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Abstract
Many modern space activities in Low Earth Orbit, including Geodesy, Topography and
SAR missions, have seen a drastic increase in the accuracy requirements for the Precise
Orbit Determination of their satellites. To answer these needs, new POD softwares are
being developed employing Reduced-Dynamic POD algorithms. These blend information
coming from GNSS measurements with orbit predictions computed from the spacecraft
dynamics to reconstruct past satellite orbits with high precision. However, these programs
require precise and flexible input sources for simulations. With this aim, the Precise Orbit
Propagator began development.

The aim of this Thesis was to consolidate the state of development of such Propagator by
including new force model components and enhancing already existing perturbations via
precise environmental modelling. Another included feature concerned the implementation
of a discontinuity control process inside the numerical integrators, to limit numeric errors
encountered in the presence of orbital control maneuvers.

An assessment study to investigate the impact of all the Force Models on the propaga-
tion results was then carried out for several orbit regimes. Results indicated that, to
reach sub-meter level in the propagation, all of the included Perturbations need to be
employed. A sensitivity analysis of such dynamical models was then conducted, showing
that Geopotential and Aerodynamic Drag effects largely vary depending on Gravity Field
and Atmospheric Density models, respectively. The dynamical components were then
validated against a commercial flight dynamics program. Finally, results showed that
the implemented Discontinuity Control process allowed to almost nullify numerical errors
introduced by maneuvers.

Having reached the prescribed requirements on numerical accuracy and fidelity of physical
models, the next step of the Propagator development is the final validation against real
satellite measurements, after which the software will have reached the necessary maturity.

Keywords: Orbit Propagation, Orbit Perturbations, Precise Orbit Determination, Nu-
merical Integration





Abstract in lingua italiana
Molte moderne missioni spaziali in orbita terrestre bassa, come le missioni di Geodesia,
Topografia e SAR, sono state interessate da un drastico aumento nei requisiti di accu-
ratezza riguardo la determinazione dell’orbita per i relativi satelliti. Per rispondere a
questi requisiti, nuovi software che utilizzano algoritmi di Reduced-Dynamic POD sono
in via di sviluppo. Questi programmi combinano misure GNSS con predizioni basate sulla
dinamica del satellite per ricostruire, con grande precisione, orbite passate. I software in
questione però richiedono sorgenti di traiettorie di input precise e flessibili. Per questo
motivo, il Precise Orbit Propagator è stato sviluppato.

Scopo di questa Tesi è stato quello di consolidare lo sviluppo di tale Propagatore medi-
ante l’inserimento di nuovi componenti tra i modelli di forze, unito al miglioramento dei
modelli di perturbazioni già presenti tramite una più accurata descrizione dei parametri
ambientali. Un ulteriore sviluppo ha riguardato l’inserimento di un processo per il con-
trollo delle discontinuità all’interno degli integratori numerici, per limitare gli errori di
integrazione incontrati in caso di manovre orbitali.

Una serie di analisi sono state effettuate per investigare l’impatto di tutte le pertur-
bazioni sulla propagazione, in diversi regimi orbitali. I risultati hanno indicato che tutti
i componenti della parte di dinamica del propagatore sono necessari per raggiungere una
modellazione dell’orbita propagata inferiore al metro. Inoltre, analisi di sensibilità sono
stati condotti sui modelli, evidenziando come geopotenziale e resistenza aerodinamica
siano estremamente variabili a seconda della scelta dei modelli di gravità e densità atmos-
ferica. Altre analisi hanno infine mostrato come l’inclusione del processo per il controllo
di discontinuità abbia permesso di azzerare gli errori numerici introdotti dalle manovre.

Avendo raggiunto i requisiti riguardo accuratezza numerica e fedeltà della modellazione,
il prossimo passo per lo sviluppo del Propagatore è la validazione finale utilizzando dati
satellitari reali, dopo il quale il software avrà raggiunto il necessario grado di maturità.

Parole chiave: Propagazione Orbitale, Perturbazioni Orbitali, Precise Orbit Determi-
nation, Integrazione Numerica
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1| Introduction

1.1. Rationale and Motivation
Earth Observation satellites have been subject of a rapid and constant technological devel-
opment for several decades at present time, providing unquestionable benefits to scientific
progress and humankind in general, thanks to the vastness of purposes this kind of mis-
sions cover. However, with the progressive increase in performance and quality of the
scientific products of such satellites, new engineering challenges have come up as well.
One of the most critical aspects for ensuring a correct post-process of the scientific data is
the accurate reconstruction of the satellite ephemeris, without which the scientific mean-
ingfulness of the raw data could be jeopardized. For this reason, the requirements in
this sense have grown at the same rate of the precision of the spatial products. In fact,
several already flown Earth Observation missions, like the Ocean Topography mission
TOPEX/Poseidon [32], the Synthetic Aperture Radar (SAR) satellite TerraSAR-X [36],
and the geodetic missions GRACE and GOCE [11, 20], all require an accuracy of the
orbit determination solution of cm-level.

(a) TOPEX/Poseidon (b) GRACE

Figure 1.1: Notable scientific LEO missions

Since most of these Earth Observation missions fly in Low Earth Orbit, Precise Orbit De-
termination (POD) techniques are employed, which thanks to GNSS-based measurements
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are capable of reconstructing the satellite state with sufficient accuracy [8]. Several POD
techniques can be used to reach this scope, which generally span from relying sorely on the
GNSS measurements (Kinematic POD) to instead using formulations based exclusively
on forces predictions (Dynamic POD). One particular subset of POD techniques is the
so called Reduced-Dynamic POD [37], which is essentially a tradeoff between the two,
being able to adapt the amount of dynamical modelling based on the quality of the GNSS
measurement and more in general on the mission scenario. On the one hand, this method
increases the flexibility of the solution and allows to obtain accurate ephemeris also in
case of limited GNSS visibility or poor measurements quality, but on the other hand a
tuning and calibration process is required due to the presence of empirical parameters
which compensate the lack of fidelity of dynamical models. To sum up, this category
of POD is well-established and has allowed to obtain consistent performances satisfying
the above-mentioned requirements for some already flown missions. However, most of
the software solutions developed in this subject largely differ in the extent and detail
with which the perturbations model are described. In addition, they were based until
now on Earth observation missions with a limited number or rotational and translational
maneuvers. As this is rapidly changing due to the advent of the so called Agile satellites,
new software solutions are needed in the space industry to answer the extended flexibil-
ity requirement. For this reason, within AIRBUS Defence and Space in Friedrichshafen
(Germany), a new tool for Reduced-Dynamic POD for LEO satellites is being developed:
PODCAST (Precise Orbit Determination for Complex and Agile Satellite Technology)
[7], which aims to provide a flexible testbed for novel approaches related to POD and
Precise Baseline Determination (PBD) of non-agile and agile satellites. However, for ap-
propriate testing and validation of this software, jointly with the necessity of calibrating
the estimation parameters dealing with the force models, sufficiently accurate reference
orbit solutions need to be employed. This means that the input trajectories provided to
the estimation software must be realistic, in the sense of being sufficiently representative
of real satellite motion in order to allow for an accurate calibration, and free of numerical
noise. Regarding this, the input trajectory should have a numerical error which is at least
one order of magnitude lower than the one of the estimation accuracy [17]. Real satellite
data is often sparse, of ambiguous precision and in any case of difficult controllability,
therefore a new technological solution is required. With this need in mind, the Precise
Orbit Propagator (PrOP), object of this Thesis, was born, aiming to reach the capabil-
ity of generating input reference trajectories with precision comparable to the one of the
POD solutions. The challenges and problems the software has to face in order to fulfill
its functional requirements are reported in the next section.
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1.2. Problem Statement
The task of an Orbital Propagator is to retrieve the solution of the Initial Value Problem
composed by the differential equations describing the Equations of Motion of the space-
craft, coupled with the satellite state initial condition. This solution or, in other terms,
the propagated position and velocity, can be obtained via three main techniques: analyti-
cal, semi-analytical or numerical propagation, depending on the specific needs of the user
and the available information. As a consequence of its previously state purpose, the main
requirement for the Propagator developed for this Thesis is high accuracy, therefore the
most suitable choice is certainly towards numerical integration, as it will be described in
chapter 2.

In addition, another important need as previously mentioned is the one concerning the
flexibility of the software solution. Therefore, the propagator must ensure the user of
a sufficient variety of choice of propagation components, among which the numerical
integrators and the force models to employ. All of these components will be described in
detail in the following chapters.

However, along with the possibility of having different components combination, the
awareness of the impact on the solution generated by any possible choice needs to be
acquired, in order to adapt the software configuration to any possible scenario, while
keeping the required performance.

Partially, this knowledge was already acquired in past analyses, specifically concerning
the accuracy provided by several numerical integrators and the impact of not so common
numerical techniques in the differential equation formulation, as reported in chapter 2.
Nevertheless, many fundamental aspects have remained uncovered, such as the effect of
the different force models on the solution. For this reason, the main question which the
analysis included in this thesis aimed to answer is formulated as follows:

• To what extent do the different dynamical models contribute to the propagation so-
lution? And at which computational cost?

Therefore, the Thesis main goal is to first of all describe the models and techniques
implemented in the propagation software, followed by analysis of the correspondent con-
tributions of each implementation.
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1.3. Thesis Outline
This Thesis document has been structured as follows. Chapter 2 briefly illustrates the
background of numerical orbit propagation, reviews the main propagation features of some
of the commonly employed commercially available softwares and collects the main results
already achieved by the Precise Orbit Propagator. Chapter 3 introduces the dynamical
models implemented in the software. Chapter 4 gives details about the constituents of
the numerical propagator, discussing about the several integrators with their correspond-
ing stepsize control, along with the numerical formulation of the Ordinary Differential
Equation and the techniques which act on the floating point precision for the numerical
integration that have been used. Chapter 5 shows the results of the tests and analyses
carried out to highlight the impact of each component on the propagator accuracy and
efficiency. Finally, in Chapter 6, some conclusions of the study and future developments
for the software are stated.
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2.1. Introduction to Numerical Propagation
Given the high accuracy requirement to which the propagator is subject, numerical orbit
propagation is the only suitable technique for obtaining the evolution in time of the
spacecraft state, namely its position and velocity history [17].

This method aims to solve n-dimensional first order equations of the form:

9y “ fpt,yq y, 9y, f P Rn (2.1)

This can be obtained starting from the relationship between the position r and acceleration
a, reported in eq. (2.2):

:r “ apt, r, 9rq (2.2)

By defining the state vector as the combination of position and velocity:

y “

«

r

9r

ff

(2.3)

The original shape of eq. (2.1) can be obtained:

9y “ fpt,yq “

«

9r

apt, r, 9rq

ff

(2.4)

However, numerical integration is affected by errors, which can be grouped in the following
distinctions:

• Modeling Error: caused by the fact that the dynamical equations used to calculate
the accelerations will always represent an approximation, to a certain extent, of the
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real physical behaviour. It can be mitigated by using more detailed and realistic
dynamical models, this however adds complexity and computational cost to the
system;

• Truncation Error: intrinsic of the approximation employed by the numerical in-
tegrator to solve the differential equation. It can be mitigated by using higher
order integrators and/or integrators with finer stepsize, incrementing as such the
computational burden;

• Round-off Error: consequent of the finite number of digits used to carry out numeri-
cal integration and algebraic operations in general. It can be mitigated by increasing
the floating point precision of the used variables.

By keeping this in consideration, and recalling the main performance requirement of
propagation accuracy better or at least equal to the one of state of the art POD, it is
clear that the main goal of the Propagator shall be to minimize the contribution of the
errors described above.

However, this is not straightforward, as solutions which aim to mitigate one of the three
errors might be detrimental to another one. A trivial example of this phenomenon involves
the link between Truncation and Round-off Errors: if a higher order integrator with a
finer time discretization is employed, the Truncation Error will benefit, but on the other
hand, the number of algebraic operations needed increases, and therefore the Roundoff
Error worsens, as depicted in fig. 2.1. It is clear that a tradeoff must be found to minimize
the overall error.

Figure 2.1: Roundoff vs Truncation Errors with varying Stepsize [15]

Furthermore, even though the computational cost is not the main requirement of this
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Propagator, care shall in any case be taken upon the numerical burden introduced by the
components, as they might eventually jeopardize the flexibility and well-functioning of
the software.

2.2. State of the art of Numerical Orbit Propagation
Softwares

Despite the fact that the Precise Orbit Propagator became to be developed in order to
answer a specific need, which is to generate input trajectories for the POD software, an
additional reasonable soft goal was to build it in such a way that it could be used for a
wider variety of purposes and scenarios. In fact, it would be overly counterproductive to
develop a tool capable of handling only a limited amount of propagation situations (e.g.
very precise LEO propagation for 24 hours), forcing to use other software solutions for
other not so distant case studies. Therefore, to enhance the flexibility and completeness of
the tool, a quick survey on the most popular Flight Dynamics program used for Numerical
Orbit Propagation was conducted.

The first analysed software was the General Mission Analysis Tool (GMAT), an open-
source mission analysis program developed by the joint effort of NASA and private in-
dustry [10]. It has been used and successfully validated with several mission, including
LCROSS, the Lunar Reconnaissance Orbiter, OSIRIS-REx, the Magnetospheric Multi-
scale Mission, and the Transiting Exoplanet Survey Satellite (TESS) mission. It is im-
plemented in C++, using an Object Oriented methodology, and it can be driven either
from an interactive Graphical User Interface (GUI), or from a custom script language.
The GUI window used for the configuration of the propagator is reported in Figure 2.2.

The window appears quite compact and intuitive. The first option which can be modified
is the numerical integrator to employ for the propagation, along with its related charac-
teristics as the step size length and the tolerance level for the step size control. GMAT
implements a good variety of single step integrators, spanning from the Runge-Kutta4
to the Runge-Kutta89, whereas the only multistep integrator implemented is the Adams-
Bashforth-Moulton. On the right side instead the Force Model can be set up. The software
implements almost all of the commonly employed dynamical models, namely the primary
body gravity (including a geopotential model setup), tide models, aerodynamic drag, so-
lar radiation pressure, third body gravity and relativistic correction. However, both the
geopotential and atmospheric density models choices are quite limited, and employ out-
dated models. In addition, if for the former an external input in terms of coefficient file
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can be provided (even though the format required does not follow any particular stan-
dard), for the latter a plug-in principle is impossible without manually coding the extra
feature.

The satellite characteristics, including the initial state, surface and mass properties can be
configured in a separate spacecraft configuration window. Finally, orbit control maneuvers
can be configured in the Burns window, allowing to indicate the thrust vector, the frame
and the relationship between the thrust and decrement of the spacecraft mass.

Figure 2.2: GMAT Propagator Configuration Window

The second program which was investigated was the Systems Tool Kit (STK), a multi-
physics software application developed by Analytical Graphics Inc. It allows to perform
complex analyses of ground, sea, air, and space platforms, and to share results in one
integrated environment [2]. STK has been used by an high number of public and private
institutions in the aerospace and defence sector, and has often been employed as a refer-
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ence for the validation of numerical orbital simulators similar to the one developed during
this thesis [24, 26, 34]. For this reason, it was decided to keep this baseline tool also for
the validation part of the analyses of the thesis, specifically via the High Precision Orbit
Propagator (HPOP) included in this software package.

As for GMAT, also STK offers the possibility of developing simulations both via a GUI
and scripting commands. The HPOP GUI separates integrators and force models in two
different windows, as seen in Figure 2.3.

In general, more options for the configuration are available in this case with respect to
GMAT, as well as more updated models for the gravity and atmospheric density formula-
tions. It is also notable that there is the possibility of including the perturbation coming
from the radiation pressure of the primary body, along with the one of choosing the dif-
ferent shadow model for computing eclipses or the way to interpolate space weather data
when using empirical models. It is clear how this potentially allows for more sophisti-
cate analyses. For what concerns the integrator availability, this is more restricted than
GMAT, but in any case the most commonly employed high order integrators for orbital
propagation are present.

2.3. PrOP State of Development
This section summarizes the main implementations and results of the Precise Orbit Prop-
agator reached prior to this Master Thesis work [31]. First of all, to satisfy the flexibility
and PODCAST compatibility requirements, PrOP was developed in C++, designed with
a modular architecture using the Object Oriented features of this programming language.
The modular architecture allowed to easily build and extend alternatives for each of the
main software components of the Propagator, as for the Force Models and the Numerical
Integrators. For the Force Models in particular, a class for each perturbation was created,
all of which implemented an equal common interface for the calculation of the acceleration
at a particular state.

The numerical integrators that were implemented will be subject of more detailed de-
scription in chapter 4. The single step options included were: Euler, RungeKutta4,
DormandPrince4(3), DormandPrince5(4), DormandPrince6(5), DormandPrince7(6), Dor-
mandPrince8(7), while the multistep integrator were: StoermerCowell, GaussJackson.

The Force Models considered were instead: acceleration due to Central Body Gravity,
Geopotential acceleration, Tides, Thid Body perturbation, Aerodynamic Drag, Solar Ra-
diation Pressure and Orbital Control Maneuvers. However, most of them used simple
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(a) Integrator Configuration

(b) Gravity Configuration (c) Drag Configuration

Figure 2.3: STK HPOP Configuration Windows
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models for their mathematical formulation, the enhancement of which is described in
chapter 3. In addition, the impact of these models was not investigated at all.

Instead, the past analyses focused on researching ways to reach the numerical accuracy
requirement of 10´4 m. This was carried out using mainly two numerical techniques,
both described again in chapter 4: Hybrid precision and the Encke’s formulation. The
former increments the floating point precision for the storage of numerical variables in
some components of the program, while the latter is an alternative way to formulate the
differential equation to numerically integrate. These analyses studied the propagation
solution accuracy by integrating a simple two body problem, for which the analytical
solution is known, using different integrators, step sizes and including or not the Hybrid
precision and Encke formulation.

These studies highlighted that the use of Hybrid precision had an higher impact on the
results than the Encke’s formulation. In particular, from fig. 2.4, we can see the behaviour
of the Common Digits (a metric for the solution accuracy), by using the same numerical
integrators with and without the Hybrid formulation, with varying step size (in the figure
the number of function calls is reported, which is inversely proportional to the step size).
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Figure 2.4: Accuracy of Integrators with Hybrid Precision [31]

While with the original Double precision, the accuracy requirement was satisfied only for
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some particular values of step size due to the contrast between Truncation and Roundoff
errors, with the Hybrid Precision this is no longer true. In fact, even for smaller step
sizes, the roundoff error is relegated to very low digits, and therefore highly mitigated.
This allowed to reach and even surpass the precision requirement. In fact, both the
DormandPrince8(7) and the GaussJackson integrators, for smaller step sizes, reached an
accuracy equal to the one of double precision representability, when using the Hybrid
Precision.

On the other side, as we can see from fig. 2.5, the employment of the Hybrid precision
caused an increase in the computational time, as expected. This increase was seen to be
higher for the GaussJackson integrator.
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Figure 2.5: Integration Time with Hybrid Precision [31]

However, this computational time increase became only a small percentage of the global
computational time when using a geopotential model, as seen in fig. 2.6, due to the higher
complexity of this force model. This proved even more the power of this implementation:
when considering a more complete dynamical formulation to integrate, which therefore
causes high computational times, Hybrid Precision grants an higher accuracy at the cost
of a relatively small computational cost increase.

For what concerns the results using the Encke’s method instead, fig. 2.7 illustrates a
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Figure 2.6: Integration Time of Geopotential with Hybrid Precision [31]

comparison of solutions acquired integrating in double precision with Encke’s method the
point mass force and geopotential, with a reference solution acquired integrated in hybrid
precision. The increase in accuracy brought by this method is more relevant for the
GaussJackson integrator, and affects mainly the step size of maximum accuracy. Overall,
the improvement is less evident than the one obtained with the Hybrid Precision.

However, as can be seen in fig. 2.8, where the integration time is plotted with and without
Encke’s method, the increase in computational cost that this formulation introduces is
negligible.
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Figure 2.7: Accuracy of Integrators with Encke’s method [31]
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3| Dynamics Modelling
As stated in the introduction, the prediction of the state evolution of the spacecraft is
obtained by integrating the equations of motion. In the framework of Newtonian physics,
this translates in a second order Ordinary Differential Equation linking the acceleration
experienced by the spacecraft to the total force which it is subject to, as in eq. (3.1):

:r “ a “
Fpt, r,vq

m
(3.1)

As a first approximation, the force acting on a satellite can be assumed to be exactly
equal to the Earth central gravity. Approximating the Earth as a point-mass object, or a
perfectly spherical object with concentric layers of constant density, the following equation
is therefore obtained:

:r “ ´
GM

r2
r̂ (3.2)

With GM being the gravitational parameter of the central body, and r̂ the unit position
vector. This equation represents the Restricted Two Body Problem, and it has an ana-
lytical solution, often referred to as the Kepler Orbit. As the name suggests, this kind
of orbits satisfy the Kepler Laws, having an elliptical shape (or in general the one of a
conic) and constant geometrical properties and parameters.

However, this mathematical formulation can be far too rough for several reasons: first
of all, the Earth is not a perfect sphere, having a very irregular shape and constantly
varying composition, leading to a more complex gravity field expression. Furthermore,
Earth gravity is the major but not the only force acting on the satellite in space.

As a result, it is clear that a more refined approach is needed in order to fulfil the previously
stated precision requirements. To achieve this, a more general approach is introduced,
the Perturbed Two Body Problem, reported in eq. (3.3) using the Cowell formulation:
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:r “ ´
GM

r2
r̂ `

ÿ

i

ai (3.3)

Where the additional accelerations ai are the effect of the orbital perturbations acting on
the satellite.

By recalling the problem of the modelling error in orbital propagation, it is clearer now
that this can be reduced in two ways:

1. by increasing the number of perturbations considered (i.e. increasing i), therefore
taking into account as most forces as possible;

2. by using more refined models to compute the perturbing forces, in order to better
represent the reality.

Within the Propagator object of this Thesis, both the approaches were implemented. The
perturbations considered and their respective adopted models will be illustrated in this
chapter.

A first order qualitative assessment of the order of magnitude of the major orbital per-
turbations as a function of the Orbit Altitude is illustrated in fig. 3.1.

It has to be noted that almost all the perturbations arise due to some sort of interac-
tion between the spacecraft and the surrounding environment. As a consequence, more
advanced perturbation modelling requires better environmental models. Due to the va-
riety of applications of this research topic, an extremely high amount of environmental
models have been developed throughout the decades, therefore some sort of guidelines
need to be established in order to be able to choose the most adequate models. To this
aim, the ECSS-E-ST-10-04C document [1], describing the requirements for Space En-
vironment description, has been taken as a reference. Specific comments regarding the
ECSS regulations will be reported in the respective dynamical models paragraphs.
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Figure 3.1: Orders of Magnitude of Perturbations
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3.1. Earth Gravity Modelling
The attraction force generated by the Earth gravity field is the primary force to which
Earth orbiting satellites are subjected to. As such, lack of gravity modelling accuracy
can cause very large errors in the acceleration computation. The central gravity force
previously reported shall then be complemented by an extended formulation which takes
into account the irregular shape and composition of the Earth. To do so, the potential of
the field, U , is exploited, which satisfies the Laplace equation:

∇2U “ 0 (3.4)

The resulting acceleration can then be computed as the gradient of such potential:

:r “ ∇U (3.5)

In case of the central gravity force then, the potential takes the following form:

U “
GM

r
(3.6)

However, in the more general case, a more advanced formulation is used to describe the
gravity potential as a function of a set of three spherical coordinates pr, φ, λq, namely the
geocentric distance, geodetic latitude and longitude, using a spherical harmonics expan-
sion, as in eq. (3.7):

U “
GM

r

8
ÿ

n“0

n
ÿ

m“0

Rn

rn
PnmpsinφqpCnm cospmλq ` Snm sinpmλqq (3.7)

Where Pnm is the associated Legendre polynomial of degree n and order m, defined as:

Pnmpuq “
p´1qm

2nn!
p1 ´ u2

q
m{2 dm`n

dum`n
pu2

´ 1q
n (3.8)

The coefficients Cnm, Snm instead describe the dependence on the internal mass distribu-
tion of the Earth. Coefficients associated to m “ 0 are called zonal coefficients, as they
describe the part of the geopotential not dependent on longitude. Coefficients with m ă n

and m “ n are instead defined as tesseral and sectorial coefficients, respectively.

However, due the fact that for the vast majority of gravity models those coefficients are
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characterized by an high variability in terms of magnitude when varying the indices m,n, a
normalization is often applied to make them more uniform than unnormalized coefficients,
by using the normalization factor reported in eq. (3.9):

Nnm “

d

pn ` mq!

p2 ´ δ0mqp2n ` 1qpn ´ mq!
(3.9)

Therefore, the normalized coefficients are computed as:

C̄nm “ NnmCnm , S̄nm “ NnmSnm (3.10)

While the associated Legendre polynomials are normalized with the inverse of Nnm :

P̄nm “
Pnm

Nnm

(3.11)

For practical purposes, the series expansion is truncated after a certain number of terms
N , the maximum order of the model. The definitive potential expression is finally reported
in eq. (3.12):

U “
GM

r

N
ÿ

n“0

n
ÿ

m“0

Rn

rn
P̄nmpsinφqpC̄nm cospmλq ` S̄nm sinpmλqq (3.12)

Computing the analytical gradient of the potential as expressed in eq. (3.12) can be quite
cumbersome and computationally unfeasible. To avoid this, some particular properties of
the associated Legendre polynomials and coefficients are usually exploited to reach less
demanding recursive expressions. For the present work, the formulation of Montenbruck
and Gill [17] was used to compute the geopotential acceleration, for which the most
relevant expressions are reported for the sake of completeness.

Therefore, two functionals are defined:

Vnm “

ˆ

R

r

˙n`1

Pnmpsinφq cosmλ

Wnm “

ˆ

R

r

˙n`1

Pnmpsinφq sinmλ

(3.13)

As already stated, thanks to the properties of the Legendre polynomials and the trigono-
metric functions, functionals of eq. (3.13) can be easily calculated with recursive formulas
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which do not even require conversion from cartesian to spherical coordinates [17].

Finally, the acceleration components may be computed as in eq. (3.14):

:x “
ÿ

n,m

:xnm , :y “
ÿ

n,m

:ynm , :z “
ÿ

n,m

:znm (3.14)

Where the summation terms are obtained via the following relations:

:xnm
pm“0q

“
GM

R2
t´Cn0Vn`1,1u

pmą0q
“

GM

2R2

!

p´CnmVn`1,m`1 ´ SnmWn`1,m`1q

`
pn ´ m ` 2q!

pn ´ mq!
pCnmVn`1,m´1 ` SnmWn`1,m´1q

)

(3.15)

:ynm
pm“0q

“
GM

R2
t´Cn0Wn`1,1u

pmą0q
“

GM

2R2

!

p´CnmWn`1,m`1 ` SnmVn`1,m`1q

`
pn ´ m ` 2q!

pn ´ mq!
p´CnmWn`1,m´1 ` SnmVn`1,m´1q

)

(3.16)

:znm “
GM

R2
tpn ´ m ` 1qp´CnmVn`1,m ´ SnmWn`1,mqu (3.17)

Note that the acceleration components calculated in eq. (3.14) are reported in an Earth-
fixed frame. Therefore, a frame conversion from Earth-fixed to inertial will be needed.
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3.1.1. Geopotential Model

By recalling eq. (3.12), it is possible to identify a set of independent variables which
characterise a specific gravity model: the body gravitational parameter GM , the body
radius R, and the coefficients C̄nm, S̄nm. Regarding the gravity model to employ for Earth
orbits, the ECSS prescribes some general requirements, here briefly reported [1]:

1. The model shall be global and static;

2. The model shall be based on Grace or GOCE data;

3. The model shall be published at: http://icgem.gfz-potsdam.de/tom_longtime;

4. The model shall be described by spherical harmonic coefficients up to at least degree
and order of 70.

One of the most commonly employed models which satisfy the above requirements is
EGM2008 [19]. EGM2008, initially based on the ITG-GRACE03S GRACE-only gravi-
tational model, is complete to degree and order 2159, and contains additional spherical
harmonic coefficients up to degree 2190 and order 2159. The correspondent gravita-
tional constant and equatorial radius assumed by the model are respectively: GM “

398600.4415 km3{s2, R “ 6378136.3 m. This model is also used in IERS Conventions
2010 as the baseline for the definition of a conventional geopotential model [22].

However, even though a high number of coefficients is available, for most space applica-
tions a truncated version of the formulation can be safely employed, in order to avoid
excessive computational overhead. In fact, studies suggest that a truncation at order 90
could guarantee a 3-dimensional orbit accuracy of less than 0.5 mm even for Low Earth
Orbit satellites [22], for which higher-order terms of the geopotential have a non-negligible
magnitude. As a matter of fact, the gravity field attenuation is more pronounced for high-
degree coefficients [21].

For these reasons, EGM2008 was the first Geopotential model adopted within the Propa-
gator, limiting the maximum degree and order to 200, to limit the computational burden
resulting from the recursive equations previously reported.

However, this kind of completely static gravity models assume an immutable Earth grav-
itational field in time. This is indeed an approximation, as the Earth mass, structure and
shape is continuously changing due to the effect of other Solar System bodies and general
internal phenomena, hence causing a decrease in accuracy of constant gravitational field
formulations. The former effects are modelled with the Tides, as explained in the next sec-
tions, while the latter come from peculiar modifications acting on a planetary-scale, as for

http://icgem.gfz-potsdam.de/tom_longtime
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instance non-linear trends in polar regions due to accelerating ice mass loss. This kind of
effects are nowadays took into account in Time-Varying Geopotentials (TVG). TVG mod-
els, along with the global static (mean) field, provide information about the secular drifts
and seasonal variation trends, allowing for a more accurate gravity computation. This
became possible thanks to the measurements collected during highly advanced Geodesy
missions, among which particularly notable is GRACE [33], and its follow-on mission
GRACE-FO [14].

For what concerns the order of magnitude of the variations introduced by these models,
this of course depends on the orbit altitude. However, for Low Earth Orbits, most assess-
ment studies seem to agree on an average orbit displacement with respect classical models
of at most 3 mm/year [21, 28]. If this value could somewhat be considered negligible, it
is reminded that the extremely strict orbit determination requirements of some missions
(e.g. ocean topography satellites), make TVG an important component of the POD of
LEO satellites.

Due to this, it was decided to build the propagator in such a way that also time-varying
fields could be used. As a baseline solution to test the time-varying functionalities, the
recent GOCO06s model was adopted [13].

GOCO06s is the latest release of the series of Gravity Field models developed and pub-
lished by the Gravity Observation Combination (GOCO) consortium. It is a satellite-only
model, i.e. it only employs measurements collected by gravity recovery spacecrafts. In
particular, it is based on over a billion observations acquired over 15 years from 19 satel-
lites (among which GRACE and GOCE are found) with different complementary obser-
vation principles, to combine high accuracy and good spatial resolution, which result in
coefficients up to degree and order 300.

Thanks to the long observation period, secular and periodic variations of the field can
be inferred from the measurements. This translates into a temporal variation of the
normalized spherical harmonic coefficients, which can be computed at a generic time t as
follows:

C̄nmptq “ Cnm,0 ` Cnm,trnd

ˆ

t ´ t0
T

˙

` Cnm,acos cos

ˆ

2π
t ´ t0
T

˙

` Cnm,asin sin

ˆ

2π
t ´ t0
T

˙ (3.18)
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S̄nmptq “ Snm,0 ` Snm,trnd

ˆ

t ´ t0
T

˙

` Snm,acos cos

ˆ

2π
t ´ t0
T

˙

` Snm,asin sin

ˆ

2π
t ´ t0
T

˙ (3.19)

Where Cnm,0, Snm,0 are the coefficients of the static part of the field, Cnm,trnd and Snm,trnd

are the coefficients of the linear trend, and Cnm,acos, Cnm,asin, Snm,acos, Snm,asin indicate
the coefficients for the periodic annual variations of the field.

In addition, the reference epoch t0 is taken as the 1st January 2010, while T is the annual
period (365.25 days).

3.1.2. Earth Tides

The gravitational forces exerted by the Sun and the Moon on the Earth come into a variety
of effects, referred as tides. Probably the most known phenomenon associated to these
effects is the movement of water masses due to these external gravitational influences.
These movements are called Ocean Tides. Moreover, considering that the Earth is not a
perfectly rigid body, also the solid mass of the Earth is subject to deformation, both elastic
and anelastic, caused by the gravitational forces, the effect of which can be even greater
than the ocean tides by one order of magnitude for satellites orbiting at low altitudes [17].
These deformations on the solid body of the Earth are instead referred as Solid Earth
Tides. Finally, another effect, the Pole Tide, is induced by the fact that the rotational axis
of the Earth in general is not fixed with respect to the crust. This movement influences the
direction of the centrifugal force experienced by the solid and water masses, which is also
the responsible of the oblateness of the planet. All these phenomena contribute to adding
further degrees of time-dependent variability of the Earth overall mass distribution, and
therefore to the global gravity field of the planet.

The ECSS standards prescribe the use of the gravitational effect formulation related
to these tides as reported in the IERS Conventions [1], therefore the Propagator tides
management module was based on that particular document.

In particular, the IERS conventions relate the tidal movements to variations of the Geopo-
tential spherical harmonic coefficients ∆C̄nm, ∆S̄nm. However, being the result of a long
and tedious mathematical formulation, the expressions leading to the computation of
these parameters is omitted for simplicity.
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3.2. Third-body perturbations
The direct effect of the gravitational forces exerted by external bodies on the spacecraft
can be easily computed using Newton’s law of gravity, assuming the perturbing body to
be a point-mass object of mass Mb, as in eq. (3.20):

:r “ GMb
rb ´ r

|rb ´ r|
3 (3.20)

Where rb is the position vector of the perturbing body in an inertial geocentric reference
frame.

However, it must be noted that according to the above expression, the Earth itself would
be subject to the perturbing acceleration, in this case equal to the value in eq. (3.21),
hence being not at rest.

:r “ GMb
rb

|rb|
3 (3.21)

This is conflicting with the overall assumption of the inertial reference frame used for the
spacecraft propagation, therefore eq. (3.20) needs to be modified accordingly to ensure
consistency. The final result of this modification is reported in eq. (3.22):

:r “ GMb

ˆ

rb ´ r

|rb ´ r|
3 ´

rb

|rb|
3

˙

(3.22)

It is clear that this formulation requires information about the positions and mass pa-
rameters of the celestial bodies of interest. In this regard, the choice adopted for the
Propagator once again followed the guidelines of ECSS [1].

In particular, the position vectors of the bodies were computed using the ephemerides
provided by NASA’s Jet Propulsion Laboratory, the Development Ephemerides DE-430
and Lunar Ephemerides LE-430 [6]. These are a series of publicly available ephemerides
in the form of Chebyshev approximations [1].

Concerning the planetary mass values instead, the results reported in the IERS Conven-
tions were employed. These are listed in table 3.1.
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GMi rkm3{s2s

Sun 1.32712442099 ¨ 1017

Mercury 22032.090000
Venus 324858.592000
Moon 4902.800076
Mars 4902.800076
Jupiter 126712764.800000
Saturn 37940585.200000
Uranus 5794548.600000
Neptune 6836535.000000
Pluto 977.000000

Table 3.1: Mass Parameters of Solar System Bodies [22]

3.3. Aerodynamic Drag
The aerodynamic drag generated by the interaction between the spacecraft motion and the
residual atmosphere of the Earth constitutes the largest non-gravitational perturbation
acting on low altitude satellites [17]. In addition, due to the way it acts, which is in
direction opposite to the velocity, and belonging to the orbital plane, it constantly reduces
the semi-major axis, therefore representing the major constraint on the lifetime of LEO
spacecrafts. As such, the modelling of this force is critical for this kind of satellites.
Nevertheless, drag is probably the most difficult perturbation to describe accurately, due
to the combined uncertainties in all the parameters used for the computation of the
acceleration.

The most commonly employed formulation for the computation of the acceleration caused
by the aerodynamic force is reported in eq. (3.23):

:rdrag “ ´
1

2
CD

A

m
ρ vr

2 ev (3.23)

Where CD is the drag coefficient, A
m

is the ratio between the cross sectional area and the
mass of the satellite, ρ is the atmospheric density, vr is the relative velocity between the
spacecraft and the surrounding air particles, ev “

vr

vr
is the unit vector of such relative

velocity.
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Each of these four parameters is characterized by some difficulties and uncertainties in its
formulation.

Starting with the drag coefficient, this is a dimensionless parameter influenced by the
interaction of the satellite surface with the atmospheric constituents. Typical values of this
coefficient range from 1.5 - 3.0 [17]. However, because of the difficulties in the predictions
of such quantity, it is usually estimated during orbit determination. For PrOP, a simple
option providing a constant coefficient for the whole propagation time was implemented.
Nevertheless, more advanced formulations, dealing with variations depending on the angle
of attack, could be included in the future [29].

The cross section area computation usually depends on information about the attitude.
Moreover, for the modelling of the spacecraft surfaces different levels of detail could be
adopted. The Propagator implemented two alternatives in this regard. The first option
consisted in the simple assumption of spherical surface, having a projected area value
independent from the angle of attack. The more sophisticated option involved the use
of a particular tool developed within AIRBUS, which starting from 3D CAD models of
a particular spacecraft, generated lookup tables with the values of projected areas for a
certain grid of angle of attack values. The latter was employed for all non-conservative
forces analyses.

Both the density and the velocity between satellite and air depend on the complex atmo-
sphere dynamics, therefore they will be treated in specific sections.

3.3.1. Atmospheric Density

The atmospheric density is probably the most crucial parameter for the computation of
the aerodynamic drag. This is influenced by a variety of factors, including location, epoch,
but even solar and geomagnetic activity levels. However, given the great interest not only
for satellite missions, from the advent of the space age an incredible amount of numerical
models for this environmental parameter have been developed.

The first reference models assumed a simple decreasing exponential for the formulation
of the density, as in the US Standard Atmosphere 1976 [18].

However, the increase in the number of space missions with better accelerometers, al-
lowed to develop models with higher fidelity, along with improved spatial and temporal
resolutions, at the cost of an increased complexity in the mathematical formulation.

In this regard, the main requirements of the ECSS Standard are [1]:
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• The NRLMSISE-00 model shall be used for calculating the neutral temperature,
the total density and the detailed composition of the atmosphere.

• The JB-2006 model or JB-2008 model may be used for calculating the total atmo-
spheric density above an altitude of 120 km.

To be compliant, both the NRLMSISE-00 and JB-2008 models were implemented, along
with another recent empirical one, the DTM2020. All of these, which will be briefly
introduced in this section, have used historical measurements, both space-based and
ground-based, to fit the parameters of the mathematical formulation for the atmospheric
constituents number density.

The NRLMSISE-00 model was a major upgrade of the Mass Spectrometer Incoherent
Scatter Radar (MSIS-class) models of composition, total mass density, and temperature
of the atmosphere [23]. Among the inputs, solar and geomagnetic activity indices need
to be provided, in the form of F10.7 and Ap indices. The F10.7 index is a proxy used
as an indicator of solar activity, and it is computed by measuring the solar radio flux at
the wavelength of 10.7 cm. Instead, the Ap index provides a daily average level of geo-
magnetic activity. It can be obtained through a nonlinear relation with another common
geomagnetic proxy, the Kp index. A notable model update, apart from the extension of
the dataset used for the parameter fitting, is the introduction of the modelling for a new
atmospheric component: the anomalous oxygen. This was included to correct the model
estimates of total density at high altitudes (near the exobase), and it has a non negligible
impact as atomic oxygen can dominate drag under particular conditions [23].

The Jacchia-Bowman 2008 empirical density model was developed as an improved revision
of the Jacchia-Bowman 2006 model, based instead on the long legacy of the Jacchia models
series [3]. A major relevant change with respect to previous versions was in the input
indices used for the computations. In fact, to model the thermospheric heating in the
solar Extreme Ultraviolet (EUV), Far Ultraviolet (FUV) and Medium Ultraviolet (MUV)
regions, which influence the value of the exospheric temperature, the indices S10, M10
and Y10 have been included in the formulation along with the already present F10 index.
In particular, the S10 index measure the EUV solar emission in the wavelength region
of 26-34 nm, the M10 index derives from measurements of MUV radiation at 280 nm,
and Y10 is a mixed index which includes effects from solar X rays at 0.1 - 0.8 nm and
from EUV/FUV spectral regions. In addition, variations of the global density caused by
geomagnetic storms was greatly enhanced thanks to the inclusion of a new index, Dst.
The Dst (Disturbance Storm Time) is a geomagnetic index used in external magnetic field
model computations. It describes variations in the equatorial ring current and is derived
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from hourly scalings of low-latitude horizontal magnetic variation.

Apart from the two models recommended by the ECSS Standards, a Literature Review
highlighted the existence of another very recent model, the DTM2020, which was therefore
also implemented in the Propagator. This was the latest update of the Drag Temperature
Model series, developed in the framework of the Space Weather Atmosphere Models and
Indices (SWAMI) project, which was a European Union Horizon 2020 Framework project
[4]. Again, the dataset used for the calibration of the model parameters was increased,
adding very precise density data thanks to the measurements of CHAMP, GOCE and
Swarm A. An interesting result is a visible decrease in the average computed density be-
tween 20% and 30% with respect to the above mentioned models, but this is in agreement
with other recent empirical model releases. DTM2020 was published in two different
products: the Operational and Research configurations. The former used as inputs the
well established F10 and Kp indices for the solar and geomagnetic activities indication,
whereas the latter introduced as proxies the more recent F30 index, which is the mea-
surement of the solar radio flux at 30 cm wavelength, and the new planetary geomagnetic
index Hp60. Even though both the F30 and Hp60 indices are still not completely ac-
credited for an operational environment due to their recent developments, the Research
release of the DTM2020 model showed the best results in terms of density fitting for the
dataset considered [4].

3.3.2. Atmospheric Wind

The relative velocity between the spacecraft and the surrounding air depends both on the
velocity of the satellite itself and the one resulting from the atmosphere dynamics. While
the former is easily retrieved by the satellite state vector, the latter is, as the atmospheric
density, not easily calculated.

In this sense, a reasonable approximation, which is also the most commonly employed
formulation, is to assume that the atmosphere co-rotates with the Earth. This leads to a
relative velocity formula as seen in eq. (3.24):

vr “ v ´ ωC ˆ r (3.24)

Where ωC is the Earth’s angular velocity vector due to its rotation motion. Maximum
observed deviations from this assumption are of the order of 40%, leading to uncertainties
in the drag force of less than 5% [17]. However, for more precise formulations, a term
comprising the atmospheric winds has to be added, as in eq. (3.25):
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vr “ v ´ ωC ˆ r ` vw (3.25)

Empirical models based on atmospheric observations have been developed for computing
this additional term, too. In this sense, the main reference for the upper atmospheric
air circulation patterns is the series of Horizontal Wind Model (HWM), which is also
recommended by the ECSS Standards Document [1]. The latest release of this model
series, HWM14, has been implemented in the propagator. As for the empirical density
models, also HWM models use the solar and geomagentic activity indices F10 and Ap [5].

Figure 3.2: Zonal (top) and meridional (bottom) average quiet time (Kp<3) winds at 250
km altitude, as a function of solar local time and geographic latitude [5]
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3.4. Solar Radiation Pressure
The photons constituting the solar radiation, when hitting the illuminated spacecraft,
transfer their momentum to the satellite surfaces. This impulse generates a force acting
upon a surface, or in other words, a pressure. For the case of the Sun as illuminating
source, this is called Solar Radiation Pressure (SRP). SRP, as Aerodynamic Drag, is a
non-conservative perturbation, and can even become the most relevant force acting on
high altitude satellites, after gravity effects. For this reason, its precise modelling is
crucial for the accuracy of the propagation.

The solar radiation pressure can be computed as in eq. (3.26):

P@ “
Φ@

c
(3.26)

Where Φ@ is the solar emitted flux, whose average value is 1367 Wm´2, and c is the speed
of light.

The most classic formulation of this force models assumes that the photons hitting the
satellite surface can either be absorbed or reflected by it [17]. Reflection can either be
diffuse or specular. For the successive treatment, diffuse reflection will be neglected.

The relative importance of these modes of interaction is quantified by the optical coeffi-
cients of the surface, which depend on the material. These are the absorbivity α and the
reflectivity ε. They satisfy eq. (3.27):

α ` ε “ 1 (3.27)

Absorbed photons transfer all their momentum to the impacting surface, therefore the
resulting force is directed along their direction of motion, which is opposite to the satellite-
Sun direction. This force can therefore be written as in eq. (3.28):

Fabs “ ´P@ cospθ@qAe@ (3.28)

Where θ@ is the angle between the surface normal direction and the vector direction of
the Sun as seen by the spacecraft, e@.

As the name suggests, specular reflection implies that impinging photons are reflected in
a specular direction. This momentum change of direction generates a global force which
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is directed opposite to the normal direction of the surface, as seen in eq. (3.29):

Frefl “ ´2P@ cospθ@qA cospθ@qn (3.29)

Combining these two forces, weighted with their correspondent optical coefficients, eq. (3.30)
is reached:

FSRP “ ´P@ cospθ@qA rp1 ´ εqe@ ` 2ε cospθ@qns (3.30)

However, as the solar flux which reaches a surface varies with the distance from the Sun,
the SRP value is not constant in time. In particular, given the eccentricity of the Earth
orbit around the Sun, variations in the SRP value of up to 3% are experienced over the
year. By introducing this variation with the distance from the Sun, the acceleration due
to SRP can finally be computed as in eq. (3.31):

:rSRP “ ´P@

1AU2

r2@

A

m
cospθ@q rp1 ´ εqe@ ` 2ε cospθ@qns (3.31)

Where AU is the astronomical unit and r@ is the distance between the spacecraft and the
Sun.

For what concerns the Propagator, the term in eq. (3.30), removed of the SRP term, is
calculated in a similar fashion of the aerodynamic drag surface computations. In fact, the
same in-house tool for dealing with satellite surface properties is used, which based on a
3D model of the spacecraft, generates lookup tables of the resulting force based on the
incoming radiation direction.

Finally, the aspect of shadowing needs to be considered. In fact, in most of the LEO
spacecrafts, configurations where the Earth occults partially or totally the Sun often occur.
In these situations, the amount of sunlight which reaches the spacecraft is decreased or
completely nullified. To model this effect, the shadow factor ν is introduced. This is a
coefficient which can assume values between 0 and 1. If the spacecraft is in full sunlight,
ν “ 1. If a total eclipse occurs and the Sun is completely occulted by the Earth, ν “ 0.
When only a portion of the Sun disk is occulted by the Earth, the intermediate situation
where ν is between 0 and 1 occurs. The way this parameter is modelled is analysed in
the next section.

The complete SRP acceleration therefore becomes:
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:rSRP “ ´νP@

1AU2

r2@

A

m
cospθ@q rp1 ´ εqe@ ` 2ε cospθ@qns (3.32)

3.4.1. Shadow Modelling

For what concerns the calculation of the shadow factor due to the presence of an occulting
body in front of the Sun disk, an elementary, but quite common model, is the one of
Montenbruck [17]. This formulation relies on geometry only, in the sense that only the
superposition of the two surface disks of Earth and Sun is considered, neglecting any
particular phenomenon, like the presence of the atmosphere, which could alter the result.
In addition, perfectly spherical shapes are assumed for both bodies.

Within this model, some auxiliary coefficients are calculated as in eq. (3.33):
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a “ arcsin

ˆ

R@

|r@ ´ r|

˙

b “ arcsin

ˆ

RB

s

˙

c “ arccos

ˆ

´sT pr@ ´ rq

s |r@ ´ r|

˙

(3.33)

Where R@ is the Sun radius, r@ is the distance between the spacecraft and the Sun, RB

is the radius of the occulting body, and s is the position vector of the spacecraft with
respect to the occulting body (in case the occulting body is the Earth, s “ r).

These three parameters are respectively the apparent radius of the occulted body (i.e.
the Sun), the apparent radius of the occulting body, and the apparent separation of the
centers of both bodies.

If the following condition is satisfied:

|a ´ b| ă c ă a ` b (3.34)

Then the area of the occulted segment of the apparent solar disk can be calculated as in
eq. (3.35):

A “ a2 ¨ arccos
´x

a

¯

` b2 ¨ arccos

ˆ

pc ´ xq

b

˙

´ c ¨ y (3.35)
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Where:
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x “
c2 ` a2 ´ b2

2c

y “
?
a2 ´ x2

(3.36)

Finally, the shadow factor can be computed, as the remaining fraction of Sun light is
given by eq. (3.37):

ν “ 1 ´
A

πa2
(3.37)

If the condition in eq. (3.34) is not satisfied, additional cases can occur:

• a ` b ď c, no occultation takes place and the spacecraft is in full sunlight;

• c ă b ´ a implying that a ă b, the occultation is total and no sunlight reaches the
spacecraft;

• c ă a ´ b implying that a ą b, the occultation is partial but maximum (annular
eclipse).

As said, even though this model allows to compute the shadow factor also in intermediate
shadow situations as the penumbra, it lacks some more advanced physical modelling
when the Earth is considered as the occulting body. In this sense, when compared to
more realistic models, the cylindrical model above described saw a penumbra time which
was lower by more than a factor 2 [35].

For this reason, in addition to the conical shadow model, the more realistic SOLAARS-CF
model by Robertson has been also included within PrOP. In this formulation, atmospheric
effects due to solar radiation passing through the troposphere and stratosphere are mod-
eled [25]. In addition, the oblateness of the shape of the Earth is taken into account.
These highly physical shadow representations allowed to better model SRP accelerations
when reproducing past LEO mission scenarios [35].

3.5. Earth Radiation Pressure
Analogously to the case of the Sun, also the radiation coming from the Earth generates a
pressure on the spacecraft surfaces, the Earth Radiation Pressure (ERP). In this case two
main components are distinguished: the shortwave optical radiation and the longwave
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infrared radiation. The optical albedo component is generated by the reflection and
scattering of incident solar radiation on the Earth’s surface. The parameter ruling this
ERP component is the albedo factor a, which has a global average value of 0.34 [17].
This component is only emitted by the daylight part of the Earth’s surface. The infrared
component is instead a near isotropic re-emission of the direct solar radiation absorbed
by the Earth. The ruling parameter in this case is the emissivity e, with an average
value of 0.68. However, this component is typically lower than the albedo. Both of these
two effects decrease slightly with increasing altitude, therefore ERP accelerations will be
higher for LEO satellites.

Despite being generated by the same physical principle of SRP, and therefore being a non-
conservative force too, the numerical modelling of ERP perturbation can become more
complex and delicate. This is due to the fact that in this case the illuminating object
can no longer be assumed to be a point source. In fact, to account for the global ERP
contribution of the whole Earth’s surface portion viewed from the satellite, an integration
over the whole spacecraft Field of View needs to be carried out. This is typically handled
in ERP mathematical models by discretizing the Earth’s surface into a certain number
of elements, whose single contributions will then be accumulated to obtain the global
effect [35]. In this regard, one of the earliest models, the one proposed by Knocke, is
still a well-established standard [17], and therefore was implemented in the Propagator
architecture.

This model assumes a diffuse Earth model. In fact, the portion of the Earth’s surface
which is visible to the satellite is divided in discrete segments. The radiation from each
segment is calculated using Lambert’s law of diffuse radiation, assuming that each segment
may be approximated as a plane surface tangent to the center of the segment. This
particular model divides the visible surface in a central cap and two outer rings, which
are again discretized in 6 and 12 segments which have the same projected area of the
central cap, therefore reaching a number of 19 elements with equal projected area [12].
However, more recent models have assumed finer discretizations.

The acceleration generated by this perturbation is calculated as in eq. (3.38):

:rERP “

N
ÿ

i“1

CRP@

´

τa cospθq `
e

4

¯ A

m
dAej (3.38)

Where N is the number of surface elements, CR is the reflection coefficient, defined as
CR “ 1` ε, P@ is the Solar Radiation Pressure value at the Earth distance, τ is an eclipse
factor which discriminates between surface segments in sunlight and shadowed ones, a, e



3| Dynamics Modelling 35

are the albedo and emissivity coefficients respectively, θ is the angle between the surface
element normal vector and the Sun direction, dA is the projected area of the single surface
element. This last parameter can be computed using the case of the central cap, which
will provide for the projected area of each segment, as follows.

First of all, the angular limit of the surface visible from the satellite is computed:

ζM “ arcsin

ˆ

RC

r

˙

(3.39)

Then, the angular limit of the central cap can be evaluated:

ζ1 “ arccos

ˆ

N ´ 1 ` cospζMq

N

˙

(3.40)

From which the projected area computation follows:

dA “ 2p1 ´ cospζ1qq (3.41)

For the complete geometrical formulation for the calculation of the geometrical properties
of each surface segment, the reader is referred to the original work of Knocke [12].

For what concerns the albedo and emissivity coefficients, in the original model they were
calculated using simple spherical harmonic expansions truncated at the second order [12].
These were obtained by fitting available data collected at the time of formulation. How-
ever, more recent models are based on actual Earth radiation measurements collected on
top of the atmosphere in the framework of the Clouds and Earth’s Radiant Energy Sys-
tem (CERES) [35]. At the present state of development of the Propagator, only the first
option is available, but the inclusion of this externalized source of data is being considered
for further updates.

As for the SRP, also in this case the cross section area of the satellite A, seen by the rays
coming from each surface element, is calculated using the in-house surface modelling tool.

3.6. Relativistic Correction
Taking into consideration the accuracy demand of the discussed Propagator, the effects
derived from the theory of General Relativity can no longer be neglected [27]. In fact, due
to the fact that the Earth, given its mass and angular momentum, leads to a curvature
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of the four-dimensional space-time, the Earth-orbiting spacecrafts experience a motion
which no longer completely respects the classical Newton theory of gravitation. However,
given that the masses of artificial satellites are negligible with respect to the mass of
the central body, the velocities of such satellites are much smaller than the speed of
light, and considering that the size of the Earth, as the one of the satellite’s orbits, are
much larger than the Earth’s Schwarzschild radius, the effects of the General Relativity
on the spacecraft orbits can be simplified by means of the so called Post-Newtonian
approximation [30]. This results in an additional acceleration term to be included in the
equations of motion, just as for classical perturbations.

The mathematical formulation of this relativistic correction suggested by the IERS Con-
ventions for Earth-orbiting satellites [22], expressed in a geocentric inertial frame, is re-
ported in eq. (3.42):

:rr “
GM

c2r3

ˆˆ

4
GM

r
´ v2

˙

r ` 4 pr ¨ vqv

˙

` 2 pΩ ˆ vq

` 2
GM

c2r3

ˆ

3

r2
pr ˆ vq pr ¨ Jq ` pv ˆ Jq

˙ (3.42)

With

Ω “
3

2
vB{S ˆ

˜

´
GMrB{S

c2r3B{S

¸

(3.43)

J “ R
I{F
B

„

0 0
2

5
R2

Bωb



(3.44)

rB{S and vB{S are the position and velocity of the Earth with respect to the Sun, J is
the Earth’s angular momentum per unit mass, RI{F

B is the Earth fixed to inertial frame
rotation matrix, RB is the Earth’s radius and ωb is the Earth’s spin rate.

In eq. (3.42), the first term is the Schwarzschild term, the second one is the geodetic
precession (or de Sitter precession) and the third one is the frame-dragging effect (or
Lense-Thirring effect). Other relativistic effects could be included in the formulation,
mainly due to the presence of other celestial bodies, but due to their very small magnitudes
they are often neglected [9].

The Schwarzschild term is the biggest among the three, and all of them show both secular
and periodic effects on the orbit geometry.
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3.7. Orbit Control Maneuvers
To counteract the perturbations already described, or in general to keep or modify their
orbit parameters, satellites are often equipped with thrusters used for Orbit Control Ma-
neuvers. Of course, these introduce additional accelerations which are needed to be taken
into account during the propagation. However, differently from the perturbations, con-
trol maneuvers consume the onboard propellant. This causes a change of mass which
needs to be considered during the propagation, as it is a fundamental parameter for the
computation of non-conservative accelerations.

For these reasons, the Propagator was equipped with the possibility of dealing with con-
tinuous control maneuvers provided in the input configuration file. In this regard, two
possible alternatives can be chosen:

• Linear Control Maneuver: maneuvers with constant thrust and mass flow rate,
therefore causing a linear variation of the spacecraft mass, hence the name. In
this case several parameters combination can be provided as input, e.g. thrust and
duration, or total ∆v and specific impulse;

• File-Based Maneuver: in this case an external CSV file is provided, with general
time profiles of thrust and mass flow rate. This is the most general option.

Whatever the input, the resulting maneuver acceleration at a specific time instant is
always computed as the ratio between thrust and mass at that time. This means that,
in case of Linear maneuver, there might be input parameters combinations which require
analytical treatment to obtain an explicit thrust value, if not explicitly provided in the
configuration file.

For instance, in case the ∆v, mass flow rate 9m and maneuver duration ∆t are provided,
the thrust T can be obtained as in eq. (3.45):

T “
| 9m|

´ ln

ˆ

1 ´
| 9m|∆t

m0

˙∆v (3.45)

The input thrust or ∆v vectors are usually provided in the spacecraft body frame or in
the RTN frame, therefore appropriate frame transformation, which might require attitude
information, is needed before propagation.

An important aspect of dealing with Orbit Control Maneuvers, is that they introduce dis-
continuities in the numerical integration. This issue will be analysed in detail in chapter 4,
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along with the techniques implemented to tackle it.
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As stated in chapter 2, numerical integration of the equations of motion is the only method
capable of reaching the level of accuracy demanded for PrOP, given all the perturbations
which are needed to be taken into account.

Again, the core of this technique is to numerically solve first order differential equations
of the form of eq. (2.1), which can always be recovered through appropriate manipulation
from the original equations of motion. This solutions is recovered by using particular
algorithms, which take the name of numerical integrators. A variety of these has been
studied and developed for decades, and many of them have found successful application
in the field of astrodynamics [17].

However, there also exist other ways to formulate the ODE to numerically integrate, apart
from the Cowell one reported in eq. (3.3), such as the Encke’s formulation, which was also
implemented in the software.

Finally, in chapter 2 it was stated that modifying the floating point precision for the
numerical representation of some numerical components could lead to a better overall
result, which was confirmed by some case studies. This modification also acts on the
numerical processes of the Propagator and is therefore reported in this chapter.

Therefore, hereafter, the solutions implemented in the Propagator are summarised. For
an in-depth description of some of these components, the reader is suggested to refer also
to the previous reported works about this software [31].

4.1. Numerical Integrators
Numerical integrators usually discretize the time domain into a certain number of steps,
and then proceed to calculate progressively the solution function at each discretized time
instant, by using recursively eq. (4.1):

yptn ` hq “ yptnq `

ż tn`h

tn

fpt,yptqqdt (4.1)
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Where yptq is the solution of the equation (i.e. the spacecraft state), h is the stepsize (i.e.
the ∆t), and fpt,yptqq is the function to integrate (i.e. the velocities and accelerations).

This is done by approximating in a certain way, which differs with the algorithms, the
integral term, as analytical integration is in most of the cases not possible.

As previously stated, a wide variety of integrators are available nowadays for solving even
very complex ODEs, thanks to the great number of possible applications fields and of
the exponential increase in computational power of the modern personal computers. On
the other hand, due to this vastness of solutions, it is difficult to univocally identify a
technique which is best for a specific application and most of all, sufficient for a variety
of input configurations.

In fact, the cathegories in which numerical integrators are grouped often provide different
benefits:

• Singlestep methods are very easy to implement, can be applied to a high number of
problems and the stepsize can be easily manipulated for error control;

• Multistep methods are characterised by a high efficiency;

• Extrapolation methods offer a high accuracy.

Therefore, a tradeoff in the impementations needed to be carried out to guarantee require-
ments meeting in all possible conditions. This led to the inclusion of several singlestep
and multistep integrators in the software, described in the following sections.

4.1.1. Single-step integrators

Singlestep integrators use only support points belonging to the time interval which is
being integrated. For this reason, modifications of the stepsize do not require much
computational effort as it can be done while maintaining previously calculated points.
The most common class of singlestep integrators is the one of the Runge-Kutta methods.

By assuming the notation for which yptn `hq “ yn`1 and yptnq “ yn, the general Runge-
Kutta formula for step advancement can be written as in eq. (4.2):

yn`1 “ yn ` h
M
ÿ

i“1

biki (4.2)

With:
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k1 “ fptn ` c1h,ynq

ki “ fptn ` cih,yn ` h
i´1
ÿ

j“1

aijkjq pi “ 2, ...,Mq

(4.3)

Where h is the stepsize, M is the number of stages of the integrator, a, b, c are constant
coefficients peculiar of the Runge-Kutta scheme in use. In other words, each of these
methods is fully described by a set of coefficients, which obey to some relationships and
are usually provided in tables called Butcher arrays.

A method which is capable of approximating the solution up to terms of order hp is called
a pth-order method, and it is therefore a figure of merit for determining the truncation
error of that particular integrator. To reduce this error, either higher-order integrators
can be used, or finer stepsizes. For low order Runge-Kutta integrators, it is found that
the order is equal to the number of stages, but this is not anymore true for higher order
schemes [17].

Since the magnitude of the variation in time of the function to integrate (i.e. the derivative
of the solution) can vary also greatly with time, as in the case of highly elliptical orbits,
if the stepsize is kept fixed then the integration error could rapidly increase. To manage
this, stepsize control can be implemented to ensure an almost constant error, even when
the solution rapidly evolves.

To do this, first of all the error needs to be estimated. The most common way to do that
within Runge-Kutta methods is to integrate the same step with two different schemes, one
of order p and one of order p`1 with the same stepsize h, obtaining the solutions yn`1 and
ŷn`1, respectively. One would be led to use the higher order solution for error estimation,
while then considering the lower order solution as the final output of the integration, but
Dormand and Prince showed that the opposite is also true, and leads to the advantage of
having a final solution of higher order with the same amount of stages [31]. The error is
then calculated as in eq. (4.4):

e “ |ŷn`1 ´ yn`1| (4.4)

The commonly used technique for stepsize control assumes a certain maximum tolerance
T for the error. In this way, the corrected stepsize h˚ can be calculated as in eq. (4.5):
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h˚
“ 0.9h

ˆ

T

e

˙
1

M`1

(4.5)

In addition, in order to avoid rapid oscillations of the stepsize, it is suggested to limit the
possible variation of the stepsize to a factor 2 - 5 [17]. For this reason, the final check is
carried out:

h˚
“ minph˚, 5hq (4.6)

To avoid doubling the computational cost of stepsize control by using two completely
separate integrators, embedded Runge-Kutta methods are used. These are a category of
neighbouring order integrators which share the same a and c coefficients, and only differ
by the b coefficients. In this way, the two methods will have the same ki values, and can
easily be used for stepsize control.

An alternative Runge-Kutta formulation also exists to directly integrate second order
differential equations. It is the case of the Runge-Kutta-Nyström method. This class of
integrators shows advantages with respect to classical Runge-Kutta methods when the
function to integrate does not depend on the first derivative of the state. In orbital
propagation, this would mean that Runge-Kutta-Nyström could be more efficient for
orbits in which the acceleration does not depend on the velocity. However, since this is
not true for several perturbations reported in chapter 3, this class of algorithms is not
analysed further.

To sum up, Runge-Kutta integrators are easy to implement and can easily include stepsize
control for error mitigation. However, they tend to be less efficient, especially in the case
of higher order methods, than other algorithms, due to the high number of function
evaluations required for each step.

4.1.2. Multi-step integrators

One of the drawbacks of the singlestep methods is that every time that there is a progres-
sion in the integration, the values calculated for the previous steps are discarded and no
longer used in the next step. In the case of high order integrators (i.e. integrators with
a high number of stages) and/or with quite complex functions which require many arith-
metical operations to be evaluated, this could increase dramatically the computational
time.
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To avoid this, there exists another class of numerical integrators, which store previously
calculated points to use them also in successive integration steps, in order to limit the
number of function evaluations for each step progression. For this reason, they are called
multistep integrators.

The main principle for these integrators is that, if integrating from tn to tn ` h, as in
eq. (4.1), the function f to integrate is approximated by a polynomial of order M ´ 1,
obtained with the interpolation of M previously calculated points. The polynomial can
be obtained via the Newton’s formula for a polynomial pM of order M ´ 1, which leads
to Adams-Bashforth method:

yn`1 “ yn `

ż tn`1

tn

pMn ptqdt “ yn ` h
M´1
ÿ

j“0

γj∇jfn (4.7)

Which makes use of the backward difference operator ∇j of the i-th function evaluation
fi, which is defined recursively as in 4.8:

∇0fi “ fi

∇fi “ fi ´ fi´1

∇nfi “ ∇n´1fi ´ ∇n´1fi´1

(4.8)

Where the stepsize independent coefficients can be obtained recursively using:

γj “ 1 ´

j´1
ÿ

k“0

1

j ` 1 ´ k
γk (4.9)

However, by substituting the definitions of the backward differences in eq. (4.7), an explicit
relationship between the next step and the previous function evaluations can be obtained.

A problem of this method is based on the fact that we are assuming that the constructed
polynomial remains valid also between tn and tn`1, which in general is only an approxi-
mation. To solve this problem, the Adams-Moulton method uses the M points between
tn´M`2 and tn`1 to approximate the polynomial to integrate. However, this leads to an
implicit formulation as the function evaluation at tn`1 is required in this case, but this is
not known a-priori, therefore an iterative procedure is required.

One way to handle this issue is with the so called Predictor-Corrector or Predict-Evaluate-
Correct-Evaluate (PECE) algorithms. It is the case of the Adams-Bashforth-Moulton
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method, which uses an explicit Adams-Bashforth method to calculate the first evaluation
of the function at tn`1, which is then used as initial value in an iterative procedure to
reach convergence using instead the Adams-Moulton method repeatedly.

As for the singlestep methods, also in the case of multistep integrators a formulation
which aims to solve directly a second order differential equation can be reached, it is the
case of the Stoermer-Cowell methods. In fact, by assuming that the function is again not
dependent on the state first derivative, the following Stoermer predictor is obtained:

yn`1 “ 2yn ´ hyn´1 ` h2
M´1
ÿ

j“0

δj∇jfn (4.10)

An implicit Cowell corrector can then be applied:

yn`1 “ 2yn ´ hyn´1 ` h2
M´1
ÿ

j“0

δ˚
j∇jfn`1 (4.11)

Here the coefficients of the Stoermer-Cowell method δj and δ˚
j can be analytically obtained

from the ones of the implicit Adams method.

However, due to the assumption of no dependence from the first derivative, these formula-
tion can again lead to errors in case of acceleration which depends on the velocity. This can
be solved by using two different predictors and correctors combinations for the calculation
of the next full state. In fact, by using as Stoermer and Adams-Bashforth respectively for
state and state derivative predictors, jointly with Cowell and Adams-Moulton respectively
as correctors, the Adams-Cowell formulation is reached.

Finally, the Gauss-Jackson or second sum methods are introduced. These are slightly
modified versions of the Stoermer-Cowell methods, and probably the most recommendable
fixed-stepsize multistep methods for orbit computations [17]. The computations of these
algorithms involve the use of first and second sums, which are a generalized version of the
backward differences:

fi “ ∇´1fi ´ ∇´1fi´1

∇´1fi “ ∇´2fi ´ ∇´2fi´1 (4.12)

For solving this implicit relations, an initial guess for the first and second sums need to
be provided, after which an iterative procedure can lead to the converged solution.



4| Numerical Integration 45

4.1.3. Discontinuity control

As already mentioned in chapter 3, some force models, as the thrust, introduce numerical
discontinuities in the propagation. For example, this happens when a thruster is turned
on or off. In this case, a discontinuous acceleration is included in total acceleration to
integrate, which can cause several numerical problems.

To understand this issue, a sample case in which an orbit control maneuver starts at
a generic propagation time, which is different from the time points contained in the
discretized timegrid, is reported in fig. 4.1:

Figure 4.1: Discontinuity introduced by Orbit Control Maneuver

Looking at the picture, two main issues can be brought up:

• Part of the acceleration (and so part of the total ∆V ) is not considered due to the
finite number of function evaluations. This is particularly evident in the case of the
multistep case, and leads to errors in the maneuver ∆V reconstruction. In addition,
if the maneuver is too short or the stepsize too large, the maneuver could even be
entirely missed;

• Considering that the high order integrators use several support points for the step
progression, it might happen that some intermediate points of the step will evaluate
a nonzero thrust, while others of the same step will evaluate a zero thrust. This
difference of evaluations in the same step can lead to numerical instability, as it
contradicts the continuity assumption of the underlying function to integrate.

For these reasons, some sort of discontinuity control needed to be implemented to avoid
a drastic increase in the integration error in the case of orbit control maneuvers.

The process, managed by the integrators, which was implemented as a solution for this
problem, is represented in fig. 4.2.
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Figure 4.2: Discontinuity Control Process

The operations carried out by the integrators are schematized as follows:

1. Assuming no discontinuities were found in past integration steps, the integrator is
carrying out the "normal integration". At the start of each new step a detection
process is activated, in order to find if new discontinuities are introduced in the
selected timestep. This is possible as the input maneuver history is already known
at the start of the propagation;

2. If a discontinuity is found to occur in the timestep of interest, the normal integration
is interrupted. In addition, the ∆t and the time at which the discontinuity occurs
are stored in the integrator. In case multiple discontinuities are present in the same
step, the earliest one will be stored;

3. The ∆t of the current step is then modified in order to "reach" the discontinuity
with the next integration step. For instance, if a discontinuity is present at time t˚

in the step from tn to tn`1, the new stepsize will be set to ∆t “ t˚ ´ tn. The step
is finally calculated, in this intermediate integration;

4. Following the intermediate integration, a new discontinuity detection is carried out.
If a new discontinuity will happen in the next step, the integration is again inter-
rupted, and the intermediate integration will happen again, until no new discon-
tinuities are found. In this case, the integrator is reinitialized, meaning that the
original stepsize is restored, and the normal integration can begin again.

However, some final remarks need to be reported. In fact, if for singlestep integrators no
major issues rise up thanks to their independence between the steps, multistep integrators
on the other hand are less prone to changes in the stepsize. In fact, as stated previously,
multistep integrators require a certain number M of equally spaced previously calculated
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support points to progress in the integration. In the discontinuity control process reported
above, there is a forced change in the stepsize, meaning that the previously stored values
can no longer be used for progressing as the assumption of spacing uniformity is not true
anymore.

For this reason, in PrOP multistep integrators were designed in such a way that, if a dis-
continuity is detected and therefore old evaluation points are invalidated, the integration
is carried out by an auxiliary singlestep integrator. Once this auxiliary integrator has
collected the necessary number of equally spaced support points, the multistep integrator
can be reinitialized and resume its normal integration procedure.

4.2. ODE Strategy
The equation of motion to integrate was already expressed in the classical Cowell formu-
lation in eq. (3.3). However, a downside of this way to write the differential equation is
that perturbing accelerations with very different orders of magnitude are summed at each
timestep. This could lead to an increase in the roundoff error.

A formulation which aims to reduce this error is the Encke’s method. Its underlying
concept is that the central body gravity term dominates over the other accelerations,
which in fact are only seen as perturbations. In other words, the main reference of the
propagation result is the classic Kepler orbit, even though the complete solution will
slightly drift away from this baseline as the propagation time increases. Due to this,
instead of directly integrating the full state, one could think of integrating the deviation
of the actual solution from the Kepler orbit.

Therefore, considering the two distinct accelerations of the central body gravity :r0 and
remaining perturbations :rpert, such that:

:r “ :r0 ` :rpert (4.13)

And writing the new state with the position and velocity deviations from the Kepler orbit
ξptq:

∆rptq “ rptq ´ ξptq

∆ 9rptq “ 9rptq ´ 9ξptq
(4.14)

The new equation of motion to integrate becomes:
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d∆r

dt
“ ∆ 9r

d∆ 9r

dt
“ ∆:r0 ` :rpert

(4.15)

With:

∆:r0 “ :r0 ´ :ξ (4.16)

Both these terms indicate central gravity accelerations, referred to the actual and reference
orbits, respectively. By making explicit this acceleration formulation, we obtain:

∆:r0 “ ´GM

ˆ

r

|r|3
´

ξ

|ξ|3

˙

(4.17)

Position and velocity can then be obtained from the state variables using eq. (4.14).

However, this formulation is based on the assumption that the deviation of the real orbit
from the Kepler one is small. This will not be true for prolonged periods of propagation,
so integration errors might occur.

This deviation from the reference solution is monitored through the Encke ratio, defined
as:

ε “
|∆r|

|r|
(4.18)

The threshold value which guarantees a good propagation is not univocal, even though
literature studies seem to agree that values between 1% and 10% most likely allow to
meet satisfactory accuracies [31].

If during propagation this limit is passed, in order to keep the accuracy sufficiently high,
a new reference orbit is needed, so the rectification is carried out. This process resets
the reference with a new orbit having initial conditions equal to the propagation state at
the time of rectification, every time the Encke ratio threshold is reached. However, this
makes this procedure not suitable for multistep methods, as the rectification would need
a re-initialization of the integrator.

For the choice of the reference orbit, the simplest solution would be to use a simple Kep-
lerian orbit with initial conditions set equal to the initial state. However, more accurate
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and complex references might be adopted, although this would increase the computational
cost of the method [31].

4.3. Hybrid Precision
Another method which was used in the Propagator for the mitigation of the roundoff error
was the implementation of Hybrid Precision. To understand this, it is important to recall
the source of this error. In fact, it is caused by how floating point numbers are represented
and stored with a finite number of digits. Due to this, the error accumulates everytime
a mathematical operation is carried out with two or more variables, therefore for finer
stepsizes, or in other words increasing the number of steps and therefore of operations to
complete the integration, the roundoff error can exceed the prescribed limit.

Most modern software applications use single or double precision, so switching to the
superior quadruple precision would ideally improve this error, as it would shift the wrong
digits to the trailing edge of the stored variable. Nevertheless, the main issue about the
usage of quadruple precision is the dramatic increase in the computational time which
results from its implementation.

An intermediate way to exploit quadruple precision without jeopardizing the computa-
tional burden of the Propagator is the Hybrid Precision method, suggested by Nie [16].
This proposal suggests to implement the quadruple precision only in the integration part
of the software, while keeping the force models formulation (i.e. the accelerations com-
putation) in double precision. This comes from the fact that the complex force models,
especially when used simultaneously, correspond to the main part of the computational
time. Despite this, part of the integration error comes from the integration operations.

The implementation of the Hybrid Precision, following the results reported by Nie, proved
well also for PrOP, as already shown in chapter 2. In fact, it allowed to reach and
even surpass the accuracy requirement of the Propagator, whith only a small percentage
increase in computational time. Furthermore, this increase becomes almost negligible
when a higher number of force models is used for the propagation.
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5| Analysis and results
In chapter 2, the main results of the past investigations involving the numerical aspects
of the Propagator were reported. These highlighted that the accuracy requirement could
be satisfied when using certain high order integrators, together with the Hybrid Preci-
sion, meaning that the truncation and roundoff errors coming from the integration were
successfully minimised. However, in order to obtain a realistic orbit for the POD pur-
poses mentioned in chapter 1, knowledge about the effect that every force model has
on the propagation results is needed, in order to understand to which extent model the
dynamics of the spacecraft and to be able to critically analyse such results.

To achieve this, a series of analyses involving the dynamical models implemented for this
Master Thesis were carried out. First of all, the single accelerations and displacement
caused by every force model were computed along four input orbits, chosen to represent
four different orbital classes to better grasp how these perturbations act on different orbit
configurations. Furthermore, several sensitivity analyses were executed for particular
force models aspects and configurations, jointly with a brief report on the computational
cost introduced by each perturbation. Then, the effect of the implementation of the
Discontinuity Control in the integrators was studied. Finally some validation tests to
compare the Propagator results with STK were run.

5.1. Acceleration and Displacement Analysis
In order to understand the magnitude of the effects coming from each single perturba-
tion, the acceleration is the first figure of merit which comes to mind. Furthermore, given
the formulation of the Reduced-Dynamic POD techniques, which still represent the main
framework of this Propagator, acceleration values are extremely important for what con-
cerns the state estimation, and the calibration of the empirical accelerations which have
to be provided during the propagation. Therefore these were the first values computed
for the Force Models analyses.

Nevertheless, for more general flight dynamics applications, the mapping between accel-
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eration values and actual physical effects on the orbit is often not trivial. This partially
happens due to the fact that, as we will see, accelerations with similar orders of magni-
tude but with other different parameters, as direction or time variation, can cause very
distinguished deviations on the orbits. To quantify this deviation, together with the
accelerations, also the displacements with respect to a nominal Kepler orbit, obtained
propagating with the central gravity and the analysed perturbation only, were computed
and reported. In this way, a slightly more "physical" influence of the different dynamical
models on the orbit was shown, which could be useful for a wider variety of uses of the
software.

In order to cover different orbital regimes and therefore characterise also how perturba-
tions have different effects depending on orbit geometry, the initial state vectors for each
simulation were selected from the orbital elements reported in table 5.1. This was to
follow the approach of past analyses studies [34], where orbits from LEO to GEO were
considered.

Name a (km) e i (deg) Ω (deg) ω (deg) θ (deg)

LEO TerraSAR-X 6886 0.00018 97.45 295.85 80.81 340.08
MEO NAVSTAR 50 GPS 26560 0.00370 55.24 82.21 191.50 215.96
HEO Molniya 3 10115 0.57873 63.22 354.69 311.23 11.72
GEO Galaxy 11 42165 0.00007 0.03 123.00 45.00 87.00

Table 5.1: Keplerian Elements of Input Orbits

A 3D visualisation of such orbits is also reported in fig. 5.1. It must be noted that these
input orbits choice shall not be considered exhaustive, even though it allowed to highlight
some rough trend.

Again, following the choice of past analyses, the initial propagation epoch, January 4 2003,
was chosen in order to run the simulations in a period of medium solar activity. Another
important reason to choose dates enough in the past was to guarantee the completeness
and reliability on space weather and Earth Orientation Parameters (EOP) measurements
[34].
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Figure 5.1: Input Orbits 3D Visualization

For what concerns the modelling of the satellite surfaces, which is used when computing
non-conservative forces, in order to construct a realistic scenario, the 3D model of the
TerraSAR-X satellite, an artistic illustration of which is reported in fig. 5.2, was used.
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Figure 5.2: TerraSAR-X (Credits: EADS Astrium)

It has to be noted that its shape is quite peculiar, and offers an area to mass ratio of less
than 10´3 m2{kg in the along track direction, which is quite a low value. As a result, the
effect of aerodynamic drag could be seen as slightly underestimated when compared to
other spacecrafts with significantly larger ratios.

The effects (both accelerations and displacements) of the employed force models acting
on the LEO orbit for a 24 hours propagation are reported in fig. 5.3. The gravitational
accelerations (central gravity, geopotential and third body) are the highest ones, whereas
for the non-conservative forces drag has the maximum values, even though SRP and ERP
differ by less than one order of magnitude. This can be explained as said by the low
area to mass ratio of the spacecraft model. For what concerns the SRP accelerations, the
eclipse periods are quite visible. It is interesting to notice that also the ERP follows a
periodic pattern due to the eclipse. This is caused by the fact that, on the dark side of
the Earth, the albedo component is absent. Relativity is the lowest acceleration, with
values in the orders of tenth of nm{s2.
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(a) Accelerations

(b) Displacements

Figure 5.3: Perturbation Effects in LEO
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The displacement analyses provides very similar results. Geopotential and third body
cause deviations from the nominal orbit of 1000 km and 100 m, respectively. Inter-
estingly, drag produces higher displacement than the luni-solar perturbation, reaching
km-level displacements. SRP and ERP show some signs of the eclipses also in this case,
reaching meter and sub-meter level of displacements. Relativity, probably due to its quite
constant value, even surpasses the displacement caused by the albedo, reaching meter
level deviations.

In terms of force models hierarchy, the MEO analysis, depicted in fig. 5.4, shows no
big variations. It must be noted that at the GPS altitude, drag is already negligible in
practice, due to the almost null atmospheric density. The effects of the Earth gravity field
are definitely lower due to the increased altitude, as ERP and Relativity accelerations.
On the contrary, SRP acceleration shows higher peaks, together with limited eclipse time
compared to the LEO case. Also the third body accelerations increases by almost two
orders of magnitude thanks to the greater semi-major axis.

The displacement effect pattern is quite similar. Interestingly, in the MEO case geopoten-
tial and third body perturbations cause comparable deviations, in the order of km. The
SRP is the dominating non-gravitational effect, with displacement of hundreds of meters.
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(a) Accelerations

(b) Displacements

Figure 5.4: Perturbation Effects in MEO
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The HEO analysis, shown in fig. 5.5, produced quite peculiar patterns. In fact, the
acceleration peaks are remarkable for the forces which depend on the altitude. It must be
noted that drag is negligible for the majority of the orbit, whereas it becomes the second
most important perturbation in proximity of the perigee. Interestingly, SRP and ERP
accelerations show that no eclipses occur during the 24 hours of propagation. This is due
to the particular orbit configuration.

By looking at the displacements, the most noticeable feature is the drastic deviation
caused by aerodynamic drag due to the perigee passage. Again, even though the accelera-
tion only show brief peaks, the deviation caused by this sudden increase is kept also after
the perigee, making drag the most important non conservative force also in this particular
case.

Finally, the Geostationary case is reported in fig. 5.6. Here the Geopotential and Third
Body accelerations are practically equal. SRP acceleration has notably increased, becom-
ing the dominant non conservative force. Drag is completely negligible, as the atmosphere
is completely absent at the Geostationary altitude. Apart from that, no other remarkable
features are visible, due also to the absence of eclipses. These descriptions remain valid
also in the case of the displacement analysis.
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(a) Accelerations

(b) Displacements

Figure 5.5: Perturbation Effects in HEO
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(a) Accelerations

(b) Displacements

Figure 5.6: Perturbation Effects in GEO
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5.2. Model Sensitivity Analysis
From the discussion in chapter 3 it was clear that, when considering advanced dynamical
models, multiple choices within the same perturbation formulation can be adopted. As
these choices can potentially result in significant effect variation, a sensitivity analysis
regarding some of the implemented perturbations was conducted.

5.2.1. Geopotential Model Choice

As shown previously, the effect of the Earth’s oblateness, which causes a deviation from
the nominal spherical gravity field, is the perturbation which causes the largest position
deviations for all the orbital regimes considered. It is also important to remember that
the gravity field formulation depends exclusively on the chosen model, which determines
not only the spherical harmonics coefficients, but also the values of the gravity constant
and radius of the planet. For this reason, it is useful to understand to what extent a
choice of different geopotential models can impact the propagation.

In chapter 3 the advent of Time Varying Geopotentials was described, therefore to run this
analysis a TVG model, the GOCO06s, was used. The results obtained with this model
were then compared to the ones resulting from a propagation with the classic EGM2008
model. Both the gravity fields were truncated at degree and order 200. The evolution
of the position difference between the two results is depicted in fig. 5.7. To resemble a
worst-case analysis LEO regime was chosen, as this perturbation is greatest in low altitude
orbits.

Figure 5.7: Position Difference with different Geopotential Models
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The deviation surpasses the value of one kilometer after 24 hours of propagation. This re-
sult is extremely valuable as it highlights that simply using different models (i.e. different
spherical harmonics coefficients) can lead to deviations which are greater than the ones
computed in past analyses concerning the gravity field truncation degree [34]. As such,
extreme care needs to be taken when considering the adoption of a particular gravity field
formulation. It is expected that more recent models, which can exploit more precise mea-
surements coming from the latest geodesy missions, perform better in terms of accuracy
in the gravity field reconstruction. However, this needs to be addressed in future work,
possibly involving also the figures of merit for the uncertainty of the coefficients.

Finally, although not reported in plots here, the difference between the effects of using
the full Time Varying formulation of the GOCO model and the one instead using only
the static part of the field of the same model, was computed. For the considered epoch,
the deviation between the two cases reached values in the orders of tenth of centimeters.
This highlights that the time varying part of the field contributes to an almost negligible
extent, or at least in much lesser part than the choice of the model itself, and can only
become relevant for higher propagation times.

5.2.2. Density Model Choice

One of the fundamental parameters for the modelling of the aerodynamic drag is the
atmospheric density. Often, this is also the contribution with the highest uncertainties.
As seen in chapter 3, lots of models have been developed through the decades, therefore
the impact of this choice needed to be investigated.

Trivially, also for this analysis the propagation was carried out in LEO, as for sure it is the
class of orbits which experience drag the most. The analysis saw the use of four different
density models: the classic US Standard Atmosphere, the established models, prescribed
by the ECSS, NRLMSIS-00 and JB2008, and one of the most recent ones, DTM2020. The
deviation from a nominal Kepler orbit, caused by aerodynamic drag employing the four
models cited above, is reported in fig. 5.8.

The main takeaway from the results of this analysis is the confirmed high variability in the
propagation results induced by this parameter. In fact, between the model corresponding
to the highest displacement (NRLMSIS-00) and the one with the lowest (US Standard
Atmosphere), there is an effect difference of more than 50%. In addition, as the analysed
epoch of propagation was characterised by medium level solar activity, these differences
are expected to grow in timespans closer to the maximum of the solar activity cycle. The
shown variability needs to be considered when choosing a particular density model.
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Figure 5.8: Position Difference with different Density Models

A final remark is done about the DTM2020 model. Its displacement highlights an average
density value which is significantly lower than the other empirical atmospheric models.
This confirms the statements of the developers of the models themselves [4].

5.2.3. Planetary Effects

In the previous section it was very clear how the third body perturbation, as the gravity
effects in general, can be one of the most important effects on the satellite orbit. In fact,
for high altitude satellites the magnitude of the displacement caused by this force can
even be equal to the one due to the geopotential of the Earth.

However, this dynamical model greatly depends on the celestial bodies the gravitational
effects of which are considered. Nevertheless, it is not trivial to understand the contribu-
tions which can be safely neglected and which one to consider instead. For this reason,
an analysis on the effect of every relevant celestial body of the Solar System was carried
out for the Geostationary orbit case, which is mostly interested by this perturbation.
In particular, every planet of the system was considered, jointly with the perturbations
coming from the Sun and the Moon. The displacements caused by these bodies is shown
in fig. 5.9.
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Figure 5.9: Third Body Displacement by Solar System Bodies

As can be seen from the plot, the Moon and the Sun have certainly the greatest effect,
causing displacements of more than one kilometer. For what concerns the planetary
displacements, the most important ones are from Jupiter and Venus, causing cm-level
deviations. Saturn and Mercury follow up, with mm-level displacements. Mars third
body effect is smaller. The remaining planets of the outer Solar System were not reported
as their magnitudes were even lower. It appears clear that apart from the Moon and Sun,
inclusion of the effects by Venus and Jupiter, as also stated in the ECSS [1], should be
enough for most applications. An interesting remark is done about Mercury. In fact, one
would expect it to have significantly lower effects with respect to Mars. However, as the
third body effect greatly depends also on the distance, these perturbations depend on the
Solar System "configuration" at the interested epoch. In fact, by looking at where the
planets of the inner Solar System were located at the start epoch, represented in fig. 5.10,
it is clear how in that time of the year the Earth-Mercury distance was significantly lower
than the Earth-Mars distance, hence causing a larger effect. An extended an thorough
analysis of this force would need to consider effects averaged over a longer timespan to be
completely accurate, but this was out of the scope of this Thesis.
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Figure 5.10: Planetary Locations at Start Epoch

5.2.4. Shadow Model Choice

As reported in chapter 3, another particular choice that can be made inside the Propaga-
tor is the one of the shadow model for Earth eclipses. This impacts both SRP and ERP.
In this regard, the two alternatives which can be selected are a purely geomtetrical dual
cone model, and a more "physical" formulation which takes into account all the atmo-
sphere phenomena which can alter the quantity of sunlight which reaches the spacecraft.
One could trivially expect the more sophisticated model to provide more realistic and
meaningful behaviours, nevertheless it is useful to understand to what extent do the two
results differ.

For this analysis, the shadow factor obtained with the two shadow models was investigated
for the LEO case. The shown results were restricted to an analysis of the shadow factor for
a small timespan coincident with the entering of eclipse of the spacecraft, as the behaviour
is almost symmetrical with respect to the case of exiting eclipse. The two shadow factors
behaviours are shown in fig. 5.11.
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Figure 5.11: Shadow Factors entering Eclipse

Interestingly, the penumbra period computed with the classical model lasts about 8 sec-
onds, whereas the one obtained with the more refined formulation, lasts for around 30
seconds. This means that we obtained an increase of penumbra time by almost a factor
4, in accordance with previous findings in similar LEO scenarios [35]. This result may be
useful for two different aspects: first of all, there is a mismodelling of the acceleration of
SRP and ERP, as the calculation of the shadow factor is a primary issue in these formu-
lations. Secondly, as the spacecraft power mainly comes from the solar panels, modelling
of the quantity of sunlight reaching the satellite is fundamental for accurate sizing of such
subsystem. Considering that, as saw previously, a LEO satellite depending on orbit ge-
ometry can experience a high number of eclipses even in just 24 hours, accumulating the
mismodelled penumbra time over the whole mission duration could lead to the discovery
of non-negligible systematic errors.

5.3. Computational Effort Analysis
Even though accuracy is the main requirement of the developed Propagator, it is still
important to maintain the computational time required by the propagation under a rea-
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sonable limit. However, most of it depends on the propagation configuration selected
via the input file. In fact, the computational cost will depend on a variety of factors
chosen by the users, as the choice of the numerical integrator, the selected stepsize and
the dynamical models to include in the propagation. As past works already analysed the
impact of the integrators and stepsize on the duration of the program execution [31], the
new analyses focused instead on how the different forces alter the speed of the software.

Therefore, a computational effort analysis was carried out by calling for a relatively high
number of times (in the order of thousands calls) the acceleration computation for each
force model, using a randomized input state. Consequently, the average time for each force
model call was computed. Finally, as the geopotential, calculated up to degree and order
70, showed to be the heaviest force model in terms of numerical cost by some orders of
magnitude, the other perturbation contribution were scaled by the average computational
cost of such model, equal to 9 ms per call. The scaled results are represented in fig. 5.12.

Figure 5.12: Force Models Scaled Computational Cost

As said, the geopotential was the heaviest force, for a variety of reasons. First of all, due to
the spherical harmonics formulation, depending on the truncation degree many operations
have to be carried out at each call. Furthermore, due to the way this perturbation is
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formulated, the acceleration in the Earth-fixed frame is provided, thus requiring a frame
conversion, which is also computationally expensive.

The non-conservative forces were the second heaviest dynamical models. ERP and Drag
exhibited average times of about 1% of the geopotential, while the SRP closer to 0.1% of
such model. These behaviours can be explained by their more complex formulation. In
fact, ERP has to calculate the incoming rays from 19 discretized surface elements, whereas
drag relies on external models for the computation of parameters like the atmospheric
density. In addition, all of them have to deal with the modelling of the satellite surfaces,
which is also computationally expensive.

Finally, the remaining gravity-related forces were definitely faster to compute thanks to
their relatively simple and compact analytical formulations, with no particular parameters
to calculate.

5.4. Discontinuity Control Analysis
An additional study was set up to investigate the effect of the implementation of the dis-
continuity control in the numerical integrators. In fact, for the reasons listed in chapter 4,
the error obtained when trying to reconstruct the total ∆V caused by an Orbital Control
Maneuver is expected to be mitigated.

To investigate this issue, the following test case was set up: a "dummy" propagation
was set, in the sense that the only force model included was the thrust generated by an
input maneuver. As this would be the only acceleration contribution, by comparing the
final and initial velocities, we can obtain an estimate of the total ∆V generated by such
maneuver. The nominal ∆V is known a-priori thanks to the analytical formulation which
relates it to the thrust, reported in eq. (3.45). Therefore, an error can be computed by
comparing the nominal ∆V coming from eq. (3.45) with the one obtained by comparing
initial and final state of the propagation. This was done with varying input ∆V values,
and including and excluding the discontinuity control previously described. The result of
this is reported in fig. 5.13.
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Figure 5.13: Discontinuity Control Effect

Clearly, the implementation of this feature drastically decreased the error due to ma-
neuvers, which now is practically zero. This proves not only the effectiveness of the
implemented solutions, but also the presence of the mentioned issues, which could have
jeopardized the accuracy in case of maneuvers. Interestingly, the ∆V error, both with
and without the discontinuity control, is seen to linearly increase with the nominal ∆V

of the maneuver.

5.5. Propagator Validation
Even though any newly introduced Propagator component was thoroughly tested before
acceptance, it is still necessary to validate the overall propagation results. This was done
following the same philosophy of past propagation software validations [24, 26, 34]. As
such, the STK program was chosen as reference solution for the validation simulations.

This process was carried out by propagating the initial state with only the central body
acting plus an additional perturbation. The forces considered, apart from the central
gravity itself, were the geopotential, the third body perturbation, the SRP and aerody-
namic drag. These solutions were then compared to the ones obtained via STK using the
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most similar input configurations as possible. It is important to state that this method
does not allow to identify the "best" solution between the two, due to the fact that a great
amount of uncertainty parameters are present, from the used values of physical constants
to the way the softwares are programmed.

The difference between the results obtained with the two softwares is shown in fig. 5.14.

Figure 5.14: Comparison of Propagation Results

First of all, it is clear that modelling of gravitational forces is well in accordance between
the two softwares. In fact, at most mm-level differences are reached after 24 hours of pro-
gation when using the geopotential perturbation, in this case using the EGM2008 model
truncated at degree and order 100 (the maximum degree available in STK). In addition,
also SRP modelling quite agrees with the formulation of PrOP. In fact, only cm-like de-
viations are reached at the end of the integration. These can be attributed to very small
differences in the way the solar flux constant is calculated in time. The only perturbation
which shows non-negligible differences is the drag. However, this is in accordance with
past comparison analyses [34]. The main uncertainty in the modelling of aerodynamic
drag, as already stated in chapter 3, is in the calculation of atmospheric density, in this
case computed through the US Standard model. In fact, the complex and often "external"
modules for the computation of this parameter greatly vary in their practical implemen-
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tations and formulations. Other sources of uncertainties in the case of empirical models
is the way space weather data is treated. In fact, the choice of interpolation method,
as choosing if using daily or hourly data, can induce results differences in the order of
magnitude of choosing a completely different empirical models [34]. As such, the obtained
result is still considered acceptable.

All the final deviation values were in agreement with the threshold values used in past
validation analyses, therefore the comparison was considered successful.
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6| Conclusions and Future
Developments

The objective of this Master Thesis was to continue the development of the Precise Orbit
Propagator, focusing on the improvement of already present dynamical models and on the
inclusion of previously neglected perturbations. In particular, the Earth Radiation Pres-
sure and Relativity perturbations were implemented from scratch, while the Geopotential,
Aerodynamic Drag and Solar Radiation Pressure experienced an expansion in terms of
available models and parameter computation.

For what concerns the numerical integration segment of the software, a new discontinuity
control technique was employed in the integrators to deal with the errors introduced by
the presence of orbital control maneuvers during the propagation.

Following these implementations, several assessment studies were carried out to analyse
the impact of the components of the Dynamics library of the software on the propagation
results. First of all, the accelerations and displacements caused by each single perturbation
on a set of four Kepler orbits, chosen in a way as to represent the main Earth-orbiting
regimes, were computed. The results confirmed most of the already known acceleration
hierarchies varying with altitude, but were useful to gather the orders of magnitudes
of such effects. The Geopotential perturbation confirmed to be the major acceleration
for Earth-orbiting satellites after the central gravity effect, even though experiencing a
decrease in magnitude with increasing altitude. Third Body effects coming from the Sun
and the Moon, on the contrary, increased with altitude, and were higher than any higher
non-conservative forces, except for the LEO case. Aerodynamic Drag was the second most
important perturbation for the LEO scenario, but was negligible for the higher altitude
orbits, except for the HEO were the low altitude of the perigee made Drag effects quite
visible. SRP confirmed to be the most important non-conservative force for high altitude
spacecrafts. Finally, ERP and Relativity effects were sensibly smaller than the other
forces, both showing diminishing magnitudes for higher orbital regimes.

In addition, a sensitivity analysis was carried out to investigate the variation of pertur-
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bation effects with varying environmental and dynamical configurations. The choice of
the Geopotential model proved to be very significant, causing quite different displacement
depending on the coefficients used. Similarly, Aerodynamic Drag effects reported great
variability depending on the model used for the calculation of the atmospheric density.
An analysis on the Third Body effects coming from the main celestial bodies of the Solar
System showed that, apart from the accelerations caused by the Sun and the Moon, the
major planetary perturbations are due to Venus and Jupiter. Furthermore, the study
regarding the shadow model employed for the calculation of the occultation caused by the
Earth, highlighted a difference by a factor four between a dual-cone and the SOLAARS
realistic model. Finally, a computational effort analysis showed that the Geopotential is
the heaviest effect to calculate, followed by all the non-conservative forces. The accelera-
tion due to the central gravity, third bodies and relativity required negligible amounts of
time.

The study of the ∆V reconstruction error in the presence of control maneuvers showed
how the implementation of the discontinuity control process allowed to minimize the issues
cause by discontinuous accelerations.

Finally, the propagation results were compared to the ones obtained with the well-
established commercial flight dynamics software STK, for the main perturbations. The
comparison allowed to successfully validate the developed Propagator.

For what concerns possible future developments of the software, possible extensions can be
made on the formulation of the satellite coefficients for Aerodynamic Drag and Radiation
Pressure. In fact, as of now only constant parameters are implemented, nevertheless more
complex formulations based on fluid dynamics and optics can be explored. In addition,
the ERP modelling could be improved by increasing the number of discretized surface
elements and computing the Earth radiation on the basis of outsourced space weather
data. In addition, discontinuities introduced by eclipses should be taken into account.
Due to the fact that the exact eclipse discontinuity moment, differently from control
maneuvers, is not known a-priori, it is possible that the discontinuity control process
shall be modified to achieve this further result.

A further analysis step is certainly the one concerning the validation of the propagation
results against real satellite ephemeris. This aspect would be complex due to the number
of variables which affect real satellite motion and can be modelled only up to a certain
extent. Nevertheless, a successful validation of this kind would definitely open up the
Precise Orbit Propagator to its intended original use.
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