
Scuola di Ingegneria Industriale e dell’Informazione
Dipartimento di Elettronica, Informazione e Bioingegneria
Corso di Laurea Magistrale in Computer Science and Engineering

Tesi di Laurea Magistrale

POMC

Toward a Model Checking Tool for Operator Precedence Languages

Candidato:
Davide Bergamaschi
Matricola 905436

Relatore:
Prof. Matteo Pradella
Correlatore:
Dr. Michele Chiari

Anno Accademico 2019–2020

To my parents.

Abstract

A significant contribution from the field of formal methods is providing soft-
ware engineers with increasingly powerful and efficient tools to model, ana-
lyze and verify the properties and the behavior of computer programs.

Recently a promising line of research has stemmed from Operator Prece-
dence Languages (OPL), a family of formal languages introduced by Robert
W. Floyd in the late sixties. In particular, it has been shown how OPL, de-
spite enjoying considerable expressive power, are characterized by algebraic
and logic properties that make them particularly suitable for formal verifi-
cation techniques. A major step in this direction has been taken with the
introduction of temporal logics based on OPL, such as POTL (Precedence
Oriented Temporal Logic). Procedural programs can be accurately modeled
as OPL, and POTL can then be used to formulate specifications on structural
elements like procedure calls, exceptions, handlers, etc.

We made a first attempt to reap the practical benefits of this approach with
the creation of POMC, a newly born verification tool built in the Haskell
programming language. The tool is currently capable of performing runtime
verification of POTL formulas on finite strings. In this dissertation, we review
the work done to develop POMC up to the latest version, illustrating the
main design and architectural choices taken. We also present some concrete
usage examples, and discuss the performance of POMC in light of empirical
results. We finally suggest how POMC can be extended to implement OPL-
based model checking.

i

Sommario

Un importante contributo da parte del campo dei metodi formali è quello di
fornire agli ingegneri del software strumenti sempre più potenti ed efficienti
per modellare, analizzare e verificare le proprietà ed il comportamento dei
programmi.

Un promettente filone di ricerca si è ultimamente incentrato sugli Operator
Precedence Languages (OPL), una famiglia di linguaggi formali introdotta
da Robert W. Floyd sul finire degli anni sessanta. In particolare, è stato
mostrato come gli OPL, nonostante il loro considerevole potere espressivo,
siano caratterizzati da proprietà algebrico-logiche che li rendono particolar-
mente adatti per le tecniche di verifica formale. Un deciso passo avanti in
questa direzione è stato effettuato con l’introduzione di logiche temporali
basate sugli OPL, come ad esempio POTL (Precedence Oriented Temporal
Logic). I programmi procedurali possono essere fedelmente modellati come
OPL, e POTL può poi essere utilizzata per formulare specifiche elaborate su
elementi strutturali come chiamate a procedure, eccezioni, handlers, ecc.

Un primo tentativo di sfruttare i benefici pratici di questo approccio si è
concretizzato nella creazione di POMC, un tool di verifica di recente con-
cezione scritto nel linguaggio di programmazione Haskell. Al momento il
software è in grado di effettuare la runtime verification di formule POTL su
stringhe finite. Questa tesi si propone di esporre il lavoro fatto per sviluppare
POMC fino alla versione corrente, illustrando le principali scelte progettuali
e architetturali fatte. Sono inoltre presentati degli esempi d’uso concreti,
e viene discusso il livello di performance raggiunto alla luce di una serie di
risultati empirici. Si suggerisce infine come POMC possa essere esteso per
implementare funzionalità di model checking basate sugli OPL.

ii

Acknowledgements

I would like to thank Prof. Matteo Pradella for giving me the opportunity
to work on such a fascinating project, as well as Dr. Michele Chiari for his
essential assistance throughout the development of POMC. This work owes
immensely to their guidance and wisdom.

Furthermore, I would like to thank Prof. Dino Mandrioli for the pleasant
discussions and precious suggestions.

Thanks also to my friends at Politecnico di Milano, especially Samuele, for all
the philosophical discussions and the good laughs, and Francesco, for having
shared with me such a significant part of our university experience.

Special thanks to Camille for proofreading this dissertation, and for having
taught me much of what I have learned in these last two years that does not
concern computer engineering.

A huge thank you to my longtime friends at home: Alberto, Alessandro &
Alessandro, Emanuele, Federica, Flavio, Francesco, Lorenzo, Martina and
Mattia, for their patience with me and their unwavering support and affec-
tion. Because of them, even when I was alone, I never really felt lonely.

My gratitude also goes to my family, that never stopped believing in me for
a second. To my parents I would like to say: thank you for all that you
have done for me, including continually supporting me through almost two
decades of instruction; while I prepare for the new journey that is ahead of
me, I take inspiration from your honesty and consistency.

iii

Contents

1 Introduction 1
1.1 Outline . 2

2 Preliminary concepts 3
2.1 Operator Precedence Languages 3

2.1.1 Operator Precedence Grammars 4
2.1.2 Operator Precedence Automata 7

2.2 Precedence Oriented Temporal Logic 10
2.3 Formal Verification . 16

2.3.1 Automaton Construction 17

3 POMC 24
3.1 Functionalities . 24
3.2 Design choices . 25
3.3 Architecture . 26

3.3.1 Library . 26
3.3.2 Application . 30

3.4 Optimizations . 31
3.5 Input Language . 34

4 Experiments 38
4.1 Operator Benchmarks . 38
4.2 Checking Stack Trace Properties 44

5 Conclusions 48
5.1 Future Work . 48

iv

Chapter 1

Introduction

Since the beginning of the digital era, humanity and technology have be-
come more and more inextricably intertwined. We rely on computerized,
automated systems to work, communicate, travel and even entertain our-
selves. Some of these systems are characterized by a huge complexity, and
some bear critical responsibilities, with faults and malfunctions potentially
having dramatic consequences. The possibility of formally verifying the de-
sired properties of an automated system has therefore become of crucial
importance.

In particular, one of the major goals of formal verification is that of provid-
ing tools to model and analyze the behavior of software. Nowadays, pro-
grams are most commonly expressed in the form of Context-Free Languages
(CFL). While traditional model checking formalisms (such as Linear-Time
Logic specifications and Büchi automaton models) have been effectively used
to verify regular properties of programs, there exist several other interest-
ing properties which are non-regular, in that they are intrinsically tied to
the context-free structure of programming languages (e.g. Hoare pre/post
condition specifications).

In this regard, Operator Precedence Languages (OPL) [8] are an interesting
subfamily of CFL. While OPL still exhibit a strong expressive power (e.g.
they are suitable to express the syntax of real-world programming languages),
they enjoy several useful properties [14] (such as closure under Boolean oper-
ations, concatenation and Kleene ∗, and decidability of language emptiness

1

and inclusion), which do not hold for a generic CFL. Said properties make
OPL especially suitable for formal verification.

This motivated the introduction of POTL [5][6], a temporal logic defined on
OP languages. It can be used to conveniently reason on procedural programs:
one can specify properties on matching pairs of call / return statements (e.g.
Hoare-style conditions), but also express specifications on elements which
are possibly in a one (many) to many (one) relation, such as handlers and
exceptions. This puts POTL on a further level of expressivity with respect to
other formalisms which have been used to characterize procedural programs
in the past years, such as CaRet [2] and NWTL [1].

Recently, a model checking procedure for POTL on finite OP strings has been
theorized [5]. At its heart lies an algorithmic construction for the translation
of POTL formulas into equivalent automata. This dissertation introduces
POMC, an early-stage verification tool targeted at OPL. Relying on the
algorithmic construction mentioned earlier, the current version of the tool is
able to perform runtime verification on finite OP strings. As will be discussed,
POMC lays the basis for the implementation of a complete model checker
based on OPL.

1.1 Outline
The exposition is structured in the following way: chapter 2 introduces the
preliminary theoretical notions which underlie POMC; chapter 3 describes
POMC, detailing its functionalities and its inner architecture; chapter 4
presents some empirical results concerning POMC, showing some practical
use cases and reviewing its performance; chapter 5 summarizes the research
contribution stemming from POMC and sketches some possible future devel-
opments.

2

Chapter 2

Preliminary concepts

This chapter covers the theoretical foundations that underpin formal veri-
fication techniques relying on Operator Precedence Languages. In particu-
lar, section 2.1 introduces OPL and their main formalizations, section 2.2
presents the syntax and semantics of POTL, section 2.3 covers the topic of
formal verification of POTL formulas, supplying a fundamental automaton-
translation algorithm.

2.1 Operator Precedence Languages
Operator Precedence Languages (OPL) are a subfamily of CFL, characterized
by grammars where terminal symbols are enriched with precedence relations
between one another.

Precedence relations are leveraged to guide the parsing of OP strings: the
right-hand side of a grammar rule is recognized deterministically (it must
appear in the form of a specific precedence structure called chain, as will
be clarified later), avoiding the risk of having to roll back to a different
reduction due to ambiguity. This peculiar feature allows, among other things,
to efficiently parallelize the parsing process, thereby taking full advantage of
modern parallel architectures [4].

Moreover, OPL share several properties with regular languages, including
closure w.r.t. Boolean operations and decidability of the emptiness problem.

3

As we shall demonstrate later, these are the properties that underlie the
proposed formal verification techniques relying on OPL.

The rest of this section will provide some key formal definitions concerning
OPL, characterizing them through both their generating grammars (Opera-
tor Precedence Grammars, or OPG) and their recognizing automata (Oper-
ator Precedence Automata, or OPA). For a more complete introduction to
the subject, the reader is referred to [14].

2.1.1 Operator Precedence Grammars
Firstly, we recall some notions and notation from formal language theory.

A context-free grammar (CF) G is a tuple (VN ,Σ, P, S), where:

– VN (nonterminal alphabet) and Σ (terminal alphabet) are two disjoint
finite sets of characters; their union VN ∪ Σ is called V ;

– P is a finite set of rules of the form A → α, with A ∈ VN being the
left-hand side (or l.h.s.) and α ∈ V ∗ being the right-hand side (r.h.s.);

– S ∈ VN is the start symbol (or axiom).

Figure 2.1 displays the rules of the context-free grammar for a simple arith-
metic language supporting addition and multiplication, where numbers are
represented with the e terminal symbol. The syntax tree resulting from the
parsing of expression e ∗ e+ e is shown on the right.

The following naming conventions are adopted, unless otherwise specified:
uppercase Latin letters A,B, . . . denote nonterminal characters; lowercase

S → E | T | F
E → E + T | T ∗ F | e
T → T ∗ F | e
F → e

S

E

T

e

∗ F

e

+ T

e

Figure 2.1: A grammar generating arithmetic expressions.

4

letters a, b, . . . at the beginning of the Latin alphabet denote terminal char-
acters; lowercase letters x, y, . . . at the end of the Latin alphabet denote
terminal strings; lowercase Greek letters α, β . . . denote strings over V , with
the letter ε indicating the empty string.

Direct derivation is denoted as α⇒β, meaning that α = α1α2α3, β = α1α
′
2α3,

and α2 → α′2 ∈ P . Derivation, that is the reflective and transitive closure of
the ⇒ relation, is denoted by ∗⇒. The language generated by a grammar G
is thus defined as L(G) = {x ∈ Σ∗ | S ∗⇒ x}.

Definition (OF,OG). A grammar rule is in Operator Form (OF) if its r.h.s.
has no adjacent nonterminals. An Operator Grammar (OG) is a context-free
grammar characterized solely by OF rules.

Definition (Left/Right Terminal Set). Let G be an OG, and let A be one of
its nonterminal symbols. The left and right terminal sets of A are given by:

LG(A) = {a ∈ Σ | A ∗⇒ Baα} RG(A) = {a ∈ Σ | A ∗⇒ αaB}

where B ∈ VN ∪ {ε}.

Notice how the grammar of Figure 2.1 is an OG. The left and right terminal
sets of its nonterminal symbols are: L(E) = {+, ∗, e}, R(E) = {+, ∗, e},
L(T) = {∗, e}, R(T) = {∗, e}, L(F) = {e}, R(F) = {e}.

Let G be an OG, with α, β ∈ (VN∪Σ)∗ and a, b ∈ Σ. Three binary precedence
relations are defined:
equal in precedence: a .= b ⇐⇒ ∃ A→αaBbβ, with B ∈ VN ∪ {ε};
yields precedence: al b ⇐⇒ ∃ A→αaDβ, with D ∈ VN , b ∈ LG(D);
takes precedence: am b ⇐⇒ ∃ A→αDbβ, with D ∈ VN , a ∈ RG(D).

For an OG G, the Operator Precedence Matrix (OPM) M of G is defined as
a |Σ| × |Σ| array that, for each ordered pair (a, b), stores the set Mab of the
precedence relations holding between a and b.

Definition (OPG). An OG G is an Operator Precedence Grammar (OPG)
iff the OPM of G is a conflict-free matrix, that is ∀ a, b, |Mab| ≤ 1.

Figure 2.2 contains the OPM for the grammar of arithmetic expressions of
Figure 2.1, where the precedence relation holding for the ordered pair (a, b)
is represented as the intersection of the a-row and the b-column. Each entry

5

+ * e
+ m l l
* m m l
e m m

Figure 2.2: OPM for the arithmetic expression grammar.

of the matrix corresponds to at most a single element, making it clear that
the grammar is an OPG.

Let Σ be an alphabet and let M be a conflict-free OPM defined on Σ ∪ #,
where the # symbol is used to delimit the beginning and the end of terminal
strings. We call the couple (Σ, M) Operator Precedence Alphabet (OP
Alphabet). If Mab = π, with π ∈ {l, .=,m}, we write a π b. By convention,
it is established that # .= # and, ∀ a ∈ Σ, # l a and am #.

The fundamental structures to formally characterize the strings of an OP
language are chains: recursive structures representing string regions enclosed
in (l,m) pairs, that, in parsing, correspond to r.h.s. candidates for reduction.

Definition (Simple Chain). A simple chain c0 [c1c2 . . . cl]cl+1 is a string
c0c1c2 . . . clcl+1, such that: c0, cl+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . , l
(l ≥ 1), and c0 l c1

.= c2 . . . cl−1
.= cl m cl+1.

Definition (Composed Chain). A composed chain c0 [s0c1s1c2 . . . clsl]cl+1 is a
string c0s0c1s1c2 . . . clslcl+1, with si ∈ Σ∗, where c0 [c1c2 . . . cl]cl+1 is a simple
chain, and either si = ε or ci [si]ci+1 is a chain (simple or composed), for
every i = 0, 1, . . . , l (l ≥ 1).

For both simple and composed chains, the first and the last symbols are
respectively called left and right context.

Definition (Compatible Word). A word ω over the OP alphabet (Σ,M) is
compatible with M iff both the following conditions hold: 1. Mab 6= ∅, for
each pair of letters a, b, consecutive in ω; 2. Ma0an+1 6= ∅ for each substring x
of #ω# such that x = a0x0a1x1a2 . . . anxnan+1 and either xi = ε or a

i [xi]ai+1
is a chain (simple or composed) for every i ∈ {1, . . . , n}.

6

call ret han exc
call l .= l m
ret m m m m

han l m l .=
exc m m m m

·

(0) ·

call (1) ·

·

·

han (2) ·

call (3) ·

call (4) ·

call (5)

exc (6)

call (7) ret (8)

call (9) ret (10)

ret (11)

(12)

#[call[[[han[call[call[call]]]exc]call ret]call ret]ret]#

Figure 2.3: OPM for a stack trace language and ST of an example string.

Figure 2.3 displays the OPM for a language of stack traces, where call rep-
resents procedure calls, ret represents regular termination events, han rep-
resents the instantiation of an exception handler, and exc represents the
occurrence of an exception. On the right, the figure also shows an example
of string compatible with the OPM, with chain bodies represented between
square brackets, and the syntax tree isomorphic to its chain structures. No-
tice that the OPM is defined on all combinations of terminal symbols, there-
fore all words constructed with said symbols are compatible. Examples of
incompatible words can be produced, on the other hand, for the arithmetic
expression matrix of Figure 2.2, e.g. e+ e e.

2.1.2 Operator Precedence Automata
For several decades after its introduction, the class of OPL remained char-
acterized solely in terms of grammars, and lacked a family of recognizing
automata. Recent research has filled this gap with the definition of Opera-
tor Precedence Automata (OPA) [13], a formalism that extends traditional
left-to-right pushdown automata with the introduction of token precedence
and precedence-guided transitions.

7

Definition (OPA). An Operator Precedence Automaton (OPA) is a tuple
A = (Σ,M,Q, I, F, δ), where:

• Σ is an alphabet

• M is an OPM on Σ

• Q is a set of states

• I ⊆ Q is the set of initial states

• F ⊆ Q is the set of final states

• δ ⊆ Q × (Σ ∪ Q) × Q is the transition relation, which is the union of
three disjoint relations:

δshift ⊆ Q× Σ×Q, δpush ⊆ Q× Σ×Q, δpop ⊆ Q×Q×Q.

We use p, q, . . . to denote states.

Let Γ′ = Γ ∪ {⊥} be the stack alphabet, with Γ = Σ × Q and ⊥ denoting
the bottom symbol of the stack. We indicate stack symbols with ⊥ or [a, q]
couples.

We also define predicates symb and state such that symb([a, q]) = a and
symb(⊥) = #, and state([a, q]) = q. Furthermore, given stack content γ =
γn . . . γ1⊥, with γi ∈ Γ and n ≥ 0, we set symb(γ) = symb(γn) if n ≥ 1 and
symb(γ) = # if n = 0.

An OPA configuration is a triple c = 〈w, q, γ〉, where ω ∈ Σ∗# represents the
unread portion of the input symbols, q ∈ Q is the current state, and γ ∈ Γ∗⊥
is the current stack content.

A computation is a finite sequence c0 ` c1 ` · · · ` cn of moves (transitions)
ci ` ci+1.

Moves are of three kinds, in relation to the precedence relation between the
symbol on top of the stack and the next input symbol.

Push Moves
If symb(γ) l a, then 〈ax, p, γ〉 ` 〈x, q, [a, p]γ〉, with (p, a, q) ∈ δpush.

Shift Moves
If a .= b, then 〈bx, q, [a, p]γ〉 ` 〈x, r, [b, p]γ〉, with (q, b, r) ∈ δshift.

8

Pop Moves
If am b, then 〈bx, q, [a, p]γ〉 ` 〈bx, r, γ〉, with (q, p, r) ∈ δpop.

Push moves add a new element on top of the stack, composed by the con-
sumed input symbol and the starting state. Shift moves only update the
top of the stack by changing the old input symbol into the consumed input
symbol. Pop moves on the other hand do not consume any input, and only
remove the top element of the stack. In all three cases, the current state of
the automaton is updated according to the respective δ relation. Notice how
shift and pop moves are not performed when the stack contains only ⊥.

q0 q1 q2

q3q4q5

call call

q1

call,han
ret, exc

q2

retq0

ret

Input State Stack
call call han call exc ret ret # q0 ⊥

call han call exc ret ret # q1 [call, q0] ⊥
han call exc ret ret # q2 [call, q1] [call, q0] ⊥

call exc ret ret # q2 [han, q2] [call, q1] [call, q0] ⊥
exc ret ret # q2 [call, q2] [han, q2] [call, q1] [call, q0] ⊥
exc ret ret # q2 [han, q2] [call, q1] [call, q0] ⊥

ret ret # q2 [call, q1] [call, q0] ⊥
ret # q2 [ret, q1] [call, q0] ⊥
ret # q3 [call, q0] ⊥

q4 [ret, q0] ⊥
q5 ⊥

Figure 2.4: An OPA on the matrix of Figure 2.3, with an example run.

9

Definition (Accepted Language). The accepted language of an OPA A is:

L(A) = {x ∈ Σ∗ | 〈x#, qI ,⊥〉 `∗ 〈#, qF ,⊥〉, qI ∈ I, qF ∈ F}.

The automaton of Figure 2.4 displays an OPA accepting a subset of the
stack trace language defined with the matrix of Figure 2.3. Following the
graphical conventions on OPA, it is represented as a graph having Q as the
set of vertices and Σ ∪ Q as the set of edge labelings, with push, shift and
pop transitions denoted respectively with normal, dashed and double arrows.
Notice how the automaton, combined with the precedence relations imposed
by the OPM, restricts the accepted language to stack traces that: 1. are
enclosed in a main (call, ret) frame; 2. do not contain uncaught exceptions;
3. do not contain return statements without a corresponding call; 4. do not
contain non-terminating calls.

2.2 Precedence Oriented Temporal Logic
Temporal logics are logical formalisms that allow reasoning about statements
in terms of time. In the field of formal verification, they have assumed a
fundamental role for specifying and constraining the evolution of a system
in time.

Linear Time Logic (LTL) [16] is one of the most successful among these
formalisms. It is based on a linear model of time, characterizing it as a
temporally-ordered, possibly non-terminating sequence of events. LTL is
able to express several interesting properties, like safety and liveness condi-
tions. Its expressive power is nevertheless confined to the so-called regular
properties: the set of prefixes that violate them has to be expressible as
a regular language (RL) [3]. This constitutes a relevant limitation when
attempting to reason about procedural programs, due to their intrinsically
structured nature (that is, context-free rather than regular).

A relevant attempt to overcome these limitations has been done with the
introduction of CaRet [2] and NWTL [1]. Procedural programs are modeled
as Nested Word structures, consisting in the combination of a linear ordering
of elements with a one-to-one matching relation of call and return positions.
CaRet and NWTL can then be used to express a new class of properties on
such words, directly addressing the nested structure of the program model.

10

For example, the matching of the start and the end of a procedure allows to
express Hoare-style specifications composed of pre/post conditions.

However, some relevant program structures and behaviors are not express-
ible in terms of a one-to-one matching relation. For example, with modern
programming languages, when a procedure raises an exception it not only
terminates itself, but also causes the execution environment to backtrack on
the call stack terminating all procedures until a suitable handler is found, or
the program is terminated. To account for these types of behavior, one-to-
many and many-to-one matching relations have to be employed.

Recently, researchers have proposed the use of temporal logics based on OPL
to respond to the need of additional expressive power. In particular, it has
been shown how OPL strictly include Visibly Pushdown Languages, the fam-
ily of Nested Words languages [7]. A procedural program can be more closely
modeled as OPL, and a suitable temporal logic can be used to express prop-
erties on matching elements by leveraging the relation induced by precedence
chains.

The most recent and refined example of temporal logic based on OPL is
POTL (Precedence Oriented Temporal Logic) [5][6]. POTL allows to express
a wide range of specifications on procedural programs, including conditions
on the throwing of exceptions and stack inspection properties. In the re-
mainder of this section, we will present a formal definition of its syntax and
semantics, as well as some concrete examples on the alphabet of stack traces
(Figure 2.3).

Definition (POTL Syntax). Let AP be a finite set of atomic propositions.
The syntax of POTL is given by the following rules:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ
| #tϕ | �tϕ
| χtFϕ | χtPϕ
| ϕ U tχ ϕ | ϕ Stχ ϕ
| #t

Hϕ | �tHϕ
| ϕ U tH ϕ | ϕ StH ϕ

where a ∈ AP , and t ∈ {d, u}.

Before illustrating semantics, some preliminary structural definitions have to

11

be introduced.

Definition (Word Structure). A word structure (or OP word) is a tuple
〈U,MP(AP), P 〉, where:

– U = {0, 1, . . . , n, n+ 1}, with n ∈ N, is a set of word positions

– MP(AP) is an OPM on P(AP)

– P : U → P(AP) associates each position with the set of atomic propo-
sitions that hold in it, with P (0) = P (n+ 1) = {#}.

Given two word structure positions i and j, we write i π j to indicate that
P (i) π P (j).

Definition (Chain Relation). The Chain Relation χ ⊆ U × U is defined so
that χ(i, j) holds between positions i and j iff i < j − 1 and i and j are
respectively the left and the right contexts of the same chain.

Figure 2.5 shows the word of Figure 2.3, with the chain relation graphically
represented by arcs connecting contexts. The alphabet is extended to be a set
of propositional symbol sets, P(AP), with AP containing call, ret,han, exc,
and also additional labels having a denotative role (e.g. pA, pB, pC represent
the names of different procedures). The OPM is adapted to work on the
new alphabet in the following way: the atomic propositions are partitioned
into structural labels (or SL, the ones written in bold) and normal labels (the
ones in round font). MP(AP) is then defined only for subsets of AP containing
exactly one SL, so that given two SL l1, l2, for any a, a′, b, b′ ∈ P(AP) s.t.
l1 ∈ a, a′ and l2 ∈ b, b′ we have MP(AP)(a, b) = MP(AP)(a′, b′).

The semantics of POTL is defined with respect to single word positions of a
word structure. The definitions below, where w is an OP word and i ∈ U is

l call l han l call l call l call m exc m call .= ret m call .= ret m ret m
pA pB pC pC pErr pErr pErr pErr pA

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.5: The word of Figure 2.3, with additional propositional labels.

12

a position of w, illustrate the meaning of each syntax element of POTL, and
are accompanied by examples on the formula of Figure 2.5.

Atomic Propositions
Let a ∈ AP . Then (w, i) |= a, iff a ∈ P (i). In the example formula,
han holds in position 3 and pA holds in positions 1 and 11.

Operators from Propositional Logic and LTL
¬ and ∨ (as well as ∧,2,3, . . .) behave like their propositional / LTL
counterparts. For example, the formula ¬(call ∨ han ∨ ret) is true in
position 6 and false in every other position (except for the start and the
end).

Precedence Next and Back
The #t (resp. �t) operator acts similarly to the Next (resp. Back) op-
erator from LTL, but it imposes a further condition on the subsequent
(resp. previous) position: in the d case, said position must be at a lower
or equal level in the syntax tree, while in the u case it must be at an
equal or higher one.

– (w, i) |= #dϕ iff (w, i+ 1) |= ϕ, and il (i+ 1) or i .= (i+ 1);

– (w, i) |= �dϕ iff (w, i− 1) |= ϕ, and (i− 1) l i or (i− 1) .= i;

– (w, i) |= #uϕ iff (w, i+ 1) |= ϕ, and i .= (i+ 1) or im (i+ 1);

– (w, i) |= �uϕ iff (w, i− 1) |= ϕ, and (i− 1) .= i or (i− 1) m i.

E.g. #dcall imposes that the next position be an inner call (it holds in
position 2, 3 and 4 of the example string), and conversely �dcall requires
that the previous position be a call, meaning that the current one is the
first element of the body of a procedure (this is true in positions 2, 4,
5) or the return statement of an empty one (position 8, 10). �ucall can
instead be used to assert that the current position terminates an empty
function frame, as in positions 6, 8 and 10; #ucall also holds in positions
6 and 8.

Chain Next and Back
The operators χtF and χtP impose restrictions in a similar way as #t and
�t, but instead of concerning the subsequent or previous position they
move across the chain relation.

13

– (w, i) |= χdFϕ iff there exists a position j > i such that χ(i, j), i l j
or i .= j, and (w, j) |= ϕ;

– (w, i) |= χdPϕ iff there exists a position j < i such that χ(j, i), jl i or
j
.= i, and (w, j) |= ϕ;

– (w, i) |= χuFϕ iff there exists a position j > i such that χ(i, j), i .= j
or im j, and (w, j) |= ϕ;

– (w, i) |= χuPϕ iff there exists a position j < i such that χ(j, i), j .= i
or j m i, and (w, j) |= ϕ.

In the example string, χdFpErr holds in position 1, since pErr holds in 7
and 9 and both χ(1, 7) and χ(1, 9) hold. χuFexc can be used to describe
call positions that correspond to procedures terminated by an exception
thrown by an inner procedure (such as pos. 3 and 4). χuPcall is true in
exc statements that terminate at least one procedure other than the one
raising it, such as the one in pos. 6. χdF ret (and equally χuF ret) holds in
call positions initiating a procedure which terminates regularly (with a
ret statement as opposed to an exc one), such as position 1.

Summary Until and Since
The U tχ and Stχ are obtained by inductively applying the #t, χtF and
�t, χtP operators, respectively.

– (w, i) |= ψ U tχ θ iff one of the following conditions holds:

- (w, i) |= θ

- (w, i) |= ψ, and (w, i) |= #t(ψ U tχ θ) or (w, i) |= χtF (ψ U tχ θ);

– (w, i) |= ψ Stχ θ iff one of the following conditions holds:

- (w, i) |= θ

- (w, i) |= ψ, and (w, i) |= �t(ψ Stχ θ) or (w, i) |= χtP (ψ Stχ θ).

For example, >Udχexc is true in call positions corresponding to function
frames that contain one or more exc, but are not directly terminated
by one of them, such as position 1 (due to path 1-2-6). > Uuχ exc, on
the other hand, holds for positions contained in the frame of a function
that is terminated by an exception, such as position 3 (due to path 3-6).
Notice also how (call ∨ exc) Suχ pB in position 7 because of path 3-6-7.

14

Hierarchical Next and Back
The #u

H and �uH are next/back operators which allow to “move” be-
tween right contexts of chains with the same element as left context.
Conversely, #d

H and �dH consider the left contexts of chains sharing
their right context.

– (w, i) |= #u
Hϕ iff there exists a position h < i s.t. χ(h, i) and hl i and

a position j = min{k | i < k ∧ χ(h, k) ∧ hl k} and (w, j) |= ϕ;

– (w, i) |= �uHϕ iff there exists a position h < i s.t. χ(h, i) and hl i and
a position j = max{k | k < i ∧ χ(h, k) ∧ hl k} and (w, j) |= ϕ;

– (w, i) |= #d
Hϕ iff there exists a position h > i s.t. χ(i, h) and imh and

a position j = min{k | i < k ∧ χ(k, h) ∧ k m h} and (w, j) |= ϕ;

– (w, i) |= �dHϕ iff there exists a position h > i s.t. χ(i, h) and imh and
a position j = max{k | i < k ∧ χ(k, h) ∧ k m h} and (w, j) |= ϕ.

In the example word, #u
HpErr holds in position 7 because pErr holds

in 9, and �uHpErr in 9 because pErr holds in 7, with the two operators
respectively going up and down between calls to pErr . On the other
hand, #d

H and �dH can be used to go down and up among call positions
terminated by the same exc: #d

HpC holds in position 3 (given that both
positions 3 and 4 are in the chain relation with position 6), while �dHpB
holds in 4.

Hierarchical Until and Since
The U tH and StH are obtained by respectively iterating the #t

H and the
�tH operators, similarly to how summary until and since are defined.

– (w, i) |= ψ UuH θ iff one of the following conditions holds:

- (w, i) |= θ and there exists a position h < i s.t. χ(h, i) and hl i

- (w, i) |= ψ and (w, i) |= #u
H(ψ UuH θ);

– (w, i) |= ψ SuH θ iff one of the following conditions holds:

- (w, i) |= θ and there exists a position h < i s.t. χ(h, i) and hl i

- (w, i) |= ψ and (w, i) |= �uH(ψ SuH θ);

– (w, i) |= ψ UdH θ iff one of the following conditions holds:

- (w, i) |= θ and there exists a position h > i s.t. χ(i, h) and im h

15

- (w, i) |= ψ and (w, i) |= #u
H(ψ UdH θ);

– (w, i) |= ψ SdH θ iff one of the following conditions holds:

- (w, i) |= θ and there exists a position h > i s.t. χ(i, h) and im h

- (w, i) |= ψ and (w, i) |= �uH(ψ SdH θ).

In the example, callUuH pErr holds in position 7, while callSuH pErr holds
in position 9. Furthermore, callUdHpC holds in position 3, and callSdHpB
in position 4, both because of path 3-4.

Notice how the d-versions of POTL operators specify relations which go
downwards with respect to the syntax tree of an OP word, while conversely
u-versions go upwards.

The distinction above allows the expression of a concise specification for most
practical problems, however sometimes one might want to refer to a specific
set of precedence relations. To do this conveniently, the following PR-based
operators can be used: #Π,�Π, χΠ

F , χ
Π
P ,UΠ

χ ,SΠ
χ , with Π ⊆ {l, .=,m},Π 6= ∅.

Their semantic rules are analogous to the corresponding PR-based operators,
the only difference being that the concerned PRs are precisely those contained
in Π (instead of just {l, .=} or { .=,m}). Notice how the two syntax types are
equivalent in terms of expressive power (they can be easily translated into
one another, e.g. χdF = χl .=

F).

2.3 Formal Verification
We restrict our attention to two verification problems for POTL, and we
outline a way to solve them algorithmically. The proposed approach is akin
to “traditional” automata-theoretic ones [12].

Definition (Runtime Verification Problem). Given a POTL formula ϕ and
an OP string s, the runtime verification problem consists in establishing
whether (s, 1) |= ϕ, i.e. verifying that ϕ holds in the first position of s.

Definition (Model Checking Problem). Given an OPA A and a POTL for-
mula ϕ, the model checking problem consists in establishing whether A |= ϕ,
i.e. verifying that ϕ holds in the first position of every string accepted by A.

The runtime verification problem typically arises in the presence of a system

16

producing an execution trace for which some desired properties have to be
checked. For our purposes, a trace consists in an OP string s, while the
specification is expressed as a POTL formula ϕ, as described above. The
verification question can be answered by constructing an OPA Aϕ, which
accepts all the OP strings that satisfy ϕ, and then running the automaton
with s as input. The trace s satisfies the specification ϕ iff s is recognized
by the automaton.

With model checking, on the other hand, a system is modeled as an OPA A
and a specification of the desired system behavior is expressed as a POTL
formula ϕ. Then OPA A¬ϕ is constructed from the negation of ϕ, such that
A¬ϕ accepts all strings that violate ϕ. Finally, A is intersected with A¬ϕ, and
the emptiness of the intersection language is checked: if L(A)∩L(A¬ϕ) = ∅,
then A meets the specification, otherwise a counterexample can be produced.

It is clear what a crucial role is played by translating POTL formulas into
equivalent Operator Precedence Automata in addressing both of the above
problems. An algorithmic procedure to do that is provided in the following
subsection. The automaton it builds has size of at most 2O(|ϕ|) states, where
|ϕ| is the length of the input formula [5].

2.3.1 Automaton Construction
Let (P(AP),MP(AP)) be an OP alphabet, where AP is a finite set of atomic
propositions, and let ϕ be a POTL formula. The following construction
shows how to build an OPA Aϕ = 〈P(AP),MP(AP), Q, I, F, δ〉, that accepts
all and only the models of ϕ.

Let Cl(ϕ) be the closure of ϕ, which contains all relevant subformulas of ϕ.
In its basic form (which, as we shall see, is augmented in presence of specific
operators), Cl(ϕ) amounts to the smallest set which respects the following
rules:

1. ϕ ∈ Cl(ϕ);

2. AP ⊆ Cl(ϕ);

3. if ψ ∈ Cl(ϕ) and ψ 6= ¬θ, then ¬ψ ∈ Cl(ϕ) (we identify ¬¬ψ with ψ);

4. if ¬ψ ∈ Cl(ϕ), then ψ ∈ Cl(ϕ);

5. if any of ψ ∧ θ or ψ ∨ θ is in Cl(ϕ), then ψ ∈ Cl(ϕ) and θ ∈ Cl(ϕ);

17

6. if any of the unary temporal operators (such as #Π, χΠ
F , ...) is in Cl(ϕ),

and ψ is its argument, then ψ ∈ Cl(ϕ);

7. if any of the until- and since-like operators is in Cl(ϕ), and ψ and θ are
its operands, then ψ, θ ∈ Cl(ϕ).

We also define Atoms(ϕ) as the set of all consistent subsets of Cl(ϕ), where
Φ ⊆ Cl(ϕ) is consistent if all the following conditions hold:

1. ∀ψ ∈ Cl(ϕ), ψ ∈ Φ iff ¬ψ /∈ Φ;

2. ψ ∧ θ ∈ Φ, iff ψ ∈ Φ and θ ∈ Φ;

3. ψ ∨ θ ∈ Φ, iff ψ ∈ Φ or θ ∈ Φ, or both.

As with the closure, the consistency constraints listed above are enriched
when specific operators are present.

The set of states is Q = Atoms(ϕ)2: it is composed by elements of the form
Φ = (Φc,Φp), where Φc (current set) represents the formulas which hold
in the current position, and Φp (pending set) keeps track of the temporal
obligations introduced by certain operators, as will be clarified below.

In a computation of Aϕ, each state is associated with a word position (and
represents the formulas and the obligations which hold in it). The transition
function, in its basic form, is thus characterized by the following constraints:

– ∀(Φ, a,Ψ) ∈ δpush/shift , Φc ∩ AP = a;

– ∀(Φ,Θ,Ψ) ∈ δpop, Φc = Ψc.

The initial set I is composed by states (Φc,Φp) such that ϕ ∈ Φc, while the
states of final set F are of the form (Ψc,Ψp), where Ψc ∩AP = {#} and Ψc

contains no future operators. Furthermore, Φp and Ψp are generally “empty”
(contain only negated formulas), with the exception of some operators that
are explicitly indicated in the following.

Precedence Next and Back
For the sake of generality, we show the construction for the PR-based
version of the Precedence Next and Back operators. The ST-based ones
can be easily translated as:

#d = #l .= �d = �l .= #u = #
.=m �u = �

.=m.

18

Let #Πψ ∈ Cl(ϕ), with Π ⊆ {l, .=,m}. Let (Φ, a,Ψ) ∈ δshift ∪ δpush, and
b = Ψc ∩ AP . Then, #Πψ ∈ Φc iff ψ ∈ Ψc and a π b for a PR π ∈ Π.

Let �Πψ ∈ Cl(ϕ), with Π ⊆ {l, .=,m}. Let (Φ, a,Ψ) ∈ δshift ∪ δpush, and
b = Ψc ∩ AP . Then, ψ ∈ Φc iff �Πψ ∈ Ψc and a π b for a PR π ∈ Π.

Chain Next and Back
For these operators, as for the Precedence Next and Back ones, we will
refer to the PR-based form. The ST-based operators can be translated as
follows:

χdF = χl .=
F χuF = χ

.=m
F χdP = χl .=

P χuP = χ
.=m
P .

Let χΠ
F ∈ Cl(ϕ). Then, for each π ∈ Π, we also add χπF to Cl(ϕ). For every

atom Φ, we impose that χΠ
F ∈ Φ iff χπ′

F ∈ Φ for some π′ ∈ Π.

We also add the auxiliary symbol χL in Cl(ϕ), for which we impose the
following rule: if (Φ, a,Ψ) ∈ δpush, then χL ∈ Φp; if (Φ, a,Ψ) ∈ δshift or
(Φ,Θ,Ψ) ∈ δpop, then χL 6∈ Φp.

Furthermore, for any initial state (Φc,Φp) ∈ I, we have χL ∈ Φp iff # 6∈ Φc.

If χ
.=
Fψ ∈ Cl(ϕ), the following constraints are added:

1. let (Φ, a,Ψ) ∈ δpush/shift : then χ
.=
Fψ ∈ Φc iff χ

.=
Fψ, χL ∈ Ψp;

2. let (Φ,Θ,Ψ) ∈ δpop: then χ
.=
Fψ 6∈ Φp, and χ

.=
Fψ ∈ Θp iff χ

.=
Fψ ∈ Ψp;

3. let (Φ, a,Ψ) ∈ δshift : then χ
.=
Fψ ∈ Φp iff ψ ∈ Φc.

If χl
Fψ ∈ Cl(ϕ), χl

Fψ is allowed in the pending part of initial states, and
the following constraints are added:

4. let (Φ, a,Ψ) ∈ δpush/shift : then χl
Fψ ∈ Φc iff χl

Fψ, χL ∈ Ψp;

5. let (Φ,Θ,Ψ) ∈ δpop: then χl
Fψ ∈ Θp iff χL ∈ Ψp, and either (a) χl

Fψ ∈ Ψp

or (b) ψ ∈ Φc.

If χm
Fψ ∈ Cl(ϕ), the following constraints are added::

6. let (Φ, a,Ψ) ∈ δpush/shift : then χm
Fψ ∈ Φc iff χm

Fψ, χL ∈ Ψp;

7. let (Φ,Θ,Ψ) ∈ δpop: χm
Fψ ∈ Θp iff χm

Fψ ∈ Ψp, and χm
Fψ ∈ Φp iff

ψ ∈ Φc;

8. let (Φ, a,Ψ) ∈ δshift : then χm
Fψ 6∈ Φp.

19

Let χΠ
P ∈ Cl(ϕ). Then, for each π ∈ Π, we also add χπP to Cl(ϕ). For every

atom Φ, we impose that χΠ
P ∈ Φ iff χπ′

P ∈ Φ for some π′ ∈ Π.

We also add the auxiliary symbol χR in Cl(ϕ), for which we impose
the following rule: for any (Φ,Θ,Ψ) ∈ δpop, we have χR ∈ Ψp; for any
(Φ, a,Ψ) ∈ δpush/shift , we have χR 6∈ Ψp. χR is allowed in the pending part
of final states.

If χ
.=
Pψ ∈ Cl(ϕ), the following constraints are added:

9. let (Φ, a,Ψ) ∈ δshift : then χ
.=
Pψ ∈ Φc iff χ

.=
Pψ, χR ∈ Φp;

10. let (Φ, a,Ψ) ∈ δpush: then χ
.=
Pψ 6∈ Φc;

11. let (Φ,Θ,Ψ) ∈ δpop: then χ
.=
Pψ ∈ Ψp iff χ

.=
Pψ ∈ Θp;

12. let (Φ, a,Ψ) ∈ δpush/shift : then χ
.=
Pψ ∈ Ψp iff ψ ∈ Φc.

If χl
Pψ ∈ Cl(ϕ), the following constraints are added:

13. let (Φ, a,Ψ) ∈ δpush: then χl
Pψ ∈ Φc iff χl

Pψ, χR ∈ Φp;

14. let (Φ, a,Ψ) ∈ δshift : then χl
Pψ 6∈ Φc;

15. let (Φ,Θ,Ψ) ∈ δpop: then χl
Pψ ∈ Ψp iff χl

Pψ ∈ Θp;

16. let (Φ, a,Ψ) ∈ δpush/shift : then χl
Pψ ∈ Ψp iff ψ ∈ Φc.

If χm
Pψ ∈ Cl(ϕ), we add the auxiliary symbol χ .= to Cl(ϕ), for which we

impose the following rule: for any (Φ, a,Ψ) ∈ δshift , χ .= ∈ Φp; for any
(Φ, a,Ψ) ∈ δpush and (Φ,Θ,Ψ) ∈ δpop, χ .= 6∈ Φp. χm

Pψ and χ .= are allowed
in the pending part of final states. Additionally, the constraints that follow
are imposed.

Let (Φ, a,Ψ) ∈ δpush/shift :

17. χm
Pψ 6∈ Ψp;

18. χm
Pψ ∈ Φc iff χm

Pψ, χR ∈ Φp.

Let (Φ,Θ,Ψ) ∈ δpop:

19. if (χL ∈ Ψp or χ .= ∈ Ψp), then χm
Pψ ∈ Ψp iff χm

Pψ ∈ Φp;

20. if χL, χ .= 6∈ Ψp, then χm
Pψ ∈ Ψp iff either χl

Pψ∨�dψ ∈ Θc or χm
Pψ ∈ Φp.

20

Summary Until and Since
For any Φ ∈ Atoms(ϕ)2, we have ψ U t θ ∈ Φc, with t ∈ {d, u}, iff at least
one of the following conditions hold:

1. θ ∈ Φc;

2. #t(ψ U t θ), ψ ∈ Φc;

3. χtF (ψ U t θ), ψ ∈ Φc.

For any Φ ∈ Atoms(ϕ)2, we have ψ St θ ∈ Φc, with t ∈ {d, u}, iff at least
one of the following conditions hold:

4. θ ∈ Φc,

5. �t(ψ St θ), ψ ∈ Φc, or

6. χtP (ψ St θ), ψ ∈ Φc.

Hierarchical Next and Back
The constructions for these operators rely on the auxiliary symbols χL, χ .=
and χR defined above.

If #d
Hψ ∈ Cl(ϕ), we add χl

Pψ,�
lψ, χl

P (#d
Hψ),�l(#d

Hψ) to Cl(ϕ), and
impose the constraints that follow.
Let (Φ,Θ,Ψ) ∈ δpop:

1. if χL, χ .= 6∈ Ψp, then (χl
Pψ ∈ Θc or �lψ ∈ Θc) iff #d

Hψ ∈ Ψp;

2. if χL, χ .= 6∈ Ψp, then #d
Hψ ∈ Φp iff (χl

P (#d
Hψ) ∈ Θc or �l(#d

Hψ) ∈
Θc);

3. if (χl
P (#d

Hψ) ∈ Θc or �l(#d
Hψ) ∈ Θc), then χ .= 6∈ Ψp.

Let (Φ, a,Ψ) ∈ δpush/shift :

4. if #d
Hψ ∈ Φc, then χL ∈ Ψp;

5. #d
Hψ 6∈ Ψp.

If �dHψ ∈ Cl(ϕ), we add χl
Pψ,�

lψ, χl
P (�dHψ),�l(�dHψ) to Cl(ϕ), and

impose the constraints that follow.
Let (Φ,Θ,Ψ) ∈ δpop:

6. if χL, χ .= 6∈ Ψp, then (χl
Pψ ∈ Θc or �lψ ∈ Θc) iff �dHψ ∈ Φp;

7. if χL 6∈ Ψp, then �dHψ ∈ Ψp iff (χl
P (�dHψ) ∈ Θc or �l(�dHψ) ∈ Θc);

21

8. if �dHψ ∈ Φp, then χL, χ .= 6∈ Ψp.

Let (Φ, a,Ψ) ∈ δpush/shift :

9. if �dHψ ∈ Φc, then χL ∈ Ψp;

10. �dHψ 6∈ Φp.

If #u
Hψ ∈ Cl(ϕ), we add the following rules.

Let (Φ, a,Ψ) ∈ δpush:

11. if #u
Hψ ∈ Φc, then χR ∈ Φp;

12. #u
Hψ ∈ Φp iff ψ ∈ Φc and χR ∈ Φp.

Let (Φ,Θ,Ψ) ∈ δpop:

13. if χR ∈ Θp, then #u
Hψ ∈ Θc iff #u

Hψ ∈ Ψp;

14. #u
Hψ 6∈ Φp.

Let (Φ, a,Ψ) ∈ δshift :

15. #u
Hψ 6∈ Φp and #u

Hψ 6∈ Φc.

If �uHψ ∈ Cl(ϕ), we add the following rules.
Let (Φ, a,Ψ) ∈ δpush:

16. if �uHψ ∈ Φc, then χR, χL ∈ Φp.

Let (Φ,Θ,Ψ) ∈ δpop:

17. if χL ∈ Ψp, then �uHψ ∈ Ψc iff ψ ∈ Θc and χR ∈ Θp;

Let (Φ, a,Ψ) ∈ δshift :

18. �uHψ 6∈ Φc.

Hierarchical Until and Since
If ψ UdH θ ∈ Cl(ϕ), then we add ψ, θ, χm

F>,#d
H(ψ UdH θ) to Cl(ϕ). For any

Φ ∈ Atoms(ϕ), ψ UdH θ ∈ Φc iff:

1. θ, χm
F> ∈ Φc or

2. ψ,#d
H(ψ UdH θ) ∈ Φc.

If ψ SdH θ ∈ Cl(ϕ), then we add ψ, θ, χm
F>,�dH(ψ SdH θ) to Cl(ϕ). For any

Φ ∈ Atoms(ϕ), ψ SdH θ ∈ Φc iff:

22

3. θ, χm
F> ∈ Φc or

4. ψ,�dH(ψ SdH θ) ∈ Φc.

If ψ UuH θ ∈ Cl(ϕ), we add ψ, θ, χl
P>,#u

H(ψ UuH θ) to Cl(ϕ). For any
Φ ∈ Atoms(ϕ), ψ UuH θ ∈ Φc iff:

5. θ, χl
P> ∈ Φc or

6. ψ,#u
H(ψ UuH θ) ∈ Φc.

If ψ SuH θ ∈ Cl(ϕ), then we add ψ, θ, χl
P>,�uH(ψ SuH θ) to Cl(ϕ). For any

Φ ∈ Atoms(ϕ), ψ SuH θ ∈ Φc iff

7. θ, χl
P> ∈ Φc or

8. ψ,�uH(ψ SuH θ) ∈ Φc.

23

Chapter 3

POMC

This chapter describes POMC (Precedence Oriented Model Checker), an
early-stage software library and application targeted at OPL-based formal
verification.

In its current version (0.1.0.0), POMC features an optimized implementa-
tion of the automata-based runtime verification procedure of POTL formulas
on OP strings sketched in section 2.3. As its name suggests though, the de-
velopment of POMC was carried out with the intention of paving the way
for a future extension into a complete OPL model checker as well.

The chapter is organized like so: section 3.1 lists the main functionalities
offered by POMC, section 3.2 discusses the fundamental design choices that
have characterized its development, section 3.3 describes POMC’s architec-
ture and inner workings, section 3.4 discusses the most effective optimizations
devised to boost its performance, and section 3.5 describes the format of its
input files.

3.1 Functionalities
As will later be discussed in more detail, the POMC library can be used to:

– represent a generic OPA and. . .

– . . . run it against arbitrary input (optionally in parallel);

24

– represent a generic POTL formula and. . .

– . . . check whether it holds for an arbitrary string.

On the other hand, the POMC application takes as input a text file with:

– an OPM,

– a list of POTL formulas,

– a list of text strings,

defined in a high-level domain-specific language, and it determines whether
each formula is satisfied or not by each individual string, printing the results
as output.

3.2 Design choices
POMC has been developed with the objective of building a useful research
prototype, meant to explore the possibilities opened by OPL-based verifi-
cation. For this reason, generality and extensibility have been regarded as
important non-functional goals throughout the entire development process.
The ability to handle a wide variety of use cases has been prioritized, even at
the cost of some minor performance trade-offs. Furthermore, the architecture
of POMC has been designed to be as modular as possible, separating con-
cerns into different self-contained components that can be easily readapted
or composed to build future extensions.

A key decision was to develop POMC using Haskell, a purely functional,
lazy, statically-typed programming language [15]. While Haskell’s high level
of abstraction and type safety have been vastly beneficial to address the diffi-
culties and the complexity of creating a verification tool, the maturity of the
Haskell compiler machinery made it possible to reach quite satisfying levels of
performance in terms of execution time and memory footprint. In light of the
above, the trade-off connected to relying on an abstract, garbage-collected
language, as opposed to e.g. a lower level imperative language with explicit
memory management such as C, seems strongly justified. Furthermore, any
hypothetical future reimplementation targeted at maximal efficiency, could
still be facilitated by using the existing POMC codebase as a reference.

The purely functional essence of the chosen programming language, has

25

naturally led to a strong adherence to the functional paradigm. Core fea-
tures have been implemented as higher-order, polymorphic functions, a well-
established practice to produce reusable and modular code in the functional
realm [10][17]. Thanks to the strictness of the Haskell type system, the
API of POMC comes with strong safety guarantees: the vast majority of
the functions exported by the library are free of side effects, while the few
input/output interactions have been safely confined to the IO monad.

3.3 Architecture
3.3.1 Library
Given the full adherence to the functional paradigm of the POMC library, it
is best to describe its architecture through its most relevant data types and
function signatures.

The three kinds of precedence relations are defined as a simple enumeration-
like type:

data Prec = Yield | Equal | Take

The cornerstone of the whole architecture is the run function; given the
essential elements of an OPA and an input string, it determines whether the
string is accepted by the OPA or not. The Opa.hs module includes several
variants of run, which have been used for experimental purposes. For now
we focus on the most basic one:

run :: (t -> t -> Maybe Prec)
-> [s]
-> (s -> bool)
-> (s -> t -> [s])
-> (s -> t -> [s])
-> (s -> s -> [s])
-> [t]
-> Bool

The input for run is: 1. A precedence function, associating two tokens with
a nullable precedence; 2. A list of states; 3. A function telling whether a
state is final; 4. A δshift function; 5. A δpush function; 6. A δpop function;
7. A list of input tokens. The function returns True if it finds an accepting
computation, False otherwise. Notice how partial OPMs are supported

26

through the Maybe type, allowing the precedence function to return Nothing
where it is not defined: computation paths where an incompatible token is
encountered are treated as non-accepting ones.

The definition of run is polymorphic in s and t: the two placeholders respec-
tively represent a state type and a token type; this convention is consistently
used for all other type signatures in the library.

The atomic proposition data type follows the principle of generality as well:
it wraps an inner, generic proposition type a (which will also appear con-
sistently in the following definitions), adding the 0-ary constructor End to
represent the # OP symbol:

data Prop a = Prop a | End

Before examining the checking function, it is necessary to introduce a useful
typeclass that represents an abstract specification:

class Checkable c where
toReducedPotl :: c a -> RPotl. Formula a

What the typeclass asks from a specification type c (parametrized with
proposition type a) is to support a conversion towards the Formula data
type contained in the RPotl.hs module. It is a tree-like type that repre-
sents a POTL formula with a reduced set of ST-based low-level operators,
for which a direct checking construction is supported.

Instead of specifying the data definition of RPotl.Formula, we present the
definition of PotlV2.Formula, a similar but higher-level POTL formula rep-
resentation located in the PotlV2.hs module. It supports all the relevant
high-level POTL and LTL operators. Of course, it is an instance of Checkable.

data Dir = Up | Down

data Formula a = T
| Atomic (Prop a)
| Not (Formula a)
| Or (Formula a) (Formula a)
| And (Formula a) (Formula a)
| Xor (Formula a) (Formula a)
| Implies (Formula a) (Formula a)
| Iff (Formula a) (Formula a)
| PNext Dir (Formula a)
| PBack Dir (Formula a)

27

| XNext Dir (Formula a)
| XBack Dir (Formula a)
| HNext Dir (Formula a)
| HBack Dir (Formula a)
| Until Dir (Formula a) (Formula a)
| Since Dir (Formula a) (Formula a)
| HUntil Dir (Formula a) (Formula a)
| HSince Dir (Formula a) (Formula a)
| Eventually (Formula a)
| Always (Formula a)

As one might deduce, the first data constructor for Formula represents >, the
second is just a wrapper for Prop, and the others represent respectively the
operators ¬,∨,∧,Y,⇒,⇔,#t,�t, χtF , χ

t
P ,#

t
H ,�

t
H ,U tχ,Stχ,U tH ,StH ,3,2, with

t ∈ {u, d} being represented by the enumeration type Dir.

We can now discuss the other central function in the POMC library, that is
check, from the Check.hs module:

check :: (Checkable f, Ord a, Show a)
=> f a
-> (Set (Prop a) -> Set (Prop a) -> Maybe Prec)
-> [Set (Prop a)]
-> Bool

The function takes three arguments: a Checkable specification, a precedence
function on sets of APs, and a list (or string) of sets of AP. It returns True
if the formula holds for the input string, False otherwise. It does so by con-
verting the specification to a RPotl.Formula, then it applies the construction
described in subsection 2.3.1 to convert the formula to its equivalent OPA,
and finally it checks whether running the constructed automaton against the
specified token string produces an accepting computation.

To decompose the complexity of check, the work has been split in several self-
contained auxiliary functions, and the check implementation does little more
than gluing these building blocks together. It is worth rapidly presenting said
helpers, since they will be crucial when describing the applied optimizations
in section 3.4.

The closure function implements the closure operator Cl from the automa-
ton construction procedure. It takes a RPotl formula, and a list of additional
APs (these are, in the case of check, the APs contained in the input string,
which must also be present in the closure). By traversing the input, it pro-

28

duces the set of all formulas which are relevant for the construction.
closure :: Ord a

=> Formula a
-> [Prop a]
-> Set (Formula a)

The atoms function implements instead the Atoms operator from the au-
tomaton construction.

atoms :: Ord a
=> Set (Formula a)
-> Set (Set (Prop a))
-> [Atom a]

What this function fundamentally does is taking the closure as input, and
returning the list of its subsets which respect the validity constraints imposed
by the rules on Atoms. These sets of formulas will then be used to construct
the automaton states. For now, let us momentarily ignore the precise defini-
tion of Atom as well as the role of the second argument: these details will be
clarified in section 3.4.

The initials function handles the creation of initial states.
initials :: (Ord a)

=> Formula a
-> Set (Formula a)
-> [Atom a]
-> [State a]

The arguments are the formula to be checked, its closure and its atoms. The
function returns a list of states, constructed by filtering the atoms accord-
ing to the rules concerning initial states (e.g. the checked formula must be
present). Here too we leave the details of the State type for the next section.

The final interesting building block is the delta function. We will omit the
full signature since it is fairly long. However, its most relevant argument
is a RuleGroup, a type containing all the transition rules that the caller
wants delta to enforce. These are in the form of boolean predicates that,
given the relevant context as input, return True if the rule they represent is
satisfied and False otherwise. δshift, δpush and δpop are simply implemented
by currying delta with the necessary parameters (among which, the different
rule groups), and are first-order Haskell functions themselves (as opposed to
association maps stored in memory).

29

Going back to the check function, the auxiliary procedures are composed
according to the following algorithm:

1 compute the closure
2 compute the atoms
3 compute the initial states
4 compute the curried delta functions
5 run the automaton on the input string
6 return the result

Notice how, thanks to the generality of run and to the way the δ functions are
implemented, check does not need to build the actual automaton in advance
in order to run it against a string. Rather, the exploration performed by run
generates new states on the fly, while old ones are garbage collected as soon
as possible.

The Check.hs module also provides another check function, fastcheck, that
works in an analogous way, but that is more optimized and should be pre-
ferred over check. It will be discussed more thoroughly in section 3.4.

3.3.2 Application
The architecture of the POMC application is very straightforward, revolving
around a simple sequential interaction.

At first, the user specifies the name of an input file as a command-line argu-
ment. The file must be written in the POMC input language (see section 3.5
for a precise specification), and it must contain three declarations: 1. a list
of precedence relations on sets of APs; 2. a list of POTL formulas; 3. a list
of input strings, composed of sets of APs.

They key element for the parsing part is the function checkRequestP from
module Parse.hs. In adherence with traditional functional-style parsing, the
function is built through the combination of simpler parser functions (with
the help of the monadic parser combinator library Megaparsec [11]).

The result of the parsing operation is stored as a CheckRequest:
data CheckRequest = CheckRequest {

creqPrecRels :: [(Set (Prop Text), Set (Prop Text), Prec)],
creqFormulas :: [PotlV2 . Formula Text],
creqStrings :: [[Set (Prop Text)]]

}

30

with AP being interpreted as simple Unicode strings of the Text type. Notice
also how formulas are conveniently represented using the PotlV2.Formula
high-level type.

At this point an actual precedence function still has to be built from the
precedence relations. This is done using the fromRelations helper contained
in the Prec.hs module. It builds a new precedence function that, given two
tokens t1 and t2, establishes their precedence by iteratively trying to match
against the (ts1, ts2, p) relations specified by the user, where a relation
matches if ts1 is a subset of t1 and ts2 is a subset of t2; if no match is
found, then Nothing is returned.

Lastly, each (formula, input string) couple is evaluated with the fastcheck
function, measuring the execution time. Results are printed as output.

3.4 Optimizations
Atom encoding. When looking at the first general rule imposed on the
Atoms operator in subsection 2.3.1, it is straightforward to think of a binary
encoding to represent atoms, or at least to generate them efficiently. Let v
be an array containing all the non-negated formulas in the closure. Then an
atom can be represented by a binary vector of length size(v), where if the
i-th value is 1, then the i-th formula in v is present, whereas if the i-th value
is 0, then the i-th formula in v is present in its negated form.

Notice that multiple negations are not handled directly by this encoding.
The adopted solution consists in a normalization of the input formula, be-
fore doing any other processing: the syntax tree of the formula is traversed,
iteratively removing double negations. The obtained formula is equivalent to
the input one, since, of course, ¬¬ψ ≡ ψ for every ψ.

The atoms function generates the relevant bit vectors one by one, decoding
them and performing the necessary consistency checks. If the checks fail, the
atom is discarded immediately along with its binary encoding. Otherwise
it is kept in memory as Atom, a type which stores both the decoded and
encoded form for convenience:

data Atom a = Atom { atomFormulaSet :: Set (Formula a)
, atomEncodedSet :: Vector Bit
}

31

State format. In the automaton construction of subsection 2.3.1, a state
Φ corresponds to a couple (Φc,Φp) ∈ Atoms(ϕ)2. While Φc must really be an
atom, by looking at the construction it is clear that only a few operators are
optionally needed in Φp, that is χπF , χπP with π ∈ {l, .=,m} and #u

H ,#
d
H ,�

d
H .

Furthermore, χL, χ .= and χR can only be in Φp. For this reason we can drop
atom consistency rules for pending sets, and reduce them to the power set
of the formulas starting with the aforementioned operators, combined with
all possible configurations of the auxiliary symbols. The auxiliary function
called by check which, given the closure as input, handles the creation of
said combinations, is:

pendCombs :: (Ord a)
=> Set (Formula a)
-> Set ((Set (Formula a), Bool , Bool , Bool))

Auxiliary symbols are treated as external boolean values, to further reduce
the size of pending sets. This way, there is no need of inserting them in the
closure. In light of this, we present the data type representing a state:

data State a = State
{ current :: Atom a
, pending :: Set (Formula a)
, mustPush :: Bool
, mustShift :: Bool
, afterPop :: Bool
}

where the three boolean flags represent respectively χL, χ .= and χR.

AP-based filtering. A big advantage for the check function comes from
the fact that its input consists of finite strings which are known a priori.
Given how the automaton construction works, an atom can be possibly useful
only if the APs it contains represent the AP set corresponding to a position of
the input string, or if it is one the “final” atoms which contain # as their only
AP. This opens the possibility for a major optimization: the set of possible
AP sets is passed as the second argument of the atoms function; this way,
atoms characterized by an AP configuration which is useless with respect to
the input AP sets, can be immediately discarded. This results in a significant
shrinkage of the atom space, noticeably improving performance.

32

Laziness. A quite significant optimization comes almost “for free” thanks
to the laziness of the Haskell language: the auxiliary functions of check, most
importantly atoms and initials, are structured so that they never enforce
the sequential generation of the whole atom set (with some precautions taken
to prevent the phenomenon of “thunking”, that is the accumulation of sig-
nificantly memory-heavy amount of unexpanded expressions). This results
in atoms being generated as needed during the exploration performed by the
run function. This way, an accepting run can terminate without generating
the entire state space.

Plug-in rules. Almost all rules involved in the delta transitions are only
useful in the presence of the operators they concern. The function deltaRules
takes advantage of this fact:

deltaRules :: (Ord a)
=> Set (Formula a)
-> (RuleGroup a, RuleGroup a, RuleGroup a)

it takes the closure as input, and, based on which operators are present,
produces minimal sets of rules for δshift, δpush and δpop. A similar mechanism
is applied in the atoms function, so that only the relevant consistency rules
on the Atoms operator are checked at run-time.

Token lookahead. This is another improvement based on the input string.
By looking at a log of the execution of the check function, one realizes that
many execution paths are terminated by the main rule on atomic proposi-
tions: ∀(Φ, a,Ψ) ∈ δpush/shift , Φc ∩AP = a. This is because the push and the
shift transition functions do not know in advance the AP set corresponding
to the following input token, and therefore cannot use this information to
discriminate future states. To address this shortcoming, an alternative run
function has been implemented, which exposes a lookahead of a single token
to δ functions:

augRun :: (t -> t -> Maybe Prec)
-> [s]
-> (s -> Bool)
-> (Maybe t -> s -> t -> [s])
-> (Maybe t -> s -> t -> [s])
-> (Maybe t -> s -> s -> [s])
-> [t]
-> Bool

33

The lookahead is wrapped in a Maybe, with Nothing values signaling that
there will be no following tokens. A new checking function named fastcheck
has then been created: it has the same signature of check but relies on
augRun instead of run. It adds an additional rule to shift and push rules
provided by deltaRules, which imposes that the next state must have the
same APs as the lookahead token if it is not empty, # otherwise. This
improvement is quite effective in terms of performance, reducing the non-
determinism of the transition functions, avoiding lengthy sequences of useless
moves.

Fast atom comparisons. As shown above, the Atom structure carries a
binary representation. Whenever an equality check among two atoms has to
be performed, it is sufficient to check if the respective binary representations
are the same. This optimization is exploited to speed up the enforcement
of the following generic rule on pop moves: ∀(Φ,Θ,Ψ) ∈ δpop, Φc = Ψc.
Obviously, this is one of the most frequently checked rules, since it applies
to all pop transitions. The performance gain is therefore non-negligible.

AP mapping. This is a minor optimization concerning the POMC appli-
cation. Once the CheckRequest is parsed, its precedence function, formulas
and strings are expressed in form of Text (Unicode strings). While Text is
a reasonably efficient way of handling character strings (as opposed to the
String type), operations like comparison, which in POMC can occur fre-
quently (e.g. while comparing formulas), are still more efficient for a type like
Int. For this reason, before calling the check function, the CheckRequest
elements are parsed to collect all APs in a set; then the set is enumerated,
creating a bijective mapping between Text APs and Int; finally the map-
ping is applied to the CheckRequest elements, to obtain a more compact and
optimized version ready for the checking operation.

3.5 Input Language
Listing 3.1 shows an example of well-formed POMC input file, based on the
OP alphabet of Figure 2.3.

Comments are lines prefixed with // or enclosed in /* ... */, as in C-style
programming languages.

34

/* Example POMC file */

// Defining precedences for a stack trace OPL.
prec = call < call , call = ret , call < han , call > exc ,

ret > call , ret > ret , ret > han , ret > exc ,
han < call , han > ret , han < han , han = exc ,
exc > call , exc > ret , exc > han , exc > exc , * > #;

// Defining POTL formulas .
formulas = pa ,

F (call And (XNu exc)),
PNd (PNd pb),
G (exc --> XBu call);

// Defining input strings .
strings = call han call call call exc call ret call ret ret ,

(call pa) han (call pb) exc ret ,
call han call exc call ret call ret ret;

Listing 3.1: An example of POMC input file.

A generic set of atomic propositions is expressed as a comma-separated list
of strings enclosed by round brackets. Conveniently, brackets can be omitted
with singleton sets. So the set {call, pA} can be written as (call, pa), while
the singleton set {han} can be written as just han. The special character #
can be used to indicate the # atomic proposition.

The prec definition establishes a set of precedence relations among sets of
atomic propositions. The precedence keywords <, = and > correspond respec-
tively to the token precedence relations l, .=,m. After prec = the user has
to supply a comma-separated semicolon-terminated list of precedence rela-
tions between atomic proposition sets. * is a wildcard matching every set. It
is recommended to always specify a rule such as * > #, so that formula sets
containing the # proposition are handled as expected.

The formulas definition has to be followed by a comma-separated semicolon-
terminated list of POTL formulas. The syntax and precedence rules for
operators is specified in Table 3.1; note how all binary operators are expressed
in infix notation. Strings that are not operators are interpreted as atomic
propositions. As customary in mathematical notation, round brackets are
used to induce a different formula evaluation order.

The strings definition consists of a comma-separated semicolon-terminated

35

list of input string. Each string is expressed as a whitespace-separated se-
quence of atomic proposition sets.

All three main definitions must of course be present and non-empty, and
their order has to be that shown by the example.

36

Group POTL Operator POMC Operator Notation Associativity
U
na

ry
¬ ∼, Not Prefix –
#d PNd Prefix –
#u PNu Prefix –
�d PBd Prefix –
�u PBu Prefix –
χdF XNd Prefix –
χuF XNu Prefix –
χdP XBd Prefix –
χuP XBu Prefix –
#d
H HNd Prefix –

#u
H HNu Prefix –
�dH HBd Prefix –
�uH HBu Prefix –
3 F, Eventually Prefix –
� G, Always Prefix –

PO
T
L
Bi
na

ry

Udχ Ud Infix Right
Uuχ Uu Infix Right
Sdχ Sd Infix Right
Suχ Su Infix Right
UdH HUd Infix Right
UuH HUu Infix Right
SdH HSd Infix Right
SuH HSu Infix Right

Pr
op

.B
in
ar
y ∧ And, && Infix Left

∨ Or, || Infix Left
Y Xor Infix Left
⇒ Implies, --> Infix Right
⇔ Iff, <--> Infix Right

Table 3.1: POTL operators supported by POMC, in descending order of
precedence. Operators listed on the same line are synonyms. Operators in
the same group have the same precedence.

37

Chapter 4

Experiments

This chapter will discuss some experimental results concerning POMC. In
particular, section 4.1 reports the results of benchmarks concerning the veri-
fication of individual POTL operators, while section 4.2 presents some more
complex verification examples regarding relevant properties of stack traces.

All tests have been conducted on the same machine, mounting an AMD A8-
5600K processor (3.9 GHz) with 8 GiB of RAM (DDR3, 667 MHz), running
a GNU/Linux operating system.

4.1 Operator Benchmarks
Some valuable insights concerning the performance of POMC can be obtained
by analyzing the performance of the verification of each individual POTL
operator expressible with the input language.

Below, the results of a batch of operator benchmarks are reported, where
the fastcheck function has been executed on specific formulas, selected to
isolate the execution time and memory footprint connected to every POTL-
specific fundamental operator (until/since-like operators have been omitted,
since their performance depends directly on the operators they are expanded
as).

Table 4.1 reports the running times of the operator benchmarks, while Ta-
ble 4.2 reports their memory allocation. Note that the reported memory val-

38

ues describe the cumulative amount of memory allocated by the fastcheck
function throughout its entire execution, and not the peak amount of allo-
cated physical memory, which has been well under 1 GiB during all bench-
mark cases, even accounting for the whole POMC process. Tables present
results with respect to the targeted operator and length ` of the input string
of each case. For each operator, both an accepting and a rejecting case are
provided, with results laid out on the same row.

All benchmark cases are based on the OP alphabet of stack traces (Fig-
ure 2.3). The input strings vary according to the operator type, and are
designed to stress-test the checking procedure as much as possible:

#t,�t. call han call han ... (call x) (ret y) ... exc ret exc ret

χtF , χ
t
P . (call x) call han call han ... exc ret exc ret (ret y)

#d
H ,�

d
H. (call x) (call y) call call han call han ... exc ret exc ret exc

#u
H ,�

u
H. call call han call han ... exc ret exc ret (call x) ret (call y)

Every case formula relates the x and the y propositions using the specific
operator to be assessed, e.g. 3(y∧χuPx) for χuP . The 3 operator is prepended
to all formulas, to make sure that they can “reach” the relevant position of
the input string.

By looking at the gathered data, one can immediately notice how, by virtue
of the nature of the algorithm, accepting runs are consistently faster than
rejecting ones: rejecting implies having explored the entire space of execution
paths, while accepting is possible as soon as a terminating path is found. As
discussed in section 3.4, some of the applied optimizations contribute to
making this time gap even more pronounced.

Interestingly, the measurements highlight non-negligible performance differ-
ences between operators, with some of them, namely χdF , χuF ,#d

H ,�
d
H , look-

ing markedly less efficient than the others. In particular this “slow group”
of operators exhibits an exponential increase in execution time and allocated
memory with respect to the length ` of the input string, despite the cardi-
nality of the closure (and, by consequence, of the state set) staying constant.
On the contrary, the performance of “fast” operators is much less sensitive to
the size of the input: at increase of `, benchmark data show a growth trend
for both time and memory which is only linear, rather than exponential. We

39

speculate that this difference is due to the very nature of the automaton con-
struction, possibly because the propagation of the checks connected with the
“slow operators” introduces more non-determinism. The performance gap
can be clearly observed by comparing Figure 4.1 with Figure 4.2: the former
contains the time and memory plots the #u

H case, while the latter displays
those of the #d

H operator. Notice how with the #u
H operator, despite the

input string reaching a length ` > 200, the execution time remains in the
order of a few milliseconds, while in the #d

H case the execution time becomes
significant much more quickly. Notice also how, for both the operators, the
time graph is highly resemblant to the memory one, suggesting a tight link
between these two quantities.

In any case, it must be noted that the performance of POMC can be consid-
erably sensitive to the shape of the input strings. For example, the χdF accep-
tance cases execute in a dramatically smaller amount of time if the supplied
input strings are of the type: call han ... (call x) han (ret y) ... exc ret,
characterized by x and y being at a fixed, close distance. While no signifi-
cant improvement is observed with rejecting strings, the speed of accepting
runs is hugely boosted (for ` = 17, execution time is around 6ms) and scales
much better with the length of the input. In light of the above, one should
keep in mind that the performance results displayed in this section attempt
to address the performance of the worst case rather than the average one,
striving to represent the most “problematic” inputs.

40

Operator ` = 8 ` = 10 ` = 12 ` = 14 ` = 16
#d (acc.) 979.7 µs 1.009 ms 1.082 ms 1.085 ms 1.218 ms
#d (rej.) 1.204 ms 1.328 ms 1.412 ms 1.467 ms 1.626 ms
#u (acc.) 973.1 µs 994.3 µs 1.066 ms 1.125 ms 1.202 ms
#u (rej.) 1.206 ms 1.256 ms 1.426 ms 1.459 ms 1.620 ms
�d (acc.) 970.0 µs 1.015 ms 1.082 ms 1.157 ms 1.196 ms
�d (rej.) 1.017 ms 1.063 ms 1.100 ms 1.198 ms 1.203 ms
�u (acc.) 945.5 µs 1.012 ms 1.103 ms 1.118 ms 1.127 ms
�u (rej.) 991.2 µs 1.071 ms 1.125 ms 1.185 ms 1.218 ms
χdF (acc.) 87.90 ms 426.4 ms 2.109 s 9.692 s 44.33 s
χdF (rej.) 661.3 ms 3.306 s 15.94 s 76.05 s 340.2 s
χuF (acc.) 25.58 ms 93.45 ms 363.7 ms 1.442 s 5.768 s
χuF (rej.) 85.34 ms 335.0 ms 1.341 s 5.310 s 21.26 s
χdP (acc.) 3.109 ms 3.239 ms 3.384 ms 3.504 ms 3.683 ms
χdP (rej.) 3.327 ms 3.576 ms 3.704 ms 3.935 ms 4.113 ms
χuP (acc.) 12.43 ms 12.97 ms 13.45 ms 14.05 ms 14.89 ms
χuP (rej.) 13.73 ms 14.50 ms 16.06 ms 16.32 ms 17.24 ms
#d
H (acc.) 16.89 ms 38.45 ms 89.50 ms 204.5 ms 465.1 ms

#d
H (rej.) 46.00 ms 112.0 ms 273.0 ms 643.4 ms 1.467 s

#u
H (acc.) 990.1 µs 1.061 ms 1.095 ms 1.128 ms 1.198 ms

#u
H (rej.) 1.228 ms 1.297 ms 1.361 ms 1.436 ms 1.501 ms
�dH (acc.) 10.11 ms 18.01 ms 33.64 ms 63.36 ms 124.4 ms
�dH (rej.) 45.41 ms 91.32 ms 183.9 ms 371.4 ms 740.2 ms
�uH (acc.) 883.3 µs 960.7 µs 998.4 µs 1.044 ms 1.115 ms
�uH (rej.) 946.6 µs 1.028 ms 1.072 ms 1.121 ms 1.212 ms

Table 4.1: Execution time for the verification of different POTL operators.

41

Operator ` = 8 ` = 10 ` = 12 ` = 14 ` = 16
#d (acc.) 1.17MiB 1.24MiB 1.31MiB 1.38MiB 1.44MiB
#d (rej.) 1.47MiB 1.6MiB 1.72MiB 1.85MiB 1.97MiB
#u (acc.) 1.17MiB 1.24MiB 1.3MiB 1.37MiB 1.44MiB
#u (rej.) 1.47MiB 1.6MiB 1.73MiB 1.85MiB 1.98MiB
�d (acc.) 1.16MiB 1.24MiB 1.31MiB 1.39MiB 1.46MiB
�d (rej.) 1.21MiB 1.3MiB 1.38MiB 1.46MiB 1.54MiB
�u (acc.) 1.16MiB 1.24MiB 1.31MiB 1.39MiB 1.46MiB
�u (rej.) 1.22MiB 1.3MiB 1.38MiB 1.46MiB 1.54MiB
χdF (acc.) 123.7MiB 612.53MiB 2.89GiB 13.59GiB 62.53GiB
χdF (rej.) 969.88MiB 4.69GiB 22.37GiB 104.02GiB 474.2GiB
χuF (acc.) 36.01MiB 131.48MiB 512.82MiB 1.99GiB 7.95GiB
χuF (rej.) 118.33MiB 462.42MiB 1.8GiB 7.17GiB 28.68GiB
χdP (acc.) 4.57MiB 4.77MiB 4.98MiB 5.19MiB 5.41MiB
χdP (rej.) 4.96MiB 5.23MiB 5.5MiB 5.77MiB 6.05MiB
χuP (acc.) 19.61MiB 20.43MiB 21.25MiB 22.07MiB 22.9MiB
χuP (rej.) 21.82MiB 23.01MiB 24.19MiB 25.38MiB 26.56MiB
#d
H (acc.) 27.83MiB 65.3MiB 154.12MiB 359.82MiB 827.82MiB

#d
H (rej.) 78.82MiB 198.85MiB 483.21MiB 1.11GiB 2.57GiB

#u
H (acc.) 1.27MiB 1.34MiB 1.42MiB 1.49MiB 1.56MiB

#u
H (rej.) 1.59MiB 1.69MiB 1.78MiB 1.89MiB 1.98MiB
�dH (acc.) 16.81MiB 30.22MiB 56.64MiB 109.03MiB 213.41MiB
�dH (rej.) 78.12MiB 158.59MiB 319.54MiB 641.43MiB 1.26GiB
�uH (acc.) 1.12MiB 1.18MiB 1.25MiB 1.32MiB 1.39MiB
�uH (rej.) 1.21MiB 1.3MiB 1.37MiB 1.45MiB 1.54MiB

Table 4.2: Cumulative amount of allocated memory for the verification of
different POTL operators.

42

0 25 50 75 100 125 150 175 200
Input string length

2

4

6

8

10
El

ap
se

d
tim

e
[m

s]
Execution Time for the Hierarchical Next Up Operator

Accepting
Rejecting

0 25 50 75 100 125 150 175 200
Input string length

2

4

6

8

10

12

Al
lo

ca
te

d
m

em
or

y
[M

iB
]

Memory Allocation for the Hierarchical Next Up Operator
Accepting
Rejecting

Figure 4.1: Graphs representing the execution time and the memory alloca-
tion of the #u

H operator benchmarks.

43

6 8 10 12 14 16 18 20 22 24
Input string length

0

5

10

15

20

25

30

35

El
ap

se
d

tim
e

[s
]

Execution Time for the Hierarchical Next Down Operator
Accepting
Rejecting

6 8 10 12 14 16 18 20 22 24
Input string length

0

10

20

30

40

50

60

Al
lo

ca
te

d
m

em
or

y
[G

iB
]

Memory Allocation for the Hierarchical Next Down Operator
Accepting
Rejecting

Figure 4.2: Graphs representing the execution time and the memory alloca-
tion of the #d

H operator benchmarks.

4.2 Checking Stack Trace Properties
Thanks to the expressivity of POTL, POMC can be used to verify a wide
range of specifications. This section provides some examples of the stack trace

44

properties that can be enforced with POMC, relying on the OP alphabet of
Figure 2.3. Each one has been tested against a few input strings using the
POMC application, and results are reported.

Hoare-style pre/post conditions
A way to formally specify the behavior of a procedure is to specify a set
of preconditions, that must hold when it is called, and a set of postcondi-
tions, that must hold after the function has terminated [9]. This type of
specification can be expressed with a formula such as:

2(call ∧ pA ∧ pre⇒ χdF (ret ∧ post) ∨#d(ret ∧ post)),

requesting that for every call to a procedure of type A for which the pre-
conditions hold, postconditions must hold at termination. Notice how pre
and post conditions are represented as simple atomic propositions in this
case, but they could be substituted with any subformula.

Input string Result Elapsed
(call pa pre) han (ret post) True 45.71 ms
(call pa pre) han (ret) False 49.90 ms
(call pa pre) han (call pa) han exc ret exc
(ret post)

True 66.13 ms

(call pa pre) han (call pa pre) han exc ret
exc (ret post)

False 336.4 ms

Exception specification
It is possible to enforce the type of exception that can terminate a specific
procedure. For example, with the formula:

2(call ∧ pA ∧ (#uexc ∨ χuFexc)⇒ (#ueB ∨ χuF eB)),

one can specify that, whenever a procedure of type A is terminated by an
exception, that exception must be of type B.

45

Input string Result Elapsed
(call pa) (exc eb) True 856.7 ms
(call pa) exc False 868.7 ms
call (call pa) (exc eb) (call pa) han (call
pa) call (exc eb) ret

True 15.73 s

call (call pa) (exc eb) (call pa) han (call
pa) call exc ret

False 212.8 s

Data access
By relying on properly annotating traces, one can impose data consistency
conditions. For example, formula:

2(call ∧ pA ∧ (¬ret Udχ wrx)⇒ χdFexc)

imposes that, if a procedure of type A or its subprocedures write to a
variable x (an operation symbolized by the wrx atomic proposition), then
they are terminated by an exception.

Input string Result Elapsed
(call pa) (call pb WRx) exc True 262.2 ms
(call pa) (call pb WRx) (ret pb) (ret pa) False 1.665 s
call han (call pa) (call pb) (call WRx)
(call pc) exc ret

True 161.9 s

call han (call pa) han (call pb WRx) (ret
pb) (ret pa) ret

False 123.8 min

Notice how the execution time is quite high the last rejecting case. This
is due to the lengthiness of the input string combined with a quite large
closure and the presence of a compound operator, the Udχ.

Regular termination
The formula:

2(call ∧ pA ⇒ ¬(#uexc ∨ χuFexc))
states that procedures of type A must not be terminated by an exception.

46

Input string Result Elapsed
(call pa) (call pb) (ret pb) (ret pa) True 17.87 ms
(call pa) (call pb) (ret pb) exc False 18.8 ms
(call pa) han (call pb) (call pb) (call pc)
call exc (ret pa)

True 248.5 ms

(call pa) han (call pb) (call pa) (call pc)
call exc (ret pa)

False 122.3 ms

Stack inspection
An interesting possibility is assessing properties on the stack content at a
certain point of execution. For example, with formula:

2(call ∧ pB ∧ (> Sdχ (call ∧ pA))⇒ #uexc ∨ χuFexc),

it is requested that, if a procedure of type A is present in the stack when a
procedure of type B is called, then the latter is terminated by an exception.

Input string Result Elapsed
(call pa) (call pb) exc True 3.102 s
(call pa) (call pb) (ret pb) (ret pa) False 3.586 s
(call pa) han (call pb) call han ret call
exc (ret pa)

True 5.430 s

(call pa) han (call pb) call ret call ret
(ret pb) (ret pa)

False 6.210 s

47

Chapter 5

Conclusions

This dissertation has presented POMC: an early-stage verification tool for
Operator Precedence Languages.

The main achievement of POMC is the implementation of a recently devised
algorithm to translate Precedence Oriented Temporal Logic formulas into
equivalent Operator Precedence Automata.

It has been shown how this is leveraged by POMC to carry out runtime
verification of POTL specifications on finite input strings. The technologies
and the internal architecture that make this possible have been thoroughly
discussed. Furthermore, with the assistance of empirical results, light has
been shed on both the practical uses and the limitations of the POMC tool
in its current version.

Finally, it has been suggested how POMC constitutes a first step towards
the implementation of a complete model checker based on OP languages.

5.1 Future Work
The future developments for POMC are varied and interesting. The following
list comprises some of the open possibilities.

• Relying on a generic binary encoding of formula sets contained in the
closure for faster comparisons and membership checks, in the context of
the automaton construction. Most transition rules could be updated to

48

take advantage of this optimization, obtaining a particularly relevant
performance boost in relation to checks that have to be performed
frequently throughout the verification process.

• Extending POMC with actual model checking capabilities. In partic-
ular, to support a traditional automata-theoretic model checking pro-
cedure, intersection and emptiness check for Operator Precedence Au-
tomata should be implemented. These additions are currently under
active development.

• Extending POMC to handle Operator Precedence ω-Languages [13],
that is OP languages characterized by infinite strings. This would facil-
itate the formal modeling of systems whose behavior must be specified
with respect to non-terminating sequences of events.

• Creating high-level simplified tools leaning on the POMC library to
address domain-specific verification tasks. This way users could enjoy
the benefits of powerful formal methods techniques, without having to
delve into the theoretical complexity behind them.

49

Bibliography

[1] R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and
L. Libkin. First-order and temporal logics for nested words. LMCS,
4(4), 2008.

[2] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested
calls and returns. In TACAS 2004, pages 467–481. Springer, 2004.

[3] C. Baier, J.P. Katoen, and K.G. Larsen. Principles of Model Checking.
Mit Press. MIT Press, 2008.

[4] A. Barenghi, S. Crespi Reghizzi, D. Mandrioli, F. Panella, and
M. Pradella. Parallel parsing made practical. Sci. Comput. Program.,
112:195–226, 2015.

[5] M. Chiari, D. Mandrioli, and M. Pradella. A first-order complete tem-
poral logic for model-checking structured context-free languages. Sub-
mitted, 2020.

[6] Michele Chiari, Dino Mandrioli, and Matteo Pradella. Potl: A first-
order complete temporal logic for operator precedence languages. CoRR,
abs/1910.09327, 2019.

[7] S. Crespi Reghizzi and D. Mandrioli. Operator Precedence and the
Visibly Pushdown Property. JCSS, 78(6):1837–1867, 2012.

[8] R. W. Floyd. Syntactic Analysis and Operator Precedence. JACM,
10(3):316–333, 1963.

[9] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 26(1):53–56, January 1983.

50

[10] John Hughes. Why functional programming matters. The Computer
Journal, 32:98–107, 1989.

[11] M. Karpov, P. Martini, D. Leijen, et al. Megaparsec library. Available
online at https://github.com/mrkkrp/megaparsec.

[12] Orna Kupferman. Automata theory and model checking. In Handbook
of Model Checking, pages 107–151. Springer, 2018.

[13] V. Lonati, D. Mandrioli, F. Panella, and M. Pradella. Operator prece-
dence languages: Their automata-theoretic and logic characterization.
SIAM J. Comput., 44(4):1026–1088, 2015.

[14] D. Mandrioli and M. Pradella. Generalizing input-driven languages:
Theoretical and practical benefits. Computer Science Review, 27:61–87,
2018.

[15] Simon Marlow et al. Haskell 2010 language report. 2010. Available
online at https://www.haskell.org/onlinereport/haskell2010.

[16] Amir Pnueli. The temporal logic of programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, SFCS
’77, page 46–57, USA, 1977. IEEE Computer Society.

[17] Simon Thompson. Higher-order + polymorphic = reusable, 1997. Avail-
able online at https://kar.kent.ac.uk/21504.

51

	Introduction
	Outline

	Preliminary concepts
	Operator Precedence Languages
	Operator Precedence Grammars
	Operator Precedence Automata

	Precedence Oriented Temporal Logic
	Formal Verification
	Automaton Construction

	POMC
	Functionalities
	Design choices
	Architecture
	Library
	Application

	Optimizations
	Input Language

	Experiments
	Operator Benchmarks
	Checking Stack Trace Properties

	Conclusions
	Future Work

