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1. Introduction
This thesis explores the possibility of using Re-
inforcement Learning (RL) techniques for plan-
etary landing, specifically in the context of
reusable first stages of launch vehicles.

1.1. Motivation
The landing problem is achieving a successful
touchdown on a planetary body within a pre-
scribed location and velocity, with a certain at-
titude and null terminal angular velocity. This
problem has been rising in relevance in recent
years to make space access more economically
accessible and for future planetary exploration
goals of space agencies. Several techniques have
been developed over the years, with the state-
of-the-art guidance and control (G&C) archi-
tectures having separate subsystems for Guid-
ance and Control, which can lead to performance
limitations. At first polynomial offline guid-
ance methods were used, notably on the Apollo
landers. Lossless convexification methods have
then been developed [2] to optimize in real-time
the 3DOF landing problem, where the lander is
treated as a point mass. Successive convexifica-
tion (SCVX) methods have been developed [6]
to iteratively optimize convexified problems for
guidance computation to generate 6DOF opti-

mal open-loop trajectories. Robust control tech-
niques have been used in the European space
sector to add a guarantee of stability and con-
troller performance. However, these methods
suffer from performance limitations due to the
nature of the architecture.
The present work focuses on developing an inte-
grated Guidance and Control solution, assuming
the navigation subsystem can give an accurate
estimate of the lander’s state.
In the past decade novel learning-based G&C ar-
chitectures have shown promising results to syn-
thesize an integrated G&C policy capable of im-
proving on the State-of-the-art by merging the
guidance and control systems.
Several studies have applied AI and reinforce-
ment learning to spacecraft G&C problems, us-
ing neural networks to approximate controller
parameters or to generate optimal solutions.
Deep Reinforcement Learning revealed [3],[4] to
be a flexible approach that maps the state of the
system to a control action and has been chosen
for maximum flexibility in modeling the nonlin-
ear dynamics of a launcher’s first-stage landing
scenario on Earth. The existing works on this
technique focused on applications to other plan-
etary bodies, and none employ direct control of
gimbaled thrusters, which significantly changes
the behavior of the lander. The limitations of
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previous approaches are in their long conver-
gence times, which limits the ability to iterate
quickly on the shape of the reward function.
This thesis assesses the maturity of Reinforce-
ment Learning (RL) techniques for the devel-
opment of integrated G&C policies that can
achieve successful atmospheric landing by di-
rectly controlling the launcher’s actuators.

1.2. Objectives
The research aims to improve the speed of de-
sign iteration by addressing the problem of long
run times for RL algorithms. Additionally, the
study aims to quantify the robustness of the
control policy obtained from the RL algorithm
against unmodeled dynamics and parameter un-
certainty. To achieve these objectives, a vali-
dated 6DOF simulation environment is devel-
oped, expandable with more actuators, and a
training software pipeline that enables fast iter-
ation on the design of the integrated guidance
and control policy is architectured. The first
step was to develop the simulator and environ-
ment for the RL algorithm to learn the control
policy, followed by the development of the train-
ing software pipeline to enable rapid testing of
changes to the environment and the algorithm.

2. Problem Dynamics
2.1. 3DOF Dynamics
A simplified 3DOF (3 degrees of freedom) model
of a rocket was first used at first. This model
assumes that only the aerodynamic axial force
A is considered, neglecting the normal force. It
also assumes that the inertia I of the rocket is
computed using an average value for the mass
m and that gravity g is uniform.
The reference frame used for the 3DOF dynam-
ics has the vertical axis as the y-axis, as shown
in 1, unlike the 6DOF dynamics, which use the
x-axis as the vertical one.
The dynamics of the system are described by
Eq.1.

mÿ = Tsin(θ + δ)−A sin θ −mg

mẍ = Tcos(θ + δ)−A cos θ

Iω̇ = −T sin δ (xT − xCoM )

ṁ = − T

g0Is

(1)

Overall, this simplified model provides a basic

Figure 1: Reference frame used for the 3DOF
dynamics. The forces acting on the launcher
are the weight mg (applied in XCoM ), thrust
T (gimbaled by an angle δ and applied in XT )
and the aerodynamic axial force A (applied at
the center of pressure).

representation of the rocket’s dynamics, which
can be used as a starting point for further anal-
ysis.

2.2. 6DOF Dynamics
A 6 degrees of freedom (6DOF) dynamics en-
vironment was then developed, for training an
agent in a realistic scenario. This environment
models both translational and rotational dy-
namics.

Figure 2: Inertial reference frame FI (in blue)
and body fixed reference frame FB (in black).

The equations of motion and dynamics of the
system are defined with respect to two reference
frames: the inertial reference frame FI , fixed
with the world and with its origin in the land-
ing site, and a body-fixed reference frame FB

aligned with its x-axis along the longitudinal
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axis of the vehicle.
The translational dynamics, shown in the equa-
tions 2, are defined in the FI frame. They take
into account the position r⃗ and velocity v⃗ vectors
of the center of mass of the vehicle. The mass
m is time-varying due to propellant consump-
tion as modeled in 3, with the specific impulse
of the engine being Is and the standard gravita-
tional constant at sea level g0. The gravitational
acceleration vector g⃗ = [−g0, 0, 0] .

⃗̇rI = v⃗I

⃗̇vI =
1

m(t)
F⃗I + g⃗I

ṁ = −||T⃗I ||
Ispg0

(2)

(3)

In Eq.2 F⃗I is the sum of forces acting on the
launcher, comprising:
• The control thrust force T⃗I .
• The aerodynamic force A⃗I , modeled using

a spherical aerodynamic model. The at-
mosphere is modeled according to the ISA
model.

The rotational dynamics is expressed in the
body-fixed reference frame FB. It is com-
puted using Euler’s rigid body equation and the
kinematics are parameterized using the quater-
nion representation in the scalar-first conven-
tion. They are shown in Eq.4.

˙⃗q =
1

2
Ω⃗q⃗

˙⃗ωB = J⃗−1(M⃗B − ω⃗B × J⃗ ω⃗B)

(4)

2.3. Optimization Problem Formula-
tion

The planetary landing problem involves reach-
ing a final state with specific position and atti-
tude while minimizing propellant consumption.
This is modeled as an optimization problem with
constraints on the system’s dynamics and initial
and final conditions. In a Reinforcement Learn-
ing setting, soft constraints are hinted through
a reward function that penalizes their violation.
The goal is to minimize propellant mass and
errors in position, velocity, and attitude. The
3DOF formulation is similar to the 6DOF case
but with a reduction in dimensionality of the
vectors.

In mathematical terms the problem can be ex-
pressed as:

minimize
u⃗(t)

∆m =

∫ tf

t0

dm = m0 −mf

subject to ⃗̇x = f⃗ (x⃗, u⃗)

with b.c. x⃗(t0) = x⃗0

r⃗(tf ) = r⃗f

v⃗(tf ) = v⃗f

q⃗(tf ) = q⃗f

ω⃗(tf ) = ω⃗f

(5a)

(5b)
(5c)
(5d)
(5e)
(5f)
(5g)

The initial conditions sampled from a uniform
distribution within a certain range, as shown in
4.3, and with the final conditions specified as
Table 1.

r⃗f [m] v⃗f [m/s] q⃗f [−] ω⃗f [rad/s]

0⃗ 0⃗ [1, 0, 0, 0] 0⃗

Table 1: Landing final conditions

3. Reinforcement Learning Al-
gorithm

To solve the optimization problem a Reinforce-
ment Learning algorithm is employed, specifi-
cally the Proximal Policy Optimization.

3.1. Proximal Policy Optimization
(PPO) Algorithm

PPO is an on-policy algorithm that can be used
for environments with either discrete or contin-
uous action spaces. This algorithm has been se-
lected due to its high wall-clock time efficiency
during training, and being well suited for envi-
ronments where it can be hard to assign a value
to a state, such as one with sparse rewards. It
works by directly shaping a policy π(θ⃗) (hence
being on-policy) to maximize the expected re-
turn over an episode. To have a more detailed
overview of the algorithm the reader is referred
to [5] and [1].

3.2. Neural Networks as function ap-
proximators

In the PPO algorithm, neural networks are used
to estimate the policy function and the value
function. The MultiLayer Perceptron (MLP)
structure is employed, with two hidden layers
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of different sizes depending on the initial con-
ditions: the first layer has more neurons in the
6DOF case, as it needs to learn a more complex
policy. The network has a nonlinear activation
function, which allows it to be a universal ap-
proximator. Two types of activation functions,
hyperbolic tangent (tanh) and Rectified Linear
Unit (ReLU), have been tested. The former
solves the exploding gradient problem in back
propagation and should allow for faster conver-
gence. The network structure and activation
functions are chosen based on performance and
stability in the 3DOF scenario.

4. Environment development
and software pipeline

Reinforcement learning involves an environment
called a Markov Decision Process (MDP) or
Partially Observable Markov Decision Process
(POMDP), which includes possible states, ac-
tions, rewards, and transition functions. The
reward function assigns a reward at each transi-
tion.

4.1. Environment structure
The OpenAI Gym environment is used to stan-
dardize the environment in which the rocket
landing problem is tested. The implementation
of the environment defines both the state tran-
sition function and the reward function, and is
compliant with OpenAI Gym APIs. The envi-
ronment interacts with the policy through stan-
dard APIs, allowing for the use of standard
Reinforcement Learning frameworks for train-
ing. The dynamics equations are integrated us-
ing a variable-step RK45 ODE integrator from
the Python package SciPy. The environment’s
.step(⃗a) method advances the simulation at a
fixed timestep and checks for zero height using
an event function.

4.2. Observation and action spaces
The observation space and state space of the en-
vironment in the thesis are continuous spaces
that contain all possible values of the observa-
tions and system states. To improve conver-
gence of the RL algorithms, it is good practice
to bound and normalize the observation space
within a certain range. The state space nor-
malization vector is selected based on reasonable
maximum values for each variable. The episode

is terminated if any of the values of the state
exceeds the state bounds or if certain early ter-
mination conditions are met, including reaching
zero height, the upper or lower position bounds,
or a time limit.
The action space refers to all possible actions
that can be taken by an agent in a Rein-
forcement Learning environment. These ac-
tions are sampled from a policy π(θ⃗k), which is
parametrized with a mean and a standard devi-
ation. It is preferred for each element of the ac-
tion to be bound between -1 and +1 to facilitate
convergence of the algorithm. In the case of the
study, the action vector comprises of thrust and
gimbal angles in the Y and Z direction, which
are limited to specific ranges. The denormaliza-
tion process involves multiplying the action by
the bounds vector.

4.3. Initial Conditions
The algorithm was tested using two sets of initial
conditions: simplified and realistic. The simpli-
fied set had lower height, velocity, and velocity
directed downwards, while the realistic set was
sourced from historic flight data of the Falcon 9
and simulated landing on a downrange location
such as a barge in the middle of the ocean or a
downrange landing pad. The mean and range for
each state of the initial conditions for both sets
were reported in tables 2 and 3 for the 6DOF
case. The same values, but with appropriate di-
mensionality reduction, are used for the 3DOF
case. The sampling of different initial is a form
of domain randomization, which is a technique
used to obtain a more robust policy by prevent-
ing the RL algorithm from overfitting to a spe-
cific initial condition.

Mean µ⃗x⃗0
Range ∆⃗x⃗0

r⃗ [m] [500, 100, 100] [50, 10, 10]
v⃗ [m/s] [−50, 0, 0] [10, 10, 10]
q⃗ [−] [1, 0, 0, 0] [0.1, 0.1, 0.1, 0.1]

ω⃗ [rad/s] [0, 0, 0] [0.1, 0.1, 0.1]
m [kg] 41e3 1e3

Table 2: Mean and range of simplified initial
conditions

4.4. Reward functions
The reward function in Reinforcement Learning
maps current state and action taken to a scalar

4



Executive summary Davide Iafrate

Mean µ⃗x⃗0
Range ∆⃗x⃗0

r⃗ [m] [2000,−1600, 0] [10, 200, 0]
v⃗ [m/s] [−90, 180, 0] [30, 30, 0]
q⃗ [−] [0.866, 0, 0,−0.5] [0.1, 0.1, 0.1, 0.1]

ω⃗ [rad/s] [0, 0, 0] [0.05, 0.05, 0.05]
m [kg] 41e3 1e3

Table 3: Mean and range of realistic initial con-
ditions

value that tells it how good or bad the current
world state and action taken are. The choice
of an appropriate reward function is crucial in
producing a reasonably descriptive result. The
reward function is developed and tested using it-
erations through various versions, with different
coefficients and target values. Two different re-
ward functions were tested, due to the inability
of the algorithm to learn a successful policy in
the case of realistic initial conditions using the
first one.
The reward functions are made up of the
weighted sum of several terms that encourage
different behaviors. Both reward functions con-
tain attitude bounds penalty reward terms and
negative reward terms for thruster usage to re-
ward the agent for minimizing fuel consumption.
Also in all of them a high terminal reward term
rewards the agent for achieving landing.
For the simplified initial conditions a two-phase
training approach was used: in the first phase a
target velocity reward function, developed in [4]
is used to teach the agent to land in the landing
location; In the successive training phase an an-
nealed reward function is used, where only the
terminal bonus reward and attitude bounds re-
wards are provided.
For the more realistic initial conditions a target
acceleration reward function was used in place
of the target velocity one, with the target accel-
eration being the solution of a simplified 3DOF
problem minimizing the integral of the square
of the acceleration of the launcher. This reward
function teached the agent to make a successful
landing, with the thruster negative reward term
encouraging minimization of fuel consumption.

4.5. Software pipeline for rapid itera-
tion

The PPO algorithm used for this study was from
Stable Baselines3, a validated baseline. Training

runs were initially executed on local machines,
but when the computational burden became too
high, they were scaled up and run in parallel on
virtual machines through Google Cloud. The
software was run in a Conda Python environ-
ment to ensure reproducibility and increase code
reusability and Docker images are available. The
results of each training run were uploaded to the
web visualization tool Wandb for easy analysis
and comparison. The environment state was vi-
sualized using Pygame for the 3DOF case and
a 3D OpenGL rendering engine for the 6DOF
case.

5. Results
5.1. 3dof environment
The performance of the RL algorithm in a sim-
plified 3DOF landing control problem is satisfac-
tory. In the simplified initial conditions case, che
agent maximizes the reward by using thrusters
at minimal levels while gaining speed, then per-
forming a high-thrust final burn as shown by
Fig.3. ReLUs activation functions were tested
and resulted in quicker convergence, but have
convergence instability, while hyperbolic tan-
gent activation functions are more stable. The
RL algorithm converges to a robust policy with
low terminal velocity and position errors.

Figure 3: Thrust profile of a sample episode,
showing the agent using a bang-bang profile to
minimize gravity losses during the final burn.

In the realistic initial conditions case the RL al-
gorithm successfully performs in the 3DOF land-
ing control problem, first achieving successful
landing and then minimizing the fuel consump-
tion.
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5.2. 6dof environment
Also for this case, two training runs are shown;
the first run is for a set of simplified initial con-
ditions, and the second is based on historic flight
data of the Falcon 9.

Simplified initial conditions The results
show that the algorithm successfully converges
to a model with low propellant consumption and
a low terminal velocity. The used propellant
mass shown in Fig.4 also highlights quick con-
vergence. A Monte Carlo analysis is done to
compare the difference between the best policy
obtained during the first phase and the policy
obtained after the second phase of training. The
second policy uses about 30% less propellant and
has a lower average velocity error but a higher
position error.

Figure 4: The trend in used propellant mass for
the simplified initial conditions case. It is clearly
visible the two-phase training process with a
minimization of fuel consumption after the 1k
steps mark.

The 6DOF environment has been validated by
using a Simulink simulator validated through a
Functional Engineering Simulator.

Realistic initial conditions With realistic
initial conditions the batch size, measuring the
number of transitions used per mini-batch in the
optimizator, and the number of steps per roll-
out, measuring the number of environment steps
collected before performing policy optimization,
had to be increased significantly to stabilize the
policy updates and obtain convergence. Due
to the highly oscillatory behavior of the perfor-
mance metrics, which can be observed in Fig.5, a
periodic evaluation of the policy is done, and the
highest-performing (the one with highest mean

RL con-
troller
(6DOF)

3DOF
optimal
solution

SCVX
(6DOF)

|m0 −mf | 4250 kg 3545 kg 7525 kg

Table 4: Propellant consumption comparison of
the obtained policy, the 3DOF (point mass) op-
timal solution and 6DOF successive convexifica-
tion (SCVX) approaches

reward) policy is saved. The convergence re-
quires significant more episodes.

Figure 5: The trend in terminal position error
shows convergence to low position errors but also
high exploration, requiring to periodically eval-
uate the agent to save the best policy

A Monte Carlo analysis is carried out on to eval-
uate the terminal position and velocity errors.
The RL solution is compared to a successive
convexification MPC approach, and a 3DOF op-
timal solution obtained using a nonlinear opti-
mizator, with the fuel consumption detailed in
4.

5.3. Sensitivity analysis
Finally an investigation of the robustness of the
developed RL-based controller to unmodeled dy-
namics and disturbances is performed. The shift
in position of the center of mass due to fuel and
oxidizer consumption, as well as the flexural dy-
namics of the vehicle, have been modeled. The
study also examines the effects of uncertainty in
the inertia moments, real dynamics of the actua-
tors, misalignment of the thrust and wind gusts.
The results show that the controller is robust to
the specified ranges of uncertainties and distur-
bances, as evidenced by comparable position and
velocity errors and successful pinpoint landings.
There were some outlier trajectories that exhib-
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ited uncontrolled behavior, as can be seen in the
landing dispersion plot in Fig.6, which could be
addressed by modifying the reward function or
employing a landing mode controller.

Figure 6: Dispersion plot with disturbances and
unmodeled dynamics. Most of the simulations
result in a successful landing within a 20m ra-
dius, however there are a few significant outliers.

6. Conclusions
This thesis presents the development and analy-
sis of a Reinforcement Learning (RL) controller
for the task of landing a reusable launcher’s first
stage, and quantifies its robustness to unmod-
eled dynamics and parametric uncertainties not
present during training. Three main contribu-
tions are made: the application of a model-free
RL algorithm to develop an integrated Guid-
ance and Control (G&C) controller, the devel-
opment of modular and easily expandable non-
linear 3DOF and 6DOF simulators, and the
creation of an easy-to-use pipeline for cloud-
accelerated RL training. The reward and acti-
vation functions, hyperparameters, and network
structures are assessed and quantified in terms of
their effects on convergence behavior and perfor-
mance. The two different reward functions have
different trade-offs, specializing better to differ-
ent initial conditions. A two-phases approach in
the reward function tested has proven promis-
ing in terms of performance, but improvements
on its convergence behavior are needed to ex-
pand its generalization capabilities. The simu-
lator has been validated, and policy robustness
is achieved through domain randomization. Dif-
ferent topologies and activation functions have
been tested for neural networks in terms of their

convergence behavior and performance in terms
of mean episodic reward. The activation func-
tion plays a key role in the convergence behavior,
but once convergence is achieved, performance
is similar. The topology of the network is also
influential: a small network architecture with
two hidden layers of 64 neurons each initially
obtained good performance in a 3DOF scenario
but was unable to learn well in a 6DOF scenario.
Doubling the first layer improved learning abil-
ity, but further expanding the network resulted
in poor performance. The policies obtained for
both simplified and realistic initial conditions
and environments perform satisfactorily and re-
sult in a successful landing. The simplified set of
initial conditions with a two-phases training pro-
cess leads to better performance with lower ter-
minal velocity and position errors and a more ag-
gressive control action. While errors are slightly
higher in the 6DOF environment with realistic
initial conditions, the use of a shaped termi-
nal reward improves convergence. The policy is
shown to be robust by having low errors and dis-
persion in the presence of different disturbances
and uncertainty, however the presence of outliers
needs to be addressed. The controller proves to
be robust, fuel-efficient, and capable of achiev-
ing pinpoint landing, making RL a promising ap-
proach to solving the planetary landing problem
in a novel way. Using neural networks allows the
policy to be used in real-time on existing com-
mercial hardware.
The study suggests several areas for future de-
velopment in the use of Reinforcement Learning
for spacecraft landing control. These include
exploring the use of different algorithms, such
as model-based approaches and imagination-
augmented algorithms, as well as parallelization
techniques for more efficient training. A criti-
cal role is also played by the optimization of re-
ward functions, and the addition of actuators to
the control system, as well as addressing outliers
and improving policy explainability. Finally, it
would be interesting to move to the use of rein-
forcement meta-learning to develop a single con-
troller for the entire descent trajectory.
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