. After this step, a new dataframe is

created along with the original one. All the next steps are applied

to this new dataframe, referred to as preprocessed dataframe, and

the original data are kept separate to be used in the last phase.

Figure 4.4 shows the aggregation of logs, to better visualize we

consider a link with only one communication direction and on red

we highlight the log that presents a UAS, we also consider the

case of link 3 not reporting the last time window to explain how

the ML model handles incomplete data situations.

Figure 4.4: Aggregation of logs.

2. Filtering : Since the time windows must be composed of three

logs each, groups with less than three members are discarded.

Also, groups that do not report any UAS are not processed. This

step requires two operations: first, the count aggregation function

is applied to each of the groups, then the where operator filters

groups with less than three logs. Figure 4.4 shows the filter phase:

67

link three is discarded as it has only two logs.

Figure 4.5: Filtering.

3. Make windows : The logs of each group are concatenated to form

three logs window, where in the last one a UAS event must be

present. This step is executed in parallel on multiple nodes, each

handling a subset of different groups, as each group is independent

of the others. In this phase, windows that do not present any

UAS in the last 15 minutes are discarded. As a result, it remains

a subset of the original dataframe with valid windows. This step

cannot be executed exploiting any SQL operator and it is executed

inside a user-defined function.

Figure 4.6: Windowing.

4. Encoding of string attributes, Adding non reported features, Fill

missing values, Data Normalization: These steps are the same as

those executed at the development stage, and they are performed

only on the valid windows (the one that presents a UAS on the

last log) created in the previous phase. Since these steps cannot

68

be executed exploiting SQL operators, they are executed inside

a user-defined function. Scaling of data is performed using the

mean and variance of the development dataset.

Classification

Now the preprocessed dataframe is ready to be classified. This step is ex-

ecuted inside a user-defined function on multiple nodes, since now each

time window is independent of the others, allowing a very fast applica-

tion of the ML model. Classification is performed using the scikit-learn

library: the ML model is previously trained on a development environ-

ment, using a fixed-size dataset and then it is exported and broadcasted

to all the Spark cluster members, where it is finally used to do classifica-

tion. After this phase, the result is the predicted dataframe, which adds

a new column with an integer between zero and five that corresponds

to the class of failure to the preprocessed dataframe. Figure 4.7 shows

the window with the prediction applied.

Figure 4.7: Classification.

Save results

The only interesting column of the predicted dataframe is the prediction

one, all the others are discarded. To add the prediction column to the

original data, a join between the original dataframe and the predicted

dataframe is performed, using as a key the unique identifier that Elas-

ticsearch adds to each document during the injection phase. As a result

69

of the join, the original data now have the class label in the prediction

field. After this step, the logs are marked as processed by changing

the field spark processed to true, with an important exception: for each

group, the last two logs are marked as not processed, since on the next

batch they are required to form the first window of each group. Finally,

the results are stored back inside Elasticsearch. Figure 4.8 shows the

results of the join on the original and the predicted dataset, ready to be

stored back. The spark processed field is set to true only on the first log

of each link, as explained before. Also on link three, no flag is changed

since it needs to wait for another log to make a window, as now the logs

are less than three.

Figure 4.8: Final dataframe with machine learning results.

4.2.3 Design of data visualization

For the failure management in microwave network, we made a dashboard

that can be used as support for everyday operation, shown in figure 4.9:

on the left side information on the network and time evolution of power

metrics are shown, while on the right side of the dashboard network

administrators can visualise the real-time status through a widget that

70

shows the last available prediction for each link, as well as the number

of links that reports an error.

4.3 Summary

In this chapter, we introduce failure management in microwave network

use case and we show a reference implementation of the pipeline on this

specific issue. In the next chapter, we present the results of the test

made on this use case pipeline implementation.

71

F
igu

re
4.9:

D
ata

v
isu

alization
d
ash

b
oard

.

72

Chapter 5

Experimental results

In this chapter, we evaluate the performance of the proposed pipeline

architecture, in terms of latency, and using as a test use case the failure

management in microwave networks.

5.1 Setup

To present the experimental results, we consider the failure management

in microwave networks use case, discussed in Chapter 4. The data

sources are the registration of real logs provided by deployed equipment,

described in Section 4.1.1, which allows simulating a network with up

to ten thousand links. Simulation of operational environment is done

using netsim, introduced in Section 4.2.1. This allows us to simulate

the real-time ingestion from a tunable number of network devices, with

a custom interval between each event in the data stream. The pipeline

has been deployed on a c5a.8xlarge EC2 instance on Amazon AWS, with

the following hardware:

• 32 virtual core based on AMD EPYC 7002

• 64 GiB of RAM

• 50 GB of SSD storage

This setup is highly optimized for compute-bound applications that

benefit from high-performance processors [23], so it perfectly fits our

use case that involves data processing through Logstash and Apache

73

Spark. All the tests are executed on the full version of the pipeline,

which includes replication for all the main applications involved. In

particular, the following containers are deployed:

• 3x Elasticsearch.

• 3x Kibana.

• 3x Logstash.

• 1x Metricbeat.

• 1x Zookeeper: required by Kafka to manage the cluster.

• 3x Kafka brokers.

• 1x Spark master.

• 3x Spark workers.

• 1x Spark Driver, running the custom application that executes the

machine learning classifiers.

Also, to avoid issues with bad clock synchronization and to discard

network latency, Netsim is run on the same machine but outside the

Docker environment.

5.2 Performance indicators

As for performance indicators, we consider the average latency of the

logs that are processed by the pipeline. We define the end-to-end la-

tency for the processing of a single log as the time interval between the

creation of the log by Netsim and the classification of the log by the

Spark cluster. This comprehensive metric is then broken down into the

following latency contributions:

• Kafka latency : Time spent in the topic queue before a Logstash

instance can consume the log.

• Logstash latency : Time spent inside Logstash to pre-process the

logs and store them into Elasticsearch.

74

• Spark latency : This metric includes the time that is required by

Spark to classify the failure with the machine learning model. It

also includes the time that is spent in Elasticsearch before Spark

can process the new batch. Spark latency value is derived from

the end-to-end latency minus the other metrics.

Figure 5.1 shows the breakdown metrics referred to the correspond-

ing pipeline components. Our evaluation is performed considering an

increasing number of microwave links that transfer logs at the pipeline

input. Each published log presents UAS so that all the windows are valid

and processed by the machine learning model. For each processed log,

we evaluate the end-to-end latency and its corresponding breakdown,

and in the results, we show the average latency of all the processed logs.

To avoid bottlenecks, for each test the interval between the publishing of

two batches has been set to a value at least twice the average end-to-end

latency.

Figure 5.1: Correspondence between latency and the pipeline.

5.2.1 End-to-end latency results

Figure 5.2 shows the values of the end-to-end latency values as a function

of the number of active links that publish logs on the pipeline. As

expected, the more active links the more time is required to process a

new batch by the system. The plot makes evident the linear dependency

between the number of client links and the end-to-end latency of the

75

pipeline. Note that this result is highly dependent on the used hardware

that runs the pipeline. Data shows that even with ten thousand links,

i.e., corresponding to the overall set of links in the considered microwave

network, we observe that end-to-end latency is thirty times lower than

the fifteen minutes original intervals between two consecutive logs: this

means that for this use case the pipeline can handle even more links

than the available ones and that the machine learning results are fast

available for further analysis by the network operator.

Figure 5.2: End-to-end latency plot, with the 10%-90% percentile in-
terval in light red.

5.2.2 Breakdown of the end-to-end latency

To better understand which section and components of the pipeline

most contribute to the end-to-end latency, we now analyze the break-

down into the various latency contributions. The first contribution is

Kafka latency, which measures the time spent in the queue before a

76

Logstash instance processes the log. We can see in the plot in figure 5.3

the average latency as a function of the number of links. We first notice

that the average Kafka latency tends to converge to a stable value as

the number of links increase. The light blue area in the plot shows the

interval that contains most of the values, i.e., the interval between the

10% and 90% percentile: this interval is quite high, meaning that the

values are unequally distributed. To explain this large variance, we can

look at Figure 5.4, which shows the Kafka latency of some consecutive

logs consumed from the topic for the case of ten thousand data sources.

In a balanced queuing system, we expect a latency that is first increas-

ing and then convergent to a value, while in this case, we can clearly

see a periodic oscillating behaviour, with latency that increases and de-

crease as time pass. This behaviour is the consequence of the fact that

that not all the logs in a batch are published to the pipeline at the same

instant, but instead, they come in small groups: so the first logs that are

published have the time to be consumed by the Logstash instances and

the queue becomes empty, then another group arrive, and this repeats

periodically. When the number of active links increases, this small de-

lay between the real publishing of each log makes the average latency

converge. This is in some way representative of the real operational

environment case: the logs never comes at the same instant as different

links have small clocks deviation and different network latency. Figures

from 5.5 to 5.9 shows the distribution of the Kafka latency for some

key active links numbers: even if the average is convergent due to the

non-instantaneous arrival of a new batch, from the distribution we can

notice that the most populated interval is the between zero and 100 ms

up to 250ms for a high amount of active sources, while a smaller amount

of logs are processed by Kafka in periods of duration laying on a long

tail above this values, especially as the number of links increases.

The following contribution in the pipeline is relative to the amount

of time required by Logstash to process one log and store it inside Elas-

ticsearch, called Logstash latency : this is a value that does not depends

on the number of active links but only on the complexity of the prepro-

cessing operations that are done on each log. For this setup, its average

is around 3.5 ms, as the defined Logstash filters are quite simple.

The last component of the end-to-end latency is the Spark latency.

This is, as expected, the most important contribution. The ML model

77

requires the logs in windows, and this requires aggregation of the data in

groups corresponding to the sources and transmission direction: this is

quite expensive from a computational point of view. As a consequence,

it requires a huge amount of time to be completed. Figure 5.10 shows

the average value of the Spark latency metric, which increases linearly

as the number of active links increases. However, for use cases that do

not require aggregation between different logs, this value is significantly

smaller. Finally, figure 5.11 shows all the components contributing to

the end-to-end latency in a bar plot. As explained before, Spark latency

is predominant in the breakdown of the end-to-end latency.

Figure 5.3: Average Kafka latency plot.

78

Figure 5.4: Average Kafka latency time evolution, single batch.

Figure 5.5: 10 Links Kafka latency distribution.

79

Figure 5.6: 100 Links Kafka latency distribution.

Figure 5.7: 1000 Links Kafka latency distribution.

80

Figure 5.8: 5000 Links Kafka latency distribution.

Figure 5.9: 10000 Links Kafka latency distribution.

81

Figure 5.10: Average Spark latency plot.

Figure 5.11: Breakdown bar plot. Latency value is in logarithmic scale.

82

Chapter 6

Conclusion and future work

In this thesis, we design a pipeline architecture to support the data in-

gestion and machine learning model application on streams of data. We

first introduced the best practices and requirements for distributed soft-

ware pipelines, and then we select the application to answer this issue,

highlighting their most important features. We describe how these ap-

plications interact in the pipeline to solve the data ingestion part. Then,

we explain how the general-purpose computational framework Apache

Spark can be used for the application of machine learning models on

streams of data. We also explain how our design allows visualization of

both the original data and the ML model outcome with simple but pow-

erful dashboards, allowing data exploration also by non-technical users.

For every pipeline part, we proposed a design that is fault-tolerant and

horizontally scalable, which allows even better performance with more

powerful hardware or on multiple machines setup. We also demon-

strated how the use of containerization can make management of com-

plex distributed systems easy and how to monitor the functioning and

the performance of the pipeline to allow a fast reaction to faults and

bottlenecks that could arise during normal operations in an operational

environment. Finally, we presented a reference implementation of the

proposed architecture on the failure management on microwave net-

work problem and the results on this use case: we were able to achieve

near real-time performance on thousands of different independent data

streams, with a maximum average latency between 30 and 40 seconds

in a ten thousand streaming source test environment, which is thirty

times lower than the time between two consecutive streaming events.

83

The latency breakdown shows that the most important contribution to

the end to end latency is due to the machine learning preprocessing and

ML model application, while the data ingestion phase contribution is

negligible.

As future research direction we can identify the following ones:

• Hyperparameter selection and ML model training on Spark clus-

ter : In our work, we describe how Apache Sparks can be used for

the application of pre-trained ML models to data that requires

complex aggregations and preprocessing. The Spark cluster huge

processing power can be also used to train hundreds of ML models

with different parameters in parallel to select the most accurate

one. This process is called hyperparameters tuning or selection

[6]. Scikit-Learn provides the GridSearchCV class [37], that auto-

matically performs grid search over a parameter grid with cross-

validation on the dataset and selects the optimal ones. By us-

ing Joblib-Spark library Scikit-Learn grid search can benefit the

power of Spark to perform the hyperparameters tuning in parallel

on multiple nodes with a dataset that could potentially not fit one

machine memory [34].

• Online Learning : In our work, we considered the case of machine

learning models that are pre-trained on a static labelled dataset

and that does not change over time. If we can provide labels

during the ingestion of the data bot through a human expert or

other kinds of automatic analysis, we can also continuously train

the deployed ML model with the newly available data. The ML

model benefit as during the time evolution new patterns could

arise from the data, as also data streams can evolve as time pass:

for example, an ML model that predicts the products that a user

can buy is subjected to change of seasonality or modes. Online

learning is faster than the offline retraining of the ML model, as

it does not require the full dataset to train the ML model.

• Deployment on Kubernetes : In our work, we considered multiple

instances and replication for all the components on the pipeline,

but only at a Docker abstraction level on a single host. To be

fully fault-tolerant, also the Docker host must be replicated. Ku-

bernetes [36] is an orchestration engine originally developed by

84

Google, that makes possible the clustering of multiple Docker

hosts and the automatic deployment of containers on them, pro-

viding fault tolerance at the host level. It also supports automatic

horizontal scaling of applications that have excessive loads as well

as replacement of faults instances. This allows setups with thou-

sands of containers on multiple machines and can be used for

handling hundreds of thousands of data streams that are ingested

inside the proposed pipeline.

85

86

Bibliography

[1] P. Atzeni et al. Database Systems: concepts, languages and archi-

tectures. McGraw-Hill, 1990. isbn: 0077095006.

[2] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. “Virtu-

alization vs Containerization to Support PaaS”. In: 2014 IEEE

International Conference on Cloud Engineering. 2014, pp. 610–

614. doi: 10.1109/IC2E.2014.41.

[3] W.H. Inmon and Daniel L. Data Architecture: A Primer for the

Data Scientist. Elsevier, 2015. isbn: 9780128020449.

[4] Commscope. Microwave communication basics. 2017.

[5] Google Developers. Data Preparation and Feature Engineering for

Machine LEarning. 2017.

[6] Aurlien Gron. Hands-On Machine Learning with Scikit-Learn and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems. 1st. O’Reilly Media, Inc., 2017. isbn: 1491962291.

[7] S. Pranav and Sharath Kumar M. N. Learning Elastic Stack 6.0.

OReilly, 2017. isbn: 9781787281868.

[8] M. Van Steen and A. S. Tanenbaum. Distributed Systems. 2017.

isbn: 978-1543057386.

[9] Eberhard Wolff. Microservices: Flexible software architecture. Addison-

Wesley Professional, 2017. isbn: 0134602412.

[10] Gianpaolo Cugola. Fault Tolerance in Distributed Systems. 2019.

[11] T. Kolajo, O. Daramola, and A. Adebiyi. “A. Big data stream

analysis: a systematic literature review.” In: Big Data (2019). doi:

10.1186/s40537-019-0210-7.

[12] Alessandro Margara. Big Data Platforms. 2019.

87

[13] Alessandro Margara. Consistency and Replication in Distributed

Systems. 2019.

[14] Jacob R. Sutton et al. “PhysOnline: An Open Source Machine

Learning Pipeline for Real-Time Analysis of Streaming Physio-

logical Waveform”. In: IEEE Journal of Biomedical and Health

Informatics 23.1 (2019), pp. 59–65. doi: 10.1109/JBHI.2018.

2832610.

[15] Stefano Zanero and Marco Carminati. Introduction to Computer

Security. 2019.

[16] J. Damji et al. Learning Spark: Lightning-Fast Data Analytics.

OReilly, 2020. isbn: 978-1492050049.

[17] Francesco Musumeci et al. “Supervised and Semi-Supervised Learn-

ing for Failure Identification in Microwave Networks”. In: IEEE

Transactions on Network and Service Management (2020). doi:

10.1109/TNSM.2020.3039938.

[18] L. Velasco et al. “Intent-Based Networking for Optical Networks”.

In: Journal of optical communications and networking (2020).

doi: 10.1364/JOCN.99.099999.

[19] Armin Catovic et al. Linnaeus: A highly reusable and adaptable

ML based log classification pipeline. 2021. arXiv: 2103 . 06927

[cs.LG].

[20] Andrea Sgambelluri et al. “Reliable and scalable Kafka-based frame-

work for optical network telemetry”. In: IEEE/OSA Journal of

Optical Communications and Networking 13.10 (2021), E42–E52.

doi: 10.1364/JOCN.424639.

[21] L. Valcarenghi et al. “A Scalable Telemetry Framework for Zero

Touch Optical Network Management”. In: 2021 International Con-

ference on Optical Network Design and Modeling (ONDM). 2021,

pp. 1–6. doi: 10.23919/ONDM51796.2021.9492488.

[22] Apache Kafka Documentation. url: https://kafka.apache.

org/documentation/.

[23] Amazon AWS. Amazon EC2 Instance Types. url: https://www.

amazonaws.cn/en/ec2/instance-types/.

[24] Docker Documentation. url: https://docs.docker.com.

88

[25] Elastic. Beats Platform Reference. url: https://www.elastic.

co/guide/en/beats/libbeat/current/beats- reference.

html.

[26] Elastic. Elastic Stack and Product Documentation. url: https:

//www.elastic.co/guide/index.html.

[27] Elastic. Elasticsearch for Apache Hadoop. url: https://www.

elastic . co / guide / en / elasticsearch / hadoop / current /

reference.html.

[28] Elastic. Elasticsearch synchronization with a relational database.

url: https://www.elastic.co/blog/how-to-keep-elasticsearch-

synchronized-with-a-relational-database-using-logstash.

[29] Elastic. Grok parser reference. url: https://www.elastic.co/

guide/en/logstash/current/plugins-filters-grok.html.

[30] Elastic. Kibana Guide. url: https://www.elastic.co/guide/

en/kibana/index.html.

[31] Elastic. Logstash Reference. url: https://www.elastic.co/

guide/en/logstash/master/index.html.

[32] Elastic. Metricbeat Reference. url: https://www.elastic.co/

guide/en/beats/metricbeat/7.x/index.html.

[33] Elastic. Monitoring in a production environment. url: https:

//www.elastic.co/guide/en/elasticsearch/reference/

current/monitoring-production.html.

[34] Vihag Gupta and Pradeep Reddy. Boosting Parallelism for ML

in Python using scikit-learn, joblib and PySpark. url: https :

//www.qubole.com/tech-blog/boosting-parallelism-for-

ml-in-python-using-scikit-learn-joblib-pyspark/.

[35] ITU-T. G.828 : Error performance parameters and objectives for

international, constant bit-rate synchronous digital paths. url:

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-

REC-G.828-200003-I!!PDF-E&type=items.

[36] Kubernetes. Kubernetes Reference. url: https://kubernetes.

io/docs/reference/.

89

[37] Sci-Kit Learn. Tuning the hyper-parameters of an estimator us-

ing grid search. url: https://scikit- learn.org/stable/

modules/grid_search.html.

[38] OGC. Publish/Subscribe Interface Standard. url: http://docs.

opengeospatial.org/is/13-131r1/13-131r1.html.

[39] Spark. Spark Documentation. url: https://spark.apache.org/

docs/latest/.

[40] David Vrba. Performance in Apache Spark: Benchmark 9 Dif-

ferent Techniques. url: https : / / towardsdatascience . com /

performance- in- apache- spark- benchmark- 9- different-

techniques-955d3cc93266.

90

