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Abstract

In the last decade, the first consequences of climate change became evident worldwide,
bringing into the open the need of a dramatic change into an energy market that relies
too much on polluting sources like fossil fuels. Thereby, the scientific community started
to investigate the renewable sector, to find a greener alternative to coal and oil.
Conceived in 1970s, Airborne Wind Energy (AWE) systems represent an innovative tech-
nology for wind energy conversion, not yet fully developed. These new-generation wind
power plants use autonomous tethered kites to drive electric generators, exploiting the
lift force developed by the kite when flying in crosswind at high-altitudes (500-800 m),
where winds are stronger and more reliable with respect to the traditional turbines hub
altitude. Several companies have been investing in AWE technology since the early 2000s,
when the main AWE principles were reconsidered after the pioneering theoretical work of
Miles L. Loyd in 1980. Among those companies there was the Californian Makani Power,
that built the M600 system. The M600 system was designed to produce up to 600 kW of
rated power and was the first ever AWE system able to complete an offshore flight.

This thesis aims to provide a new approach for the modelling and control of On-Board
Generation (OBG) systems, which represent an AWE branch that has not been deeply
investigated yet, to which the M600 belong. The model employs the dynamical equations
of an octocopter rotor-craft, adding a procedure for the identification of the aerodynamic
forces coefficients and an accurate tether model, in order to obtain realistic results. The
proposed control system employs a cascade scheme with three nested loops and is tuned
with a data-driven optimization procedure, based on the data available from the flight
tests of the Makani OBG M600 that the company publicly distributed in 2020.
The final outcome of this work is an optimally-tuned simulator, able to emulate the
working activities of the M600 OBG drone in the initial take-off phase and validated on
the actual flight data.

Keywords: Airborne Wind Energy, AWE, Makani, Autonomous Drones
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Sommario

Nell’ultimo decennio, le prime conseguenze del cambiamento climatico sono diventate ev-
identi in tutto il mondo, portando in primo piano la necessità di un drastico cambiamento
in un mercato dell’energia che si basa troppo su fonti inquinanti come i combustibili fossili.
Così, la comunità scientifica ha iniziato a studiare il settore delle rinnovabili, per trovare
un’alternativa più verde al carbone e al petrolio.
Concepiti negli anni ’70, i sistemi Airborne Wind Energy (AWE) rappresentano una tec-
nologia innovativa per la produzione di energia eolica, ma non ancora completamente
sviluppata. Questi impianti eolici di nuova generazione utilizzano aquiloni autonomi per
azionare generatori elettrici sfruttando la portanza sviluppata dai venti d’alta quota (500-
800 m), più forti e affidabili rispetto a quelli presenti solitamente all’altitudine in cui
operano le turbine tradizionali. Diverse aziende hanno investito nella tecnologia AWE fin
dai primi anni 2000, quando i principi AWE sono stati riconsiderati dopo il pionieristico
lavoro teorico di Miles L. Loyd nel 1980. Tra queste troviamo la californiana Makani
Power, che costruì il sistema M600 con l’obiettivo di produrre fino a 600 kW di potenza
nominale. Il sistema M600 è stato il primo sistema AWE in grado di completare un volo
offshore.

Questa tesi mira a fornire un nuovo approccio per la modellazione e il controllo dei sis-
temi On-Board Generation (OBG), che rappresentano una branca AWE che non è stata
ancora approfondita, a cui appartiene il sistema M600. Il modello utilizza le equazioni
dinamiche di un octocopter rotor-craft, aggiungendo una procedura per l’identificazione
dei coefficienti delle forze aerodinamiche e un modello di cavo accurato, al fine di ottenere
risultati realistici. Il sistema di controllo proposto utilizza uno schema a cascata con tre
loop innestati, i cui parametri sono impostati con una procedura di ottimizzazione basata
sui dati raccolti durante i test di volo del Makani M600, resi disponibili dall’azienda nel
2020.
Il risultato finale di questo lavoro è un simulatore in grado di emulare il volo del drone
M600 nella fase iniziale di decollo e convalidato sui dati di volo reali.

Parole chiave: Airborne Wind Energy, AWE, Makani, Energia Eolica, Droni Autonomi
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1| Introduction

Energy security has always been a key topic for any country in the world and, with the
unceasing advance of climate change and its effects becoming more and more evident,
the spotlights are on the renewable sources like wind, solar and biofuels, in the attempt
to replace (or at least reduce) the employment of fossil fuels and consequently decrease
the CO2 emissions. This intention was formally stated by the United Nations in the
Agreements of Paris in 2015, as the joint goal of the UN members of reaching the net-zero
greenhouse gas (GHG) emissions by 2050.
A strong position was taken also by the European Union that, on July 21th 2021, set a
legally binding target of net zero greenhouse gas emissions by 2050 with the European
Climate Law [1]: the EU Institutions and the Member States are now bound to take the
necessary measures at European and national level to meet the target.
The European Climate Law writes into law the goal set out in the European Green Deal
[2] to become climate-neutral by 2050. The law also establishes the intermediate target of
reducing net greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels,
and aims to ensure that all EU policies contribute to this goal and that all sectors of the
economy and society play their part by increasing the efforts toward the innovation in the
energy field, especially into the expansion of the renewable sector.
In the net zero pathway, according to the International Energy Association [3], the energy
sector is indeed based largely on renewable energy: two-thirds of total energy supply in
2050 is expected to be from wind, solar, bioenergy, geothermal and hydro energy. Solar
photovoltaic (PV) capacity increases 20-fold between now and 2050, and wind power 11-
fold, with almost 90% of global electricity generation that comes from renewable sources,
against the actual 29 % produced worldwide. Wind and solar PV together will account
for 90% of renewable electricity generation so, the annual capacity additions of wind and
solar between 2020 and 2050 have to be five-times higher than the average over the last
three years. In other words, the energy mix is going to change, mainly by decreasing the
dependence on fossils fuels with a bigger share of the market occupied by the renewables
and by a large increase in energy supply from nuclear power, which nearly doubles between
2020 and 2050.
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Figure 1.1: Total energy supply according to the Net Zero Emission scenario of IEA ([3])

The transformation of the electricity sector is central to achieve net-zero emissions in 2050.
Today, electricity generation is the single largest source of energy-related CO2 emissions,
accounting for 36 % of the total: CO2 emissions from electricity generation worldwide
totalled 12.3 Gt in 2020, of which 9.1 Gt was from coal-fired generation, 2.7 Gt from
gas-fired plants and 0.6 Gt from oil-fired plants.
Following the Net-Zero Scenario (NZE), renewables contribute most to decarbonising elec-
tricity: solar PV and wind will become the primary sources of electricity globally before
2030, each one generating over 23000 TWh by 2050, equivalent to about 90 % of all elec-
tricity produced in the world in 2020. Clearly, pairing advanced battery storage systems
with solar PV and wind becomes a key factor to improve the power systems flexibility
and maintain electricity security.
For what concerns hydropower, today it is the largest low-carbon source of electricity and
steadily grows, doubling by 2050 in the NZE scenario proposed in [3]. Also the generation
using bioenergy (in dedicated plants and in form of biomethane delivered through gas
networks) doubles to 2030 and increases nearly fivefold by 2050.
The transition to net-zero emissions by 2050 requires a substantial ramp up in the invest-
ment on electricity generation: in NZE scenario, the annual investment increases from
about USD 0.5 trillion over the past five years to USD 1.6 trillion in 2030 and, by 2030,
the annual investment in renewables in the electricity sector will be around USD 1.3 tril-
lion, slightly more than the highest level ever spent on fossil fuel supply (USD 1.2 trillion
in 2014). This huge expenditure is mainly to build a new generation of infrastructures
for low-emissions electricity and to finance the technology advance of renewable energy.
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Figure 1.2: Global electricity generation by source (from [3])

After 2030, the forecasts report that annual electricity generation investment will fall by
one-third to 2050, since the cost of renewables will continue to decline (as already hap-
pening today) once that the infrastructure is set up.
However, actions made to date fall far short of what is required by the Net-Zero pathway,
but the number of countries that have pledged to achieve net-zero emissions has grown
rapidly over the last year and now covers around 70 % of global emissions of CO2.
A country that is concretely acting to achieve climate neutrality is Germany, which set its
deadline for the net zero by 2045 and aims to obtain a 65% national emissions reduction
below 1990 levels by 2030. The total investment volume estimate is of e6 trillions, i.e. an
average annual investment of roughly e240 billions through 2045 (about 7% of Germany’s
Gross Domestic Product) will be made to fight the climate emergency.
As a consequence, in January 2021, Germany’s Renewable Energy Act (EEG) 2021 came
into effect: the plan includes raising the capacity for wind power from 3 GW per year
to 4 GW per year and for solar photovoltaics from 4 GW to 6 GW , bringing solar PV
capacity to 100 GW (from 56 GW ), onshore wind to 71 GW (from 55 GW ), offshore
wind to 20 GW and biomass to 8.4 GW by 2030.

Generally speaking, wind and solar capacity more than doubled between 2015 and 2020,
increasing by around 800 GW , i.e. to an average annual increase of 18 %, accordingly to
the bp Statistical Review of World Energy 2021 ([4]). Referring to 2020, is necessary to
underline the strong increase of the energy produced from wind power in Europe, with
the annual growth rate that reached 10.6 %.
Indeed, wind energy is experiencing an impressive global growth, confirming to be a
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promising player in the future energy mix: only in 2020, the installation of new plants
brought the total power capacity to 743 GW , a growth of 14 % with respect to 2019, as
we can read in the annual report of the Global Wind Energy Council (GWEC, see [5]).

Together with the technology advance, the Levelized Cost Of Energy (LCOE) is a key
variable in the spreading of wind power: we define as LCOE the average revenue per
unit of generated electricity that would be required to recover the costs of building and
operating a generating plant during an assumed financial life.
The LCOE associated to wind energy is significantly decreasing and we expect the average
LCOE of onshore wind to continue declining by 25% while offshore wind LCOE will shrink
55% with respect to the 2018 level, reaching the value of 54USD/MWh in 2030, according
to the Global Renewables Outlook [6] by the International Renewable Energy Agency
(IRENA). These are important achievements for the global goal of carbon neutrality and
show how much potential wind energy has.

1.1. Wind Turbines

The dominant technology for wind power are the Horizontal Axis Wind Turbines (HAWT),
since they represent the most established way to harvest energy from the wind.

Figure 1.3: Breakdown of the capital cost of wind turbines in percent ([7])

Nevertheless this kind of power generators are well known since almost 200 years, there
are some drawbacks inherent to the nature of HAWTs:

• The installation cost of a wind turbine is still high, mainly due to the amount of
materials needed for its building rather than for what concerns the power genera-
tion elements (such as the electrical components or the generator itself), as shown
in Figure 1.3. Offshore plants, that are the most efficient ones since the advanta-
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geous wind conditions available in open sea, require complex and expensive floating
foundations to sustain a structure that can reach up to 825 tons.

• Generally wind speed increases with altitude, because at higher heights above the
ground wind can flow more freely and with less friction, usually given by obstacles on
the earth surface such as trees, buildings and mountains. For example, the average
wind speed recorded at the largest offshore site ever built (London’s Array, UK) is
9.2 m/s at 100 m (tower hub height), while at a height of 500 m, the average wind
speed is 11.6 m/s. Hence, today the main trend is to realize taller and taller wind
turbines equipped with bigger blades to exploit the stronger high altitude wind. To
understand this, it’s enough to consider that the most powerful wind turbine (16
MW ), the Chinese MySE 16.0-242, will have a diameter of 242 m and its blades
will be 118 m long. To realize such enormous work of engineering, an impressive
quantity of materials (often polluting, such as cement and steel for the tower) and
surrounding free space are required, increasing costs and land occupation.

• The capacity factor, i.e. the average power output divided by the maximum power
capability of a wind turbine, today ranges from 26% to 52%. It is partly determined
by the turbine design (which is continuously improving) but is strongly influenced by
the wind availability, limiting the use of wind power to few areas that can guarantee
a high power density at low altitude (and so competitive prices for energy).

These are the main limitations of the actual wind power production, and there is where
new concepts, such as Airborne Wind Energy Systems (AWES), are coming into play.
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1.2. Airborne Wind Energy Systems

Airborne Wind Energy (AWE) is a novel technology based on rigid or soft kites that
autonomously fly at high altitude attached to the ground by a tether, with the goal of
converting wind energy into electrical energy via ad-hoc generating systems (discussed in
Section 1.2.1).
The idea of exploiting tethered wings to produce electricity is known since the ’70s, and in
1980 Miles Loyd published the paper Crosswind kite power [8], demonstrating the viability
of its intuitions about crosswind power and suggesting that this technology may overcome
the classic wind turbine. After decades of silence, in the early 2000s the Airborne Wind
Energy concepts started to be developed by researchers from all over the world that were
fascinated by Loyd’s vision, also thanks to the technology advance reached in the field of
autonomous vehicles and advanced control systems.
AWE systems main advantage is the relative small size for a complete autonomous work-
ing apparatus, if compared to a classic HAWT with the same power generation potential:
the Google Makani 600 kW wing (M600) weighs more or less 2 tons (including the tether
and on-board generators) while a 600kW wind turbine weighs between 50 and 100 tons
without considering the foundations, namely the heaviest part. The lightness implies less
costs for the realization of an AWE system, starting from the required materials: kites are
typically made of cheap materials (or even recycled, see [9]), that can be soft fabric, alu-
minum or carbon fiber, while the tether is realized with elastic polymers and the ground
station can be set up in the space of a common container; according to [10], in terms of
materials AWE systems needs around 20% of what is required for traditional HAWT.
Consequently, the installation of an AWE system is easier than an equivalent wind plant,
since neither cranes nor particular infrastructures are needed. For example, the complete
Kitepower Falcon system (Figure 1.4, from [11]) fits in a single shipping container (6.06m
length x 2.44m width x 2.60m height) and weighs 9.5 tons, hence can be transported by a
single truck, bringing the plant where is usually logistically impossible or very expensive
to install HAWTs: in principle, AWE systems could autonomously power remote islands
and mining operations in the mountains, or electrically sustain small and isolated com-
munities.
In the latter application, AWE systems could also represent an alternative to traditional
polluting fuels for house-heating and cooking and, at the same time, provide an indepen-
dent source of electricity to the 770 million of people that live in developing countries and
that don’t have access to the grid for logistical reasons.
Indeed, the main potential advantage of AWE technology is the independence from the
traditional requisites for wind power sites, i.e. the presence of abundant and strong wind



1| Introduction 7

Figure 1.4: Kitepower Falcon (see [11]), a soft kite with ground level generation and its
ground station/container (6.06m length x 2.44m width x 2.60m height), with an overall
weight of 9.5 tons)

at low altitude: through the drones, AWE plants can access to high altitude winds up
to 800 m, that are far stronger and more reliable than winds at HAWTs level, and can
continuously modify their working altitude to harvest the most powerful winds available
at the moment. Thanks to this feature, AWE could achieve impressive performance: ac-
cording to [12], considering 100-m altitude versus 500-m altitude, the wind speed increases
on average of more or less 20%, meaning that more power will be generated if the high
altitude winds are exploited. As exposed in [13]:

"The theoretical global limit of wind power at high altitude has been estimated
to be about 4.5 times greater than what could be harvested at ground level"

Indeed, wind power strongly depends on wind speed according to the formula:

Pw =
1

2
ρ S V 3 (1.1)

where Pw is the wind power, ρ is the air density, S is the swept area (by the AWE drone
or HAWT blades) and V is the wind speed. From Equation 1.1, we notice a cubic depen-
dence between V and Pw, which implies that considering the 20%-increase of wind speed
observed in [12] when moving from 100 m to 500 m of altitude, 73% more power is gener-
ated, keeping constant the swept area. This concept locates AWE system at the opposite
side with respect to HAWT research direction: AWE main goal is to reach significantly
high altitudes and so faster winds, while traditional wind power research is focused in
producing largest blades to increase the value of S in Equation 1.1.
In other words, AWE experts are converging towards the design of better control sys-
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Figure 1.5: Average wind power density in Germany at 100 m (left figure) and 200 m
(right figure), from [7]

tems and estimation algorithms to fly tethered autonomous drones efficiently and safely,
whereas the wind power traditional technology efforts are heading towards building taller
cement towers in the middle of the ocean.
In the same way, we can assess AWE advantages by considering the wind power density
(WPD) variation with altitude increase by looking at Figure 1.5 from [7]: at 200 m, al-
most all Germany territory becomes suitable for harvesting wind energy by achieving a
consistent value of WPD, while at 100 m only the coastal area in the North is convenient
for wind power plants. Expanding the previous rationale, it is clear how AWE could com-
pletely transform the global energy system, by making a clean renewable energy source
available all over the world, from the Northern Sea offshore parks to the small villages in
Central Africa.
To make another example, we can take as reference Figure 1.6, where wind data from
the city of London are reported: around 100 m, we have 210 W/m2 and 7 m/s of wind
speed, while at 500 m the wind power density more than triples, reaching 924 W/m2, and
the wind speed touches 11.6 m/s. To help visualizing how incredible is this concept, it is
enough to think that these numbers would qualify London as better than any other wind
park ever built in terms of wind speed, since the actual record is 10.46 m/s registered at
the HyWind Scotland offshore wind farm.

For all these reasons, today AWE is a promising technology that is making its first steps
into the energy market thanks to developing companies like Ampyx Power [14], KitePower
[11], SkySails Power [15] and Kitekraft [9].
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Figure 1.6: Average wind speed and wind power density above London, from [7]

1.2.1. Generation Principles

Nowadays, there are two main working principles for the AWE systems: the ground-level
generation (GLG) and the on-board generation (OBG). Both methods exploit the lift
force of the wind to produce energy (like classic HAWTs) but with substantial differences
in the practice.
In ground-level generation systems, the kite operates in pumping cycles, alternating be-
tween a phase in which energy is generated and a phase where a small fraction of power
is instead consumed. Going deeper in detail, during the so-called traction phase the wing
is driven in a way to produce a lift force and consequently a traction force that pulls the
tether. Usually, this is achieved by flying the kite in figure-8 paths in crosswind, since it
has been proved that crosswind flight induces a stronger apparent wind, hence a stronger
aerodynamic force that results in more pulling force on the tether. The latter, unwinding
from a drum located at ground level, causes the rotation of an electrical generator allow-
ing the power production. Then, the tether is reeled back by the winch motor (retraction
phase), hence consuming energy, to bring the kite to the starting point. The combination
of the two phases leads to a pumping motion, also called "yo-yo" motion (right picture
in Figure 1.7).
However, pumping kite generators present a highly discontinuous power output, since the
working cycle alternates power generation and consumption for periods of tens of seconds.
Such a feature makes it necessary to resort to electrical rectification techniques, employing
batteries or large capacitors before sending the power to the grid, constituting a major
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Figure 1.7: Illustration of the basic operations of OBG (left picture) vs GLG (right
picture), from [16]

disadvantage for the technology. GLG systems are mainly realized using soft kites, that
can be:

• Single-layer kites equipped with inflatable structures, to enhance the wing aerody-
namics;

• Double-layer kites made of canopy cells, which are open on the leading edge to allow
the air to inflate all cells during the flight and giving the kite the necessary stiffness;

• Kites made of a single layer of fabric material (called Delta kites), reinforced by a
rigid frame that provides better aerodynamic efficiency, which in turn results in a
higher efficiency for the wind power extraction.

An interesting Italian company, Kitenergy [17], is developing a prototype that employs a
reinforced fabric kite with two tethers and features 60 kW of rated power.
In the same way, Skysails Power [15] designed a system that employ soft kites able to
generate 80 to 200 kW of rated power, and is planning to realize an offshore system in the
next years. SkySails’ AWE system is based on a foil kite controlled with one tether and a
control pod which regulates the lengths of kite bridles for steering the kite and changing
its angle of attack.
On the other hand, there are companies that are developing GLG using rigid kites. For
example, the system developed by the Dutch company Ampyx Power [14] employs a glider
with carbon fiber body equipped with on-board actuators for the control surfaces and two
small propellers to help the drone in the climb towards the working altitude.



1| Introduction 11

Figure 1.8: AP3 glider from Ampyx Power [14]

The latest prototype realized by Ampyx Power is the AP3 system, which flies a 12-m
wingspan glider (Figure 1.8) between 200 and 450 m and has a rated power of 150 kW .
Kitemill [18] and TwingTec [19] are instead exploiting the fixed-wing design in order
to introduce a vertical take-off and landing (VTOL) strategy for the drone, installing
multiple propellers on their kites. The VTOL take-off and landing approach is indeed
very convenient for this kind of systems, since it allow to reduce the space required for
the maneuvers and hence the size of the plant.
The second most diffused working principle is the on-board generation, whereby the kites
are equipped with small wind generators mounted on the flying wing. In this framework,
the tether is made of conductive material and brings the produced electricity to the ground
station, which finally connects the plant to the grid.
The main feature of this technology is the use of the on-board wind generators not only
to produce power, but also as motors to move the drone in the initial maneuvers, driving
the wing to the optimal conditions to start the power generation phase, while in the
meantime the tether is unwound. Indeed, many OBG systems are designed to perform
autonomous vertical take-off and landing operations, where the propellers actively push
the drone in the air, similarly to the commercial drones take-off. Then, the production
phase begins and the drone harvests the wind energy while flying in crosswind, usually
in circular loops. OBG systems are realized with rigid kites, since the drone must sustain
the generators weight: however, rigid wings result to be intrinsically more aerodynamic
efficient than soft kites, because the design can be optimized to provide convenient lift
and drag coefficients to the wing.

In this moment, there are two companies that investigate OBG systems:

• Kitekraft [9] proposes a small aluminum wing with a boxplane structure and a
truss-like shape, minimizing weight but providing sufficient rigidity.
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• WindLift [20] is building a four-propellers rigid wing that can produce up to 15 kW
and is being developed in partnership with the U.S. Marine Corps.

Figure 1.9: Kitekraft Figure 1.10: WindLift

An interesting airborne wind energy project is Makani [21], a Californian company born
in 2006. After years of independent research, Makani was acquired by Google in May
2013 and in 2019 Royal Dutch Shell made a minority investment to begin a partnership
with the company.
During its activity, Makani team investigated the OBG technology focusing on the creation
of a fully autonomous drone able to generate energy. The peak of Makani work was the
realization of the M600 system, theoretically able to produce up to 600 kW using a
custom-made drone (that will be described in the next section). With the M600, in 2019
Makani was the first company to achieve an offshore flight of an airborne wind turbine
(Figure 1.11).
Makani was then shut down by Google Alphabet in February 2020, since as declared by
the owners of the company, "the road to commercialization is longer and riskier than
hoped".
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Figure 1.11: M600 during the offshore flight in the Norwegian Sea in 2019

1.2.2. State of Art and Thesis Purposes

Airborne wind energy has been deeply investigated in the last decade, with many con-
tributions from the scientific AWE community, that also realized a literature review [22]
which collects and analyses the main recent papers and technological findings.
The physics of the tethered drone flight was firstly explored in Loyd’s work [8], where the
author focused on the crosswind flight motion and power analysis.
About modelling, an interesting work regarding soft kites is [23], in which online identi-
fication is used to implement an adaptive control scheme capable of handling the typical
uncertainties in the crosswind flight dynamics of the kite.
In [24], the authors propose a realistic kite model that includes the kite aerodynamic
characteristics and the effects of tether weight and drag forces. Then, a nonlinear model
predictive control is employed to maximize the energy produced during the pumping cycle
while satisfying input and state constraints.
Generally, the presence of tether reduces AWE performance, because the tether drag force
severely limits the power production: to address this issue, in [25] an AWE system with
two airfoils and a shared tether is proposed to reduce overall system drag. This choice
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would allow the main tether (i.e. the longest segment) to remain almost still in the air,
while two smaller segments are effectively moving and so generating the inconvenient
drag force. To achieve satisfactory results with this technique, a properly balancing of
the system trajectories and parameters is required, so the coordination of the two drones
is addressed using optimal control techniques.
Examining the literature, we find many different control approaches regarding AWE sys-
tems, since their typical non-linearity do not allow to use classic off-the-shelf strategies.
For example, in [26] the control of a rigid boxed-wing kite with on-ground generation
by Skypull SA [27] is addressed by using a hierarchical approach for all the operational
phases of the system, including a steering-authority analysis. The authors also investi-
gated a vertical take off strategy for the same rigid drone in [28], while in [29] we find an
approach for the autonomous launch and landing of a tethered rigid aircraft by using a
linear motion system made of a slide translating on rails.
Several take-off approaches are gathered and deepened in [30], where the authors high-
light pros and cons of each strategy on the basis of quantitative and qualitative criteria
(to assess their technical and economic viability) and relate the power required for the
take-off functionality to the overall generated power.
For what concern AWE systems testing, [31] presents the systematic approach and anal-
ysis of the flight test verification of a small-scale rigid wing by Ampyx Power ([14]).

About on-board generation systems, literature offers far less material, due to the higher-
complexity level of these systems with respect to GLG plants and the bigger difficulties
in realizing low-cost prototypes.
In [32], the main physics of AWE is investigated via analytical equations, both for OBG
and GLG rigid-wing systems, to derive a model for economical considerations. Then, in
[33] a nonlinear inverse model is developed for the performance analysis of OBG systems,
focusing on the power production.

In September 2020 Makani [21] released the Energy Kite Collection, a three-part report
[34] [35] [36] with a collection of open source code repositories, flight logs and techni-
cal videos from the project that will be the starting point for the entire development of
this Thesis. The Makani database offers indeed the possibility to tackle the modelling
and control problems with a data-driven approach which, combined with optimization
techniques, can bring to significant results and insights about the typical non-linear in-
teractions between the drone, the tether and the ground station without the necessity to
develop an accurate white box model.

The idea behind this Thesis is thus exploit the large amount of available data to create a
simulator that can effectively reproduce the behaviour of the M600, starting from a simple
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octocopter model (see [37]) and proposing an optimization problem to tune the control
system using the real flight data. In this way, we aim to contribute to the advance of the
modelling and control for on-board generation AWE systems, by providing a new tool to
study these kind of systems.

In Chapter 2, we present the models of each subsystem used for the realization of the
AWE simulator:

• The M600 is considered as a octocopter, using a 6-degrees of freedom model that
involves non-linear couplings between the states;

• The tether is assumed as made by Kelvin-Voigt material, i.e. as multiple nodes
connected by springs and dampers in parallel;

• The base station is modelled as a winch driven by an electric motor (supposed ideal),
taking into account the pulling force exerted by the drone on the tether.

In the same Chapter the employed control systems are described: we adopted linear strate-
gies as pole placement and PI control, referring to the linearized model of the subsystems
as presented in [37]. In addition, in Section 2.6 we discretize the control system, while in
Section 2.5 we propose an approach for the modelling of aerodynamic forces based on a
method employed in the study of HAWTs.

In Chapter 3, we analyse the data released by Makani. First, we retrieve the system
parameters and second, we produce smaller datasets from the flight data in order to
capture the hovering phase of the M600. In particular, we will extract the reference
position signals and the thrust command generated by the real M600 controller, the
corresponding actual drone trajectory and the wind measures.

The new datasets will be used in Chapter 4 to set up an optimization routine for the
optimal tuning of control system for the hovering phase. The optimization is performed
by giving as input to the simulator the previously cited reference signals and comparing
the simulator response with the available data. We hence obtain a constrained non-linear
optimization problem , that is solved via Sequential Quadratic Program (SQP) with
backtracking line-search, returning the optimally tuning parameters for the kite control
system.

Finally, in Chapter 5 we present the results by quantifying the performance of the simu-
lator using error indicators and we validate the optimization outcome.
Then, in Chapter 6 we propose future possible developments, such as the extension of the
optimization procedure to the power generation phase.
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1.2.3. Innovative Contributions

The main original concepts introduced in this Thesis are:

• The non-linear modelling an OBG AWE system, validated on the available flight
data for the Makani M600 (Section 2.2);

• The implementation of a cascaded control scheme, originally designed for standard
drones and now adapted for the M600 apparatus (Section 2.2.2 - Section 2.2.5);

• The integration of different submodels, namely the kite, the tether and the ground
station together with the respective control systems, to develop a complete simulator
of an OBG AWE system;

• The identification of the aerodynamic lift and drag coefficients and the character-
ization of the lift and drag curves on an interval of 360° of the angle of attack α.
The procedure is based on experimental results for HAWTs and Makani flight data
(Section 2.5);

• The data-driven tuning of the drone control system for the take-off and hovering
stages, exploiting the Makani flight data to define an optimization procedure (Chap-
ter 4).
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The considered system is composed of three main elements: the drone, the tether and the
ground station.

The M600 drone is developed with an OBG approach, allowing the use of a high per-
formance rigid wing and enabling easy launch and land operation by using the power
system in propulsion mode to hover the kite. The propulsion/generation system uses a
high voltage DC drive with a control scheme that enables it to transfer up to 1 MW of
electrical power to and from the electrical grid, through a tether that is less than 30 mm
in diameter.
As depicted in Figure 2.1, the M600 drone autonomously launches from the ground sta-
tion in a vertical take-off and landing (VTOL) configuration and hovers as an octocopter
as the tether is reeled out from the winch mounted on the ground station. The tether
supports the hovering phase by feeding the motors with electricity from the grid.
Once the tether is fully reeled out, the system transitions into power-generating cross-
wind flight with the so-called trans-in maneuver, and starts flying in circular loops as a
traditional plane, as long as wind conditions allow a satisfactory power production.
At the end of the generation cycle, the kite transitions out of crosswind (trans-out ma-
neuver), hovers as the tether is reeled in, and lands on the perch present on the ground
station, which also manages electrical inverters to allow bidirectional current flow with
the electrical grid.

2.1. Reference System and Notation

Since the model is made by many subsystems, multiple reference frames have been adopted
to facilitate the modelling. First of all, let’s define the global inertial right-handed ref-
erence frame G := (xG, yG, zG), centered at the ground station with the Z-axis pointing
upwards. Then, a local frame L := (xL, yL, zL) is introduced to better describe the drone
position and orientation, as depicted in Figure 2.2. The drone orientation will be repre-
sented using Euler angles ϕ(t),θ(t) and ψ(t), i.e. roll, pitch and yaw angles.
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Figure 2.1: Representation of the five main maneuvers of the M600 cycle. From left to
right: autonomous VTOL takeoff, hover/trans-in maneuver, generation phase, trans-out
maneuver, VTOL landing on perch.

To relate the global and local frames , it is necessary to define a rotation matrix R(t),
that is a function of the Euler angles:

R =

 c(ψ)c(θ) s(ψ)c(θ) −s(θ)
c(ψ)s(θ)s(ϕ)− s(ψ)c(ϕ) s(ψ)s(θ)s(ϕ) + c(ψ)c(ϕ) c(θ)s(ϕ)

c(ψ)s(θ)c(ϕ) + s(ψ)s(ϕ) s(ψ)s(θ)c(ϕ)− c(ψ)s(ϕ) c(θ)c(ϕ)

 (2.1)

where c(·) = cos(·), s(·) = sin(·) and the time dependency of R and the Euler angles is
omitted for brevity.
Matrix R is used to move from the inertial reference frame to the local one, in order to
translate a vector P⃗G to its analogous P⃗L in the local frame as:

P⃗L = R P⃗G (2.2)

Due to the rotation matrices properties, to move from the local to the global frame, it is
enough to compute

P⃗G = R T P⃗L (2.3)

since for a rotation matrix R−1 = R T .
Then, to help the modelling of the aerodynamic forces, the wind reference frame W :=

(xW , yW , zW ) is introduced, where xW is aligned with the apparent wind direction, yW is
parallel to the wings and zW pointing up.
Given a wind velocity vector in the inertial frame, namely W⃗G, let’s define the apparent
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𝑧𝐺

𝑦𝐺

𝑥𝐺

Figure 2.2: Global and Local Reference Frames

wind velocity in the local frame W⃗a = [Wa,xWa,y Wa,z ]
T as

W⃗a = R (W⃗G − ⃗̇PG) (2.4)

where ⃗̇PG is the drone velocity in the inertial frame. Then, we can compute the angle of
attack α and the side slip angle β as

α = arctan

(
Wa,z

Wa,x

)
(2.5)

β = arcsin

(
Wa,Y

∥Wa∥2

)
(2.6)

Now, we define the rotation matrix from the wind reference frame W to the local system
L as

H =

 cos(α) 0 − sin(α)

sin(α) sin(β) cos(β) cos(α) sin(β)

sin(α) cos(β) − sin(β) cos(α) cos(β)

 (2.7)

For what concerns the data, the quantities collected in the database (described in Chapter
3) are defined according to Makani global reference system MG := (xM,G, yM,G, zM,G) and
local reference system MB := (xM,B, yM,B, zM,B), so the vectors collected in the database
have to be manipulated to be used in the previously introduced frames.
MG is a North East Down (NED) frame, hence, to express the data in the global frame
G, we need to rotate the vectors of 180° about the yM,G axis. Let’s define the rotation
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matrix from MG to G as Rκ

Rκ =

−1 0 0

0 1 0

−0 0 −1

 (2.8)

Then, we perform the rotation by pre-multiplying the vectors in the MG reference frame
by Rκ.

To deal with quantities defined in the Makani body frame MB, we extract the time-
depending rotation matrix RM,BG from MB to MG from the database and we rotate the
vectors defined in MB into the global Makani frame. Finally, we pre-multiply the result
by Rκ, obtaining the vectors expressed in the G frame.

Ultimately, we define the notation for the angular velocity of the drone. To be consistent
with the literature, we denote as p, q and r the angular rates of the drone about its local
axes. The relationship between p, q and r and the Euler angles derivative is defined by
Equation (2.9): ϕ̇θ̇

ψ̇

 =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ)/cos(θ) cos(ϕ)/ cos(θ)


pq
r

 (2.9)

In the following, a description of each of component is proposed, together with the mod-
elling approach and the implemented control strategy.

2.2. Kite

The studied kite is the Makani M600 model SN4, well described in [34] and for which
flight data are available. The M600 is a fixed-wing carbon fiber kite with a wingspan of
25.66 m equipped with eight rotors attached to the same number electric engines, that
can work both as motors or wind generators depending on the operative phase. The kite
was designed to produce up to 600 kW of electric power, so the size of the generators and
their effect on the kite dynamics are not negligible and will be taken into account in the
proposed model.
The kite launches in a VTOL configuration and behaves as a octocopter for the whole
duration of the hovering phase, so the M600 can be modelled following the traditional
Lagrange approach, as proposed in [37]. To slightly simplify the analysis, we decided to
neglect the effect of the aerodynamic moments acting on the drone and to assume that
all the drone states are measurable. This latter hypothesis is however not so strong as
it could appear, since as reported in [34] the M600 is equipped with a large number of
sensors to measure its states, often redundant for safety and fault prevention.
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Figure 2.3: Makani M600 drone (picture from [34])

The employed model is the following:

⃗̈PG =
1

m

RT

 0

0

U1

+ FT + Faero

−

00
g


ṗ =

Iy − Iz
Ix

q r +
U2

Ix
− Jp
Ix

q Ωr

q̇ =
Iz − Ix
Iy

p r +
U3

Iy
+
Jp
Iy
p Ωr

ṙ =
Ix − Iy
Iz

p q +
U4

Iz

(2.10)

(2.11)

(2.12)

(2.13)

where m is the drone mass, g is the gravitational acceleration, FT is the force exerted by
the tether on the drone, Faero is the aerodynamic forces vector, Ix, Iy, Iz are the drone
rotational moments of inertia (see Table A.1), Jp is the propellers inertia, Ωr is the sum
of the eight propellers rotor speeds.
In the model, the states are the global position P⃗G = [xG yG zG ]T and the Euler angles ϕ,
θ and ψ, while the control inputs are represented by the vector U = [U1 U2 U3 U4 ]

T and
are applied by the propellers. Specifically, U1 is the thrust, U2 is the rolling moment, U3 is
the pitching moment and U4 is the yawing moment, and will be converted into propeller
speeds by the allocation system (see Figure 2.4).
The chosen model is highly non-linear, so we tackle the control design problem by taking
as reference a linearized model as suggested in [37], to consequently realize a cascaded
control system made by three nested loops as shown in Figure 2.4.
Finally, to facilitate the control-oriented models considerations, the explicit computation



22 2| System Model and Control

Attitude

Controller

Position 

Controller

Velocity

controller
Allocation

𝜔𝑖𝑈2, 𝑈3, 𝑈4
𝜙𝑟𝑒𝑓 , 𝜃𝑟𝑒𝑓ሶ𝑥𝐿

𝑟𝑒𝑓
, ሶ𝑦𝐿

𝑟𝑒𝑓
𝑥𝐺
𝑟𝑒𝑓

, 𝑦𝐺
𝑟𝑒𝑓

𝜓𝑟𝑒𝑓

𝜙, 𝜃, 𝜓, ሶ𝜙, ሶ𝜃, ሶ𝜓

ሶ𝑥𝐺 , ሶ𝑦𝐺 , 𝜙, 𝜃, 𝜓

𝑥𝐺 , 𝑦𝐺 , 𝜙, 𝜃, 𝜓

𝑖 = 1…8

Altitude

Controller

𝑧𝐺
𝑟𝑒𝑓

𝑈1

𝑧𝐺 , ሶ𝑧𝐺

Figure 2.4: Cascade control scheme: three nested loops for attitude, altitude, velocity
and position control of the drone. The allocation block translates the control signals into
propellers rotational speeds.

the Equation (2.10) can be useful

ẍG = (cos(ψ) sin(θ) cos(ϕ) + sin(ψ) sin(ϕ))
U1

m
+ FTx + Fdrag

ÿG = (sin(ψ) sin(θ) cos(ϕ)− cos(ψ) sin(ϕ))
U1

m
+ FTy + Fside

z̈G = cos θ cosϕ
U1

m
− g + FTz + Flift

(2.14)

(2.15)

(2.16)

where Flift, Fside and Fdrag are the aerodynamic forces described in Chapter 2.5 and FTx ,
FTy and FTz are the tether force components in the global reference frame, better discussed
in Chapter 2.3. The main parameters of the drone are gathered in Table A.1.

2.2.1. Allocation

The allocation block (see Figure 2.4) maps the U vector computed by the controller into
the eight angular velocities commands for the eights propellers. Typically, the lift force
and drag torque generated by a single drone propeller are modelled as

L = b ω2

D = d ω2

(2.17)

(2.18)

where ω is the rotor angular speed while b and d are constant parameters known as rotor
lift and drag coefficients.
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To identify these two coefficients, we use the data released by Makani, in which we find
the experimental bench test performed on a single rotor: thus, we have a database that
contains the thrust produced by the propeller and the absorbed electrical power with the
corresponding angular rate (see Table A.5), that can be used to fit the quadratic models
for the rotors lift and drag forces.

Rotor Lift Coefficient

We identify the lift coefficient b using the Least Squared technique, since our aim is finding
the value of b such that the difference between the thrust data and the quadratic model
(2.17) is minimized. Defining the experimental values of angular rate and thrust as ω̃
and T̃ (i.e. the first and second column of Table A.5), we can write an unconstrained
optimization problem

min
b

(
T̃ − b ω̃2

)T (
T̃ − b ω̃2

)
(2.19)

Then, we apply the Least Squares formula to compute the lift coefficient b

b = ω̃+ T̃ (2.20)

where the matrix ω̃+ is the pseudo-inverse of ω̃2.

Rotor Drag Coefficient

To obtain the d coefficient, we define the electrical efficiency of the propeller motor as η,
in order to compute the mechanical power absorbed by the rotor Pm as

Pm = η P̃e (2.21)

where P̃e is the absorbed electrical power (third column of Table A.5), we can derive the
torque D̃ produced by the rotor as

D̃ =
Pm
ω

(2.22)

Now, observing the quadratic model (2.18), we notice that

L

D
=
b

d
(2.23)

so we estimate the drag coefficient d as the mean of the vector containing the element-wise
division between L̃, D̃ ∈ R50×1, multiplied by the lift coefficient b.



24 2| System Model and Control

Allocation Matrix

Once introduced the lift and drag coefficients, we proceed computing the allocation matrix
M ∈ R4×8, i.e. a static matrix that relates the eight angular velocity of the propellers
ωp = [ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ]

T and the vector U = [U1U2U3U4 ]
T , which gathers the four

control variables of the system. The relation is hence the following

U =M ω2
p (2.24)

where ω2
p = ωp ⊙ ωp and the symbol ⊙ is the Hadamard (element-wise) product. To

actually build the allocation matrix, we apply the D’Alembert principle computing one
force balance and three torque balances, keeping in mind the meaning of the elements of
U as described in Section 2.2.
U1 is the thrust command, so we can write

U1 =
8∑
i=1

Li =
8∑
i=1

b ω2
i = b

8∑
i=1

ω2
i (2.25)

Then, we compute the torque balances in the local reference frame, about xL and yL axes

U2 = lout b (ω
2
1 − ω2

4 − ω2
5 + ω2

8) + lin b (−ω2
2 + ω2

3 + ω2
6 − ω2

7)

U3 = htop b (ω
2
1 − ω2

2 − ω2
3 + ω2

4) + hbot b (ω
2
5 − ω2

6 − ω2
7 + ω2

8)

(2.26)

(2.27)

where the symbols lout, lin, htop and hbot refer to the geometrical parameters reported in
Figure 2.5.
Finally, recalling that U4 is the control action responsible for the yaw movement, we can
express it by means of the drag coefficient

U4 = d (−ω2
1 + ω2

2 + ω2
3 − ω2

4 + ω2
5 − ω2

6 − ω2
7 + ω2

8) (2.28)

The allocation matrix is thus defined as

M =


b b b b b b b b

b lout −b lin b lin −b lout −b lout b lin −b lin b lout

b htop −b htop −b htop b htop b hbot −b hbot −b hbot b hbot

−d d d −d d −d −d d

 (2.29)
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Figure 2.5: Front-view representation of the drone. In the figure are reported the geo-
metrical parameters that describe the position of the rotors with respect to the center of
mass.

Now, we need to invert Equation (2.24), in order to translate the command vector U into
suitable propellers speed commands. However, since M is a 8 × 4 rectangular matrix
(and hence not invertible), there are infinite solutions for the vector ωp. To tackle this
issue, we can consider that limiting the drone power consumption is all our interest, so
we resort to the concept of Moore-Penrose pseudo-inverse, through which we compute the
minimum-norm value of ω2

p, as

ω2
p =M+ U (2.30)

where M+ is the pseudo-inverse of M . From this point, we obtain ωp as

ωp =
√
sgn(ω2

p)⊙ ω2
p (2.31)

where sgn(·) is the signum function, employed to force the squared root argument to be
positive.

2.2.2. Altitude Controller

The altitude controller is realized with reference to a linearized model based on Equation
(2.10), that is obtained by assuming that pitch and roll angles are small enough to have
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cos(θ) ≈ 1 and cos(ϕ) ≈ 1. Then, from Equation (2.10) one obtains:

z̈G =
U1

m
− g (2.32)

Now, defining z1 = zG and z2 = żG and considering in a first moment the gravity term as
an external disturbance, we can write the state-space equations as:ż1 = z2

ż2 =
U1

m

(2.33)

From here, we derive the altitude controller via pole placement and, to achieve static
precision on the altitude tracking, we enlarge the state vector to add an integral state,
obtaining the state-feedback gains Kz = [Kz1 Kz2 ] and the integral gain Kint

z . Now, by
compensating in open loop the gravity term, we get the final control law

U1 = −Kz

[
z1

z2

]
+Kint

z (zrefG − z1) +m g (2.34)

Finally, we implement the controller adding an anti-windup scheme to prevent the integral
saturation since the value of U1 is bounded by the intrinsic limits of the propellers speed
between a value ± Ū1, defined as

Ū1 = 8 b ω̄2
p −m g (2.35)

where ω̄p is the propeller maximum speed in absolute value.
The reference signal for the speed żG is set to zero, while zrefG is the desired vertical
position of the drone.

2.2.3. Attitude Controller

The attitude controller design is based on three assumptions, with reference to Equations
(2.11), (2.12), (2.13):

• The non linear couplings between the rotational velocities are negligible;

• The contribution given by the propellers inertia is small compared to the drone one;

• The Euler angles are small enough to approximate sin(·) ≈ 0 and cos(·) ≈ 1, so
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Equation (2.9) becomes ϕ̇θ̇
ψ̇

 ≈

ṗq̇
ṙ

 (2.36)

In this way, we obtain the linear control-oriented model:

ϕ̈ =
U2

Ix

θ̈ =
U3

Iy

ψ̈ =
U4

Iz

(2.37)

Following the same approach as in Section 2.2.2, we obtain the state space matrices to
realize a state feedback control law via pole placement, in order to track the Euler angles
reference signals. In this controller, we decide to don’t add any integrator since the outer
loops ensure smooth references that are easily followed.
The control law is:

U2

U3

U4

 = −Kang



ϕ ref − ϕ

ϕ̇

θ ref − θ

θ̇

ψ ref − ψ

ψ̇


(2.38)

where Kang ∈ R3×6 is the gain constant matrix.
Here, we set the reference signals for the angular rates to zero, while ψ ref can be imposed
by an external guidance system. ϕ ref and θ ref are instead computed by the velocity
control loop.

2.2.4. Velocity Controller

The velocity controller regulates the local velocities ẋL and ẏL by using as control signals
the reference Euler angles θ ref and ϕ ref , that will be then given as input to the Attitude
Controller described in 2.2.3.
Now, assuming that the roll and pitch angles are so small that

cosϕ ≈ 1 cos θ ≈ 1 sinϕ ≈ ϕ sin θ ≈ θ (2.39)
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we obtain from Equation (2.10) the model

ẍG = (cos(ψ) θ + sin(ψ) ϕ)
U1

m

ÿG = (sin(ψ) θ − cos(ψ) ϕ)
U1

m

(2.40)

Writing Equations (2.40) in matrix form[
ẍG

ÿG

]
=

U1

m

[
cos(ψ) sin(ψ)

sin(ψ) − cos(ψ)

] [
θ

ϕ

]
(2.41)

If we define the matrix in Equation (2.41) as a rotation matrix Rψ

R ψ =

[
cos(ψ) sin(ψ)

sin(ψ) − cos(ψ)

]
(2.42)

we can express θ and ϕ as functions of ẍG and ÿG respectively, as[
θ

ϕ

]
= R T

ψ

[
ẍG

ÿG

]
m

U1

(2.43)

Now, recalling relation (2.2) we move to the local reference frame[
θ

ϕ

]
=

[
ẍL

−ÿL

]
m

U1

(2.44)

Let’s assume that U1 ≈ m g, i.e. that the contribute of the altitude controller is small
enough compared to the weight force added in feedforward in Equation (2.34): this is
reasonable if we consider the huge mass of the drone, as reported in A.1. We obtain[

ẍL

ÿL

]
=

[
θ

−ϕ

]
g (2.45)

Supposing that the Attitude Controller performs correctly giving a good reference track-
ing, we can approximate ϕ ≈ ϕ ref and θ ≈ θ ref[

ẍL

ÿL

]
=

[
θ ref

−ϕ ref

]
g (2.46)
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Now, let’s introduce the proportional control laws for the two axes

θ ref = K vel
x (ẋrefL − ẋL)

ϕ ref = − K vel
y (ẏrefL − ẏL)

(2.47)

where ẋrefL and ẏrefL are the reference speeds imposed by the outer position loop.
Closing the loop by substituting Equation (2.47) into (2.46) and moving to the Laplace
domain, we get the closed loop transfer functions for the velocity subsystem, which take
ẋrefL and ẏrefL as input and return ẋL and ẏL. The two transfer functions are

FẋL(s) =
K vel
x g

s+K vel
x g

FẏL(s) =
K vel
y g

s+K vel
y g

(2.48)

From here the tuning of the system comes rather straightforward and is performed by
imposing the desired closed-loop poles through the two gains K vel

x and K vel
y .

2.2.5. Position Controller

The position loop controls the position of the drone in the global reference frame in order
to track given set-points xrefG and yrefG . It is based on the kinematic model

ẋG = ẋrefG

ẏG = ẏrefG

(2.49)

The position controller outputs are the reference speeds for the velocity controller, so we
use these variables as control variables to design a PI controller

ẋrefG = Kpx (x
ref
G − xG) +Kix

∫
(xrefG − xG)

ẏrefG = Kpy (y
ref
G − yG) +Kiy

∫
(yrefG − yG)

(2.50)

Now if we substitute the control laws (2.50) in Equation (2.49) and we re-arrange the
expressions in the Laplace domain, we obtain the closed-loop transfer functions of the
position loop

Fx(s) = Kpx
Kpx s+Kix

s2 +Kpx s+Kix

Fy(s) = Kpy
Kpy s+Kiy

s2 +Kpy s+Kiy

(2.51)
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From here, it is possible to select the desired closed loop behaviour for the position
loop by opportunely tuning the gains Kpx, Kix, Kpy and Kiy. The controller is then
implemented using an anti-windup scheme, since the control variables ẋrefG and ẏrefG are
bounded between saturation limits.
Finally, we have to convert the global reference signals into the local axes in order to be
consistent with the (local) velocity controller described in Section 2.2.4:[

ẋrefL
ẏrefL

]
=

[
cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)

][
ẋrefG
ẏrefG

]
(2.52)

2.2.6. Anti-Windup Scheme

To efficiently implement the Altitude Controller 2.2.2 and the position PIs controllers
2.2.5, we add an anti-windup scheme in each regulator to improve the control system
robustness. In this way, we prevent the windup of the integral action when the control
action hits the saturation limits, avoiding the typically related problems as strong output
oscillations or high peaks of the control variable. In particular, we adopted a back-
calculation anti-windup technique (see Figure 2.6). With this approach, the anti-windup
scheme comes into play only in case of saturation, since its action is based on the difference
between the output of the integrator and the saturated control action (signals v and u in
Figure 2.6): it is easy to understand that if v does not exceed the saturation limits, then
u = v and their difference is null.
The signal obtained by subtracting u to v is then multiplied by a tunable gain Kbc, which
ultimately determines the magnitude of the anti-windup effect and the response speed
of the de-saturating action. Indeed, the anti-windup output signal p (c.f. Figure 2.6) is
then subtracted to the error e, in order to reduce the integrator input and consequently
its output v, de-saturating the control action u which is then applied to the plant.

1

𝑠

𝐾𝑏𝑐
−

−
… …𝑒 𝑢𝑣

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑙𝑜𝑐𝑘

𝑝

Figure 2.6: Anti-windup scheme with back-calculation approach
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2.3. Tether

The tether is a key element in the overall system, since it couples the movement of the
kite with the ground station.
To properly design the tether, we have to consider that the tension force that is generated
during the system operations can reach up to 250 kN, so the tether has to be strong
enough to support the load. On the other side, the tether is an object that moves into
a fluid (the air) so we have to consider the drag force associated to it and, obviously, its
weight: as a consequence, the large tension force cannot be counteracted by increasing the
tether diameter, since the cable should be also lightweight and aerodynamically efficient to
minimize weight and drag forces. Furthermore, the tether must carry significant electrical
power (up to 600 kW ) and data (30 Mbit/sec) so it should provide a good insulation and
very small losses.
Keeping [34] as reference, the tether employed in the M600 system is made by a carbon
fiber core, wrapped with insulated conductor cables and coated with an outer protective
jacket that provide a drag reduction. The optimal parameters selected by Makani are
reported in Table A.2.

Figure 2.7: Makani Tether (from [34])

The tether behaviour is fundamental in AWE systems, since its interactions with the
drone and the ground station are manifold and highly non-linear. Thus, the accuracy
of the chosen model becomes crucial in the realization of the whole simulator. One of
the most used models is the "straight line" model: the tether is indeed considered in an
ideal way as a beam, and the forces generated by it (weight force, aerodynamic forces
and tension force) are applied directly on a point mass model of the wing. This approach
usually brings many advantages for the design of the control system and for simulation
purposes.
However, we decided to adopt a different approach, based on the subdivision of the tether
in segments joint by point mass nodes, which account for the gravity force. The segments
are then supposed as made of a Kelvin-Voigt material: in this way, we consider each
point mass node as connected to the next and the previous by a parallel spring-damper
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system, i.e the interaction between two consecutive nodes is modelled through elastic and
damping forces.

𝑚𝑖

𝑚𝑖−1

𝑚𝑖+1

𝐹𝑖
𝑔

𝐹𝑖
𝑎𝑒𝑟𝑜

𝐹𝑗+1
𝑒𝑙 + 𝐹𝑗+1

𝑑𝑎𝑚𝑝

𝐹𝑗
𝑒𝑙 + 𝐹𝑗

𝑑𝑎𝑚𝑝

Figure 2.8: Force contribution on an i-th node of the tether: F aero is the drag force, F g

is the weight force, F el
j and F damp

j are the elastic and damping forces exerted on the i-th
node by the j-th segment while F el

j+1 and F damp
j+1 are the elastic and damping forces exerted

by the i-th node on the j-th segment

This choice allows to attribute to each node a state, i.e. a 3D position (and velocity) in
time, that we compute by integrating the force balance

F tot
i = mi ai (2.53)

where mi and ai are the mass and the acceleration of the i-th node, while F tot
i is the sum

of the forces acting on the i-th node. In this way, we obtain a tether model far away more
accurate that the classic beam one, that allows the simulator to achieve more generality.
For further information, see [38].

2.4. Ground Station

The ground (or base) station manages the reeling in and the reeling out operations of
the tether during the flight maneuvers. Indeed, correctly regulating the tether length is
crucial to achieve the tether maximum tension, necessary to avoid the tether to become
saggy and eventually hit objects like trees or buildings during the M600 flight.
The ground station realized by Makani also features a mechanism that allow the structure
to rotate around its vertical axis, following the drone movements to not damage the tether



2| System Model and Control 33

integrity with eventual torsional forces.
In the offshore configuration, the ground station is mounted to a spar buoy: a steel tubular
structure that mates with the ground station by means of a bolted flange and is anchored
to the seabed by three lines.

Figure 2.9: Ground Station (from [35]) Figure 2.10: Winch Drum (from [35])

The ground station implemented in the simulator is a simplified version of the Makani
apparatus, in which we ignored the ability to rotate above its vertical axes: we consider
the station as a winch driven by an electric motor that reels in and out the tether.

The winch drum is modelled as a hollow cylinder: referring to Figure 2.10, we can compute
the drum inertia as

Jdrum =
1

2
mw(r1

2 + r2
2) (2.54)

Then we obtain the dynamical model using a torque balance, in which we take into account
the tether tension, the viscous friction and the motor torque

Jdrumλ̈ = ∥FT∥ r2 − Tm − βdrum λ̇ (2.55)

where λ, λ̇ and λ̈ are the winch angular position, velocity and acceleration, Jdrum is the
drum inertia, βdrum is the viscous friction coefficient and Tm is the motor torque (all the
parameters are reported in Table A.3).
The proposed control system for the winch (see Figure 2.11) is a pole placement scheme,
where we add an integrator to ensure a satisfactory reference tracking.
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Figure 2.11: Winch Control Scheme: Pole placement with integral action

First, let’s write Equation (2.55) in state space representation, by taking x1 = λ̇ and
x2 = λ as states and Tm as control variable:ẋ1 = x2

ẋ2 =
1

Jdrum
(∥FT∥ r2 − Tm − βdrum x1)

(2.56)

Now we augment the state vector by adding an integral state ζ̇ = xref2 − x2, in order to
follow the angular position reference xref2 with zero steady-state error

ẋ1 = x2

ẋ2 =
1

Jdrum
(∥FT∥ r2 − Tm − βdrum x1)

ζ̇ = xref2 − x2

(2.57)

Then, assuming that both x1 and x2 are measurable and treating the torque generated
by tether tension and xref2 as an external disturbances, we write the state-space matrices
as

Aw =

−β/Jdrum 0 0

1 0 0

0 −1 0

 Bw =

−1/Jdrum

0

0

 (2.58)

Now we can compute the pole placement gains, obtaining the following expression for the
control variable Tm

Tm = −Kw

[
x1

x2

]
+Kint

w (xref2 − x2) (2.59)

where Kw = [Kx1 Kx2 ] is the state feedback gain matrix and Kint
w is the integral gain.
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The reference signal for the winch angular position is computed as

λref =
Lref

r2
(2.60)

where Lref is the reference tether length, defined as function of the global drone position
PG plus an offset ∆L, which is a tuning parameter

Lref = ∥PG∥+∆L (2.61)

In this way, we ensure that the winch reels out only the strictly necessary amount of tether
in order to keep the tether almost always taut, avoiding to entangle the environmental
obstacles in the working area.

2.5. Aerodynamic Forces

The aerodynamic force vector acting on the drone F⃗aero = [Fdrag Fside Flift]
T is computed

in the wind frame as
Fdrag =

1

2
ρSCD(α, β)∥W⃗a,w∥2

Fside =
1

2
ρSCS(α, β)∥W⃗a,w∥2

Flift =
1

2
ρSCL(α, β)∥W⃗a,w∥2

(2.62)

where ρ is the air density, S is the wing surface, CD(α, β), CS(α, β), CL(α, β) are the
drag, side and lift coefficients, and ∥W⃗a,w∥ is the modulus of the apparent wind velocity
in the wind frame, obtained as

W⃗a,w = HT · W⃗a (2.63)

where matrix H is the rotation matrix from the wind reference system to the local frame
(defined in Equation (2.7)) that depends on the angle of attack α and the sideslip angle β,
which are introduced in Section 2.1. Then, we translate the set of forces F⃗aero (expressed
in the wind frame) into the global reference frame passing through the local one

F⃗aero,G = R ·H · F⃗aero (2.64)

where R is the rotation matrix from the global reference system and the local one, ex-
pressed as function of the Euler angles (see Equation (2.1)).
For simplicity, it is assumed that Fside is negligible, while the drag and lift coefficients are
considered as dependant only on the angle of attack α, by assuming that β is small and
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Figure 2.12: Lift coefficient function for the NACA-0015 wing profile at Re = 5 ·106 (data
from [39])

its effect can be neglected, so that

CD(α, β) ≈ CD(α)

CL(α, β) ≈ CL(α)
(2.65)

The relationship between the coefficients and α is obtained following the idea that the
angle of attack can vary between ±180°, since the drone changes configuration from drone-
like flight in hovering phase to plane-like flight during the crosswind operations. For this
reason we considered the concepts exposed in [39], that are valid for HAWTs, and adapted
to our context.
In particular, we used the data reported for the wing profile NACA-0015 subject to
a Reynolds number Re = 5 · 106 to extract the drag and lift curves shape, and then
we exploited the data released by Makani to compute the respective functions. Since
[39] provides the values of the aerodynamic coefficients between 0° and 180°, the curves
are firstly defined on this interval and then expanded to an interval of 360° by simple
symmetrical considerations.
In the next subsections, the derivation of each curve will be discussed.

2.5.1. Lift Coefficient

Analyzing the data about the lift coefficient in [39], one can observe that the trend of the
curve (reported in Figure 2.12) resembles a sine function, so the idea is to use as fitting
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model a sum of sines

CL(α, γ) =

Nk∑
k=1

γk · sin((α− α0) · 2k) (2.66)

where a0 = −19° is an offset angle necessary to match the Makani data with the data in
[39], γk is the k-th scaling factor and Nk is a user-chosen parameter that represents the
number of sine terms in the sum.
At this point, the vector of scaling factors γ = [γ1 γ2 . . . γk . . . γNk

] is identified through
an optimization problem formulated with the Least Absolute Shrinkage And Selection
Operator (LASSO) approach, in order to obtain a sparse γ vector (i.e. with only few
non-zero elements), very convenient for computational reasons since it avoids over-fitting
problems.
The optimization problem to obtain the scaling factors is formulated as

γLASSO = min
γ∈RNk

∥γ∥1 subject to

∥CL(α, γ)− Φ γ∥∞ ≤ 0

(2.67)

(2.68)

where Φ ∈ RN×Nk+1 is the regression matrix built with N data points from the Makani
database. Then, we compute the fitted function as

CL,LASSO(α) = Φ γLASSO (2.69)

However, this curve presents some undesired oscillations (Figure 2.13, left picture) due to
the large number of sinusoidal components Nk, so we build a new regression matrix ΦLS

considering only the frequencies filtered by the LASSO procedure, i.e. the components
associated to a non-null scaling factor, and we compute the optimal γLASSO with the Least
Square formula as

γLS = (ΦT
LSΦLS)

−1ΦT
LS CL,LASSO (2.70)

Finally, the function for the lift coefficient is:

CL(α) =
4∑

k=1

γLS,k sin((α− α0) · 2 · fk) (2.71)

where f = [f1 f2 f3 f4]
T is the vector that gathers the frequencies of the sine components

associated to each element of γLS. The curve is represented in the right picture of Figure
2.13.
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Figure 2.13: Identified curves for the lift coefficient. The left picture shows the output of
the LASSO procedure, while the right picture represents the final curve, after the Least
Squares smoothing operation

2.5.2. Drag Coefficient

Following the same approach, we observe that the data proposed in [39] can be well ap-
proximated by a Gaussian curve (see Figure 2.14), so we set the model for the identification
procedure as:

CD(α, δ) = δ1e
−
(

α−δ2
δ3

)2

+ CD0 (2.72)

where δ = [δ1 δ2 δ3]
T is the unknown parameters vector to be identified and CD0 is an

offset value taken from Makani data, necessary to have a drag curve always greater than
zero. We hence set up a new optimization problem which simply aims to minimize the
2-norm of the error between the data C̃D published by Makani and the chosen model.

min
δ∈R3

∥C̃D − CD(α, δ)∥2 (2.73)

Solving Problem (2.73), we obtain a vector δCD that, once substituted in (2.72), gives the
identified drag curve, depicted in Figure 2.15. Ultimately, Figure 2.16 shows the two final
curves employed by the simulator to compute the aerodynamic forces, i.e. the extension
on a 360° interval of the identified curves in Figures 2.13 and 2.15.
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Figure 2.14: Drag coefficient function for
the NACA-0015 wing profile at Re = 5·106

(data from [39])

Figure 2.15: Drag curve obtained from the
Gaussian fit of Makani data

Figure 2.16: Identified lift (left picture) and drag (right picture) curves on a 360° interval

2.6. Controllers Discretization

The previously described controllers are discretized following the Forward Euler approach.
With this technique, the continuous-time integrators employed in the Altitude Controller
(Section 2.2.2), in the position PIs controllers (Section 2.2.5) and in the winch con-
troller (Figure 2.11) are approximated in the discrete-time domain as functions of the
Z-transform

1

s
≈ Ts
z − 1

(2.74)
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where s is the Laplace transform, z is the Z-transform and Ts is the sampling period,
defined as the inverse of the sampling frequency fs

Ts =
1

fs
(2.75)

The sampling frequency is a crucial parameter and has to be accurately tuned: fs has
to be large enough to capture all the system dynamics but, at the same time, it should
be the smallest possible to guarantee a small computational burden. Knowing that, we
define as ωilc the frequency of the fastest closed-loop pole of the innermost loop (i.e. the
loop composed of the attitude and altitude controllers, see Figure 2.4) and we select the
value of fs using the following rule of thumb

fs ≫
ωilc
2π

(2.76)
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After the shut down, Makani published the flights database and their own M600 simulator
as a free resource for anyone who was interested in carrying on their work: in this Chapter,
we introduce the database structure and define how to build the dataset used in Chapter
4.

The database includes both the system parameters and the logs of all the flights performed
by the Makani drones. The system parameters are reported in the setting files of the
Makani simulator as JSON database that can be easily imported in Matlab. From these
files we extract:

• The parameters for the three subsystems described in Chapter 2, i.e. the M600
drone, the tether and the ground station, that are reported respectively in Tables
A.1, A.2, A.3;

• The values of ω̃, T̃ and Pe, reported in Table A.5, that are used to estimate the
parameters of the propellers in Section 2.2.1 (see Table A.4);

• The data for the identification of the aerodynamic coefficients discussed in Section
2.5.

For what concerns flight data, Makani released the database produced by the drone avion-
ics system, which logs to the central system the sensors data and the signals computed by
the control systems. All of the avionics nodes in the system send asynchronous messages
over the avionics network and Makani log files are constructed by simply recording the
network traffic using the hdf5 format, which presents an interface with aspects both of
a hierarchical tree and of a time series. These data files can be inspected with Matlab,
Python or other softwares.

The flights gathered in the released database are divided in four testing programs:

• The Remote Perch Crosswind (RPX), that was performed in China Lake test site
(California, US) between 2016 and 2018. During this period, the Makani team
completed nine tests with a rudimentary version of the system previously described
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Figure 3.1: RPX program (from [34]) Figure 3.2: CW program (from [34])

in Chapter 2, as we can see from the base station structure in Figure 3.1

• The High Hovering (HH), that are the first two high-hover flights executed in 2018
with the complete system;

• The All-Modes Crosswind (CW), performed at Parker Ranch (Hawaii Island, US,
Figure 3.2) in 2019. In these twelve test, the M600 drone flown complete working
cycles from launching to landing;

• The Floating Crosswind (FC), in which Makani achieved the first off-shore crosswind
flight of AWE history, that was also the last flight for Makani as a company.

In Matlab, the database is a struct with a field for each flight, denoted using the previously
introduced acronyms (e.g., CW01 stands for the 1st All-Modes Crosswind flight). Each
flight is in turn a struct with 26 fields, filled with avionics data. The principal fields are:

1. Control input, where the Makani controller input values are logged, after being
converted to real units and expressed in useful coordinate systems. The control
input field includes GPS wing position, drone acceleration (via IMUs), wind (via
pitot tubes), tether force (via loadcells), rotor speeds, etc;

2. Control output, containing all the output signals of the controller, such as rotor
speed commands and the winch velocity command;

3. State estimator, where the estimated wing position, attitude, velocity, angle of at-
tack, sideslip, . . . are stored, together with the winch and the base station states
variables;

4. Hover, that includes the signals used and generated by the controller in charge of
the hovering phase. In these data, we find the commands for 3-D position and the
thrust command that will be used in Chapter 4.

Starting from this huge amount of data, we proceed by extracting only the ones that
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Figure 3.3: Power time course of CW01 flight. From left to right we identify the initial
power-consuming phase, the generation stage and the final landing maneuvers.

we are interested in to realize smaller (and lighter) datasets regarding only the hovering
phase.
In order to do that, we analyse the power logs, in which we identify the operative phases
of the system: at the beginning we have a power-consuming stage, that includes vertical
takeoff, hovering and trans-in maneuvers (Figure 3.4); then, the M600 starts flying in
crosswind, generating power but also spending a fraction to complete the circular path;
finally, as Figure 3.3 shows, another power-consuming phase begins, where the drone exits
from crosswind (trans-out) and approaches the ground station to land on the perch.

Now, to extract the hovering phase from the initial power-consuming stage, we consider
two empirical power thresholds based on data observation, obtaining the hovering time
interval in which we are interested.
After that, we create the new database selecting only the fields of the flights struct that
will be useful for the optimization tackled in Chapter 4, i.e. the wind and the wing
position, plus the position command vectors and the thrust computed by the actual
Makani controller during the real tests.
These quantities are collected in the database according to Makani global reference frame
and have to be rotated in the global frame G before being used: recalling the definition
of Rκ from Section 2.1, for example the wing position in the global frame PG is computed
as

PG = Rκ PG,M (3.1)
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Figure 3.4: Focus on the initial power-consuming phase. From left to right: take-off,
hovering and trans-in maneuvers.

where PG,M is the position available from the database.

Let’s now focus on the wind vector: the database provides the values of the apparent wind
vector Wapp,B in the Makani body frame MB, hence some manipulations are required to
express the wind vector in the G frame, in order to then use it for the aerodynamic forces
computation as defined in Section 2.5.
First of all, we compute the absolute wind vector in the Makani body frame as

WM,B = Wapp,B + ṖM,B (3.2)

where ṖM,B is the drone velocity vector in MB, available from the database. Then, wind
vector in the G frame is obtained as

WG = Rκ ·RM,BG ·WM,B (3.3)

where we use the notation introduced in Section 2.1.

Finally, we perform the data downsampling, since the considered signals are recorded in
the database with a frequency of 10 Hz, which is too computational demanding for being
used in the optimizer. Hence, we create the new database by imposing the sampling
frequency for each of the previously discussed signals to 1 Hz, that however guarantees a
sufficient number of data points.
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In this Chapter we present the formulation of the non-linear optimization problem that
computes the optimal values of the control systems parameters. In other words, the
controllers parameters are automatically chosen by the optimizer to make the simulator
behaving as close as possible to the Makani M600.

The general formulation adopted optimization problem is the following:

min
ωc∈R7

f(ωc) s. t.

C ωc ≥ d

(4.1)

(4.2)

where ωc = [ωzc ω
ż
c ω

zint
c ωϕ,θc ωψc ω

ẋ,ẏ
c ωx,yc ] T is the optimization variables vector, f(ωc) is

the cost function and (4.2) represent the linear constraints applied to the problem.

4.1. Optimization Variables

The optimization variables are related to the bandwidths of the three controllers, and are
defined as:

• ωzc , ωżc , ω z int
c are the tuning parameters for the altitude controller and are used

to select the poles position for the Pole Placement, representing respectively the
altitude position, velocity and integral poles introduced in Section 2.2.2. The actual
bandwidth of this controller is determined by the smallest value between ωzc , ωżc ,
ω z int
c in a dominant-pole approximation;

• ωϕ,θc and ωψc are used to tune the attitude controller parameters in the same way
employed with the altitude controller. To reduce the computational burden, we
merged the optimization variables for the roll and pitch angles into ωϕ,θc and we set
the poles for the angular rates equal to the ones for the angular position;



46 4| Optimal Control Tuning

• ωẋ,ẏc refers to the velocity controller and is related with the gains K vel
x and K vel

y as

K vel
x = K vel

y =
ωẋ,ẏc
g

(4.3)

• ωx,yc is the position loop bandwidth, through which we set the parameters of the PIs
as

Kpx = Kpy = 2 ωx,yc

Kix = Kiy = (ωx,yc )2
(4.4)

In this way, we shape the transfer functions in Equations (2.51) in order to impose
the two poles of each transfer function as coincident with frequency equal to ωx,yc .

4.2. Cost Function

The cost function f(ωc) is expressed as

f(ωc) =
T∑
t=0

w2
x (x

sim
G (t, ωc)− x̃G(t))

2 + w2
y (y

sim
G (t, ωc)− ỹG(t))

2 +

+ w2
z (z

sim
G (t, ωc)− z̃G(t))

2 + w2
u (U

sim
1 (t, ωc)− Ũ1(t))

2

(4.5)

Equation (4.5) presents four terms, where xG, yG and zG are the global coordinates of the
wing, U1 is the commanded thrust and the superscript sim and the ∼ symbol indicate
if the source of the signal is, respectively, the simulation or the database. The constant
parameters wx, wy, wz and wu are weights, used to scale the errors to the same order of
magnitude. In this way we measure the difference between the simulator output and the
data, computing the error for each quantity of interest at each time instant t ∈ [0, T ],
where T is the duration of the considered flight. In the following, we will omit the time
dependency and the subscript G for the sake of brevity.
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4.3. Constraints and Bounds

The employed linear inequality constraints are the following:

ωzc ≥ ωżc

ω z int
c ≥ ωżc

ωżc ≥ n ωϕ,θc

ωżc ≥ n ωψc

ωzc ≥ fs ω
ẋ,ẏ
c

ωżc ≥ fs ω
ẋ,ẏ
c

ωϕ,θc ≥ fs ω
ẋ,ẏ
c

ωψc ≥ fs ω
ẋ,ẏ
c

ωẋ,ẏc ≥ fs ω
x,y
c

ω ≤ ωc ≤ ω

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

The constraints (4.6) and (4.7) set the altitude controller poles hierarchy, stating that
both ω z

c and ω z int
c must be greater than ωżc . In other words, we select ωżc as the closed-

loop bandwidth for the inner loop, since it is the slowest: this choice has been made to
limit the control action on the altitude speed, which is directly related to the thrust U1.

With inequalities (4.8) and (4.9), we limit the attitude controller closed loop poles to be
a fraction n ∈ [0, 1] of ωżc , in order to achieve moderate values for U2, U3 and U4.

The constraints from (4.10) to (4.14) impose the frequency separation between the as-
signed bandwidths through the user-chosen parameter fs ∈ [5, 10]. Indeed, the control
scheme is designed with a cascade approach, so the inner loop (altitude and attitude con-
trollers) must be faster than the middle one (velocity controller), that in turn must have
a bandwidth larger than the outer loop (position controller): in this way, we can neglect
the dynamics of the innermost loop when tuning the outermost.
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Now, we define matrix Ccon and vector dcon in order to write these constraints in matrix
form as Ccon ωc ≥ dcon

Ccon =



1 −1 0 0 0 0 0

0 −1 1 0 0 0 0

0 n 0 −1 0 0 0

0 0 n −1 0 0 0

1 0 0 0 0 −fs 0

0 1 0 0 0 −fs 0

0 0 1 0 0 −fs 0

0 0 0 1 0 −fs 0

0 0 0 0 1 −fs 0

0 0 0 0 0 1 −fs



dcon =



0

0

0

0

0

0

0

0

0

0



(4.16)

In (4.15), we impose the upper and lower bounds on ωc. The constant parameters ω and
ω can be seen as tunable parameters, since are strictly related both to the control effort
(too high values can bring to unnecessary power consumption) and to the quality of the
system performance.

Let’s now compute the matrix inequality elements C and d in (4.2) implementing the
bounds in Expression (4.16)

C =

CconI
− I

 d =

dconω
− ω

 (4.17)

where I ∈ R 7×7 is the identity matrix.

4.4. Solver

The optimization problem in (4.1) can be classified as constrained Non-Linear Program
(NLP), since the cost function (4.5) is not linear with respect to ωc. Indeed, f(ωc) depends
on signals obtained by integrating the non-linear model of the system exposed in Chapter
2: at each function call, the simulation is executed via Simulink, taking as inputs the
drone reference position and the wind vector from the database and returning the values
of xsim, ysim, zsim and U sim

1 . To achieve enough generality, the optimization is carried out
on two different datasets, namely CW01 and CW02.

To solve the NLP, we choose to employ the Sequential Quadratic Programming (SQP)
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approach. With this technique, the non-linear problem is locally approximated as a
Quadratic Program (QP), in which the cost function f(ωc) is approximated by a quadratic
function and the constraints are linearized. The solution to such a QP is provided by the
Matlab state-of-art solver quadprog and yields to search directions for the optimization
variables. Then, a line search sub-routine computes the next iterate, using a merit function
approach to find a decreasing direction for the cost function that however ensures the
feasibility of the new point (with respect to constraints).
Once the direction is detected, a back-tracking strategy is employed to adjust the step size
until the Armijo condition is satisfie, obtaining a new feasible point. Around the latter, a
new approximated QP is derived and solved, and so on until the user-chosen convergence
criteria are satisfied, i.e. a optimal set of variables is found.
The SQP algorithm strongly depends on derivatives computation, due to the fact that
each sub-routine involves the gradient and/or the Hessian of cost function and constraints,
while the optimality evaluation of the iterations is related to the Karush-Kuhn-Tucker
(KKT) conditions.
Given the difficulty of obtain analytical derivatives of such a non-linear coupled system,
derivatives can be numerically computed with various techniques. In this case, we choose
a Forward Finite Difference (FFD) method and we set a step size of 0.1: indeed, since the
optimization variable ωc are related to the control parameters, a too small value would
not lead to significant perturbations and drastically augment the necessary computational
time.

Then, to improve computational efficiency Equation (4.5) can be recast in a convenient
form introducing four performance indexes:

Jx(ωc) = wx(x
sim
G (ωc)− x̃G)

Jy(ωc) = wy(y
sim
G (ωc)− ỹG)

Jx(ωc) = wz(z
sim
G (ωc)− z̃G)

Ju(ωc) = wu(U
sim
1 (ωc)− Ũ1)

(4.18)

Now, we can write the cost function (4.5) as

f(ωc) = Jx(ωc)
T Jx(ωc) + Jy(ωc)

T Jy(ωc) + Jz(ωc)
T Jz(ωc) + Ju(ωc)

T Ju(ωc) (4.19)
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Then we stack the four indexes to produce a new array F (ωc)

F (ωc) =


Jx(ωc)

Jy(ωc)

Jz(ωc)

Ju(ωc)

 (4.20)

Finally we obtain the new formulation of the cost function as

f(ωc) = F (ωc)
T F (ωc) (4.21)

With f(ωc) expressed in this form, the problem is suitable to be solved using the Gauss-
Newton approach for the Hessian computation. Indeed, computing the gradient of f(ωc)
in the form of Equation (4.21) by using the chain rule of differentiation we obtain

∇ωcf(ωc) = 2∇ωcF (ωc) F (ωc) (4.22)

where ∇ωc(·) indicates the gradient with respect to ωc. Then, differentiating again Equa-
tion (4.22) we obtain an expression for the Hessian matrix of f(ωc)

∇2
ωc
f(ωc) = ∇ωcF (ωc)∇ωcF (ωc)

T + 2
N∑
i=1

∇2
ωc
Fi(ωc) Fi(ωc) (4.23)

where ∇2
ωc
(·) is the Hessian and N is the number of optimization variables.

This expression is made by two terms, where the second features a sum of products
between the Hessian of each component of vector F (ωc) and the component itself. Now,
assuming that, close to a local minimizer ωoptc , it holds F (ωoptc ) ≈ 0, we can approximate
Equation (4.23) as

∇2
ωc
f(ωc) ≈ ∇ωcF (ωc)∇ωcF (ωc)

T (4.24)

In this way, we obtain an approximation for the Hessian matrix that only depends on
the gradient, i.e. we can compute the Hessian without actually deriving twice the cost
function. The advantage is easily understandable if we think that the numerical error in-
troduced by using the FFD for the gradient computation is not incremented by obtaining
also the second derivative with FFD .
Furthermore, in the SQP local approximation, the Gauss-Newton method is further ac-
curate thanks to the fact that constraints (4.2) are linear and so the second derivative is
zero (see [40] for more).
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In the following Chapter we discuss the output of the rotors coefficients identification
exposed in Chapter 2.2.1 and the results given by the solution of optimization program
(4.1). About the latter, we focus on the performance improvements brought by the
procedure described in Chapter 4, together with the employed validation approach for
the results.

5.1. Rotor Coefficients Fitting Results

The rotor lift and drag coefficients are identified following the procedure described in
Chapter 2.2.1, providing as result

b = 0.1385 kg ·m d = 0.6611 s ·m ·N (5.1)

Figure 5.1: Comparison between Makani propellers data and the identified quadratic
model for the lift force (left picture) and drag torque (right picture)

As we can see from the left picture of Figure 5.1, the quadratic model (2.17) fits the
experimental thrust T̃ quite accurately for all the considered range of propellers speed ωp.
On the other hand, the model (2.18) is not that precise for the drag torque, especially at
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high rotor speeds, as depicted in the right picture of Figure 5.1. Nevertheless, we decided
to adopt this model to remain consistent with the literature (c.f. [37]) and to preserve
the model simplicity, but limiting the maximum propeller speed to ω̄p = 210 rad/s, since
up to this velocity we achieve a sufficient level of accuracy from such a simple model.
The parameter ω̄p is ultimately used in the computation of the saturation limits for the
thrust control action U1, as defined in Equation (2.35).

5.2. NLP Solution

In this Section, we analyze the results of the optimization procedure described in Chapter
4. First of all, let’s assign values to the parameters of the constraints matrix (4.16):

Parameter Value Unit

n 0.9 −
fs 5 −
ω̄ 5 rad/s

ω 0.05 rad/s

Table 5.1: Constraints parameters for the optimization problem (4.1).

The optimization algorithm is initialized at point ω0
c = [1.391.391.391.251.250.250.05]T ,

which is computed in order to respect the constraints and stick to the lower bound. In
other words, the solver starts from the point with the slowest possible bandwidths for the
control system.
Figure 5.2 shows the reference tracking performance of the system on the identification
dataset CW01 when ωc = ω0

c : the results are satisfactory on the z coordinate, while on
the other two axes the tracking is highly inaccurate. To quantify this aspect, we resort
to the root mean square error (RMSE), computed as

RMSEx(ωc) =

√√√√ 1

N

N∑
i=0

(x̃− xsim(ωc))2

RMSEy(ωc) =

√√√√ 1

N

N∑
i=0

(ỹ − ysim(ωc))2

RMSEz(ωc) =

√√√√ 1

N

N∑
i=0

(z̃ − zsim(ωc))2

(5.2)



5| Results 53

Figure 5.2: Reference Tracking with ω0
c on the identification dataset CW01

For ωc = ω0
c , the RMSE values are

RMSEx(ω
0
c ) = 17.9418m

RMSEy(ω
0
c ) = 18.5712m

RMSEz(ω
0
c ) = 1.0840m

(5.3)

Now, by running the solver as described in Section 4.4, we find a a local minimizer of the
cost function (4.5) that gives the optimal value ωoptc

ωoptc =
[
3.58 3.58 3.63 3.22 3.22 0.64 0.13

] T
(5.4)
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Figure 5.3: Reference tracking with ωoptc on the identification dataset CW01

Figure 5.4: 3D representation of the reference tracking with ωoptc on the identification
dataset CW01
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This solution corresponds to the performance depicted in Figure 5.3 and 5.4, that shows
a significant improvement of the reference tracking: indeed, the RMSE for the x and y

coordinates drastically falls under 5 m and the already small value of RMSEz further
decreases to less than 1 m (Figure 5.5),

Figure 5.5: RMSE comparison between starting and optimal control parameters

Figure 5.6 shows the time course of the thrust command U1 with ωoptc on the identification
dataset CW01. After an initial transient, the thrust control variable converges towards a
steady state value close to 20kN , in order to balance the weight force acting on the drone
(i.e. m · g ≈ 17 kN) and the high frequency aerodynamic forces that acts as disturbances
on the system.
In the same way, Figure 5.7 reports the trend over time of the moments commands U2,
U3 and U4: the presence of the wind considerably influences the control variables, which
continuously try to adjust the drone orientation to keep tracking the reference signals
despite the wind gusts.
This behaviour can be identified also by looking at the eight propellers speeds depicted in
Figure 5.8, where the values of ωp = [ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ]

T are computed as exposed
in Section 2.2.1.
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Figure 5.6: Time course of the thrust command U1 with ωoptc on the identification dataset
CW01

Figure 5.7: Time course of the moment commands U2 (left picture), U3 (central picture)
and U4 (right picture) with ωoptc on the identification dataset CW01
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Figure 5.8: Propellers speed time course with ωoptc on the identification dataset CW01
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5.3. Validation

The results presented in the previous section are validated exploiting the other datasets
of the CW flight program.
The validation procedure consists in testing the control system performance with ωc = ωoptc

on the datasets from CW05 to CW10 and comparing the obtained RMSE values with
the results given by the CW01 and CW02 scenarios.
Figure 5.9 shows the RMSE index for the three position coordinates: we can see that
the validation data are in the same order of magnitude of the values obtained for the
optimization datasets, even if some flights data generate a higher RMSE. Indeed, for
instance, when CW06 is employed we see an increase of the RMSEy index: however,
analyzing the tracking performance (depicted in Figure 5.10), we understand that the
simulator is actually following quite accurately the reference, while the real drone is not
precisely tracking ỹref , so the index as it is defined in (5.3) increases.

Figure 5.9: RMSE comparison between the optimization and validation datasets
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Figure 5.10: y-axis reference tracking with data from the validation datasets CW06 (left)
and CW09 (right)

5.4. Discrete-Time Results

Finally, the optimized parameters are implemented in the discrete-time control system
described in Section 2.6.
First of all, we have to select the sampling frequency fs: given that the fastest bandwidth
identified in Section 5.2 corresponds to 3.58 rad/s (see Equation (5.4)), we choose fs high
enough to be sure that all the meaningful dynamics are correctly captured. After some
experiments on the discretized control scheme, we select

fs = 100Hz (5.5)

We can assess the performance of the discretized control system analyzing Figure 5.11,
that shows the RMSE values of the indexes on the three axes obtained by running the
simulation on the identification dataset CW01 : with the selected value of fs, the con-
trollers behave almost in the same way of their continuous counterparts, obtaining again
satisfactory tracking performance with quite low RMSE values.
For completeness, Figure 5.12 shows the RMSE values obtained with the discretized con-
trol scheme when the validation datasets (described in Section 5.3) are used to run the
simulator.
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Figure 5.11: Comparison between the RMSE values obtained with the continuous-time
and the discretized controllers on the identification dataset CW01

Figure 5.12: RMSE comparison between the optimization and validation datasets with
the discrete-time control system
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6| Conclusions and Future

Development

The goal of this Thesis was the in-depth study of an Airborne Wind Energy system with
On-Board Generation, for which no established models nor control techniques are nowa-
days well defined as in the case of Ground Level Generation AWE plants. In particular,
we consider the M600 system by Makani, the first and only OBG system for which flight
data are publicly available.
In the work development, we proposed a non-linear model for the AWE drone, taking as
reference a standard octocopter and adapting the dynamical equations to the problem
at hand. Furthermore, we suggested an innovative approach for the aerodynamic force
modelling based on HAWTs empirical results, in order to characterize the lift and drag
coefficients over 360°.
Then, we developed a linear cascaded control scheme for the kite, regulating its attitude
and position via three nested loops, together with an allocation system that translates
the control variables into eight propellers speeds.
For completeness, we added an accurate winch model for the ground station and we used
an advanced tether model (available from the literature) to achieve enough accuracy and
provide high-fidelity results.
Finally, we described how to optimally tune the kite control system to emulate the real
M600 behaviour, following a data-driven approach that exploits the database released by
Makani.
The results shown in Chapter 5 proved that this approach is valid and can be used as
a starting point for future improvements. Surely, the most straightforward one is the
extension of the optimization procedure to the plane-like flight of the drone, allowing
the simulation of the generation phase and the study of power output. The allocation
technique could be also improved by, for example, introducing more accurate models for
the propellers, to take into accounts the dynamical behaviour of a so crucial part of the
system.
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In this appendix, we report the numerical values of the subsystems parameters.

A.1. M600

Parameter Symbol Value Unit

Mass m 1730.8 kg

Inertia J

32734 23 37

23 9963 18

37 18 32734

 kg ·m2

Wing Area S 32.9 m2

Wing Span - 25.66 m

Table A.1: Makani M600 Parameters (from [34])

A.2. Tether

Parameter Symbol Value Unit

Tether Drag Coefficient CD,T 0.7 −
Linear Density ρlin 0.917 kg/m

Diameter dT 29.4 mm

Length L 425.8 m

Young’s Modulus E 26.5 GPa

Stiffness Constant Kel 4.22 · 106 N/m

Table A.2: Tether Parameters (from [34])

In [34], it is provided the Young’s Modulus per Area as EA = 18 106N . From this value,
we computed the stiffness constant as Kel =

EA
L

and we obtained the Young’s Modulus
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value in Table A.2 by multiplying EA by the tether area, as E = EA π dT
4

2.

A.3. Ground Station

Parameter Symbol Value Unit

Winch Mass mw 9500 kg

Drum Inner Radius r1 1.7 m

Drum Outer Radius r2 1.9 m

Drum Inertia Jdrum 30875 kg ·m2

Friction Coefficient βdrum 0.8 −

Table A.3: Makani Ground Station Parameters (from [34])

The data in Table A.3 are all available in the Makani database, except for βdrum that was
arbitrarily fixed to a reasonable value.

A.4. Propellers

Parameter Symbol Value Unit

Rotor Lift coefficient b 0.1385 kg ·m
Rotor Drag Coefficient d 0.6611 s ·m ·N

Propeller Inertia Jp 0.9 kg ·m2

Table A.4: Makani M600 Propellers Parameters (from [34])
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ω [rad/s] Thrust [N ] Power [W ]

22.00 64.13 315
26.86 95.95 567
31.71 133.95 928
36.57 177.65 1418
41.43 228.95 2048
46.29 285.95 2846
51.14 348.65 3833
56.00 418.95 5019
60.86 494.95 6426
65.71 577.60 8075
70.57 666.90 9996
75.43 761.90 12180
80.29 864.50 14700
85.14 969.00 17535
90.00 1092.50 20685
94.86 1206.50 24255
99.71 1339.50 28140
104.57 1472.50 32445
109.43 1615.00 37275
114.29 1767.00 42420
119.14 1919.00 48090
124.00 2080.50 54285
128.86 2251.50 61005
133.71 2432.00 68250
138.57 2612.50 76125

ω [rad/s] Thrust [N ] Power [W ]

143.43 2802.50 84525
148.29 3002.00 93555
153.14 3201.50 103215
158.00 3410.50 113400
162.86 3629.00 124950
167.71 3857.00 136500
172.57 4094.50 149100
177.43 4332.00 162750
182.29 4579.00 177450
187.14 4835.50 192150
192.00 5092.00 208950
196.86 5367.50 227850
201.71 5643.00 246750
206.57 5928.00 267750
211.43 6213.00 291900
216.29 6507.50 317100
221.14 6811.50 345450
226.00 7125.00 375900
230.86 7438.50 410550
235.71 7761.50 448350
240.57 8084.50 489300
245.43 8398.00 533400
250.29 8711.50 579600
255.14 9015.50 625800
260.00 9291.00 673050

Table A.5: Propeller Database (from [34])
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