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Abstract

Over the last decades, space exploration has become a scientific research milestone and
it holds a prominent position in many space agencies’ road-maps. Hitherto, space explo-
ration missions has involved only wheeled locomotion systems. However, due to wheeled
locomotion limits, this trend could be replaced soon by legged robots, the gait genera-
tion of which has become an important research topic in recent years. This aspect is
much more important in space, where direct control is very limited by large delays or
even impossible. Therefore, this thesis aims to lay the foundations for a space explo-
ration hexapod robot that is capable of autonomous navigation and, in order to enable its
adaptability behaviour to environment change, it is equipped with a deep reinforcement
learning agent. In the following chapters, a bio-inspired hexapod robot, called Boogie,
and its adaptive locomotion controller are presented. Initially, the robot architecture is
derived from biomimetic considerations with the aim to grant omnidirectional walking and
augmented movement flexibility. Then, the artificial Central Pattern Generator (CPG)
used to generate the robot locomotion is introduced. It is based on real neurobiological
control systems and it has two layers: the first layer produces the three more common
locomotion patterns, tuning the hexapod interlimb coordination. The second layer is the
one that directly guarantees the robot adaptability by controlling each limb behaviour.
The adaptability is enabled by a reinforcement learning (RL) algorithm that tunes the
CPG parameters. Finally, in order to validate the proposed controller and verify its ef-
fectiveness, a walking simulation has been performed in Simulink Simscape Multibody™.

Keywords: hexapod robot, gait generation, Central Pattern Generator, bio-inspired,
Reinforcement Learning, Deep Deterministic Policy Gradient





Abstract in lingua italiana

Negli ultimi decenni, l’esplorazione spaziale è diventata una pietra miliare della ricerca
scientifica e attualmente ricopre una posizione rilevante nelle tabelle di marcia di molte
agenzie spaziali. Fino ad ora, nelle missioni di esplorazione spaziale sono stati adoperati
solamente sistemi a ruote. Questa tendenza, però, a causa dei limiti del movimento su
ruote, potrebbe presto essere sostituita dai robot a zampe, per i quali negli ultimi anni la
ricerca scientifica si è concentrata sulla generazione della camminata. Questo aspetto è
ancora più importante nello spazio, dove un controllo diretto è reso arduo, se non addirit-
tura impossibile, dai ritardi di comunicazione. A tal proposito, questa tesi si propone di
porre le basi per un robot per l’esplorazione spaziale in grado di attuare una navigazione
in maniera autonoma e che è controllato da un algoritmo di deep reinforcement learning
che possa permettergli di adattarsi alle variazioni dell’ambiente. Nei prossimi capitoli ver-
ranno presentati un robot esapode bio-ispirato, chiamato Boogie, e il controllo adattivo
utilizzato per la generazione del suo movimento. Per prima cosa, l’architettura del robot
è stata definita attraverso considerazioni biomimetiche volte a garantirgli un’aumentata
flessibilità di movimento e la possibilità di camminare in ogni direzione. Successivamente
viene introdotto il Central Pattern Generator (CPG) artificiale utilizzato per generare la
camminata del robot. Questo CPG trae spunto dai veri sistemi di controllo neurobiologici
ed è composto da due strutture: la prima è in grado di regolare la coordinazione delle
gambe in modo da produrre i tre tipi di camminata esapode più comune; la seconda,
invece, si occupa di garantire l’adattabilità del robot modificando il comportamento delle
singole zampe. Questa adattabilità è ottenuta tramite un algoritmo di reinforcement
learning (RL) che modifica i parametri del CPG. Infine, per validare il sistema di con-
trollo proposto e verificare la sua efficacia, una camminata è stata simulata in Simulink
Simscape Multibody™.

Parole chiave: robot esapode, generazione dell’andatura, Central Pattern Generator,
bio-ispirazione, apprendimento per rinforzo, Deep Deterministic Policy Gradient
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1| Introduction

1.1. Background

One of the greatest challenges of the 21st century is space exploration and for this reason
several nations are currently putting it in their political agenda. As of 2022, 16 different
government space agencies (out of the existing 77) have launch capabilities, 6 of which
have full launch capabilities and extraterrestrial landing capabilities. At present, many
countries are participating in, or planning for, space programs that aspire to reach the
Moon, Mars and near-Earth asteroids, study them directly in-situ and even collect rocks
and sand samples to send back to Earth ([5, 12, 13]).
Robotic systems have often been employed to achieve many of these scientific objectives
that would otherwise be impractical, too expensive or even impossible. Until now, plane-
tary explorations that didn’t involve human crew have been done solely by rovers, that are
wheeled ground vehicles. Some of the most successful robotic exploration missions have
been NASA’s MER (Mars Exploration Rover, [32]), which involved the two rovers Spirit
and Opportunity ([26]), the more recent MSL (Mars Science Laboratory, [22]) with the
rover Curiosity ([40]), and the ongoing Mars 2020 ([33]) that launched the Mars rover Per-
severance ([11]). Over the years, rovers have been constantly improved, but, due to their
reliability and low complexity, they have never been replaced by new, different systems.
However, wheeled robots have low movement performance on rough and steep terrains
because wheels require continuous contact with ground; moreover, the environment could
induce on the wheel an effect called wheel slip ([49]), in which wheels do not roll on the
surface they are on, but slip. These problems prevent rovers from exploring scientific
interesting areas like volcanoes, mountains and dark craters.
Since versatile locomotion is essential for space exploration and celestial bodies involve a
unique set of unknowns, legged walking robots have been developed in order to improve
the movement performance. These systems can move along unstructured terrains thanks
to their multiple legs, which grant them good mobility in natural ground types. Among
the existent solutions, hexapod robots have the highest walking static stability and this is
the reason why they have become an important research topic in recent years, especially
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the studies on gait and locomotion planning. In space exploration, autonomous locomo-
tion controllers are very important for a correct walking, even because, due to the planet
distance, direct control is very limited by large delay, if not impossible. Fortunately,
recent studies ([7]) in robotics have focused on implementing neural networks for gait
generations in order to allow the robots to adapt to environment changes and they have
obtained promising results. Therefore, training reliable neural networks capable of drive
robots on every terrain could become the keystone for the success of the next generation
of space exploration missions.
This thesis focuses exactly on that need presenting a preliminary design of a hexapod
robot, called Boogie, and the implemented RL-based locomotion controller. The robot
architecture has been designed starting from insect physiognomy with the aim to grant
omnidirectional walking and augmented movement flexibility. Also the adaptive loco-
motion controller draws inspiration from the real world: an artificial, two-layer Central
Pattern Generator (CPG), based on neurobiological hierarchical control systems is pro-
posed. This two-layer structure characterizes the adopted bio-inspired learning approach:
the first layer is used to generate the basic hexapod locomotion patterns, while the second
layer adapts the limb motion to the environment change by means of a Deep Deterministic
Policy Gradient (DDPG) algorithm.

1.2. Structure of the Thesis

The present thesis is structured as follows: after discussing the architecture design and
configuration of the proposed Boogie robot (chapter 2), gait generation and interlimb
coordination through Hopf oscillators are presented (chapter 3). Chapter 4 contains some
notions about deep reinforcement learning, particularly about the adopted Deep Deter-
ministic Policy Gradient (DDPG) algorithm, and illustrates the implemented RL network
architecture. In chapter 5, the modelling of the simulation environment and Boogie dy-
namics in Simulink™ are reported; simulation results and performance are shown and
commented in chapter 6. Finally, chapter 7 draws the conclusions and presents ideas for
future developments of the model.
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2| Robot design and configuration

2.1. Biomimetic robot design

Due to their impressive rapidity and coordination, in robotics insects are considered as
absolute models for legged robot design, either for architecture or for locomotion pattern.
In this section, the physiognomy of the proposed hexapod will be described, highlighting
the biomimetic criteria followed in the design phase.

2.1.1. Hexapod body configuration

The basic architectures commonly used for hexapod robots are only two: rectangular and
hexagonal shapes ([47]); both have advantages and disadvantages compared to the other
one. Owing to the planetary exploration aim of the robot, the hexagonal configuration
has been preferred in this work since its radial symmetry requires all the legs to be
equal; in this way, it cannot be identified neither a body front or rear, implying no
preferential direction for the walking. Moreover, many studies ([6, 38, 45]) have proven
that an omnidirectional chassis grants a greater stability margin, it has a way better
turning capability than rectangular architecture and this lets the robot move at once in
any direction, an important feature for space exploration. The hexagonal chassis used in
this research has an outer radius equal to 15 cm and an height of 1 cm.
The natural outgrowth of the architecture choice is the legs orientation adopted in the
design: as shown in fig. 2.1b the options available are three, but frontal and sagittal
configuration embed an unidirectional movement direction. In order to let the mechanism
move in all directions, the circular solution has been selected, thus the six legs are placed
over the vertexes of the hexagon in a radial disposition. Furthermore, the bioinspired leg
type (fig. 2.1a) adopted is the arachnid one due to its higher stability, while an outward
knee orientation has been preferred for a more realistic mimic capability. In this respect,
the design leg followed is described in detail in the next section.
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(a) Bioinspired leg types.

(b) Legs orientation for hexapods
design leg.

(c) Joint configuration options.

Figure 2.1: Type setting of hexapod legs design[47].

2.1.2. Hexapod legs design

The hexapod legs design is one of the most tough parts of walking robots, because it
determines which locomotion patterns can be used by the robot itself; for this reason,
stereotypical insect legs have been used as biological inspiration for limbs modelling.
Typically, an insect leg is made up of six basic appendages connected by five different
joints. As shown in fig. 2.2, from proximal to distal they are: coxa, trochanter, femur,
tibia, tarsus and pretarsus ([21]).

Figure 2.2: Typical anatomical structure of an insect leg[21].
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Due to its biological complexity, it would be difficult to directly reproduce the anatomical
arrangement of insect limbs, thus the number of degrees of freedom (DOFs) must be
decreased in order to reduce the complexity of both mechanisms and control.
Standard hexapods require at least two 1-DOF joints in order to walk forward: one is
needed to move the limb forward and backward; the other is used to lift the leg up and
down. A correlation between these two actions and two specific anatomical segments,
namely coxa and tibia, can be created. Nevertheless, implementing only 2 DOFs could
result in feet slippage on the ground, since only the knee (see fig. 2.3) could compensate
the hip rotation; moreover, using this expedient will also entail a change in the body
height during walking ([52]). In order to avoid this problem, a third joint, the ankle, and
the corresponding tibia segment have been added: with these 3 DOFs the combination
of knee and ankle rotations can ensure a constant body height level while the hexapod
moves forward ([10, 34]).
Trochanter, tarsus and pretarsus have been neglected in this design owing to their small
size and features. This choice has been made with the purpose of reducing the overall
system complexity and because three is the minimum number of DOFs required for an
omnidirectional walking robot ([23]).
The final configuration of the developed leg is shown in the following figure.

Figure 2.3: Implemented configuration of hexapod legs. A 3 DOFs mechanism has been
selected to grant omnidirectional walking, avoiding slipping of the feet. Hip allows the
leg to move forward and backward; femur and tibia joints are used to move the limb up
and down.
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Based on the optimization design study performed by Zhao et al., ([51]), the ratio of the
limbs (i.e. coxa : femur : tibia) has been chosen as 1 : 4 : 3. This ratio is coherent with
the data proposed by Fichters in their survey on insects’ legs ([14]), in which they state
that tibia and femur lengths are highly correlated by a coefficient that ranges from 0.78
and 0.97, while coxa has no explicit correlation with neither segments.
Another result recovered from the work of Zhao is the value of the angle between the coxa
axis and the trunk surface (the red angle in fig. 2.4) which has been set to δtc =

π
6

in order
to grant a better movement flexibility. Also those data have been proven to be consistent
with insects’ anatomical study.

Figure 2.4: Scheme of the anatomically inspired leg configuration.

In conclusion, from a mechatronic viewpoint, each leg can be considered as a manipulator
made up of three segments connected through two hinge joints. The segment lengths are
Lcoxa, Lfemur and Ltibia, while the joint angles are φ1 (coxa), φ2 (femur) and φ3 (tibia). In
result, the hexapod robot can be treated as a walking vehicle, propelled by six independent
limbs. Finally, it should be noticed that physical constraints on joint angles have been
introduced. In fact, the hinges described so far could ideally rotate indefinitely and may
result in leg collisions. Table 2.1 collects the leg dimensions and the joint angle ranges
used in this work for the simulation frame.

Table 2.1: Leg dimensions and joint angle ranges.

Segment Length [cm] Joint Angles Angle ranges [◦]

Coxa Lcoxa = 3 Hip φ1 [−45; 45]
Femur Lfemur = 12 Knee φ2 [0; 30]

Tibia Ltibia = 9 Ankle φ3 [−120;−60]
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2.2. Sensors

An important key role in deep reinforcement learning training is played by the observation
vector: it contains the sensor measurements of the surrounding environment.
The Boogie robot proposed in this thesis is equipped with an IMU placed in correspon-
dence of the hexagon center of gravity (CG) to measure body attitude, velocity and
acceleration. Moreover, every joint is provided with a servomotor capable of generating
a max torque of 10 Nm and each motor has absolute encoder to measure relative joint
angle, joint angle velocity and the generated torque. The robot can also detect ground
using force sensors placed on the tip of each leg, represented as hemisphere. The overall
hexapod architecture and the placement of the sensors can be appreciated in fig. 2.5.

Figure 2.5: Representation of the Boogie hexapod in Simulink ®. It is equipped with an
IMU placed at the hexagon CG, 18 absolute encoders on the leg joints and 6 force sensors
for ground detection.
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3| Hexapod gait generation

In this chapter, the locomotion of the Boogie robot is shown and described in detail.
The control system used to generate the walking pattern has biological inspiration and it
is capable of generating and reproducing different types of gait: in order to reach this goal,
joint movements are guided by coupled Central Pattern Generators (CPGs), formulated
as non-linear Hopf oscillators.

3.1. Gait description: a biological inspired approach

During animal locomotion, gait is one of the most important action. A definition of gait
has been proposed by Mahajan and Figueroa in 1997 ([27]): "The gait of an articulated
living creature, or a walking machine, is the corporate motion of the legs, which can
be defined as the time and location of the placing and lifting of each foot, coordinated
with the motion of the body, in order to move the body from one place to another".
A locomotion gait can be characterised using three parameters ([44]): the cycle time (T ),
the duty factor (β) and the relative phase lag (θij).

Typically, a gait is a periodic relation between the motion of all limbs during walking and
it is normally cyclic because the same sequence of lifting and placing the legs is repeated.
A step cycle is the full path of leg movements during which all limbs lift and place exactly
one time each.

Definition 1 (Cycle time[44]). In a gait, the cycle time (or stride) is the time interval
in which one step cycle is performed.

In a cycle time, two different phases can be studied: the stance (or support) phase, that
is the timespan in which the foot is in contact with ground propelling the body forward,
and the swing (or transfer) phase, when the leg is lifted and it is moved in the following
support position.

Definition 2 (Duty factor[44]). In a gait, the duty factor is the time fraction of a cycle
time in which the leg is in stance phase.
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From the previous statement, it is clear that β ∈ (0, 1). Moreover, eq. (3.1) can be easily
derived and eq. (3.2) is obtained knowing that swing and stance phases are the two parts
that constitute the stride, so T = Tst + Tsw.

Tst = β · T (3.1)

Tsw = (1− β) · T (3.2)

Finally, from definition 2, an algebraic expression for the duty factor can be obtained:

β =
Tst

T
=

Tst

Tst + Tsw

(3.3)

Physiologists have discovered that in nature animals tend to increase their locomotion
velocity by reducing T , increasing step number per second ([18]). Their observations have
led to the deduction that the technique adopted to decrease the stride mainly consists in
a reduction of Tst, without changing Tsw.

Definition 3 (Phase lag[4]). In a gait, the phase lag θij of leg i is the fraction of a cycle
period elapsed from the setting down of a chosen reference foot (of leg j) until the foot
of leg i is set down.

θij =
∆ti
T

(3.4)

∆ti ≤ T is the time delay between the placing events of reference leg and foot i ; thus,
θi ∈ [0; 1]. In this thesis, the left front leg (1 in fig. 3.1) has been taken as reference, so
eq. (3.4) can be rewritten in a simplified form (eq. (3.5)).

θi1 = θi =
∆ti
T

(3.5)

In many biological systems of multi-legged locomotion, including hexapods, the number of
degrees of freedom (DOFs) is larger than is required to correctly execute a walking path:
as a result, the coordination of all the legs requires the control system to choose one out
of various possible alternative movements. These multiple possibilities generate different
types of gait. Ramdya et al., ([39]) highlighted that through biological investigation
three basic locomotion patterns of Drosophila melanogaster, a popular model for insect
locomotion studies, can be extracted: tripod locomotion, quadruped locomotion or ripple
gait and metachronal locomotion or wave gait.
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Figure 3.1: Legs’ convention scheme.

Based on this evidence, the present thesis has been focused on these three straightforward-
walking gaits, which obey the assumptions proposed by Wilson ([50]) and recently taken
up by Campos et al., ([4]):

1. any leg moves forward only when the one behind it is in stance position;

2. any controlateral pair performs a strict alternation, namely θii+3 = ±0.5.

Figures 3.2, 3.3 and 3.4 show the feet placing pattern and the relative phase lag for
the three gaits considered. In the diagrams on the left, a black cell indicates that the
corresponding leg is swigging, while a black cell means stance condition.

(a) Footfall pattern diagram. (b) Legs’ phase lag.

Figure 3.2: Tripod gait schemes.
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(a) Footfall pattern diagram. (b) Legs’ phase lag.

Figure 3.3: Ripple gait schemes.

(a) Footfall pattern diagram. (b) Legs’ phase lag.

Figure 3.4: Wave gait schemes.

In order to better understand the difference between the three most common hexapodal
gaits implemented, they are examined in depth in the following sections.

3.1.1. Wave gait

Metachronal locomotion (fig. 3.4) is the slowest among the three considered because only
one leg is required to swing at a time. It is used by hexapod insects in unhurried walking
and very often it is associated to a duty factor of β = 5

6
, implying that during one step

cycle, every foot touches the ground for 5
6
T .

A cyclic pattern of six steps can be highlighted in one stride, as shown in fig. 3.4a: it is
like a wave that propagates from the rear leg to the front leg of one side, and then from
back to front on the other side (e.g. 4 → 5 → 6 → 3 → 2 → 1 → 4). In each step just
one leg swings, while the other five are in contact with the ground to provide the forward
locomotion. This configuration corresponds to a phase lag between two adjacent limbs of
θij = 60◦ and half a period for controlateral limbs, as already stated previously.
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3.1.2. Ripple gait

The quadrupedal locomotion (fig. 3.3) is the mid-velocity hexapodal gait, used as middle
way while changing from tripod to wave gait and vice versa. Its typical duty factor is
β = 3

4
, thus it consists of four steps. The peculiarity of this walking is that the front leg

of one side moves in phase with rear leg of the other side, as depicted in fig. 3.3a. The
legs swinging together are on opposite sides in order to grant robot stability.
The phase lag between adjacent limbs is θij = 90◦, meaning that every quarter of a period
one or two legs move forward (e.g. 1 & 4 → 5 → 3 & 6 → 2 → 1 & 4 ).

3.1.3. Tripod gait

The fastest and still statically stable gait employed by hexapod insects is the tripod one
(fig. 3.2). This is the reason why it is also the most common implemented gait in robotics,
typically with a duty factor of β = 1

2
, meaning that each foot touches the ground for half

the step cycle. If β < 1
2
, it is said that hexapod "is running".

Tripod gait comprises two steps in which ipsilateral front and rear legs move together in
phase with the controlateral middle leg, as shown in fig. 3.2a. On each side, middle limb
is half a period out of phase with respect to its adjacent ones; thus, at each time, three
legs move together in phase (e.g. 1, 3 & 5 → 2, 4 & 6 → 1, 3 & 5).

3.2. Locomotion control through CPG

3.2.1. Biological CPG

The control of robot locomotion is a complex and widely studied problem that engineers
and neurobiologists have tried to resolve in many different ways. In this field, robotics
and neuroscience join forces to increasingly improve robots capability to mimic natural
animal coordinated walking behaviours.
Neuroethology and neurophysiology researchers have studied for long the control system
in walking animals to elucidate its operating principles. They found that, in vertebrates,
brain consciousness is not involved in rhythmic coordinated behaviours, like walking or
breathing. Despite that, vertebrates are still capable of adapting to the changing terrain.
This ability derives from the fact that their rhythmic limb activities are controlled by a
spinal network that are referred to as Central Pattern Generators (CPGs) ([9, 19, 36])
which do not require regulation command from the brain-stem level ([20]).
Therefore, CPGs are essentially neural circuits capable of generating basic coordinated
patterns of periodic output signals, integrating commands from various sources, to meet
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the requirements of the surrounding environment ([16]). Hence, the limb motions are
modified adaptively to achieve robustness against environmental variations.

Based on the similarity between biological legged animals and legged robots, many bio-
inspired robots have been proposed with a gait control mechanism that mimics the one
of vertebrates. Bionic CPGs are typically used to control the joint of multi-legged robots
and they are implemented through the paradigm of neural networks or systems of coupled
oscillators. In this paper the latter is proposed.
Biological CPGs can be mathematically reproduced by a cluster of neural oscillators
formulated as coupled non-linear differential equations, whose amplitude, frequency and
relative phase lag can be accurately tuned by adjusting CPGs’ parameters. Over the years,
different models of non-linear oscillators working as artificial CPGs have been developed
and the most popular are Hopf, van der Pol and Rayleigh oscillators. In the present thesis,
motivated by the works of Campos et al., and Ouyang et al., ([4, 37]), a set of 18 Hopf
oscillators has been employed to move all the hexapod joints.

3.2.2. Hopf oscillator

Hopf oscillator is a satisfactory model for reproducing biological CPGs in robotic loco-
motion applications owing to its eminent features ([3, 42]):

• robustness for disturbances, due to its stable limit cycle;

• fast rate of convergence;

• parameters with explicit physical meaning, namely frequency and amplitude, that
can be adjusted independently.

Hopf oscillator is formulated as two coupled non-linear differential equations, reported in
eq. (3.6) {

ẋ = α
(
µ2 − x2 − y2

)
x− ωy,

ẏ = α
(
µ2 − x2 − y2

)
y + ωx,

(3.6)

where x and y are the state variables, µ is the amplitude of the steady state oscillation, ω
is the oscillator’s frequency and α is a positive constant which influences the convergence
speed.

As all the other ones, Hopf oscillator can be represented as a couple of neurons, the first
is excitatory and the second inhibitory. A depiction of this description is proposed in
fig. 3.5.



3| Hexapod gait generation 15

Figure 3.5: Neuron model of Hopf oscillator.

The state values x and y have harmonic, sine-like solution waves and both could be
selected to control joint movements. Since for every joint only one signal is required as
output, x has been chosen in this work. Considering the 6 coxae, the control of the hips
has been set as follow: the descending phase of x corresponds to the stance phase, in
which the leg moves backward propelling the body forward; while the swing phase is set
corresponding to the ascending phase of the state variable, so that the foot can be placed
in an advanced position. The convention adopted is represented in the following figure.

Figure 3.6: Correspondence between oscillator state value x and hexapod gait phase:
during signal ascension, the robot performs swing phase; descending output corresponds
to stance phase.
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In this configuration the oscillator generates an output in which the swing phase will last
as the stance phase because of the symmetry of its waveform, as shown in fig. 3.6. Even if
this model is appropriate for the tripod gate (β = 0.5, cf. section 3.1.3), it is not suitable
for gaits whose duty factor is not β = 0.5. For this reason, in order to correctly implement
the other two gaits analyzed before and based on the work proposed by Righetti et al.,
([41]), the following equation has been employed for an independent control of swing and
stance duration.

ω =
ωst

e−ay + 1
+

ωsw

eay + 1
(3.7)

The frequency presented in eq. (3.7) alternates between ωsw and ωst depending on the
phase of the inhibitory neuron y, thus it is possible to control Tsw = π

ωsw
and Tst =

π
ωst

, that
are swing and stance step phases period respectively. The speed of the switch between the
two frequencies is regulated by the parameter a, the time ratio between the two phases.
Therefore, it is possible to implement a gait with a specific duty factor β just assigning
a fixed ωsw and deriving the stance frequency (eq. (3.8)) from eq. (3.3). In fig. 3.7 it can
be appreciated how step phases change while β increases.

ωst =
1− β

β
ωsw. (3.8)

(a) Correspondence with β = 3
4 . (b) Correspondence with β = 5

6 .

Figure 3.7: Comparison of Tsw and Tst for different duty factor. They can also be compared
to fig. 3.6 to notice that the greater β the higher the difference between the durations. All
the three graphs have been generated using α = 300, ωsw = π

0.3

[
rad
s

]
, µ = 1 and a = 5.

3.2.3. Interlimb coordination

In nature, biological neurons can set up a neural mesh via synaptic pathways to control
interlimb movements. In this work, the rhythmic interlimb coordination has been imple-
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mented by dynamically coupling the six hip joints, controlled by individual oscillators, to
ensure synchronization during the overall locomotion. The diffusive coupling equations
([4, 37]) are reported below.

Ẋi =

[
ẋi

ẏi

]
=

[
α (µ2 − x2

i − y2i ) −ωi

ωi α
(
µ2 − x2

i − y2ij
)] [

xi

yi

]
+ k ·

∑
j ̸=i

R
(
θij
) 0

xj+yj√
x2
j+y2j


(3.9)

where i, j = 1, 2, . . . , 6 denotes the legs’ number, according to the convention proposed
in fig. 3.1. α has been set equal to 100 following the results obtained by Ouyang et al.,
([37]), while k = 0.5 is the constant coupling strength. θij is the phase lag between two
joints (definition 3). Finally, R is a rotation matrix that rotates the linear terms onto
each other to perform the gait properly. It is defined as:

R
(
θij
)
=

[
cos

(
θij
)
− sin

(
θij
)

sin
(
θij
)

cos
(
θij
) ]

.

Equation (3.9) can be simplified in the following equation:

Ẋi =

[
ẋi

ẏi

]
=

[
α (µ2 − x2

i − y2i ) −ωi

ωi α
(
µ2 − x2

i − y2ij
)] [

xi

yi

]
+

[
fxi

fyi

]

where fx and fy are the coupling terms coming from the other oscillators in the network.
Consequently, fig. 3.5 can be updated as follows.

Figure 3.8: Neuron model of Hopf oscillator in neural network.
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Figure 3.9 depicts the whole diagram of the neural network proposed for coxas’ coordina-
tion. The arrows represent the dynamical coupling that allows legs coordination and it
must be noticed that the network model chosen is not a fully connected one, in order to
simplify the high-level optimization. This means that every CPG is not linked to all the
other five, but only to the adjacent ones. A detailed representation of these 7 bidirectional
coupling is shown in fig. 3.10, in which the terms like f i

x represent the coupling terms from
the other oscillators.

Figure 3.9: Hip CPGs network made of six Hopf oscillators.

Figure 3.10: Bidirectional coupling between two oscillators.
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3.2.4. Coxae gait generation simulations

Several simulations have been conducted in Simulink ® to validate the implementation
of the mathematical model and to verify the effectiveness of the interlimb coordination
method adopted. Metachronal, ripple and tripod hexapodal gaits have been generated
and will be showed in this section. All simulations presented in this work have been done
using MATLAB ® and Simulink ®. All the three gaits have been simulated for 10 s using
µ = 1, a = 5, α = 300, ωsw = 4π [ rad

s
] and k = 0.5. Duty factor and relative phase lags

θij used in R are collected in table 3.1, sorted by gait. The initial conditions are set to 0
for all the x-states, while y-states have random values ∈ [−1; 1].

Table 3.1: Duty factor and relative phase between coxas for the gaits implemented.

Gait β θ61 θ21 θ56 θ52 θ32 θ54 θ43

Tripod 1
2

π π π π π π π

Ripple 3
4

π π
2

π
2

π π
2

π
2

π

Metachronal 5
6

π π
3

π
3

π π
3

π
3

π

Tripod gait In fig. 3.11 the results of the tripod gait simulation are shown. As planned,
three coxa trajectories are in phase at each time: legs 1, 3 and 5 moves together in phase
as well as legs 2, 4 and 6. About 3 s are necessary to allow oscillators reach the desired
configuration. If figs. 3.11, 3.12 and 3.13 are set side by side it is possible to note how fast
or slow one gait is. For example, considering the last five seconds and taking the coxa 1
line, it has 11 peaks in tripod gait, 7 in ripple and only 5 in wave.

Figure 3.11: Simulation of a tripod gait.
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Ripple gait Figure 3.12 depicts the planned hip trajectories for a quadrupedal walking,
the mid-velocity gait. A transient of 5 s is required to achieve the correct phase lags. After
that interval, the ripple rhythmic alternation begins. Coxae 1 and 6 are in phase, as well
as the trajectories of coxa 3 and coxa 6.

Figure 3.12: Simulation of a quadrupedal gait.

Metachronal gait Figure 3.13 shows the coxa joint trajectories xi for the slowest gait.
It can be easily verified that they are coordinated as wanted: every oscillator output has
a lag of a sixth of the period T with respect to the adjacent ones, while the lag between
contralateral limbs is half a period as before. Around 5 s are needed to reach the desired
coordination.
Comparing this image with fig. 3.4a, it can be stated that the footfall described in sec-
tion 3.1.1 has been correctly implemented: in fact just before five seconds, leg 1 begins
the stance phase, followed by 6, 5, 4, 3 and 2 in that order every T

6
.

Figure 3.13: Simulation of wave gait.
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3.3. Two-layer CPG locomotion model

In section 3.2.3 the controller for the movement of the six hip joints has been presented.
In this section the two-layer CPG model for knees and ankles motion is presented.

3.3.1. Two-layer CPG network

The proposed Boogie hexapod model has 18 DoFs, but just 12 of them are regulated by
the neural network described previously. Based on the paper of Ouyang et al., ([37]) the
remaining joint controllers are again formulated as Hopf oscillators, but they interact in
pairs (knee-ankle) only with the CPG of the coxas network that belongs to their limb.
The resulting control scheme is a 3D two-layer CPG model in which two layers can be
highlighted:

• the upper layer, called[37] body layer, is tasked with generating basic locomotion
patterns, namely one of the typical gaits discussed in section 3.1;

• the lower layer, the limb layer [37] (one per each leg), receives the locomotion pattern
information from the upper one and controls knee and ankle joints to tune the
walking, in order to adapt to the changing environment.

Hence, the whole control scheme for the Boogie robot is shown in fig. 3.14 and the math-
ematical model of the limb layer is reported in eq. (3.10).

Ẋm,l =

[
ẋm,l

ẏm,l

]
=

[
α
(
µ2 − x2

m,l − y2m,l

)
−ωl

ωl α
(
µ2 − x2

m,l − y2m,l

)] [
xm,l

ym,l

]

+ k ·
∑
n ̸=m

R (θmn )

 0
xn+yn√
x2
n+y2n

 (3.10)

where µ is set equal for all the oscillators. θnm, with n = 1, 2, 3 and m = 2, 3, is the
phase difference between the m-th and the n-th joints of the same leg, represented by l =

1, 2, . . . , 6. It should be noticed that with this control scheme, in a limb layer, information
just start from the hip and never reach it, while knee and ankle are bidirectionally coupled,
as represented by the arrows in fig. 3.14. This means that only the second and the
third joints of a leg work to adapt the locomotion to the environment, knowing the
gait imposed by the upper layer. Through this locomotion controller, the coordination
can be adjusted with just few parameters, namely µ and θij, reducing the complexity of
the control problem. Together with frequencies, these two parameters can be directly
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tuned thanks to Hopf oscillator features. This enhances the adaptability of the Boogie
locomotion, but the manual modulation is not convenient or optimal and it appears like
a challenge. Based on the paper of Ouyang et al., [37] a reinforcement learning-based
controller has been employed to optimize the robot locomotion and it will be explored
in chapter 4. Figure 3.16 represents the overall implemented bio-inspired locomotion
controller architecture.

Figure 3.14: Complete two-layer CPG network. The blue and grey oscillators represent
femur and tibia movement controllers, respectively, per each limb layer. As represented
by the arrows, the body layer is not modified by the six limb layers behaviour; in fact,
coxa oscillators interact only with their counterparts.

3.3.2. Simulation of limb layer

Repeating what done in section 3.2.4, various simulations have been done to verify the
performance of the two-layer CPG-based locomotion controller. This time, the focus has
been set on the limb layer of leg 1 in order to show better its working principle. The results
presented in fig. 3.15 have been obtained reproducing a tripod gait (β = 1

2
) for 10 s and

setting µ = 1, a = 5, α = 300, ωsw = 4π[ rad
s
], k = 0.5. The oscillators’ initial conditions

are reported in table 3.2 and they have been chosen after some trial and error attempts; it
resulted that setting xi = 0 and yi = ±µ is the best choice because it allows the oscillators
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to reach the convergence faster. The wanted phase difference between femur and tibia is
of 180◦, thus ytibia = −1. This consideration has been employed also in the next dynamic
simulations, but putting xi equal to the desired initial joint angle displacement, so as not
to wait until coordination is reached.

Table 3.2: Limb layer simulation initial conditions.

Coxa Femur Tibia

xIC 0 0 0

yIC 1 1 -1

Figure 3.15: Limb layer simulation.

In fig. 3.15, the limb layer receives from the body layer the signal from coxa joint 1;
then, it provides two output signals for femur and tibia joints for the interaction with the
environment. As desired, setting θankleknee = θkneehip = θanklehip = π, the phase difference between
knee joint and ankle joint is locked to 180◦ in the limb layer.

After having validated the convergence and the correctness of the implemented bio-
inspired CPG controller, the RL-based architecture of the control scheme able to generate
an optimal locomotion directly tuning the CPG parameters is depicted in fig. 3.16.
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Figure 3.16: Overall bio-inspired locomotion controller architecture. The scheme has a
cascaded structure with a feedback loop. Three major parts can be highlighted: [a] The
two-layer CPG controller, which generates rhythmic signals to implement the gait selected,
provided as input. The CPG parameters are µ and θkh,l, which represent the amplitude
and the phase difference between the hip joint and the knee joint of leg l, respectively.
The CPG output are Θideal

i,l , the ideal movement of the i-th limb belonging to the l-th leg,
and Θ̇ideal

i,l , its derivative. [b] The dynamic model implemented through Simscape ®. A
PD controller is employed for determining the 18 torques, namely τi,l. The Simscape ®

simulation outputs the observation state at every time step: pCG =
[
px, py, pz

]⊤ and
vCG =

[
vx, vy, vz

]⊤ are the hexapod trunk position and velocity, respectively; O and Ȯ
are the body orientation and its rate of change; Θreal

i,l and Θ̇real
i,l are the real joint angle

and angle velocity, while Cl is a boolean value for ground contact. The observation vector
includes also the action vector at the previous timestep. [c] A neural network trained via
DDPG RL, which outputs the parameters of the Hopf oscillators.
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4.1. Problem statement

4.1.1. Markov Decision Process

Hexapod robot locomotion can be formulated as a Markov Decision Process (MDP) be-
cause, at each timestep, its state depends only on the previous state at the antecedent
timestep. Indeed, an MDP may be considered as an interaction between an agent and the
environment in discrete timesteps: the environment is the world the agent lives in and
interacts with; the agent is the one which takes the action at every step of interaction.
At each timestep t, the state vector st ∈ S, describes at the same time the state of the
agent and the environment. This vector, rather than a partial observation (ot ∈ O) of it,
is used by the agent to choose the action for the current timestep: the agent takes the
real-valued action at ∈ A ⊂ RN and leads the environment to the very next time step,
reaching the new state st+1. In this thesis, S is the state space and A is the action space.
The advancement to the next time step happens through an environment state-transition
distribution P : S × A × S → [0; 1]. P(s′|s, a) is the probability that the environment
passes from state s to state s′ by means of the action a. Moreover, when a simulation
episode begins, the initial state is random s0 ∼ ρ(s) and each transition process is evalu-
ated by a scalar reward function R : S ×A → R ([1, 35, 37]).
At this point, the MDP may be defined as a 5-tuple (S,A,R,P, ρ) ([46]).

4.1.2. The RL problem

The sequence of states and actions that happen in the environment is called trajectory,
episode or rollout ς = (s0, a0, s1, a1, . . . ). In a MDP, the actor decides the action a to make
under the state s following a rule, the stationary policy, which maps states into probability
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distribution over actions π : S →P(A). Π is the set of all stationary policies.
A critical role in RL is played by the reward function, which in this work depends only
on the state-action pair:

rt = R (st, at) .

The cumulative reward over a trajectory with a finite horizon h is:

Rς =
T∑
t=0

γtrt =
∑

(s,a)∈ς

γtR (st, at)

with a discount factor γ ∈ [0; 1] ([24, 35]). The probability of a T -step trajectory ς can
now be evaluated as:

P (ς|π) = ρ(s0)
T−1∏
t=0

P(st+1|st, at)π(at|st).

The objective of the RL is to maximize the expected return, J(π), defined as:

J(π) =

∫
ς

P (ς|π)Rς = E
ς∼π

[
Rς

]
.

Thus, the RL optimization problem can be summarised as:

π∗ = argmax
π∈Π

J(π)

where π∗ is the optimal policy that the agent should select.

4.2. Deep deterministic policy gradient

Complex systems like hexapod robots are defined as multiple-input and multiple-output
(MIMO) systems due to their high-dimensional state space and action space, which are
generally continuous. Dealing with MIMO, stochastic and Deterministic Policy Gradients
(DPG) have a crucial difference. The stochastic ones integrates over both state and action
spaces, thus requiring immense, time-consuming search in those vast spaces. Quite the
opposite, the deterministic policy gradients only integrate over the state space without
sampling in A. As a consequence of these behaviours, computing the stochastic policy
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gradient requires more samples than the deterministic one, and the difference between
the two increases the more dimensions the action has. ([43]).
The Deep Deterministic Policy Gradient (DDPG) is a model-free, online and off-policy
RL algorithm formulated for the first time in 2015 ([25]). Using deep function approxima-
tors it can address unprocessed, high-dimensional sensory inputs and acquire policies in
a high-dimensional continuous action space. The DDPG formulation combines an actor-
critic approach with DPG algorithm and it merges their merit too, giving place to a
more robust and efficient in learning algorithm. Moreover, its off-policy and deterministic
features guarantee a more sample-efficient learning through the ability of generating a
deterministic action. Thanks to this features, in the recent years DDPG has been widely
adopted in robot control.
In this thesis, a DDPG-based RL approach has been implemented to optimize the locomo-
tion control presented in section 3.3.1 and it is applied on learning the adaptive control
policy π. Since this problem is a deterministic case, π is a deterministic policy which
returns a single action in a deterministic way π(s) = a ([2]) and it is supposed to be
parameterized by θπ. Thus, the actor function π(s|θπ) specifies the policy by determinis-
tically mapping states to a specific position action in continuous space. In this way, the
RL problem described in section 4.1.2 is translated into finding the optimal value for the
parameter θπ. The direction for the update of θπ to maximise J(π) is the gradient of J(π)
with respect to θπ:

∇θπ J(π) = E [∇aQ(s, a)∇θππ(s)] .

In addition to the actor, the DDPG consists of other 3 neural networks (NNs) in total:
the critic, the target actor and the target critic. The critic is also called Q-value function,
Q(s, a) because it evaluates the Q-value, which is a numerical value that represents the
discounted future reward for a state-action pair. The critic is parameterized by θQ.
The DDPG adopts two crucial ideas to avoid the instability problem caused by the use
of neural network to approximate the actor network and the critic network ([37]):

1. The loss function L can be derived knowing the target function and th NNs as
function approximators:

L(θQ) = E
[
(Q(st, at|θQ)− Yt)

2
]

where Yt is the target in a supervised learning sens; it is computed by using the
Bellman equation as an intermediate optimum ([2]):
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Yt = rt + γQ(st+1, π(st+1|θQ)).

Now, it must be said that another assumption is formulated when NNs are used
for RL: the samples are independently and identically distributed. Obviously, this
presumption is violated when dealing with an environment for the robot locomotion
in which samples are generated from sequential exploration. To overcome this, the
DDPG makes use of an experience replay buffer to store trajectories of interaction
experience between policy and environment. At each timestep h, both θπ and θQ

are updated by sampling a mini batch uniformly from the buffer and using the value
function, the DPG and the Bellman equation. Specifically, at each timestep h the
critic network θQ is updated by minimizing the loss:

L =
1

H

∑
h=1

[
(Q(st, at|θQ)− Yh)

]2
where

Yh = rh + γQ′(sh+1, π
′(sh+1|θπ

′
)
∣∣θQ′)

and H is the mini batch sample’s time. At the same time, θπ is updates with the
sampled policy gradient:

∇θπJ =
1

H

∑
h=1

∇aQ(s, a|θQ)|s=sh, a=π(sh)∇θππ(s|θπ)|sh .

2. The DDPG evaluates Yt by using frozen copies of policy and value functions. They
are parameterized by vectors θπ

′ and θQ
′ , respectively. These two copies are imple-

mented to evaluate the target values, while π′ and Q′ slowly track Q and π in the
original networks as follows:

θQ
′ ← κθQ + (1− κ)θQ

′

θπ
′ ← κθπ + (1− κ)θπ

′
.

κ≪ 1 is a hyperparameter which produces the so called soft update by scaling down
the update step, in order to enhance the stability avoiding non-stationary target
values.

Finally, it must be mentioned the exploration noise. In order to guarantee exploration in
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the continuous action space, the DDPG employs an exploration policy π′ in which noise
is added to the policy network’ actions π:

π′(st) = π(st) +N

where N represents a noise sampled from a noise process and can be chosen to suit the
environment. Following the suggestion of Lillicrap et al., ([25]), in the present study the
Ornstein-Uhlenbeck process ([48]) was used since it allows temporally correlated explo-
ration for exploration efficiency in physical control problems with inertia.
The structure of the implemented DDPG-based reinforcement learning is represented in
fig. 4.1.

Figure 4.1: DDPG-based reinforcement learning structure.

4.3. RL Network architecture

As previously said, in DDPG algorithm the critic and the actor are parameterized as
deep neural network, namely θQ and θπ. In this work, their architectures were inspired
by the recent study by Fujimoto et al., ([17]) that achieved very good results. The critic
network (fig. 4.2a) consists of five hidden layers: three fully-connected (FC) layers and
two Rectified Linear Unit (ReLU) layers. Whereas, the actor network (fig. 4.2b) is made
of six hidden layers: three FC layers alternated by two ReLU layers, and a final Tanh
layer. The latter generates an output in the range [−1; 1], which modulates the two-layer
CPG parameters.
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(a) Critic network. (b) Actor network.

Figure 4.2: Networks’ architecture of the implemented DDPG-based RL.

4.4. Action and observation vectors

4.4.1. Observation vector

The interaction between Boogie and the surrounding environment happens by means of
observations and actions. The actions are taken by the actor, that learns the task receiving
information on the real robot via observation vector. In this MDP, the observation vector
at time t is defined as:

ot =< pCG, vCG, τi,l,O, Ȯ, Cl,Θreal
i,l ,Θreal

i,l ,A >

where each element is normalised between [−1; 1].
It is important to specify that the observation vector is only a portion of the state vector.
This means that the MDP analysed is not fully observable, e.g. the robot is not equipped
with exteroceptive sensors that identify the terrain type or sense obstacles presence. When
the MDP is not fully described, it is referred as Partially Observable Markov Decision
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Process (POMDP). Since in the present work the agent generates a continuous trajectory
and not a discrete action, ot is sufficient enough for learning the locomotion tasks.

4.4.2. Action vector

The action vector at outputted by the control policy contains the oscillators’ amplitude
and the limb layers’ coupling parameters for interlimb coordination and terrain adapta-
tion:

at =< µ, θkh,1, θ
k
h,2, θ

k
h,3, θ

k
h,4, θ

k
h,5, θ

k
h,6 > .

at is the input of the two-layer CPG architecture which generates the movement for all the
18 joints. As described in section 4.3, the last actor network layer generates real outputs
in [−1; 1] and these unitary values must be converted to be feasible with the CPG’s inputs.
By reason of this, since the output element corresponding to the amplitude, aµ,t, must be
positive, it has been translated from [−1; 1] to [0; 1]:

aµ,t′ =
aµ,t + 1

2
.

Finally, all the elements in at are multiplied by the relative max value. Thus, the CPG
inputs are aµ ∈ [0;µmax] and aθ ∈ [−θmax; θmax].

4.5. Reward function

The reward function is the incentive mechanism through which the actor’s action are
evaluated. In an episode, the reward function is used to tell the agent what is correct and
what is wrong by means of positive rewards or negative penalties.
The aim of this work is to find a policy that allows the locomotion of the robot. To
encourage this process, the adopted reward function rt motivates the robot moving forward
as fast as possible, and penalises the hexapod when it rotates or deviates too much from
the desired path. Equation (4.1) formalizes the implemented reward function.

rt = wvx · vx + w∆t
Tsamp

Ts

− wy · (py − py,in)
2 − wz · (pz − pz,in)

2 − wpitch · α2
pitch (4.1)

where wi indicates the positive weight for the i-th term, py,in and pz,in are the initial
positions along y and z axes, and αpitch is the pitch angle. The first term provides a positive
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reward when the robot has a positive forward velocity. The second term encourages the
agent to avoid early episode termination (e.g. the robot falls forward at the beginning of
the episode): at each time step a small, constant and positive reward is provided. The
remaining terms are the ones that discourage the actor from searching in unwanted states,
such as large deviations from the desired height and orientation.

4.6. Episode stopping criteria

When training the control policy, the algorithm has complete freedom in exploring the
action space. Hence, in some episodes the agent could select some actions that are not
physically feasible in reality or that could lead to unstable and unrecoverable states. A
flag, called isdone flag, was introduced as a stopping criteria for these cases.
The flag is a logical value that is used to instantly terminate the episode when at least
one of the following is true:

– The robot moves too far on the lateral direction;

– the height of the trunk CG from the ground is below a certain hmin, which means
the robot has fallen;

– the height of the trunk CG from the ground is above a certain hmax, which means
the robot has jumped too high;

– roll, pitch or yaw angles are outside bounds and the robot could have fallen or rolled
over;

– any of the 18 joints touches the ground, invalidating the episode.
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hexapod in SimMechanics™

Simulink™ is a block diagram programming (MATLAB™-based) environment.
It is adopted to model multidomain dynamical systems using object-oriented method
and to simulate and analyze them before moving to hardware. Within the range of
Simulink™ applications, Simscape Multibody™ supplies a simulation environment for 3D
mechanical systems, such as robots ([28]). This software has been chosen as the simulation
environment due to its ease of use and large-scale integration with MATLAB™ without
any need of other specific program.
In this chapter, the main dynamical subsystems modeled in the project will be investigated
and described in detail, showing the choice made during the design phase and the trade-off
adopted to improve the convergence and the velocity of the training.
In fig. 5.1 the top layer of the Simulink project is depicted. Three major sections can be
distinguished: from right to left they are the physical model, the reinforcement learning
agent and the neural network inputs, namely the observation vector, the reward function
value and the "isdone" flag. Since in chapter 4 the last two have been already largely
explored, the following sections will be mostly focused on the physical subsystem.

Measurements Reward

Calculate	Reward

observation

reward

isdone

action

cumulative	reward

RL	Agent	

Cumulative	reward

Previous	action

Measurements
Observation

Observation

Measurements Isdone

Isdone	flag

Action Measurements

Physical	model

Figure 5.1: Top layer of the proposed Simulink project. The RL agent is the core of
the model: based on the measurements coming from the sensors, through the observation
vector and the value of the reward function it generates the action output that will change
the state of the robot.
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5.1. Body design

For the sake of simplicity, the chassis has been modeled as a mere hexagon using the
dimensions shown in section 2.1.1 and the weight is derived assuming the robot made in
aluminum, thus considering a density of 2700 kg

m3 .
The trunk is the central part of the model: the six legs will be hinged to it and their
local reference frames are related to the one of body’s center of gravity. Figure 5.2a
shows how the reference frames of the six limbs have been positioned starting from the
trunk’s CG: they have been placed on the six hexagon’s vertices with the x-axis pointing
radially outward from the center, the z-axis normal to the hexagon’s plane and the y-axis
orthogonal to the other two completing an orthonormal basis. It must be noticed that
the first three legs’ reference frames have a z-axis pointing downward, unlike the others:
during forward locomotion, a clockwise rotation direction for left coxae (i.e. 1, 2 and 3)
and a counterclockwise one for right limbs (i.e. 4, 5 and 6) are required.

Trunk

Leg	1

Leg	2

Leg	3

Leg	4_pre

Leg	5_pre

Leg	6_pre

2
Leg1

1
Leg2

5
Leg3

6
CG
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4
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Leg6

Leg	5

Leg	6

Leg	4

(a) Scheme of the legs’ reference frame with respect to the trunk CG.
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(b) Connection between trunk’s CG and world reference frame through a 6-DOFs
Joint block. On the left, starting from the top, there are the Solver Configuration,
the World frame and the Mechanism Configuration blocks.

Figure 5.2: Boogie’s body block diagram in Simulink™.
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The free movement of the robot in the simulation environment is granted by the 6-DOFs
Joint block, represented as a spherical joint in fig. 5.2b. It is not actuated and it is also
used to link the hexapod to the environment characteristics, like the gravity vector. This
joint plays a fundamental role for the walking experiment, because it allows the robot
to rotate and move in any direction with respect to the world reference frame. In this
block, the initial conditions (ICs) for the velocity of body’s CG have been set equal to
0, since the hexapod starts the simulation from standstill. Instead, ICs for the position
have been set using a Rigid Transform block (in the image, offset wrt ground): knowing
knee and ankle initial angles, in order to place the CG at the correct height with respect
to the ground, its value has been evaluated using a direct kinematics approach; so, when
the simulation begins the feet touch the ground without going through it.
On the left of fig. 5.2b, two more blocks which deserve attention are present. On the top,
there is the Solver configuration one, used for defining solver settings to employ for the
simulation; in this specific case, standard settings have been unchanged. Instead, on the
bottom of the figure, the Mechanism Configuration block can be found: it sets mechanical
and simulation parameters that apply to the robot and it has been used for specifying
the uniform gravity vector which the hexapod is subject to. In the simulated scenario,
the robot is intended to walk on a flat terrain under the effect of Earth’s gravity, thus
the vector has been set equal to g⃗ = [0 0 − 9.80665]⊤ m

s2
. Obviously, this value can be

changed according to the eventual planetary walking to simulate.

5.2. Legs design
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Figure 5.3: Complete Boogie’s physical block diagram.
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Figure 5.4: Block diagram of a 3 DOFs biologically inspired leg in Simulink™. On the
left the solid blocks used for modelling the appendages are shown. In the middle, the
three revolute joint employed to hinge the solids together. On the right, the PD controller
subsystems used for torque generation and the ground contact block.
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Based on the design choices discussed in chapter 2, the six 3-DOFs legs have been modeled.
Coxa, femur and tibia have been shaped as solid cylinders with the solid block using the
lengths reported in table 2.1 and a radius of Rleg = 1 cm; again, the selected material
is aluminum. These solids have been linked together by means of revolute joint blocks
that work like mechanical hinges, allowing only the rotation around the desired axis.
These constraints have been treated as ideal hinges fixing the internal mechanism’s spring
stiffness and damping coefficient to 0. Instead, in order to limit the angle ranges according
to table 2.1, the coefficients shown in table 5.1 have been adopted. These values have
been selected starting from the ones implemented in two MathWorks projects ([29, 31]),
which have aims similar to the one of this work. Then, they were reduced by 30% because
of the different order of magnitude in length and to speed up the simulation, due to the
higher complexity of the model and the huge number of simulation episodes to perform.

Table 5.1: Coefficients’ value to limit angle ranges.

Parameter Value Unit

Spring stiffness 350 N ·m
deg

Damping coefficient 35 N ·m·s
deg

Transition region width 2 deg

At this point, the whole robot design could be easily concluded by simply connecting
the six limb subsystems to the main body block by means of six more joints, obtaining
the architecture depicted in fig. 5.3. However, as in every simulation environment, one
of the most difficult challenges is to properly model the limits and the restrictions that
characterize the physical environment. For this reason, in the following sections the PD
controllers and the implemented ground contact methodology will be analysed.

5.2.1. PD controller
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Theta_dot	real
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PD	controller	coxa
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Torque	Needed
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Torque	too	low
Subsystem1

Torque	is	right
Subsystem2

Torque	Needed Limited	torque

Torque	saturation

tau	coxatheta_dot_real

coxa_real

Figure 5.5: Block diagram of the implemented PD controller for torque generation. In
figure, the coxa’s one is represented, but the scheme is the same also for femur and tibia.
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The implementation of the 18 PD controller blocks was necessary to generate the torques
needed to move the limbs’ appendages complying with the joints’ angular position path
coming from the oscillators. Indeed, the joint blocks receive the torque as input and
return the measurements of the joints’ angle position and its derivative. The parameters’
tuning has been done through trial-and-error simulation and their values are shown in
table 5.2. In fig. 5.6 the proper functioning of the PD controllers is shown and described.

Table 5.2: PD controller coefficients.

Joints Kp [-] Kp [-]

Hip -5 -3

Knee -5 -4
Ankle -4 -2

Figure 5.6: Comparison between oscillators’ output and real joints’ position. It is evident
that the two waveforms have the same frequency, but the real one anticipates the oscillator
output at the beginning of the ascending and descending phase. This happens because of
the limit on joints’ position: the real position is capped, but it starts to change just after
the oscillator’s minimum or maximum due to the derivative part of the controller.

In order to limit the torques in a physically feasible range, a torque saturation subsystem
is added in the block diagram, as depicted in fig. 5.5. It checks if the torque outputted by
the controller is in the span [−10; 10]Nm and, if not, it cap the momentum to the value
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±10 Nm until the output returns in the admissible range. Even if Simulink™ is equipped
with a built-in block, called exactly saturation block, that performs the same job, it is
preferred to directly implement a specific subsystem because the proprietary block slowed
down the simulation due to its complexity.

5.2.2. Contact force simulation

Different studies, like [8] and [15], have demonstrated that ground contact can be modeled
as a mechanical spring-damper system leading to good and reliable simulation results. In
Simulink™ this method is implemented with the Spatial contact force block, which models
the contact between geometries associated with a pair of body ([30]). Setting the method
parameter to Smooth Spring-Damper, the normal contact force is evaluated, according to
Newton’s Third Law, as

fn = s (d) · (k · d+ b · d′)

where d is the penetration depth between the two geometries and d′ is its first time
derivative; k is the normal-force stiffness, or rather, the resistance of the contact spring to
geometric penetration; b is the normal-force damping, that is the resistance of the contact
damper to motion while the geometries are penetrating; s(d) is the smoothing function.
Table 5.3 collects the coefficients’ value adopted in the simulation.

Table 5.3: Spatial contact force coefficients’ value.

Parameter Value Unit

Stiffness 1× 106 N
m

Damping 1× 106 N ·s
m

Transition region width 1× 10−3 m

Static friction coefficient 1 [−]
Dynamic friction coefficient 0.9 [−]
Critical velocity 1× 10−3 m

s

Also in this case, they have been obtained from the MathWorks™ projects cited before
([29, 31]), but can be changed depending on the features and the lay of the ground to
simulate. In this work, the floor is modeled as a simple 103×103×1 cm solid parallelepiped
and the hexapod robot is intended to walk on a flat terrain.
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Regarding the feet geometry for contact simulation, two options were considered, both
based on hemispheres and illustrated in fig. 5.7: the first possibility is to use only one
hemisphere of radius Rcont = 0.8Rleg = 0.8 cm placed in the foot’s center (fig. 5.7a);
alternatively, five hemispheres of radius Rcont = 0.2Rleg = 0.2 cm organized in a cross-
shaped arrangement (fig. 5.7b) could be taken into account. The block diagrams of both
configurations are represented in fig. 5.8.

(a) Single, central hemisphere. (b) Five cross-shaped hemispheres.

Figure 5.7: Simulink™ representation of the two considered feet geometry.
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(a) Single hemisphere block diagram.
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(b) Five, smaller hemispheres block diagram.

Figure 5.8: Block diagram of the two considered feet geometry. The spatial contact force
blocks output the normal force acting on the hemispheres, then these information are
converted into a boolean value, Cl, that indicates when ground contact happens.
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Although using multiple geometries leads to a better accuracy in mapping the contact
point and a higher precision in contact simulation, it also corresponds to a way bigger
computational cost: in the presented situation, the number of geometries varies from 6
to 30, thus it is evident why the chosen solution is the single hemisphere case for this
preliminary study.

5.3. Physical model validation

A simplified walking path was implemented on a Boogie prototype to validate the physical
model before proceeding with the RL agent implementation. This tripod locomotion was
generated using trigonometric functions for coxa and femur’s movement, while the tibia’s
angle was derived from an inverse kinematics approach with the aim to keep constant the
CG’s height to its initial value hin. The adopted functions are reported below.
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Figure 5.9: Trunk’s CG displacement. As desired, the height is almost constant while the
robot is moving forward.
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(a) t = 0 s. (b) t = 5 s. (c) t = 10 s.

(d) t = 15 s. (e) t = 20 s. (f) t = 25 s.

Figure 5.10: Hexapod movement over simulation time. The six pictures represent the
xz-plane with x-axis pointing right and z-axis pointing upward.

Figures 5.9 and 5.10 shows the result obtained during validation test. As clearly depicted
in fig. 5.9, the trunk’s CG remains at constant height while moving forward. Figure 5.10
depicts six frames of the simulation, taken every 5s: the robot moves correctly along
x-axis (going right) and it cyclically alternates odd-numbered and even-numbered legs.
It may therefore be concluded that the modelled physical environment is appropriate for
the simulation since the PD controllers and the revolute joints work as expected, allowing
the hexapod movement. Also the contact force model is satisfactory because it allows the
robot to propel itself through the force applied on the ground by the limbs.

5.4. Reinforcement learning agent

The RL agent was implemented using the homonymous Simulink™ block, represented in
the center of fig. 5.1. The RL agent uses the physical model described so far as a training
and simulation environment and interacts with it to generate the action vector. The in-
teraction with the environment is possible by virtue of the observation vectors, in which
all the measurements are collected.
In addition to that, the block receives in input also the reward and the isdone flag (sec-
tion 4.6). The first block evaluates the cumulative episode reward based on the reward
function presented in section 4.5 starting from the sensors’ measurements (fig. 5.11a.
Instead, the second subsystem compute the logical isdone flag, which defines when an
episode must be interrupted because the robot has explored some choices that may dam-
age it or that are physically unacceptable (fig. 5.11b); this block too depends on the
observation vector.
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Figure 5.11: RL agent inputs’ subsystem block.
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6.1. Simulation setup

The simulations have been set up in MATLAB™ and performed using Simulink SimMe-
chanics. They were performed on a cluster equipped with an AMD Opteron 6376 with
64 cores and a frequency of 2.3 GHz. The cluster allows to train the agent performing
11 episodes in parallel using the Parallel Computing Toolbox™, thus reducing the time
required to complete one entire simulation.
Due to the high computational cost and the consequent computational time required by
the complex simulation, it has been decided to investigate only the tripod gait on a flat
terrain in order to simplify the problem and produce a preliminary result. Moreover, to
further decrease the complexity of the policy research and the simulation time, the action
vector to find was reduced to 3 elements: the amplitude and the phase differences between
the hip joint and the knee joint of even legs and odd legs.

at =< µ, θkh,even, θ
k
h,odd > .

Obviously, this has been possible because the selected gait was the tripod one.
In the following tables, the values of the main adopted parameters are recollected.

Table 6.1: Oscillators initial conditions.

Coxa1,3,5 Femur1,3,5 Tibia1,3,5 Coxa2,4,6 Femur2,4,6 Tibia2,4,6

xIC [rad] π
4

π
4

−7π
12

−π
4

π
4

−7π
12

yIC [rad] 0 −π
4

π
4

0 π
4

−π
4
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Table 6.2: Oscillators parameters value.

Parameter Value Unit

Ts 10 s

α 300 [−]
ωsw π rad

s

k 0.5 [−]
a 5 [−]

Table 6.3: RL parameters value.

Parameter Value Unit

wvx 2 [−]
w∆t 0.6 [−]
wy 0.9 [−]
wz 0.4 [−]
µmax π [−]
θkh,l|max

2
3
π rad

Tsample 0.05 s

Table 6.4: Hyper-parameter choices for the implemented simulation.

Hyper-parameter Value

Critic Learning Rate 10−3

Actor Learning Rate 10−4

Optimizer Adam

Target Update Rate 10−3

Batch Size 128

Iterations per time step 1

Discount Factor 0.99

Normalized Observations True

Exploration Policy OU, θ = 0.15, µ = 0, σ = 0.3

Max episodes number 2500
Max steps number per episode 200
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6.2. Simulation results

The simulation took almost 50 hours to perform a little more than 1600 episodes. Since
the adopted stopping criteria was an average reward equal or higher than 30 for over 500
episodes, as shown in fig. 6.1 the simulation stopped before the max number threshold
reported in table 6.4. It can be seen that for the first 100 episodes the reward increases
and then stabilizes around 10; then it collapses to 0 just after a local peak of 30. Until
episode 580, the reward is practically 0 because the agent explores a portion of the action
space in which the hexapod robot jumps over the imposed limit, thus causing episodes to
end at the very beginning. From the 580th episode, the agent starts to explore different
action configurations and the rewards become more significant. From this episode the
average reward firstly decreases, where some episode are evaluated even under -100, then
it increases and stabilizes around 30, with a slight negative slope towards the end.

0 200 400 600 800 1000 1200 1400 1600

-100

-50

0

50

Figure 6.1: RL training episode reward.

From the 800th episode, some episode rewards are equal or even higher than 50, for example
episode 1305 has a reward of 70.84 and 65.82 is assigned to number 1500. Since 70.84 is
the greatest reward obtained in this simulation, the relative episode will be analyzed in
the detail.
Figure 6.2 depicts the displacement of the body CG in the three-dimensional space over
time: the agent makes the robot move continuously forward along the x-axis, with small
lateral and vertical variations. Initially, the hexapod robot walks almost in a straight line,
but from the fourth second it starts to move along a circular path.
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(a) Trunk CG displacement in time.

(b) Trunk CG displacement in space.

Figure 6.2: Body CG displacement.
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Figure 6.3: RL training reward function.

Looking at the evolution of the reward function’s terms, represented in fig. 6.3, the forward
velocity reward stands out from the others for its magnitude. It is negative only at the
beginning and in some sporadic instants, while in the rest of time it has a positive value.
Knowing that wvx = 2, it can be deduced that in the first half the velocity along x reaches
peaks of vx = 0.75 m

s
, while in the second half it is limited between 0 m

s
and 0.45 m

s
.

These results could appear consistent with the desired ones, but they must be contex-
tualised by the effective locomotion of the robot, represented in fig. 6.4. The initial
movement looks like a correct tripod gait step, in fact three legs are in stance position
and the other three limbs are swigging. However, after that the robot starts to move
forward using an irregular locomotion pattern, which is not the expected one: from 1.5 s
it starts to move using only three limbs to jump forward, while the other three legs are
kept in the air. In some instants, like figs. 6.4h, 6.4i and 6.4k, only one or two feet touch
the ground in order to propel the body forward.

An unconventional behaviour could also be found in the coxa oscillators’ output (fig. 6.5):
unlike the plots shown in section 3.2.4, they intersect the zero line just one time and
oscillate around small non-zero values. Despite this, it must be highlighted that the
implemented interlimb coordination method has proven to be robust enough to always
grant the desired phase lag between the six coxae.

All these unexpected and undesired events can be explained looking at the neural network
outputs. The amplitude µ is depicted in fig. 6.6, while the phase lags are represented in
fig. 6.7. After the first second, the amplitude plot resembles a square wave that changes
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(a) t = 0 s. (b) t = 0.25 s. (c) t = 0.5 s.

(d) t = 0.75 s. (e) t = 1 s. (f) t = 1.25 s.

(g) t = 1.5 s. (h) t = 1.75 s. (i) t = 2 s.

(j) t = 2.25 s. (k) t = 2.5 s. (l) t = 2.75 s.

(m) t = 3 s. (n) t = 3.25 s. (o) t = 3.5 s.

(p) t = 3.75 s. (q) t = 4 s. (r) t = 4.25 s.

(s) t = 4.5 s. (t) t = 4.75 s. (u) t = 5 s.

(v) t = 5.25 s. (w) t = 5.5 s. (x) t = 5.75 s.

(y) t = 6 s. (z) t = 6.25 s. (aa) t = 6.5 s.

(ab) t = 6.75 s. (ac) t = 7 s. (ad) t = 7.25 s.

(ae) t = 7.5 s. (af) t = 7.75 s. (ag) t = 8 s.

(ah) t = 8.25 s. (ai) t = 8.5 s. (aj) t = 8.75 s.

(ak) t = 9 s. (al) t = 9.25 s. (am) t = 9.5 s.

(an) t = 9.75 s. (ao) t = 10 s.

Figure 6.4: Hexapod movement over simulation time.
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Figure 6.5: Coxa oscillators output.

every 0.05 s, which is the sampling time. This is the reason why the Hopf oscillators are
not able to reproduce the desired movement: in order to maximize the forward velocity,
the actor chooses a policy that generates some "micro vibrations" and to achieve this
behaviour it continuously alternates µ = 0 and µ = π. Consequently, after the first two
seconds, the phase lags are kept almost constant and equal to θkh,l|max = 2

3
π rad.
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Figure 6.6: Neural network amplitude output.
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(a) Odd legs.
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Figure 6.7: Neural network phase lag outputs.
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7| Conclusions and future

developments

This thesis aims to lay the foundations for a space exploration hexapod robot. It in-
vestigates both a feasible architecture and an adaptive locomotion controller required to
achieve this goal.

Concerning the configuration a radial-symmetric body has been chosen in order to have
no preferential direction for walking, while legs’ architecture is the result of a biomimetic
approach, since it draws inspiration from stereotypical insect legs for augmented move-
ment flexibility. Instead, the proposed locomotion approach is inspired by neurobiological
control systems and it consists of an artificial set of coupled Hopf oscillators. The CPG
controller contains two hierarchical layers. The first one controls the coxae joints to repro-
duces the three most common locomotion patterns for hexapod robots: tripod gait, ripple
gait and wave gait. Instead, the second layer is used to regulate the limbs behaviour by
means of a RL-based learning algorithm (DDPG) which tunes its amplitude and phase
lag.

Several numerical simulations have been conducted to validate the proposed controller and
verify its effectiveness. In this thesis the best one has been considered. Even though the
first layer interlimb coordination has proved to be robust enough to unexpected conditions,
the simulation has shown that the RL agent could not be implemented on a real hexapod
robot. The obtained preliminary results demonstrate that the two-layer CPG works as
desired, but the reinforcement learning agent must be changed. Therefore, future studies
could try to train the neural network by:

• changing the hyper-parameter used in the simulation, trying to find out the best
ones;

• removing the amplitude output in order to further simplify the model and focusing
on the phase lag outputs, which are the one that have not been explored by the
agent;
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• modifying the reward function introducing penalties for undesired behaviours, e.g.
limiting the joints angular velocity.
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