
Fallacies and Pitfalls of Large-Scale
DevOps Pipelines: an Industrial
Proof-of-Concept Study

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Marco Tonnarelli

Student ID: 976686
Advisor: Prof. Damian Andrew Tamburri
Co-advisors: Prof. Giovanni Quattrocchi
Academic Year: 2022-23

i

Abstract

DevOps is practice that enforces collaboration and automation in software development,
guaranteeing high product quality and reliability. This discipline covers many aspects
of software development life-cycle, and it leverages on a wide variety of technologies.
Among these, Infrastructure as Code is the most prominent, as it allows to automatically
configure system dependencies to provision local and remote instances. The adoption of
this practices pushes to another level automation in Continuous Integration/Continuous
Deployment environments. In the past recent years there have been a great interest in
these disciplines, both from academy and industry. We conducted a Systematic Literature
Review to understand what are the challenges these practices are currently facing, with
particular attention for standards: we looked for the state-of-the-art of standards-based
tools, in particular the TOSCA standard. Among these, we found the RADON tool-chain.
We conducted a proof-of-concept in an industrial environment to verify the benefits and
drawbacks of adopting this framework. In particular, we tested a novel approach to sup-
port the modeling and deployment of function orchestrators in a serverless environment
with the support of BPMN and TOSCA standards.

Keywords: DevOps, Infrastructure as Code, TOSCA, automation, standards

DevOps è una pratica che spinge verso la collaborazione e l’automazione nello sviluppo
software, garantendo un’alta qualità del prodotto e affidabilità. Questa disciplina co-
pre molte fasi del ciclio di vita dello sviluppo software, e fa affidamento su una grande
varietà di tecnologie. Tra queste, l’Infrastructure as Code è la più prominente, dal mo-
mento che consente di configurare automaticamente dipendenze di sistema per la gestione
e l’approvigionamento di istanze remote e locali. L’adozione di queste pratiche spinge
ad un altro livello l’automazione in ambienti che adottano CI/CD (Continuous Integra-
tion/Continuous Deployment). Negli ultimi anni c’è stato un grande interesse per queste
discipline, sia dall’ambiente accademico sia da quello industriale. Abbiamo condotto
una revisione sistematica della letteratura per comprendere quali sono le sfide che queste
pratiche stanno affrontando, con particolare interesse per gli standard: abbiamo studi-
ato lo stato dell’arte dei tool basati su standard, in particolare lo standard TOSCA. Tra

questi, abbiamo trovato la RADON tool-chain. Abbiamo condotto una dimostrazione di
fattibilità in un ambiente industriale per verificare i vantaggi e gli svantaggi dell’adozione
di questo framework. In particolare, abbiamo testano un nuovo approccio che supporta
la modellazione e il deployment di orchestrator di funzioni in un ambiente serverless con
il supporto degli standard BPMN e TOSCA.

Parole chiave: DevOps, Infrastructure as Code, TOSCA, automazione, standard

iii

Contents

Abstract i

Contents iii

Introduction 1

1 Study Design 3

2 Background 7
2.1 DevOps Overview . 7
2.2 Infrastructure as Code . 9
2.3 Standards: TOSCA . 10

3 Related Work 13
3.1 SLR . 13
3.2 Proof-of-Concept . 15

4 Systematic Literature Review 19
4.1 Study design: background and research questions 20
4.2 Study selection criteria and quality concept definition 24
4.3 Research queries . 25
4.4 Sources result and classification . 27

4.4.1 DevOps Taxonomy . 30
4.4.2 Classification . 33

4.5 Results discussion . 38
4.5.1 CI/CD . 38
4.5.2 Infrastructure Management . 43
4.5.3 Culture . 49
4.5.4 Final Discussion: Answering To The Research Questions 52

4.6 Threats to Validity . 56

iv | Contents

4.7 Conclusions . 57

5 Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 59
5.1 Semiconductor Industry Outlook . 59
5.2 The Value of Data . 61
5.3 Introducing the Company’s Environment 63
5.4 The Team and Its Goal . 64
5.5 The Proof-of-Concept . 66

5.5.1 Introduction . 66
5.5.2 The issues . 68
5.5.3 The solution . 70

5.6 Two Approaches: RADON and Baseline 73
5.6.1 The Baseline Approach . 73
5.6.2 The RADON Approach . 74

5.7 Design of the Experiments . 78
5.7.1 Goal and Research Questions . 78
5.7.2 Context . 79
5.7.3 Participants . 79
5.7.4 Experiments . 79
5.7.5 Variables selection . 80
5.7.6 Null Hypotheses . 82
5.7.7 Design . 82
5.7.8 Experimental material and assumptions 85

5.8 Results . 85
5.8.1 Effectiveness . 86
5.8.2 Efficiency . 87
5.8.3 Perceived Ease of Use . 88
5.8.4 Perceived Usefulness . 89
5.8.5 Intention to Use . 89
5.8.6 Hypotheses Testing . 90
5.8.7 Answering the Research Questions 91

5.9 Conclusions . 92

6 Conclusions and future developments 95
6.1 Systematic Literature Review . 96
6.2 Proof-of-Concept . 97
6.3 Future Developments . 99

Bibliography 101

A Appendix: Extract, Transform, Load pipelines survey 117
A.1 Extract, Transform, Load: the role of pipelines 117
A.2 (Near) Real-Time ETL Pipelines . 119
A.3 AI-Driven ETL Monitoring . 119
A.4 ETL pipelines: towards standardisation . 120

B Appendix: Additional Insights on The Proof-of-Concept 123
B.1 BPMN4FO Models . 123
B.2 RADON GMT Blueprints . 126

List of Figures 129

List of Tables 131

Acknowledgements 133

1

Introduction

Software engineering is a discipline that came officially into existence - even though most
of its practices existed before - at the 1968 NATO Conference held in Germany [115],
where the methods, challenges and difficulties of designing complex software system were
explored and, for the first time in History, standards and practices were grouped and
categorized, covering all the aspects of software development, with the intent of improving
and clarify how software should be developed: software engineering was born.

Most of the results obtained by this conference, and many others that followed in the
next years, are referenced to as classical Software Engineering (SE) and the proposed
methodologies mostly derive from the traditional industry, where state-of-the-art methods
to design and manufacture goods of all kinds were already well-defined. In particular,
the most evident dependency with other industries is to be found in the so-called plan-
driven - or heavy-weight - methodologies, which require upfront requirements definition,
documentation and well-structured project plans [54].

It quickly became clear how this traditional manufacturing way of working was not always
well-suited for software development: the concepts of detailed plans, project and delivery
deadline were obsolete. With the passing years, software systems became more and more
complex thanks to new technological advancements: the ever-increasing computational
power followed by a decreased cost of hardware components, faster storage systems and
the advent of the World Wide Web, have introduced a level of complexity in software
systems that could not be reached by applying the classical SE methodologies; in the
1980s, a frequent phenomenon was having dissatisfied customers due to late deliveries
[44].

It is in this scenario that some terms, like agile, frequent delivery and extreme program-
ming, begun to gain popularity within industry leading companies: it became clear that
it was necessary to adopt a different paradigm to keep-up with the novel complex systems
required by customers. In particular, software products started also to change in shape,
as the classical monolithic application was not anymore the most common product, but it
started to get replaced by novel concepts, such as software services, or services delivered

2 | Introduction

by software [115].

Indeed, looking back at History, we can find that the need of an agile development process
is something that can be traced back to the 1930s, when the Bell Labs company used this
practice to improve product quality [54].

In the traditional way of working, separate teams work on a product and each team plays
its own role during development, with poor communication with the others: this is at
the basis of the so-called Waterfall Model [107]. The Agile model, instead, breaks this
compartmentalization, by enhancing communication among teams, reducing development
time and increasing product quality.

As we can observe, the transition from classical SE to Agile methodologies has been quite
slow, since not only in some cases Agile was performing worse than the classical method,
but also because applying a novel methodology to production lines is difficult, due to
operational and technical deficiencies, but also we have to consider that at the time, i.e.,
before the 1990s, computing was not a mainstream discipline yet [54].

The latest evolution of Agile is DevOps. DevOps is a discipline that covers two main as-
pects of software manufacturing: development and operations. DevOps has been adopted
by a paramount number of industries, and its benefits have been largely disclosed.

Nonetheless, the adoption of DevOps brings several challenges and drawbacks, which
sometimes do not overrule the benefits. For this reason, in this study we want to shed
light on the most recent challenges this discipline is facing, at two different levels.

First, we will systematically review the literature produced in the past recent years, to
get an insight from the academic community on some specific subjects that DevOps
covers, but also we will explore in a real world scenario how these challenges are faced
by the industry, providing also a proof-of-concept for a novel tool-chain and methodology
developed to address many DevOps-related issues.

However, in order to understand the obtained results, the reader should have a clear
understanding of the main underlying concepts, that is, DevOps, Infrastructure as Code
and TOSCA standard. In Chapter 1 we will describe how our study has been designed,
providing the research questions we want to address. Then, to avoid any misalignment, in
the first chapter of our study we provide a brief summary of the aforementioned concepts,
matched by a summary of our research and a discussion on the related work.

3

1| Study Design

Our research consists of an investigation in the DevOps culture, with two main objectives:
(i) discover what are the difficulties, pitfalls and challenges the discipline is currently fac-
ing; (ii) verify how these challenges impact software development in a real-word scenario,
by reporting the experiments we made in collaboration with a company, using a novel
tool.

Figure 1.1: Study design overview.

Figure 1.1 summarizes how our study is structured, highlighting what are the research
questions each part of the study addresses. We identified two main research questions,

4 1| Study Design

one for each objective, and we derived four specific research questions from each of them.

To achieve the first objective, we conducted a Systematic Literature Review (SLR), ana-
lyzing the latest studies regarding DevOps published since 2019: in particular, our focus
was on some DevOps sub-topics, namely Infrastructure as Code (IaC), standardization
(TOSCA) and tools. The goal of the SLR is to answer the following research questions:

• RQ1.1. What are the current challenges DevOps discipline is facing?

• RQ1.2. What is the role of Infrastructure as Code in DevOps?

• RQ1.3. How TOSCA standard can improve the development and adoption of IaC?

• RQ1.4. What are the most recent tools developed to support standards-based IaC
code development?

To provide a sound and complete answer, after discussing the motivation of our research,
(i) we describe our study design, highlighting our background and explaining the research
questions and describing the methodology we employed to provide consistent results; (ii)
we define the study selection criteria and the quality concepts we adopted in order to
include or exclude papers in our result set; (iii) we define the research queries we crafted
to obtain the results, using a specific search engine, justifying why some choices were made;
(iv) we evaluate the resulting set, providing insights on the distribution of publications
over the years, on the authors, and we also define a DevOps taxonomy that we used to
classify the papers according to the man topics they investigate; (v) we discuss the results
obtained, producing an in-depth analysis of the papers found classified according to the
taxonomy and answering the research question mentioned above; (vi) we present what
are the most relevant threats to validity of our study and finally (vii) we conclude the
SLR. All of these steps are described in Chapter 4. Our SLR comprises in the final set
an amount of 71 papers, each of the classified according to our taxonomy.

Our second objective, instead, has been achieved thanks to a collaboration with a semicon-
ductor company, namely NXP Semiconductors1, which allowed us to verify the challenges
highlighted in our SLR in the DevOps field, permitting us to conduct a proof-of-concept
to verify the efficacy of a novel framework created to support the development of server-
less function in a DevOps environment, in a team whose main objective is to develop,
maintain and monitor data ingestion pipelines that retrieve data from many different
sources and load them into a Data Lake. The framework we used, named RADON, is
the result of the European Union founded project RADON h-20202, it provides a tool-

1https://www.nxp.com
2https://radon-h2020.eu

1| Study Design 5

chain and a methodology to develop server-less functions and it is based on the Topology
Orchestration and Specification for Cloud Application (TOSCA3) standard, to be used
in conjunction with state-of-the-art cloud services vendors. Thanks to our investigation,
we witnessed how the challenges and pitfalls of DevOps impact on a team, and we make
another step towards the adoption of standards-based development of IaC scripts: our
results confirm the benefits claimed by RADON, but they also show the challenges and
limits of the framework. This part of research is described in Chapter 5. The goal of our
proof-of-concept is to answer to the following research questions:

• RQ2.1: Which is the most effective approach to design and deploy function orches-
trators?

• RQ2.2: Which is the perceived easiest approach?

• RQ2.3: Which approach is more useful?

• RQ2.4: Which tool is intended to be used?

Achieving this goal has been possible by adopting the following strategy to conduct our
study: (i) we describe and motivate why we have chosen a semiconductor company to
conduct our experiments, (ii) giving some insight on the most recent development in the
industry and (iii) describing why Data, which is the main asset involved in our scenario,
are so valuable; then, (iv) we show the environment we worked in, (v) highlighting the
goals of the team we collaborated with; Finally, (vi) we present our proof-of-concept,
providing the motivations of our study, the issues the team is facing and the solutions
found, and (vii) we compare the performance of the RADON methodology versus the
Baseline methodology, that is the standard way of working the team is currently adopting.
The results obtained (viii) are discussed and (ix) threats to the validity of our research
are presented and (x) conclusions are drawn.

Before diving into our SLR and Proof-of-Concept, however, we introduce the reader to
the main concepts tackled by our research: in the next chapter we provide (i) a brief
overview of the DevOps discipline, (ii) a description of Infrastructure as Code and what
role plays in DevOps, (iii) a summary of the TOSCA standard main characteristics.

3https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

7

2| Background

This chapter represents a short and necessary introduction to the main topics which are
the subject of our research. We present the key concepts at the basis of the DevOps cul-
ture, we show why Infrastructure as Code has become so important within this discipline
and we explain what are the most relevant characteristics of the TOSCA standard.

2.1. DevOps Overview

DevOps is the latest evolution of the Agile1 method for developing software. It is defined as
a collaborative and multidisciplinary effort within an organization to automate continuous
delivery of new software versions, while guaranteeing their correctness and reliability [39].
DevOps is a term coined in 2008 [32] and derived from the combination of two words:
development and operations. It represents the fusion of these two fundamentals aspects of
software life-cycle, by blending in one team tasks that are traditionally delegated to two
or more different teams. The integration is done not only by physically merging separated
teams, but also by improving communication among other teams in the organizations and
combining the tools employed to support the various stages of product development.

Figure 2.1: DevOps tool-chain stages [120].

1https://www.agilealliance.org/agile101/

8 2| Background

Figure 2.1 show us how DevOps changes the approach in software development with
respect to other traditional ways of working such as, for instance, the waterfall model.
Without going deep in the details of each step, here we just want to highlight how DevOps
abandons a linear-sequential life-cycle model, adopting instead a circular model.

A key concept of DevOps is automation: it has been shown how automation, applied
to different levels and stages of software development, improves software quality and
reduces delivery time. Automation is always matched by another concept, that is CI/CD
- standing for Continuous Integration / Continuous Deployment - which we will discuss
later: however, we stress the fact that in DevOps many concepts rely on each other
and this, in combination with a circular model, witnesses dependencies among different
practices, creating a relationship loop [64].

From a process point of view, DevOps aims to reach business objectives by minimizing
risks and costs but at the same time improves product quality by employing a frequent
and reliable release process. This process relies on Agile concepts, short feedback life-cycle
and continuous improvement. DevOps abandons the rigorous and hierarchical traditional
approval schema by replacing it with agile and lean principles.

By look at DevOps from the people’s perspective, as we stated before DevOps merges
both developers and operators through the culture of collaboration. Collaboration enables
sharing knowledge, tools and practices, but at the same time each team achieves a higher
level of autonomy: cross-functional teams are a key element of the DevOps culture, as
they enhance collaboration and communication.

The delivery ’s perspective, instead, highlights how Continuous Delivery and Continuous
Deployment are at the basis of the whole framework, and they rely on may different factors,
such as static analysis, testing automation, deployment pipelines and a wide variety of
tools. In the end, all these elements contribute to increase automation, enabling the shift
towards micro-services instead of big and batch applications. All of that is matched by a
frequent and reliable release process.

Finally, the run-time point of view enables to notice how DevOps copes with performance,
availability, scalability, resilience and reliability, relying on continuous run-time monitor-
ing and alerting. In the long-run, this also improve the security and the stability of the
environment.

2| Background 9

2.2. Infrastructure as Code

Infrastructure as Code is one of the main DevOps pillars [74]. IaC is technique that,
deriving from practices in software deployment, allow to automatically configure the def-
inition of system dependencies and provision local and remote instances. IaC is a core
component of Continuous Deployment. It allows to consistently and repeatably configure
routines to configure a system.

The main goals of infrastructure as code are the following [74]:

• dynamically change IT infrastructure;

• make changes to a system a routine, rather than an obstacle;

• define, provision and manage resources independently;

• quick and easy recover from failures.

IaC strongly enforces effortless and reliable build and rebuild of every element of the
declared infrastructure. This is because, thanks to Dynamic Infrastructure, which is one of
the groundings elements of IaC, it is possible to easily create, modify, delete and move each
part of the architecture, independently; this allows making effortless improvements and
fixes to the infrastructure. Furthermore, Infrastructure as Code allows delivering multiple
and consistent deployments of the same system: this is due to the fact that Infrastructure
as Code declaration scripts are reproducible [106]. This is enough to understand why
CI/CD practices strictly relies on IaC.

In the past recent years, many tools and technologies have been developed to support
IaC, such as Chef2, Puppet3 and Ansible4, which are very popular and as such are used
to provision cloud-based resources. For this reason, IaC gained a lot of interest both
amongst practitioners and researchers: this however, does not mean that IaC is a fully
explored topic, but, as opposite, at the current state it is under-explored.

Limitations and issues has been found regarding many different aspects IaC. Defects and
security flaws in IaC scripts can cause serious issues, and for this reason many studies
have been conducted to find ways to detect and predict code smells and bad practices:
indeed, we will see in our SLR chapter the large amount of tools existing to support this
topic. In general, we can state that the situation is made even worse by the fact that
a very large variety of tools is available on the market, and each of these tools adopt a

2https://www.chef.io/products/chef-infrastructure-management
3https://www.puppet.com/products/puppet-enterprise/continuous-delivery
4https://ibm.github.io/cloud-enterprise-examples/iac-conf-mgmt/ansible/

10 2| Background

different programming paradigm and adopts peculiar design choice.

To address all these issues, researches are pushing towards standardization: in fact, there is
evidence to support the thesis that adopting standards for the development of IaC scripts
reduces security-related issues and improves the quality of the scripts. In addition, it can
reduce the effort of practitioners, who have to learn many different languages and tools,
most of the time even in within the same team. Amongst the available standards, the
OASIS Topology Orchestration and Specification for Cloud Application Standard is the
most prominent one. In addition, the adoption of standards-based DevOps methodologies,
in general, might solve another important issue that arises in this context.

Cloud systems are usually provided by a set of vendors that on one side provide an ever-
increasing amount of proprietary and open source state-of-the-art services, but on the
other side they may introduce an issue, known as vendor lock-in: this is the problem of
becoming dependent to a particular vendor, and the migration towards another becomes
so expensive that it is better to stick with the older one, even if it provides less services or
it is more expensive to maintain. In this perspective, vendor lock-in is a problem solvable,
again, by adopting standardization.

2.3. Standards: TOSCA

Lack of interoperability between tools, the sheer amount of components, dependencies and
constraints have made deployment and management tasks more complex than ever before.
The Organization for the Advancement of Structured Information Standards (OASIS) in
2013 the Topology Orchestration and Specification for Cloud Application standard to
support automated deployment and management of cloud applications [105].

TOSCA enables to declare the description of the topology of a cloud application through a
graph that is made of two components: nodes, that represent each element composing the
application, and relationships, which define the dependencies among different components
[51]. Nodes are also able to provide management operations definition, such as creating
or configuring an element. Since TOSCA allows reusing components, it represents nodes
and relationships in templates: node templates and relationship templates.

TOSCA supports two types of processing: imperative processing and declarative process-
ing [15]. In the first case, a management plan explicitly defines the operations and the
execution order of them. In the second one, instead, there is no definition of management
plan: the application topology is interpreted at run-time and the management of opera-
tions are inferred by the structure of the topology and the definition of its components.

2| Background 11

Figure 2.2: OASIS TOSCA Service Template overview.

Figure 2.2 shows a high-level representation5 of how nodes and relationships interact to
create the so-called topology templates, that represent the deployment model specified for
a specific application, but that can be re-used in other deployments. All together, nodes,
relationships and topology template create a service template.

In the past years, the TOSCA standard has been extended to support more and more
policies, that represent the way nodes are defined. Also, there are several methodologies
for processing TOSCA models, which can also enable automated topology completion
and grouping nodes by matching several ones, to simplify the topology complexity. Other
methodologies support the combination of declarative and imperative processing. In gen-
eral, TOSCA is a very powerful and malleable standard that can be easily adapted to
various usages.

Several tools exists to describe, deploy and instantiate TOSCA-compliant cloud appli-
cations, to be used in conjunction with the most advanced cloud services available. In
our proof-of-concept chapter, we will use some tools that are at the basis of the RADON
h-2020 project, which is based on TOSCA. These tools are Eclipse Winery, that is a
web-based topology modeling tool, and xOpera, that is a deployment engine capable of
executing the defined management plans and deploy the application on the specific target
architecture.

5http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

13

3| Related Work

Our study is composed of two main parts: the one where we present the Systematic
Literature Review, and the one where we discuss our proof-of-concept. For this reason, in
this chapter we bring to the attention of the reader the related works we found, according
to each argument in our research. In this section, we first discuss related works to our
SLR, and then we move to the proof-of-concept. It is necessary to discuss them separately
because, even if they are strictly related, they are two completely different kind of studies
which apply different methodologies.

3.1. SLR

In the past recent years, there have been an increasing amount of interest in DevOps
related topic, and thus the number of publications regarding this research area has always
been raising. For this reason, many SLRs and surveys have been conducted to constantly
keep-up with novel publications, by classifying them and analyzing the current research
direction and making suggestions on which ones might be the next.

The first study we want to mention is a comprehensive survey on DevOps concepts and
challenges [64]. This impressive research provide a complete review of the challenges
DevOps is currently facing. It provides a conceptual map of the overall DevOps discipline,
identifying 4 main concepts: two Dev related and two Ops related; delivery and process,
run-time and people, respectively. These four dimensions reflect the definition of DevOps:
DevOps is a collaborative and multidisciplinary effort within an organization to automate
continuous delivery of new software versions, while guaranteeing their correctness and
reliability [39]. This definition is the one we used as a reference in our research. This
study also provides a review of the state-of-the-art tools, discussing also the implications
of adopting DevOps practices for engineers, managers and researchers and providing an
impressive discussion of the DevOps unresolved challenges.

We consider another extensive study which covers another big topic which is strictly
connected to DevOps: serverless computing. This study [50] cover a wide variety of

14 3| Related Work

aspects related to serverless computing, which can be divided in three main categories:
Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS). By exploring these three categories, this survey investigates the challenges in these
research areas. In particular, it brings to the attention of the reader a wide variety of
issues that still need to be solved such as, for instance, vendor lock-in, resource limits,
performance and many others, but tools are also analyzed. Furthermore, it is also tackles
another important topic, that is the migration of monolithic applications to serverless
computing, a very complex task that is still under investigation.

On the same topics, with particular attention for FaaS, we have found a literature review
[46] that provides an important set of results. In particular, it is discussed a comparison
of the performance and scalability differences among the different Function as a Service
(FaaS) providers; a comparison is also made regarding the constraints associated with
FaaS vendors, regarding resources, integration and language run-times. Pricing is another
hot topic, and a comprehensive analysis of run-time costs differences among vendors is
missing. The last argument brought by this literature review is the level of integration
provided by each vendor between FaaS and the other services. Similar topics are also
captured by another study [42] , which is not properly a survey but has a similar structure,
as it discusses what are the main challenges and limitations of implementing serverless
applications.

Moving towards Infrastructure as Code territory, we can find a survey that explores the
challenges of adopting Infrastructure as Code in a DevOps environment [47]. In particular,
it explores the state-of-the-art of tools for configuration management and frameworks,
considering them from a practical point of view. Furthermore, a short but comprehensive
research regarding the latest developments of the research around IaC is given by Staron
et al. [106], as they describe what are the most recent tools developed in this field to
support IaC deployments.

By looking at what are the challenges that arise during the adoption and the support of
Infrastructure as Code, we fond the work by Guerriero et al. [47], where they conduct
a survey discussing these topics from the point of view of the industry. The shed light
on what are the best practices in infrastructure as code development, they discuss what
are the available tools, and they witness what are the challenges practitioners are facing.
Their findings are similar to the ones we previously discussed: they found out that the
main issue is currently related to the fact that there are too many tools, languages and
methodologies to support IaC development, and there is the need of standardization. The
TOSCA standard is mentioned as one of the possible solutions.

3| Related Work 15

Around IaC we discovered other surveys and SLRs. One survey [48] analyzes a large
amount of papers to find six best practices for testing IaC scripts, they are: avoiding
coding anti-patterns, behavior-focused test coverage, remote testing, sandbox testing,
testing every IaC change and use of automation. An SLR by Nedeltcheva et al. [75]
explores what modeling approaches ti generate IaC, concluding that there is no one-size-
fits-all solution and identifying key gap ares that needs to be further investigated.

Regarding IaC, another hot topic is related to defects, code smells and security smells
in IaC scripts. We mention three extensive surveys which bring a classification of these
issues. The Seven Sins paper [86] identifies what are seven most recurring security smells
in IaC, and practices to detect them. They are: admin by default, empty password,
hard-coded secret, invalid IP address binding, suspicious comment, use of HTTP without
TLS and use of weak cryptography algorithms. The Gang of Eight paper [87] provides
instead a taxonomy for categorizing IaC defects, which are eight categories: conditional,
configuration data, dependency, documentation, idempotency, security, service and syn-
tax. A similar work [89] is proposed by the same authors, which is at the basis of the one
mentioned above.

Finally, we mention the work of Bellendorf et al. [11], the most complete survey we
found regarding the TOSCA standard. They provide a taxonomy used to classify paper
regarding the contribution in TOSCA. In particular, the main taxonomy field they found
are: tools, extension of language, methodologies for processing TOSCA models, relation to
other solutions, usage of TOSCA and TOSCA introduction. For each of these categories
there are sub-categories, and for each of them are classified and analyzed several papers.
This survey has been fundamental to our study, since it provides a previous background
on the state-of-the-art of TOSCA. In the survey not only are discussed the studies found,
but are also suggested some areas that need further exploration.

3.2. Proof-of-Concept

Since the RADON tool is quite recent and not yet massively adopted, few works we have
found related to the RADON IDE, and they are all produced by the team that worked
in the development of the tool itself. Nonetheless, here we mention some related works
that, even if do not necessary apply directly to RADON itself, they are worth mentioning
as they share some similarities with our study.

The 2019 study by Sandobalin et al [93] is strictly related to our work as, even if it does
not tackle RADON or similar methodologies, it gave us a model to follow to conduct our
experiments, that we will discuss in Chapter 5. It is however worth mentioning that they

16 3| Related Work

compare two tools to support IaC, one model-driven and the other code-centric. These
two tools are very popular, and they are used in a wide variety of studies, especially the
ones devoted to classify, detect and predict code smells.

It is worth mentioning also an empirical study by Leitner et al. [65], which provides
interesting insight on the development of Function as a Service from the industry. This
study also provides a systematic literature review and a web-based quantitative survey. In
this studies are explored the challenges and issues practitioners are facing in the industry,
and we used this as a reference during our experiments.

We then consider another study [27], where the Rational Decomposition and Orchestra-
tioN for serverless computing, namely RADON, is presented: here the main objectives
and early results are presented, and we mention it in the related work not for the kind
of study but rather because it represents a quick introduction to the overall RADON
methodology, which is the basis of our study.

Other related studies are the ones by Yussupov et al. [117, 118] where they extend
TOSCA specifications to support the modeling and deployment of function orchestrators
in a serverless environment, by using two tools that compose the RADON tool-chain,
namely Eclipse Winery and xOpera, in combination with BPMN modeling language. In
these study is presented the actual tool-chain and approach we tested in our study: it not
the full RADON approach, but a subset of it. The password here is automation: their
objective is to extend the radon methodology to support a wider variety of applications.
We will discuss each tool and the overall idea more in detail in Chapter 5. The same
approach, which we can refer to as BPMN and TOSCA modeling, is presented also in
another paper [21] by different authors, namely Calcaterra et al. which worked also with
Yussupov et al. in other studies, and they contributed to the RADON project.

BPMN and TOSCA modeling is also enhanced by the same authors in another study
[38] where they introduce the Continuous Testing Tool, which is part of RADON IDE
and it is based on their previous works. The tools is envisioned for three main use cases:
define test cases, execute test cases and maintain test cases. In this study, the underlying
architecture is described in detail and the efficacy of the tool is shown.

A methodology and tool-chain similar to RADON is presented in another study [36],
where the SODALITE1 environment is presented. SODALITE provides a set of tools to
address issues related to complex task configuration, deployment and operations, enabling
faster development of IaC.

1https://www.sodalite.eu

3| Related Work 17

We finally mention other two studies by Sokolowski et al. [98, 99] that, even if do not
directly related to proof-of-concepts around the RADON tool-chain, they investigate the
automation of serverless deployments in DevOps teams. We mention them since we
worked in a DevOps team, and they were suffering from some of the issues these studies
try to address, in particular dependencies from other teams and dealing with continuous
changes in IaC deployments.

19

4| Systematic Literature Review

As described in the previous chapters, at the basis of the current evolution of DevOps
practices resides Infrastructure as Code (IaC), which is a principle used to manage issues
related to configuration, integration and deployment in an automated fashion of infras-
tructural resources.

Although literature in this field is vast and is evolving really fast, especially in the past
recent years, it is necessary to shed light on the most critical research areas. In particular,
albeit IaC is a well-studied subject and many surveys and SLRs have been produced, it
is still matter of concern which is the current state of the art in this field.

We conducted our literature review following Barbara Kitchenham’s systematic method-
ology [58, 59], which defines a set of guidelines to conduct a research such that the method
is rigorous and the results are reproducible. The idea behind these guidelines is the fol-
lowing process: starting from a pilot study, where the key concepts are analyzed and a
set of research questions is produced, follow a precise sequence of steps to get, given an
initial set of sources, a polished unit of sources to work with.

Our research started with a pilot study, which was fundamental to identify the research
questions. The pilot study was conducted by searching for publications related to DevOps
and IaC, reaching not only the well-know research venues managed by, for instance, the
Association of Computer Machinery (ACM) and the Institute of Electrical and Electronics
Engineers (IEEE), but also grey literature articles and blogs. The reason why we made
this choice, i.e., consulting a broad kind of resources, is that we wanted to capture the
most different voices: in fact, it was immediately clear how the rigorous way of conducting
research is not always matched by a novelty of result and, sometimes it is possible to find
interesting and novel insights on grey literature rather than on the most popular and well
known academic venues.

Before introducing the study design, the search and selection protocol and how papers
have been classified, we want to make and important premise. As we stated in the
previous paragraph, we follow Kitchenham’s guidelines for SLRs. The method, which
we provide a brief description in the following section, foresees the involvement of a

20 4| Systematic Literature Review

small group of people during the selection of papers and evaluation process. This is
necessary to produce results which not only are more reliable and complete, but also
less biased towards the feelings of the specific person who is performing the review. For
instance, it might be possible that one author finds a publication useful for the scope of
the research, while another researcher might not agree; or else a situation might occur
where one author classifies a paper belonging to a specific category, while another author
classifies the publication in another category. So, to avoid these unfortunate situations,
the methodology suggests not to work alone, but with a small group of people. In this
way, a certain level of objectivity is assured. In our case, this was not possible, since the
research and review processes have been conducted by one individual. This is a threat
to the validity of this work: nonetheless, we are very confident that this study reaches a
good quality level, given that for all the other steps of the methodology we followed the
most scientific rigor.

In addition to this important premise, we state that, in the next section, a comprehensive
analysis of the internal and external threats to the validity of this study is provided, so
that the reader is aware of what are the limits of this research.

4.1. Study design: background and research ques-

tions

In the previous chapters of this work, we discussed how DevOps changed the paradigm
for software development, thanks to the gradual introduction of new techniques, practices
and tools aimed to emphasize the collaboration and the connection among different IT
professional figures, both developers and operators, while automating the delivery process
and at the same time enhancing reliability.

DevOps is a culture, a combination of many factors which contribute to the most modern
way of thinking software development. In particular, we found interesting how Infras-
tructure as Code has been able to bring the whole process to another level, allowing
developers to benefit of the advantages of traditional programming, in a Continuous De-
liver/Continuous Integration (CI/CD) environment. Nowadays, Infrastructure as Code is
supported by many languages and tools which mostly derive from traditional program-
ming: although this is an advantage, because it allows developers to work in a familiar
framework, it also brings challenges to overcome and limitations which might affect the
effectiveness of IaC. For this reason, in the past recent years there have been an increasing
interest in this field.

4| Systematic Literature Review 21

The study is structured as follows: as we anticipated in the previous sections, we con-
ducted a pilot study to assess which are the possible paths to follow and identify the
research questions. After that, we defined the research queries, identifying the most im-
portant keywords. On top of that, we defined the sources selection criteria, describing how
a paper was included in the final set and why some were not. Also, it was fundamental to
define some quality concepts to assess whether a study was good enough to be considered
in the final discussion or not.

In order to properly define these criteria, since the review was conducted by only one
person, we compared our initial intuitions and ideas with other papers that we classified
as milestones. We consider a paper as a milestone if it is a review conducted scientifically -
i.e., explicitly follows some SLRs methodology, be it Kitchenham’s or some other technique
- and if it produces a well documented result. However, this alone does not grant the rank
of milestone to a paper, so in addition we considered that a milestone has to be cited by
the majority of the papers we encountered during our research. In the end, we end-up
with few papers that we classify as milestones.

First author Title Year

[11] Bellendorf J. Specification of cloud topologies and orches-
tration using TOSCA: a survey

2019

[64] Leite L. A Survey of DevOps Concepts and Chal-
lenges

2018

[86] Rahman A. The Seven Sins: Security Smells in Infras-
tructure as Code Scripts

2019

[41] Elazhary. O Uncovering the Benefits and Challenges of
Continuous Integration Practices

2021

[62] Kumara, I. The do’s and don’ts of infrastructure code:
A systematic gray literature review

2021

[87] Rahman, A. Gang of Eight: A Defect Taxonomy for In-
frastructure as Code Scripts

2020

[85] Rahman, A. A systematic mapping study of infrastruc-
ture as code research

2018

Table 4.1: List of milestones.

A publication, in order to properly fall in the milestone classification group, needs to meet
some criteria. These criteria are defined as a larger subset of the criteria we used to include

22 4| Systematic Literature Review

studies in our research. The quality and selection criteria will be discussed in the detail
in the next section and for this reason here we will just point out the main differences
and addition made to these criteria to build the milestone class. First of all, all the
paper classified as milestone are among the most cited and reviewed in their respective
field. This is a fundamental metric as it gives the publication stronger credibility and
authority to a specific study. On top of this preliminary requirement, we also included
in the criteria the fact that the paper must be a survey, a literature review, a taxonomy
or a classification regarding challenges and discussing the state of state-of-the art of a
specific subject. Furthermore, the survey or Literature Review it should no be just a
recap of studies made before, but must provide new insights and a string critic to a topic.
Finally, the study must be recent as the other ones included in the study: only paper
from 2019 have been considered. However, there are just two exceptions: there are two
papers published in 2018. The reason why are included is that they are so influential and
cover topics so important for our research that we found relevant to include them.

Table 4.1 shows the papers we used as comparison and verification for the criteria em-
ployed in our survey: the milestones. As we can see, they are all surveys, systematic
literature reviews or taxonomies. They cover specific topics, with well-defined research
questions, and they justify every decision made during the research; but, must impor-
tantly, they were conducted by more than one person, granting authority and trust on
them.

After the definition of the selection criteria and quality concepts, we started the classifi-
cation of the obtained results, categorizing papers, making statistics on them, assessing
their quality according to the previously defined criteria.

Subsequently, we discussed our results, highlighting the most important concepts we ex-
tracted by the sources. With the considerations we made we were able to conduct a case
study - discussed in detail in the next chapter - related to the most interesting topic we
found: standardization, in particular the OASIS Topology and Orchestration Specification
for Cloud Applications standard (TOSCA) and the tools developed around it.

We also devote a small sub-section to explain the threats to the validity of our study,
discuss both internal and external validity, to clarify what are the aspect we consider
less rigorous in our SLR which might compromise the prerogative of the study of being
scientific.

4| Systematic Literature Review 23

Figure 4.1: Overview of Systematic Literature Review methodology.

Figure 4.1 shows an overview of the previously discussed methodology, that has been ap-
plied throughout the study. One important remark we did not previously mention is that,
besides the query-based search, we also applied the so-called "snowballing" technique,
that is, we enriched our data-set by looking for other sources cited by the main findings
of the query-based search. This step of the search process has been critical, since not only
the outcome could have - negatively or positively - influenced the discussion of the results,
but also we had to be particularly careful in the selection criteria of new sources. For this
reasons we established, on top of the study selection criteria baseline, an additional set of
rules to strengthen the selection procedure in this delicate phase.

The research questions we want to address in our study are the following:

• RQ1. What are the current challenges DevOps discipline is facing?

• RQ2. What is the role of Infrastructure as Code in DevOps?

• RQ3. How TOSCA standard can improve the development and adoption of Infras-
tructure as Code?

• RQ4. What are the most recent tools developed to support standards-based IaC
code development?

With RQ1 we want to clarify the current state-of-the-art of the DevOps discipline, shed-
ding light on the current challenges this discipline is facing, with particular interest in
some of the other topics it encompasses, such as Infrastructure as Code and standardiza-
tion. On the other end, with RQ2 we want to make a clear statement on what is the role
of IaC in the DevOps field, why it is so important for its application and what are the
best techniques available to adopt it. Related to this, RQ3 has been derived by our pilot
study, were we immediately found the OASIS TOSCA standard as the most advance and
mature application of standardization to IaC development. For this reason, we want to

24 4| Systematic Literature Review

investigate why is gaining popularity and what are the advantages of its adoption. Finally,
with RQ4 we further investigate the standards-based infrastructural code development
by searching for the most recent and advanced tools available in this field.

4.2. Study selection criteria and quality concept def-

inition

In order to find papers, we used Elvasier’s Scopus Search Engine: the reason why we
used only one search engine, and we did not use other well-know libraries, such as ACM
Digital Library, Google Scholar and IEEE Explore, is to be found in the limitations we
encountered in our research; the most important is that it has been conducted by one
person. Using multiple search engines would have produce an incredible amount of results,
which of course would have produce a more complete study, but it would have not been
possible to classify all of them, considering that by using only Scopus we obtain an initial
set of slightly less than 600 papers. Furthermore, all the other engines we mentioned do
no provide a straightforward way of putting the results in a database, such as a CSV
file: third-party tools would have been needed, and this would have increased the time
necessary to conduct the study. Another important reason is that Google Scholar provides
result by searching on many different sources, and it also includes grey literature and does
not provide a fine-grained research.

For all these reasons, in the end we decided to used Scopus since it was the most convenient
for our study, allowing exporting results directly in a CSV file. Given the result set
obtained by the search - we will discuss the search queries used in the next section - we
designed a set of inclusion/exclusion criteria, to filter out non-relevant papers.

Table 4.2 summarizes all the criteria we used in our filtering step. First of all, a study
published before 2019 is not included: we only want to consider studies published from the
COVID-19 outbreak, as we previously mentioned. Second, we excluded papers that do not
have among the Title, Keywords and Abstract fields one of the following keywords: IaC
(also not abbreviated), DevOps, Data Ingestion, Framework, Tool, Standard, TOSCA;
this was made to avoid non-pertinent papers. Included papers must also be at least
three pages long, since shorter papers are usually shorter version of other papers or just
presentation of a work, and they do not go in depth in the explanation of results. We
also included only peer reviewed papers, published in journals, conferences and workshops,
since this helps in considering only papers that have already been analyzed by the scientific
community.

4| Systematic Literature Review 25

Criteria Include Exclude

Year Papers must be published be-
tween 2019 and 2023.

Papers published before 2019 are
not considered.

Relevance Relevant for DevOps, IaC,
TOSCA: these keywords must
appear in Title, Keywords and
Abstract.

Papers that do not have relevant
keywords in their Title, Keywords
and Abstract.

Quality Peer reviewed papers in Journals,
Conferences and Workshops.

Non peer reviewed papers.

Rigor Scientific research and validation
methods must be use to demon-
strate results.

Paper that do not use scien-
tific research or have a superficial
approach.

Language The language used by a paper
must be English.

Publication not written in En-
glish.

Length Papers must have at least three
pages.

Papers shorter than three pages
are not considered.

Table 4.2: Design of our experiments.

Another important criterion is that a paper must use clear validation methods and must
adopt a scientific rigor to conduct the study and assess the results: this is important to
improve the quality of our results. Finally, language is a criterion, since we only considered
studies written in English.

As we mentioned in the previous section, where we present the papers classified as mile-
stones, we discussed how these criteria are a subset of the ones used to classy a paper
as relevant or not. However, we also highlighted how just two papers do not meet the
Year requirement, as we classified two papers as milestones even if were published before
2019: they were published in 2018. Nonetheless, we already depicted why we made this
decision.

4.3. Research queries

The crucial step of a systematic literature review consist of defining one (or more) query(s):
each query is based on the criteria defined in the previous section. However, building a
query is not a strait-forward process, since the combination of keywords used might result

26 4| Systematic Literature Review

in very different outcomes. Indeed, the query is the formal representation of the criteria,
and the keywords represent each basic concept. So, first of all we introduce all the
keywords we used in our queries, listed in table 4.3.

Keywords Priority level

Infrastructure as Code infrastructure as code, in-
frastructural code, iac

MEDIUM

DevOps devops, mlops, etl pipeline,
data ingestion,

MEDIUM

Specific Topics challenges, standards, stan-
dardization, tool, tools,
standard, framework, tosca,

LOW

Publication year pubyear > 2018 HIGH

Table 4.3: Keywords list with their priority level in the queries and, grouped by topics.

For convenience, keywords have been divided in categories which, however, do not affect
the query itself: Infrastructure as Code, DevOps, Specific Topics and Publication year.
For Infrastructure as Code we found for main keywords to cover the three possible nota-
tions which the concept might be found in literature. For DevOps instead, we not only
cover a concept itself, but also other related to it, such as Extract, Transform, Load (ETL)
pipeline and Data Ingestion, two important fields in which DevOps has been applied and
crucial of our SLR, but also important for the case study presented in the next chapter.
Then, Specific Topics identifies all the possible sub-topics of IaC that are relevant for our
research, but that do not need to appear all together in the same study: in particular, we
cared about standardization and challenges in the IaC field. Finally, Publication year is
the keyword used to the fine from which year we want to consider studies, based on the
considerations made in the previous sections.

We can proceed now to the presentation of the queries used in our research. Actually, for
the final result we used one unique query which, however, is the product of an iterative
process where, starting from a simple query, each time we added complexity to gain more
and more precision. This is due to the fact that initially, with the simplest query composed
by only few keywords, the obtained results where very broad and the amount of found
sources was that big that it was impossible to conduct a proper review. Also, we obtained
a lot of studies completely out of the score of this study: the number of results where
initially around 1000-2000 papers. A number too large to be analyzed by one person

4| Systematic Literature Review 27

alone.

For these reasons, we started build up more and more complex queries, until the final one
was obtained.

ALL(((infrastructure AND as AND code) OR (infrastructural AND code)

OR iac) AND (devops OR mlops OR (etl AND pipeline) OR (data AND

ingestion)) AND (challenges OR standards OR standardization OR tool

OR tools OR standard OR framework OR tosca)) AND PUBYEAR > 2018

The above query is makes use of all the keywords listed in Table 4.3, according to their
priority, i.e., to the place they have in the levels of the brackets. In addition to these
keywords, the query is structured in a way to be compliant to Elvasier’s Scopus literature
search engine, the one eventually used for this study. In particular, at the very beginning,
the "ALL" keyword is used to allow the engine to search the for the keywords in many
different fields of publications, such as the title, the abstract and the keywords. The
reason why we decided to search over all the possible fields is that, at some point during
the query refinement process, we noticed that we were obtaining very scarce results: this is
due to the fact that in literature some of the keywords may appear under different names,
and so we did that to avoid loosing important papers, being unable to identify all the
possible versions in which keywords might appear. So, to guarantee an even outcome we
allowed a broader search over all the fields, considering also the risk to obtain results that
might not be useful for the research: in the end, it was crucial the refinement step, where
we filtered the final set of the query outcome according to the inclusion and exclusion
criteria which we were unable to model using just a query alone.

4.4. Sources result and classification

The resulting set from the final query discussed above is composed by 590 papers. The
set comprises publications from January 2019 to March 2023 (time at which the query has
been used on the search portal). After filtering out unwanted papers by reading title and
keywords - according to the rules and criteria previously defined - we obtained a refined
set of 142 papers: indeed, few papers were completely out of the scope of the research,
while others were covering similar topics but not the specific ones covered by our research
questions.

With this intermediate set of 142, we started reading abstracts and, when needed, the
whole content. Following the exclusion criteria, we obtained 62 papers in the final set.

As we can see in Figure 4.2, we can see how the publications are spread among the years.

28 4| Systematic Literature Review

In particular, most of the publications fell in 2022, highlighting a big different with 2021
and 2020. We interpret this as a consequence of the COVID-19 pandemic: according
to most of the paper we included in this review, there have been an ever-increasing
interest in the past recent years, and each year the number of publications seems to be
growing; however, the pandemic outbreak affected many aspects of human life, including
the research community. This lead to a sudden stop in the research activities, slowing
down the process and reducing the number of publications. What we want to say is that,
even there has been a growing interest in the subjects of our research, we can not state
that the sudden increase in publications of the 2022 year represents what would have
happened in normal times, i.e., without the pandemic. Nonetheless, we can state that,
now that the COVID-19 outbreak seems to have reached the end, the research community
is working again at full speed. In addition to that, we have to consider also that some
publications might be recorded according to their last version, rather than the day they
were published.

Figure 4.2: Publications distribution per year from 2019 to 2023.

On top of these papers, we found other interesting ones by applying the "snowballing"
technique, i.e., we looked at the references of papers, and we included in our research some
of the most cited ones, typically appearing in more than one paper’s references. Again, also
for this part we applied the inclusion and exclusion criteria previously defined, although
in this step might rise more subjectivity in the choice with respect to the other steps.

Figure 4.3 shows the most prolific authors found in our research. Out of the 13 authors
displayed, 7 are Italian. Also, most of them are co-authors in the same papers, such as
Tamburri, Di Nucci and Dalla Palma, who worked together in many publications related
to tools, TOSCA, prediction and detection. Other relevant collaborations are the ones

4| Systematic Literature Review 29

between Rahman and Williams, who are the most prolific authors in the security smells
and bad practices research areas. However, we will discuss more in detail the topics
tackled by the papers in the following sections.

Figure 4.3: Bar chart depicting the authors with most publications.

In addition to the papers found using the Scopus Search in combination with the search
query, we also considered some other paper through the so-called snowballing process.
Table 4.4 lists all these papers, which in total are 9. They are all related to IaC and
TOSCA standard, as they are they main investigation topics of research. They all fall
within the time period specified by our query, except for [89] and [117]: we included them
anyways, as they tackle fundamental concepts that are at the basis of many other papers,
especially from the same authors.

So, overall, in our review we consider 62 papers from the query-based search and 9 from the
snowballing process, bringing the total number of papers to 71. It is important to notice
that, however, in the classification process and statistical analysis we only considered
the 62 initial papers, as we did not want to alter the result of our findings since the
snowballing process might be tricky and might not follow the rigor of the query-based
search. Nonetheless, they are considered in the final discussion.

30 4| Systematic Literature Review

First author Title Year

[106] Staron Recent Research Into Infrastructure as Code 2022

[89] Rahman A. Categorizing Defects in Infrastructure as
Code

2018

[100] Sokolowski D. Dependencies in DevOps Survey 2021 2021

[13] Borovitz N. DeepIaC: deep learning-based linguistic anti-
pattern detection in IaC

2020

[5] Aviv I. Infrastructure From Code: The Next Gener-
ation of Cloud Lifecycle Automation

2023

[24] Dai, Ting Automatically Detecting Risky Scripts in In-
frastructure Code

2020

[118] Yussupov V. Standards-based modeling and deployment
of serverless function orchestrations using
BPMN and TOSCA

2022

[117] Wurster, M. Modeling and Automated Deployment of
Serverless Applications Using TOSCA

2018

[38] Düllmann, T. CTT: Load Test Automation for TOSCA-
based Cloud Applications

2022

Table 4.4: List of snowballed papers.

4.4.1. DevOps Taxonomy

We present now the classification we made. First, we defined a set of categories where
each paper might fall. Categories are not mutual-exclusive: a paper that fall in a category
might also fall in another one. Indeed, a category represents different aspects of a paper,
main topic, secondary topics and type of paper. For instance, a paper can be a Survey or
a SLR, and can cover some topics such as IaC and TOSCA.

The taxonomy depicted in Figure 4.4 has been used, as previously discussed, to classify
the papers found in our research. This taxonomy has been built by analyzing the key
concepts mentioned in the papers tackling DevOps, with the support of other taxonomies
and conceptual diagrams provided by some important studies [53, 87, 113]: however, as
our findings are reliable, it is not present in literature a complete and organic taxonomy
covering all the DevOps concepts.

4| Systematic Literature Review 31

Figure 4.4: DevOps taxonomy and key concepts.

Some taxonomies [11, 64, 87] exist, but they cover only small subsets of the whole DevOps
culture: indeed, we can consider our proposal as a grounding for all the others, since they
can be appended to our as they provide a more in-depth overview on some specific topics,
such as TOSCA or Tools in general. We want to highlight that the taxonomy does not
show the relationship between keywords, just their hierarchy. A nice example of the
relationships that exist between the different concepts has been proposed by [11, 64].

We identified three main aspects that define DevOps: Continuous Integration/Continuous
Deployment (CI/CD), Infrastructure Management and Culture; each of them cover a face
of the DevOps working framework.

CI/CD comprises all the aspects which are proper of this modern way of developing
software, spreading from Tools, Automation, Release, Code, and all the other activities

32 4| Systematic Literature Review

related also to traditional software development. CI/CD represents the core of DevOps,
as it represent the what in practice has to be done to build software in a way that does
not require relying on traditional project deadlines and developing stages. However, the
means and the environment in which CI/CD is used are also crucial for its applicability:
Infrastructure Management and Culture cover these aspects, respectively. We want to
stress that each of the three main categories is not to be considered as independent, but
each of them relies on each other. DevOps is a complex combination of many different
practices, and it shows its full potential only when it is applied to every level of software
development and operations. Also, it is actually difficult to isolate keyword in the taxon-
omy: in practice, most of them overlap as the cover many topics in a transversal fashion.
The same holds for the paper we found: as we will discuss later, most of them usually
cover many topics spreading around the three main categories. This shows how DevOps
is actually a multi-faced discipline which involves a lot of different resources.

Infrastructure Management represent the practical means through which software is shaped
in a DevOps environment. The most relevant keywords we identify are Infrastructure as
Code, Cloud Services, Microservices, Standards (where TOSCA falls in), Monitoring and
Security. The meaning of these keywords will become clearer in the next sub-section,
where we discuss the results. However, we want to highlight two aspects. First, IaC does
not represent a simple keyword, but we consider it as a pillar component of DevOps. More
and more companies are using this way of programming [47], and it also represents one
of the core topics we investigate in our review. Second, Security is a very broad topic:
we identified four sub-topics in it, which define how security is related not only to the
security of the environment in which software is developed, but also to bad practices, code
smells, defects in code which is necessary to detect and, even better, predict, in order to
build even better code. The final aspect we want to underline is standardization: this
is another core topic we investigate in our research, and in the past recent years there
has been an ever-increasing interest in this topic, in particular for the TOSCA-related
standards.

Finally, with Culture we identify all the aspects related to the people, both develop-
ers and operators, involved in a DevOps environment. So, we consider as fundamental
concepts Teams, Knowledge (sharing), Practices, Frameworks (for which we identified
Agile, SCRUM and SAFe [52, 98, 99], but many others exist), Collaboration (within the
team and between teams), Product Management (with respect to the traditional way
of working, i.e., Project Management), Feedback (strictly related to, for instance, the
Agile framework), Compliance (w.r.t. regulations defined in a DevOps team) and Cost
Reduction. Indeed, the greatest benefit of DevOps is, from a business perspective, cost

4| Systematic Literature Review 33

reduction [46, 64].

4.4.2. Classification

With this taxonomy in mind, we classified the papers found according to it. However,
the taxonomy is related to the DevOps topics, not to the type of paper: with type of
paper we identify what is the contribution of the paper at a scientific level or how the
study has been conducted. The different categories of papers are: Survey, SLR, Case
Study, Comparison, Interviews, Technical Insight, Challenges. In particular, survey and
SLR are very similar, and in order to classify papers in these two categories, although we
relied on the definitions of the two, we also followed the definitions provided by paper’s
authors themselves: if a publication is explicitly presented as a survey, we classified it as
a survey; instead, for instance, if a paper is presented as a SLR but it does not follow
any particular scientific rigor, then we preferred to classify it as a survey. Case Study
represents the category of papers that bring practical applications of theoretical concepts,
while Interviews is the category of publications which core resides in interviews reports.
Challenges is a type of papers which tackles challenges related to particular topics and
it can be explicitly stated by the authors or inferred by the content of the publication.
Finally, Technical insight represents the broader category and, indeed, is the one where
most of the papers fall (as we will see later in this section): this category identifies papers
that shed light on, usually, a particular topic providing new ideas, models, approaches
or tools; they consist of actual scientific investigations, as they make use of the scientific
method to inquire over particular topics.

Combining these two parameters, i.e., the taxonomy and paper type, we built a classifi-
cation matrix, where each paper can occupy one or more fields: in fact, a paper might
bring on or more contributions and at the same time it might tackle one or more topics
depicted in the taxonomy. However, in the classification we only considered the main
topic(s) faced by a paper: it might happen that a paper also covers a little of other topics.

In Table 4.5 it is depicted how papers have been classified, according to the types of
publications explained in the previous paragraphs and the taxonomy in Fig. 4.4. The
main challenge of this step was not only to identify the exact publication type, but also the
main topics covered, that is, the one explicitly addressed by the papers, typically explained
in the abstract and introductory part with research questions and scope. However, many
papers also tackle a lot of topics since, in general, DevOps is a broad discipline with many
interconnected areas. For these reasons, the vast majority of papers have been classified
in more than one category: this was our initial intent, as we envisioned the table as a way

34 4| Systematic Literature Review

S
L
R

S
u
rv

ey
C

as
e

S
tu

d
y

C
o
m

p
ar

is
o
n

In
te

rv
ie

w
s

T
ec

h
n
ic

al
In

si
g
h
t

C
h
al

le
n
g
es

C
I/

C
D

[4
1]

,
[5

0]
,

[6
4]

[1
21

]
[4

1]
[2

9]
,
[5

2]
,
[7

7]
[4

1]
,
[6

4]
,
[5

5]

T
oo

ls

[9
0]

,
[1

10
],

[8
5]

[2
2]

,
[1

9]
,

[4
4]

[1
9]

[9
5]

,
[9

0]
,

[1
10

],
[6

],
[2

2]
,
[8

6]
,
[9

3]

[3
0]

,[
29

],
[3

4]
,[

98
],

[8
2]

,[
77

],
[2

8]
,

[3
3]

,
[1

09
],

[1
01

],
[6

3]
,
[2

7]
,
[3

]

D
ep

lo
ym

en
t

[2
1]

,
[2

9]
,
[9

8]
,
[7

7]
[5

5]
M

od
el

lin
g

[7
]

[2
1]

,
[2

9]
,
[7

7]
,
[3

3]
,
[1

09
],

[1
4]

V
er

si
on

in
g

[6
4]

[2
9]

,
[7

7]
[6

4]
T
es

ti
ng

[2
9]

,
[7

7]
[4

8]
A

na
ly

si
s

[2
9]

,
[7

8]
,
[8

2]
,
[7

7]
,
[1

01
],

[2
6]

A
ut

om
at

io
n

[3
0]

,
[8

0]
,
[2

0]
,
[3

3]
,
[9

9]
,
[6

]
R

el
ea

se
[4

8]
O

p
er

at
e

[6
5]

[6
5]

[2
9]

,
[5

2]
,
[9

7]
,
[6

3]
C

od
e

[2
9]

,
[6

0]
B

ui
ld

[6
3]

,
[6

0]
P

la
n

[5
2]

,
[9

7]
C

on
ti

nu
ou

s
T
es

ti
ng

[8
5]

[2
9]

[4
8]

In
fr

as
tr

u
ct

u
re

M
an

ag
em

en
t

Ia
C

[8
5]

,
[7

5]
,

[6
2]

[1
10

],
[2

2]
,

[8
8]

[1
04

],
[1

02
],

[5
6]

[1
04

],
[7

],
[9

6]
,

[2
2]

,
[7

5]
,
[8

6]
[4

7]
[8

4]
,[2

1]
,
[2

5]
,
[7

6]
,
[3

0]
,
[3

4]
,
[8

0]
,

[2
0]

,[
98

],
[8

2]
,[

92
],

[7
7]

,[
28

],
[3

3]
,

[6
8]

,
[1

4]
,
[8

3]
,
[6

0]
,
[2

7]
,
[6

8]

[9
6]

,[
47

],
[8

7]
,

[4
8]

,
[2

6]

C
lo

ud
Se

rv
ic

es
[5

0]
[5

7]
Sa

aS
[5

0]
[6

]
[6

9]
,
[6

]
Fa

aS
[6

5]
,
[4

6]
[4

2]
,
[5

0]
[4

2]
,
[9

5]
[6

5]
M

ic
ro

se
rv

ic
es

[5
0]

St
an

da
rd

s
[9

2]
T

O
SC

A
[1

1]
[6

8]
[7

]
[2

1]
,[

29
],

[2
5]

,[
20

],
[6

8]
,[

63
],

[1
4]

,
[1

09
],

[1
18

]
[2

5]
,
[3

4]
,
[7

8]

M
on

it
or

in
g

[5
7]

Se
cu

ri
ty

[8
8]

[8
6]

[7
6]

,
[8

0]
,
[9

2]
,
[8

3]
[2

5]
C

od
e

Sm
el

ls
[8

8]
[8

6]
[8

4]
,
[2

5]
,
[7

8]
,
[8

2]
,
[9

2]
,
[8

3]
D

ef
ec

ts
[8

8]
[8

4]
,
[8

2]
,
[2

8]
,
[1

21
]

[8
7]

P
re

di
ct

io
n

[7
8]

,
[8

2]
,
[2

8]
D

et
ec

ti
on

[7
8]

,
[8

0]
,
[9

2]

C
u
lt

u
re

[8
5]

[6
4]

[2
9]

,
[9

9]
[6

4]
T
ea

m
s

K
no

w
le

dg
e

[8
5]

[5
2]

,
[9

9]
P

ra
ct

ic
es

[8
5]

,
[6

2]
[4

1]
[9

3]
[2

9]
,[

52
],

[7
6]

,[
78

],
[1

21
],

[8
1]

,[
57

]
[4

8]

Fr
am

ew
or

k

[8
5]

[4
4]

[6
8]

[5
2]

,
[2

0]
,
[9

9]
,
[6

8]
,
[9

7]
,
[8

3]
,
[3

]
A

gi
le

SC
R

U
M

[5
2]

SA
Fe

C
ol

la
b
or

at
io

n
[2

9]
,
[1

09
],

[9
9]

,
[9

7]
P

ro
du

ct
M

an
ag

em
en

t
[8

1]
Fe

ed
ba

ck
[9

9]
C

om
pl

ia
nc

e
[1

09
]

C
os

t
R

ed
uc

ti
on

[6
9]

,
[1

01
]

Table 4.5: Papers classification according to publication types and topics.

4| Systematic Literature Review 35

to find papers that cover particular topics, in general.

Most of the publications found are Technical Insights, followed by Comparisons and SLRs.
Indeed, most of the paper present new techniques or tools, explaining how they work and
most of the time they also provide an application example. However, since we could
not classify it as a proper case study, these kinds of papers they do not fall in the Case
Study category, although they bring practical insights: in fact, the papers that have been
classified as Case Study are usually just that, or sometimes are very long papers that
provide some Comparisons between tools and have a very large chapter for a case study
presentation.

The least common type of paper is the one that provide only or for most of its content
interviews reports, and usually they are related to challenges regarding some DevOps top-
ics. The most common topic, instead, is IaC: the reason why it is much more popular than
the others is that not only the research query used was explicitly looking for IaC-related
papers, but also because IaC is a very general keyword, and almost every paper found
covers it, in more or less depth. This is an expected result, as it proves the effectiveness of
our query. In addition to this, TOSCA is a very common topic with papers that tackles it
usually also fall in the monitoring topic, as TOSCA is strictly related to modeling tools.
In general, The tools category is very well populated by all the different kinds of papers:
this holds because not only it is another general topic, but also because we explicitly
looked for tools keywords in our query.

Some categories, usually very specific ones such as Agile and Plan, are not populated at
all or very few papers are present: this is due to the fact that these categories are at the
very limit of the scope of our research, and for these reason very few papers about them
have been considered. This implies that Table 4.5 should not be intended as a picture
of DevOps literature of the past recent years, but rather how our results fit in the whole
DevOps taxonomy. This become even clearer if we take a look at the graph shown in
Figure 4.5, as they help us visualize the focus of our research over the DevOps spectrum.
In general, we consider Table 4.5 as a proof of the effectiveness and precision of our query,
as it shows the results we expected to obtain, and also reflects the connection between
topics in the DevOps fields, as the same paper usually appears in at least two of the three
main categories: CI/CD, Infrastructure Management and Culture.

36 4| Systematic Literature Review

Figure 4.5: Percentage of topic share among all the papers found.

Graph in Fig. 4.5, as previously mentioned, describes to which extent, given the DevOps
taxonomy presented above, each topic has been tackled by the papers we found. Since a
paper might have been assigned to more than one category, the chart represents the share
of interest a particular topic has among all the papers found: the total, i.e., 100%, do not
correspond to 62 (the number of papers found); this is correct, since the graph should
be read not by the point of view of a paper, but from the perspective of each keyword.
For instance, the 43% of papers tackles, in general, Infrastructure Management, and this
implies that 57% do not mention it. The same holds for all the other categories. This
helps us visualize how much interest a specific topic has in the research field, and which
ones need more attention. Here we just present the graph, so that the reader could get a
better idea of how the papers we found are in relation with the keywords, but a deeper

4| Systematic Literature Review 37

discussion about this will follow in the next section.

With respect to Fig. 4.3, where we show the most prolific authors, we also want to point
out how they are related to each other and also to the keywords of our taxonomy. To
help us visualize this, Fig. 4.6 shows a graph where the orange nodes are the publications
- identified by (part of) the title - and the blue nodes are the authors. It is possible to
recognize four main clusters.

Figure 4.6: Top authors with relationship among publications and other authors.

The size of each cluster perfectly follows the distribution of papers among the different
topics, even if it is a small set of authors and publications: indeed, the larger cluster is the
one where the most prolific authors, such as Tamburri and Di Nucci, and it is composed
by papers related to Tools, IaC and TOSCA, which are the most popular topics, as we can
see by looking to the outer shell of the graph in Fig. 4.5. Then, follows the second largest
cluster that represent the authors Williams, Rahman A. and Parrin working together in
the Security and Code Smells fields, which are also very popular. The last two clusters

38 4| Systematic Literature Review

at the top-right corner represent instead other author with their publications related to,
again, Tools, Security and IaC. Of course, this graph does not represent the whole result
set, but it shows us from a different perspective our initial considerations, and also how
authors worked together in many different studies.

4.5. Results discussion

In this section we discuss the obtained results, by bringing examples of papers belonging
to each of the most popular categories of topics in the DevOps world and also by making
some considerations on the state of the research in these fields.

4.5.1. CI/CD

For what concerns the big topic of CI/CD, we begin with two important papers [41, 64]
that we also classified as milestones in our previous sections. Leite et al. [64] bring
us a very nice study, well documented and well-structured, were they investigate the
DevOps challenges from very different perspective, both from researchers and engineers.
Most importantly, they propose a DevOps conceptual map, which was very useful to
build or taxonomy. Elazhary at al. [41] identify ten practices continuous integration
practices, turning on both practitioners and researchers, showing how these practices could
be beneficial in project contexts, discussing also the challenges related to the differences
on how CI implementations vary.

Della Palma et al. [29] propose a novel tool, namely RADON, to support the different
phases of the DevOps life-cycle, depicting the model and showing its effectiveness in the
various DevOps steps. This particular paper, and in general all the ones related to this
tool, will pop-up in many different topics since they cover much of the DevOps culture.
Similarly, to RADON, the PIACERE project [77] covers the implementation, deployment
and operation of Infrastructure as Code.

Hassan at al. [50] propose a very large systematic literature review on server-less comput-
ing, counting over 270 papers. They cover a broad field, since they answer several research
questions regarding concepts, platforms and usage of server-less computing. Hence, they
also tackle many topics related to CI/CD, in general, providing also a nice taxonomy in
this field.

In their research, Zampetti et al. [121] provide a very nice overview of the whole CI/CD
process, with particular attention to code smells and bad practices. Indeed, their research
spans over many different topics, especially related to security and culture: their study

4| Systematic Literature Review 39

is very broad, and they not only make a survey on these concepts, but they also conduct
several interviews with processional developers, in order to build a catalog of CI bad smells,
with 79 individual smells divided in 7 categories. Another paper that discusses challenges
related to CI/CD and deployment of large applications in the DevOps environment is
the one of Jiménez et al. [55]: however, they characterize more general challenges with
respect to Zampetti, since they cover topics such as needs for deployment notations and
tool support for deployment and design.

Finally, another paper that tackles CI/CD in general is the one authored by Helwani et
al. [70] they provide a framework, which we actually classified as belonging to the Culture
keyword in our taxonomy, to support the CI/CD process: this framework is an extension
of the well-known SCRUM methodology.

These were the publication found related to CI/CD in general, but also to other topics.
Now we will briefly depict the publications related to the CI/CD subtopics, highlighting
the most relevant ones:

• Tools. Rahaman et al., in the study that we classified as milestone [85], they make
an SLR to four main IaC-related topics, and among these fall tools for IaC. this study
has been used as basis for our research, since it covers most of the literature until
2018. They also make important considerations on which are the most relevant
research areas of IaC in general. Similarly, another smaller study [22] brings us
a survey regarding Tools, with particular attention for the ones to perform static
analysis of IaC. Gokarna et al. [44] provide an historical review of DevOps, shedding
lights on some popular tools. Although focusing on MLOps tools, we also included
a study [90] were a multi-vocal literature review is performed, tackling MLOps
stools which, however, have been proved to be very effective in the CI/CD process,
since CI/CD is at the basis of both DevOps and MLOps, considering also that
the second discipline is the most recent derivation from DevOps. Tools to support
CI/CD are also listed and discussed in another survey, by Teppan et al. [110], as
also by Buttar et al. [19] who, however, focus on cost reduction and optimization.
Another study [6], where it is proposed a method supported by a tool capable
of dynamically orchestrate a cloud environment, reducing costs, focuses on cost
reduction. The same does Splice [101], a tool capable of reducing costs of cloud
resources, by using Neural Networks. Finally, Fireworks [95] is a tool-framework
developed to cope with long start-up times in the cloud environment, security risks
and memory efficiency, the main goal of reducing costs and run-time environment
usage. The "Muse" tool is proposed by Sokolowski [98], which is used to help not
only the CI/CD process, but also the collaboration between teams, since, as claimed

40 4| Systematic Literature Review

by the author, in order to speed-up the CI/CD process it is necessary to decentralize
deployment coordination: the proposed tool helps in this direction as Dalvi [30]
with its approach. In general, tools to support IaC have usually been adopting
one of the following strategies: they can be either model-driven or code-centric.
Sandobalin et al. [93] compare the two approaches. They prove that the model-
driven approach, is more effective than the code-centric one. The RADON tool is
proposed and discussed by Dalla Palama et al. [27–29]. this is actually a framework,
composed of an integrated methodology - hence covering also the culture part of
the DevOps discipline - and a tool-chain to support the design, development and
deployment of serverless function used in data pipelines. TOSCAdata is proposed
by Dehury et al. [33], which is a TOSCA standard extension and also a RADON
extension that focuses on modeling data pipeline-based cloud applications. Another
tool used for similar purposes is SODALITE [63], which focuses more on IaC for
cloud-edge resource modeling. Similarly, The PIACERE project [3, 77] provides
a set of tools, methods and techniques for IaC, with particular interest in quality
and security of infrastructural code (more on that in the security section). Still
related to security, we cite also Rahman et al. [86], a paper that we classified as
a milestone, were in given particular attention to security smells and tools used to
detect them. Quattrocchi et al. [82] worked on a similar topic, since they explored
defects in IaC scripts to build defect prediction models (not proper tools, but still an
artifact that can be used directly on IaC scripts) to improve state-of-the-art defect
prediction tools. MiCADO is proposed by DesLauriers et al. [34] as a tool capable
of generating IaC from metadata. Another way of modeling IaC, i.e.e, TOSCA-
based intent modeling, is proposed by Tamburri et al [109], as they investigate
the novel modeling approach by producing a simple industrial tool featuring the
TOSCA language. Intent-based modeling is also tackled by another paper [68],
which however does not present a tool but rather a proof of concept.

– Deployment. Calcaterra et al [21] propose a methodology which involves
TOSCA, BPMN and some tools capable of automatically generate holistic
management workflows, which spans from modeling to deployment. We have
already mentioned some studies that fall in this category, such as the RADON
tool [29], PIACERE Project [77], the Dynamic IaC solution [98], which aug-
ments static IaC programs for dynamic deployments, and the analysis of de-
ployment specification challenges [55].

– Modeling. Quattrocchi et al. [7] propose a novel declarative modeling frame-
work, particularly directed towards blockchain applications. Another paper

4| Systematic Literature Review 41

that falls in this category is the one of Brabra et al. [14], which tackles mod-
eling concepts related to orchestration for cloud resources. Again, RADON
and PIACERE [29, 33, 77] are mentioned in this category since, as we al-
ready stated, are tools that covers multiple steps of the CI/CD lifecycle. The
same hold for the methodology proposed by Caltaterra et al. [21], which fo-
cuses mostly on deployment and modeling based on TOSCA standard, and
TOSCA/based intent modeling proposed by Tamburri et al. [109].

– Versioning. RADON and PIACERE [29, 77] are covering also this area, since
they can be beneficial also in the versioning process. Within the challenges
investigated by Leite et al. [64] there are also some interesting insights on
versioning.

– Testing. In this category we can find a very well documented study per-
formed by Hasan et al. [48] , which identifies six best practices for testing
infrastructural code, in addition to the previously mentioned tools: RADON
and PIACERE.

– Analysis. Large project such as RADON and PIACERE fall again is this
category, as they provide some tools and functionalities able to perform a
certain level of analysis, by detecting and predicting the presence of code smells,
similar to the defect prediction model proposed by Quattrocchi et al. [82]. In
this category also falls Defuse [78], an extension integrated in the RADON IDE
capable of predict software defects. Indeed, we also include in this category
another study [26], which even tough does not discuss or propose a novel tool,
it explains the concepts at the basis of RADON and Defuse, and for this reason
we think it is useful to include it in this section, as it deepens the explanation
of important concepts. These were tools to be applied to infrastructural code,
while Splice [101] is a different concept, since it is a tool meant to analyze
resource usage and reduce cloud costs.

• Automation. The TOSCAdata approach [33] takes a further step towards automa-
tion, since it is capable to produce infrastructural code from metadata, reducing
the human effort to develop IaC scripts. A new Python-based tool is proposed by
Petrovic et al. [80], which enable the automation of static code analysis to achieve
quality and security in IaC scripts, with a web-based interface. Calcaterra et al.
[20] propose a framework similar to the one of Yussupov et a. [118] described as
approach based on BPMN modeling language and TOSCA standard to automati-
cally generate management workflows in the cloud, demonstrating the viability of

42 4| Systematic Literature Review

the solution. The already mentioned "Muse" [99] improves deployment automation
by decentralizing the coordination in IaC projects between teams, developers and
resources. As we discussed above, a similar system have been proposed [30], which
focuses on the automation of CCoE requests by introducing a self-service mecha-
nism. Finally, the Neural Network-based system proposed by Bahadori improves
the automatic orchestration system present on the Amazon Web Services (AWS)
for cloud resources.

• Release. The only paper found that explicitly tackles this topic is the previously
mentioned "Testing Practices for Infrastructure as Code" by Hasan et al. [48] which
presents a set of good testing practices and, as a consequence, better quality IaC
releases.

• Operate. SODALITE [63] and RADON [29] are also present in this topic since,
overall, they support IaC script development operation by not only providing tools
but also a methodology and a culture. ACIA [52] is a methodology which, even if
mainly focuses on extending the Agile framework and, in particular, SCRUM, brings
also support to operations by identifying design patterns in Continuous Integration.
Also, Sokolowski [97] proposes a tool that enables truly independent operations in
DevOps teams. The Operate topic is also tackled by Leitner et al. [65], as they
conduct a survey about serverless computing, covering not only frameworks and
collaboration among teams, but operations in general.

• Code. Related to this topic, we point out the work presented by Kokuryo et al. [60],
where they investigate the usages of the imperative modules in an IaC configuration
management tool. Furthermore, we mention, again, RADON [29], as it faces directly
coding challenges in infrastructural code.

• Build. Build topic is also covered by the aforementioned study [60], as it is in-
vestigated not only why are imperative modules used, but also how they are used.
Finally, SODALITE [63] project partly covers Build of IaC scripts.

• Plan. We include here the study conducted by Helwani et al. [52], as ACIA
methodology directly involves planning during the continuous integration process.
Similarly, the Muse tool by Sokolowski [97] involves planning since it helps in the
coordination among DevOps teams.

• Continuous Testing. The extensive survey published in 2019 [85], previously clas-
sified as a milestone, covers a variety of topics in the IaC fields, in particular tools
and challenges. However, it also gives interesting insights on the state-of-the-art of

4| Systematic Literature Review 43

tools and techniques for continuous testing, commenting on novel frameworks devel-
oped in the past recent years. Similarly, another study [48] discusses the challenges
and the practices related to infrastructural code testing: it brings a set of six -
continuous - testing practices, applicable to IaC but also to general purpose scripts.

4.5.2. Infrastructure Management

As mentioned in the previous sections, Infrastructure Management keyword identifies a
variety of concepts that are used in the DevOps discipline to support the implementation
of services and applications. In this field, we recognize IaC as the most relevant concept,
as it is also the one with the highest number of papers. However, Many paper that we
classified within the IaC keyword usually are not just related to this general concepts,
but also to more specific ones related not only to infrastructure management but also to
CI/CD and Culture. Among the other concepts that fall in this category we can find
Cloud Services, such as Software as a Service (SaaS) and Function as a Services (FaaS),
which are crucial in today’s world, where companies are moving to the cloud adopting
services such as AWS. On the same page are microservices, as they are a key element at
the basis of the Serverless way of working, were, as we will see, it is strongly suggested
developing small pieces of code, namely serverless functions, which allows the developers
to adopt IaC and CI/CD. Also, Security is a very important topic in this field - with its
sub-categories such as Code Smells, Defects, Prediction and Detection - as there has been,
in the past recent years, a strong research path towards this topic, considering that bad
coding practices tend to develop unstable IaC scripts, which, as a consequence, produce
less reliable application: for this reasons, tools and techniques have been developed to
detect as soon as possible defects in code, and predict the presence of them. In this
field, TOSCA standard is of paramount importance, as it has been used in many different
applications - for instance, it is at the basis of extensive project such as RADON IDE and
SODALITE - thanks to its versatility and applicability to IaC field. Monitoring is the final
topic on our list: unfortunately, no paper has been found directly tackling monitoring;
nonetheless, monitoring has been mentioned by some papers, especially the previously
mentioned ones that cover tools and techniques for cost-reduction. This does not mean
that the topic is irrelevant but, actually, the opposite: research in this direction should be
improved, since in the Serverless setting monitoring is crucial but, unfortunately, it is one
of the last thoughts when building cloud applications, as we will see in the next chapter.

• IaC. Many of the papers we cited in the CI/CD section also fall in this category.
To avoid being repetitive, here we just report the new ones, and among the ones
we already cited only the ones that have IaC as the main topic, such as survey or

44 4| Systematic Literature Review

presentations of tools to support IaC development. We begin by mentioning a study
[96] which compares the traditional way of developing code with infrastructure as
code, shedding light over the most common challenges that rise when adopting the
IaC approach. Another practical insight is given by Sorour et al. [102] as they apply
IaC and the DevOps discipline to demonstrate the level of automation that it is pos-
sible to reach with these approaches. Two case studies are also discussed by Souza
et al. [104] in order to prove how infrastructure as code is improving the maturity
level of DevOps both in the Communications industry and Health-Care. A new
way of developing IaC code is proposed by Mascarenhas et al. [68], which discuss
a proof of concept for Int2IT, an intent-based TOSCA infrastructure management
platform based on concepts similar to the ones discussed by Tamburri et al. [109].
A systematic literature review has been conducted by Nedeltcheva et al. [75], were
they explore IaC modeling tools, comparing different solutions and assessing which
one is the best for different scenarios, identifying research areas that stills need to
be further inquired. Another SLR is brought by Kumara et al. [62], which investi-
gates the best and worst practices to - not - apply to IaC development, producing
a taxonomy and practical considerations. Particular attention to Security smells in
Iac scripts is given by Rahman et al. [88] in a paper devoted to practitioners, in
order to help them to avoid insecure practices while developing IaC scripts. Several
interviews have been conducted by Guerriero et al. [47] to investigate the challenges
of adopting IaC in the industry, discussing the advantages and the disadvantages
for practitioners dealing with this concept. We cite also here, although the focus of
the paper is on Code Smells, the research conducted by Rahman et al. [84] were
they analyze repositories to classify the most common security smells in IaC. Also
Dalla Palma et al. [25] cover the topic of Code Smells and Bad practices, discussing
Machine Learning algorithms and rules to detect them in TOSCA compliant scripts;
similarly,Saavedra et al. [92] developed GLITCH, which is a tool that exploits the
power of Machine Learning to detect security smells in IaC. Another paper [76] pro-
poses an architecture and a method to assess architecture conformance according
to security-related practices. Covering the topic of IaC there also another extensive
study by Rahman et al. [83] which is at the basis of their other work [84], as they
analyze infrastructure as code scripts to identify a set of ten source code properties
that correlate with defective scripts. Similarly, in a later work [87] Rahman et al.
they categorize defects in IaC scripts, identifying eight categories of them, producing
also an extensive analysis on their frequency and consequences. Related to security
we can also find the inspection script presented by Petrovic et al. [80], capable of
automating the static analysis of IaC scripts, in particular, Terraform scripts. Of

4| Systematic Literature Review 45

course, this kind of papers will be discussed later in the security-related categories.
The RADON approach is introduced by Dalla Palma et al. [27], that is the method-
ology at the basis of the RADON project based on several tools which make use of
Machine Learning techniques, such as the decomposition tool, the defect prediction
tool, and the testing tool. Among the papers we cited in the previous sections, we
recall the SLR by Teppan et al. [110], where they explore the state-of-the-art for
IaC tools and solutions; we mention also the extensive study conducted by Rahman
et al. [85] that covers a variety of DevOps topics, in particular the ones related
to the current status of IaC research. Chiari et al. [22] instead go deeper in the
same direction, by focusing on the most relevant tools for static analysis of IaC.
To conclude this category, we mention a paper that discusses [48] the challenges of
related to IaC testing, identifying a total of six best practices overcoming them.

• Cloud Services. An important contribution in this field is given by Hassan et
al. survey on serverless computing [50], as they cover a variety of topics which
related to cloud services; in particular they make a review on the state-of-the-art of
serverless computing, comparing platform and tools but also analyzing the benefits
and issues of this topic. A piratical insight is given by Keskin et al. [57], where it
is proposed an extension for the Cloud Monitor service, which is a bench-marking
tool for clouds, in order to make it real-time adaptive.

– SaaS. The survey on serverless computing [50] we just cited directly covers also
Software as a Service, which is a key concept of Cloud Services. However, we
want to focus here on another paper [6] that which highlights the importance
of Machine Learning in SaaS field -and, in general, in the Cloud - as it enable
the deployment of sound and effective solutions: in particular, they discuss an
experimental implementation of an Elastic Container Services (ECS) hosted
on AWS, enriched with the ML dynamic orchestration system. Another study
[69], instead, inspects the costs of services provided by AWS: AWS StepFunc-
tions; they make an extensive study where they discuss the best way of using
StepFunctions in order to reduce costs.

– FaaS. Among this topic we can find several papers which typically provide
comparisons and surveys regarding tools or services. For instance, Leitner et
al. [65] investigate the serverless state-of-the-art research with an extensive
SLR, with particular attention for Function-as-a-Services, discussing when it
is used, which are the benefits and the drawbacks, matched by a set of in-
terviews. On the same level we can find another survey [46] that precisely
investigates the current research status of Function-as-a-Service, by discussing

46 4| Systematic Literature Review

not only the challenges of this technique but also which are the current tools
available, comparing them with regard to costs and performance. A survey is
also proposed by Eskandani et al. [42] which gives us another point of view
over the state-of-the-art of FaaS services. Another work, by Shin et al. [95],
explores a new tool, namely Fireworks, capable of optimizing FaaS resource
utilization and reducing execution time and thus costs.

• Microservices. The only paper found which explicitly mention Microservices is
the one titled "Survey on Serverless Computing" [50], which mentions the current
status of the research among the microservices topic. However, this does not mean
that Microservices are not relevant in the DevOps discipline: actually, the are of
paramount importance, especially when we deal with IaC; indeed, this topic is
indirectly mentioned by most of the paper we previously cited, although it is not
the core topic of these papers.

• Standards & TOSCA. For what concerns Standards, we will mention only TOSCA:
this happens because in literature, recently, there have been a great attention for
standardization, and TOSCA has raised as the most important one. Actually, we
can find a lot of de-facto standards but TOSCA is the only one that has been devel-
oped explicitly with standardization in mind. We introduce this topic by citing the
paper we classified as a milestone [11], that is a survey about TOSCA, covering many
aspects surrounding this topics, such as tools and applications, producing a taxon-
omy used to categorize the papers analyzed in the survey. TOSCA has been used
in the past recent years at the basis of different tools, frameworks and approaches
that, in the end, have been used as a basis for the current state-of-the-art TOSCA-
based frameworks, such as RADON IDE [29, 78] and SODALITE [63]. We already
mentioned this tools, but we want to underline how the use similar techniques to
use and adapt the TOSCA standard to the IaC scripts development application.
Intent-based TOSCA modeling is a novel concepts studied by two papers [68, 109],
where in the latter one the authors, belonging to the TOSCA technical committee,
propose the new way of producing automated scripts, with the new approach that
represents the evolution of goal-based modelling; the former one, instead, produced
a proof of concepts of the theoretical concepts explained in the other paper. An in-
dept analysis regarding code smells and bad practices in TOSCA compliant scripts
is conducted by [25], where they also propose Machine Learning algorithms and
rules to detect this kind of issues as earlier as possible. In general, paper related to
TOSCA topic cover the importance of finding ways to automatically generate IaC
scripts. For instance, we mention again TOSCAdata, which is a RADON extension

4| Systematic Literature Review 47

providing TOSCA models to ease the design technology-specific cloud applications.
On the other hand, a 2022 publication [34] suggests a new methodology to generate
IaC scripts by metadata, using the TOSCA standard. Based on TOSCA, a new
model-driven orchestration approach is proposed by Brabra et al. [14] which lever-
ages TOSCA to describe cloud resource artifact and translate them into technology
specific artifacts. Two other papers [20, 118] produce, instead, a similar framework,
composed by a set of tools and techniques, to automatically generate application
management workflows with BPMN and TOSCA standards, which are at the basis
of RADON IDE. Finally, a case study [7], already mentioned, applies TOSCA based
modeling approach to blockchain applications.

• Monitoring. The only paper [57] that explicitly faces monitoring issues has been
already mentioned, as it extends the capabilities of an already existing tool, Cloud
Monitor, to enhance its capabilities to Real-Time scenarios.

• Security. In their extensive study, Rahman et al. [88] deeply analyze the security
risks in IaC scripts by listing the most common ones and creating a tool, namely
SLAC, capable of detect them. The same author, in collaboration with other ones,
explores the same topic in a more general manner in another study [86], by making
a comparison of the most common smells: in particular, they identify a set of seven
common security smells. Rahman et al. also investigate these issues in another study
[83], where they identify ten source code properties that correlate with defective
scripts, but applying it to IaC scripts in general. The previously mentioned study
by Dalla Palma et al. [25], similarly to the work conducted by Rahman in many
of is studies, investigates the security-related issues - in particular, code smells -,
with particular attention to the technology-agnostic standard, TOSCA. It is also
presented a comparison between ML-based and metrics-based detectors for such
security smells. An approach to measure conformance to security-related practices
is proposed by Ntentos et al. [76], which is based on a set of metrics that are used in
conjunction with some statistical methods, so that it is possible to assess with a high
level of accuracy the quality of IaC scripts. We can also find few security-related
tools - besides the ones we previously cited in other sections such as RADON IDE
- such as GLITCH [92] and IaC Scan Runner [80].

– Code Smells. The survey [88] and comparison [86] cited above, although
covering security within IaC script in general, they are particularly directed
towards security smells related issues; the same holds for the technical insight
given by Dalla Palma et al. [25] where the challenges of facing security smells in
IaC scripts are also discussed. Rahman et al. [25, 83], the most prolific author

48 4| Systematic Literature Review

in this field, as we mentioned before conducted some studies in this field, giving
particular focus towards Security Smells in IaC scripts, producing taxonomies
and discussing the implications of the presence of these smells in the code.
DEFUSE [78] and GLITCH [92] are the two tools that we mentioned before in
other categories, which find their application in the context of detecting and
predicting code smells. Finally, an extensive study [82] regarding metrics to
assess the quality of IaC scripts and applying them to improve the state-of-
the-art defect prediction models.

– Defects. A classification of bad practices in proposed by Zampetti et al.
[121], where are also explored the consequences of adopting such practices in
IaC scripts development and the defects they introduce in code. However,
a more comprehensive classification of defects is proposed by Rahman et al.
[87], as they produce a taxonomy of eight defect categories as a consequence
of the extensive qualitative analysis they perform over fourteen-hundred IaC
scripts. The same author uses that study as the basis for another research [86],
where similarly security smells are classified. We also mention here the research
conducted by Quattrocchi et al. [82], as they cover a wide variety of defects
present in IaC scripts. To conclude, we briefly mention another publication by
Dalla Palma et al. [28], considering that they apply a set of metrics to predict
the presence of defects in IaC; however, we will discuss this later in the next
topics.

– Prediction. In this category, we can find three studies [28, 78, 82] that are
conducted around the same authors - in particular, Tamburri - where they
explore not only which are the most common smells, but also what are the
best metrics that we can use to predict the presence of such smell in many IaC
scripts. In the end, they produce a tool, namely DEFUSE, which is the part
of the RADON IDE tool-set capable indeed to predict the presence of defect
in IaC scripts.

– Detection. We conclude this section by discussing the last three papers.
DEFUSE [78] is not only capable of predicting the presence of IaC defects,
but also to detect it, and the same holds for GLITCH [92]. Finally, IaC Scan
Runner [80] is meant to detect the presence of code smells in IaC code.

4| Systematic Literature Review 49

4.5.3. Culture

As discussed during the presentation of our taxonomy, Culture refers to all the elements
related to the human aspect of the DevOps discipline, in particulars the ones that define
the interaction among managers, developers and teams. It is a core aspect of a DevOps
environment, and it affects, directly or indirectly, all the others topics discussed in the
previous sections. We keep stressing to highlight how, in the DevOps discipline, interac-
tion is a core element. This is due to the fact that the continuous interchange of feedback,
knowledge, collaboration and practices are the very first elements that started the advent
of the CI/CD practices and IaC methodology in the industry. Among the subtopics we
can find here, the most populated are Practices and Framework. Of course, this does
not mean that research in the other categories is not developed, or they are considered of
low relevance, in particular, we could not find teams-related papers: instead, most of the
topics in this area are out of the scope of our research. However, many tools we found
strongly affect, in general, culture and the way of working in teams and, so, we will find
some papers discussing tools also in the Practices and Framework topics.

Regarding Culture, in general, we can find four publications among our set. The first one
the the SLR by Rahman et al. [85], that we already found in other topics such as Tools and
IaC, since it covers many aspects of the DevOps discipline: in particular, it covers some
tools and practices that are helpful to coordinate the work of people in this field. Another
survey [64] discusses the challenges of many DevOps areas, such as CI/CD, but it also
focuses on the challenges related to the collaboration among developers and operators.
However, the most relevant paper we found in this are in the one by Sokolowski et al.
[99], where they investigate how it is possible to reduce delays caused by slow coordination
by teams fin a serverless environment, by suggesting a new decentralized tool capable of
reducing the dependency on manual coordination - i.e., via email. phone, etc - between
people. We conclude by mentioning the RADON approach [29]: we have already seen
how this tool-set cover most of the topics we identified in the DevOps discipline, and it
also covers the cultural aspect since it provides a sound and complete methodology for
people to follow in order to reduce the effort while developing FaaS products.

• Knowledge. Among the research paper we found, few of them - partly - cover the
Knowledge topic. ACIA [52] is a methodology introduced as a SCRUM extension,
i.e., the evolution of the Agile Framework, which is capable of improving the shar-
ing of knowledge among team members: in fact, with a set of small changes to the
SCRUM method is it possible to reach a higher level of communication within the
team when implementing new design solution, improving the tasks’ templates and

50 4| Systematic Literature Review

the feedback on design solutions. We also mention "Muse" [99], already discussed
in other sections, which enable automatic coordination across teams by leveraging
decentralized communication, in a self-service manner, so that team members can
ask for resources or services by expressing wishes and, if available, they are auto-
matically assigned to them so that there is no need to wait for manual intervention.
The previously mentioned extensive SLR conducted by Rahman et al. [85] also falls
in this category, as it mentions the challenges related to the lack of knowledge when
practitioners are introduced to IaC.

• Practices. In the Practices topic we can found a wide variety of paper, most of
them already seen in the other categories, that discuss which are the good and
the bad practices when developing IaC solutions. Practices are usually related
to security, as if bad practices are adopted they have negative consequences in
infrastructural code. Among these papers we have the two studies involving Rahamn
et al. [48, 85], where in the former are discussed what the state-of-the-art good
practices are when developing IaC, while in the latter great attention is given towards
testing practices, showing how the adoption of good practices can avoid or mitigate
the presence of defection in IaC scripts deployed in production environments. Three
studies [29, 62, 78] involving Tamburri et al. directly cover this topic - although
others are also indirectly connected to it - as the first one consist of an SLR where,
given insights from industry, it is produced a catalog of best and bad practices
to - not - adopt when developing IaC code, mostly deriving from practitioners
in this field. The other two studies instead involve the RADON project, which
embodies all the theoretical results regarding best and bad practices produced by
many different authors in the past recent years. Two other publications [41, 121]
discuss the most common practices adopted in the DevOps culture, in particular
with respect to CI/CD for the first paper, where are also given interesting insights
from industry, and to bad practices that generate defect in IaC scripts for the second
one. A practical comparison on two practices, i.e., the adoption of model-driven or
code-centric tools, is given by Sandobalin et al. [93]. They compare two tools,
in order to provide empirical effectiveness of the two different approaches. Bad
practices are investigated by Ntentos et al. [76], in particular the ones that as
a consequence produce security issues in IaC deployments; furthermore, it is also
presented a methodology, based on metrics, to assess whether or not a script follows
good or bad practices. New practices are also presented for what concern Cloud
Services by two studies [57, 81] to enhance automation when dealing with cloud
architectures. The first study in particular proposes an evolution of Cloud Monitor

4| Systematic Literature Review 51

service, while the second publication proposes a set of strategies to improve the
AWS Cloud adoption.

• Framework. Some relevant frameworks we cite here are PIACERE [3], Int2IT [68],
RADON-related frameworks [20], Muse [97, 99] and ACIA [52]. We have already
discusses most of them, as they cover several aspects of the DevOps discipline,
although some of them will be also discusses in the remaining topics, as they are
specific to particular aspects of the DevOps Culture. Frameworks are also discussed
by some surveys and SLRs [44, 83, 85] which we have already previously seen, where
they investigate the stet-of-the-art of tools and framework developed to support
DevOps operations and development stages.

• Collaboration. Collaboration is a core investigation topic of Sokolowki et al., as
they discuss in two papers [97, 99] what are the current limitation to teams collabo-
ration in DevOps, and how it is possible to improve in this direction by proposing a
novel, decentralized tool, Muse, meant to avoid manual coordination across teams.
Also RADON [29] has some insights on collaboration, as in the methodology it
is forseen the used of the tool by different team members, with specific assigned
roles. Finally, Tamburri et al. [109] indirectly intimate collaboration in their new
intent-based TOSCA modeling way of working.

• Product Management. Here we only cite a publication [81] where a set of stages
are discussed, as they provide a guidance when managing product migration from
on-premises solutions to AWS cloud.

• Feedback. In this section we briefly cite again the Muse tool [99] that, as we pre-
viously said, enhances communication and feedback among cross-functional teams,
improving deployment automation.

• Compliance. Although this topic is not the main focus of our research, we mention
a study by Tamburri et al. [109]. In this study it is presented a new way of
working with IaC products, by declaring intents - goal - using TOSCA models,
which are constructs capable of enhancing compliance to models and allowing to
better describe and orchestrate cloud service applications.

• Cost Reduction. Cost reduction is a very important topic when we talk about
DevOps and Serverless computing. Although out of the scope of our research, we
found two papers covering this topic. One [101] proposes a novel platform, namely
SPLICE, capable of improving performance and cost-reduction when blending mul-
tiple services in the Cloud environment. By introducing a small amount of overhead,

52 4| Systematic Literature Review

this ML-based platform claims to reach savings up to 30%. The other study [69]
extensively explores the costs of AWS Step Functions, by discussing which are the
factors that affect the raise in costs when adopting this technology.

4.5.4. Final Discussion: Answering To The Research Questions

In the previous sub-sections we discussed the contents of the papers we classified by
category. That was a mandatory step in order to get sound and complete answers to our
initial research questions.

Before doing that, however, we want to analyse what are the most investigated areas in
the DevOps discipline, and which ones need to be further explored. At a first glance,
our classification, with the related graphs and statistics, clearly depicts a scenario where
some topics such as CI/CD, Tools, IaC, TOSCA and Practices are deeply investigated
by researchers and scholars, while some other topics such as Microservices, Monitoring,
Plan, Build are mostly never considered. However, this interpretation is misleading and
does not take into account one crucial aspect.

The taxonomy made in the previous sections should be interpreted as something that
holds and it is true anyways, also outside our research, as it is intended as being valid
for the DevOps discipline independently of the paper we classified. Of course, it is still
open to expansion, as we previously said, since it has been derived by the contents of the
papers we found, and it is possible that few topics were never mentioned.

With this in mind, we can affirm that DevOps, in general, is a very hot topic. The
increase amount of interest towards this discipline can be ascribed to the ever-increasing
adoption of DevOps and its methodologies in the industry: indeed DevOps is not that
recent invention if we think in terms of technology, as methodologies, tools, and techniques
evolve every year more rapidly than before. However, its mass-scale adoption happened in
the past recent years: this pushed again interest of researchers in the field, who focused the
attention in specific sub-topics, such as IaC and Tools, to improve the current technology
and promote even more its adoption. We can affirm that all the researches we found have
in common one underlying concept, which is the following.

The DevOps culture relies on many different technologies and methodologies. Most of the
fall under the umbrella of the word "Cloud", which covers, among the others, concepts
like FaaS, SaaS, Serverless. These theoretical concepts can be found in the industry under
an uncountable number of vendors, proprietary technologies and languages. This variety
of instruments created, over the years, a divergence between technologies, as each vendor
created more and more different ways of implementing a specific technology, increasing

4| Systematic Literature Review 53

even more the differences in an already fragmented world. Nowadays this has been seen
by researchers as an issue that is necessary to fix or mitigate: developers, operators,
managers and practitioners in general are covered by an immense amount of technologies,
and this not only slows down development when new techniques are adopted, since they
need to learn new practices from scratch, but also the heterogeneity causes an issue when,
for instance, one company substitutes the adoption of one platform, sold by a vendor, to
another one sold by another vendor. Indeed, the consequence of this issues is the so-called
vendor lock-in: a threat to companies, since teams might remain bounded to a specific
service, even if they want to abandon it, because changing to another one is too much
expensive, not only in terms of money, but also time and resources, most of them used to
train practitioner for the new technology.

From our investigation we state that, not only there is a solution to this problem from
a theoretical perspective, but physical tools and practices already exists and have been
developed to address the issues. There is one underlying concept among all the most ad-
vanced and promising solutions: standardization. In particular, the OASIS TOSCA stan-
dard, born to describe the topologies of cloud applications, has been applied to automate
the development and deployment of IaC. It is present in most of the state-of-the-art tools,
such as the ones we mentioned before, namely RADON IDE, SODALITE, PIACERE and
other frameworks.

However, the discussion above only scratches the surface of a deeper rabbit hole: these
were just the high-level issues, but for each step of DevOps practice many other have been
found, and as much solutions have been proposed to solve them.

One of the main topics we found that gained a great interest in scientific literature is
Code Smells, or in general, bad practices and security-related issues in IaC. Practitioners
may unintentionally develop IaC scripts introducing security smells, which lead to security
weaknesses that can be dangerous for the whole system, producing security breaches. This
kind of security smells, but also bad practices, as stated by many papers we have cited in
the previous sections, are mostly the same we can find in traditional code development;
however, new type of smells have been found which were not present before due to the
nature of IaC. Indeed, a lot of work has been made to collect, identify and classify the
most common smells we can find in IaC scripts, to help practitioners gain awareness on the
issue and provide them a reference they can use to avoid this kind of issue when developing
IaC scripts. Taxonomies, challenges and guides have been written in this field, and they
mostly converge to the same results, although we have to admit that most of the paper
found involved the same few researchers, as one study is typically the evolution of the
previous one. Many of the papers do not produce a practical guide that practitioners can

54 4| Systematic Literature Review

use to avoid this kind of issues, but other papers, where present new tools or frameworks,
use their results to produce useful tool to automate the detection and prediction of these
security smells.

Indeed, we found a lot of papers presenting tools and frameworks which not only help to
detect and predict the code smells, such as Defuse, now a RADON IDE plug-in, but also
tools capable of improving automation, reliability and, in general, quality in the whole
IaC scripts development process. Besides independent tools developed by smalls teams
or methodologies, algorithms and code created to address very specific issues, such as
cost-reduction heuristics, defect detection or prediction - we have seen how ML and AI, in
particular Deep Neural Networks, have been used in this field -, most of the tools we have
seen are based on the TOSCA standard, and they are meant to support the development
of IaC scripts by applying standards-based modeling.

We mentioned also how cost-reduction is a topic of paramount importance when dealing
with serverless applications, and although very few papers have been found in this field
- this was not a crucial topic for our research - we recognize how cost-reduction cannot
be put aside, since DevOps main objective is to increase the Return of Investment by
reducing development time and increasing software quality. For this reason, we found
interesting how research are trying to improve methods to reduce costs, by means of
Artificial Intelligence, which is capable of outperform the solutions provided by vendors.
It is also worth mentioning that costs is a really hot topic for companies, and cloud
services vendors usually do not provide clear ways of describing how costs are evaluated
and managed.

The research topics we just mentioned gravitate around one other main topic, that is
culture, which is also important to discuss since it indirectly touches all the other disci-
pline involved in DevOps. In particular, we have seen how speed in developing serverless
application is strictly dependent on the ability of teams and practitioners to coordinate
with stakeholders and other teams. Indeed, this is the first are where DevOps found its
application. For this reason, multiple studies we found tackle new ways for improving com-
munication, coordination and planning, by introducing new methodologies, frameworks,
or extending new ones. We can asses that feedback is a very important tool practitioners
should use to improve in this field. Many tools support that, by automating the com-
munication between teams - such as Muse - avoiding manual coordination, and other
tools provide ways of works that have been proven to increase quality and throughput in
software development.

We now give a clear answer to the research questions of this SLR:

4| Systematic Literature Review 55

• RQ1. What are the current challenges DevOps discipline is facing? We state that
currently DevOps is facing challenges under many aspects, from Culture to Tools.
Culture needs improvement in automating the communication among team, stake-
holders and practitioners. Many tools and new ways of working have been recently
developed, but the main issues remains their adoption, since companies are usually
skeptical in adopting new, open source, tools. Also another challenge is related to
IaC adoption and standardization: IaC is a very powerful technology; however, to
gain some improvements by adopting it, is necessary to follow good practices. In
this sense, standardization - namely TOSCA - can be of paramount help since it
has been proven several times how applying standards to IaC development can be
beneficial. However, this is a recent topic of research and the technology is still not
mature enough to be adopted at industry level. The last challenge we want to men-
tion is the way it the reduction of code smells, bad practices and security issues in
the IaC field. IaC is well-known to companies and many of them adopt it but, unfor-
tunately, issues that have been known for years in traditional software development
have been found also in IaC. Detect code smells is of paramount importance in IaC
scripts, since a faulty definition of the infrastructure can lead to catastrophic issues:
tools have been and still are under development, but it is necessary to improve in
this direction, since their efficacy needs to be proven also in the industry.

• RQ2. What is the role of Infrastructure as Code in DevOps? Infrastructure as Code
in a quite novel but yet popular way of defining the infrastructure necessary to de-
ploy serverless solutions. Indeed, its role is critical in serverless environments, or
it is necessary even in on-premises solutions, when teams want to avoid to directly
manage the underlying hardware that is necessary to run a specific application.
However, it is able to abstract the underlying hardware infrastructure to code de-
velopers, allowing them to take every single piece of application, be it a function,
a database, a VM, and declare how they need to be deployed: there is no need to
specify what it is actually needed to run them, and for this reason a big chunk of
work is removed in the development process. However, IaC is not only an abstrac-
tion, but it is actually the latest evolution of automation in CI/CD pipelines: in
fact, with IaC it is possible to gain another level of automation, since it is possible
to speed-up CI/CD pipelines by, every time, producing a new version of IaC scripts
and deploy only the new changes completely automatically.

• RQ3. How TOSCA standard can improve the development and adoption of Infras-
tructure as Code? Many technologies exist to support IaC and this is an issue:
they are too many. Although this is a good think since having many technologies

56 4| Systematic Literature Review

competing between each others leads to better products, this can be a problem for
practitioners since, even in the same company, might need to learn more than one
tool for doing the same thing. This is of course related to the fact that each tech-
nology adopts peculiar paradigms that might be missing in another technology. For
this reason is of paramount importance to support reach for standardization in this
field, since we have seen how TOSCA have been able to abstract constructs present
in many different technologies. TOSCA standard is the most prominent in this field
and it has been proven to provide great benefits in automating the development
and deployment of serverless applications. TOSCA standard is at the basis of many
projects we have mentioned, such as PIACERE, RADON and SODALITE. In these
applications, TOSCA is the basis for complete automation of design, deployment,
testing and versioning of IaC.

• RQ4. What are the most recent tools developed to support standards-based IaC script
development? In our discussion we have seen that many different tools have been
developed to support standards-based IaC development. They all rely on TOSCA,
and they usually cover the whole development process, following the DevOps Cul-
ture. RADON, PIACERE and SODALITE are the most prominent in this field,
since they are the most complete: they are born thanks to the support of European
Union funding. They all provide a state-of-the-art tool-set to model, verify, simu-
late and monitor IaC solutions. The most relevant aspect of these tools is that they
comprehensively help to solve most of the challenges we discussed in the previous
sections, from security smell detection - since they make use of algorithms, typically
ML-based, to detect and predict faulty scripts - but also they provide an abstrac-
tion to develop technology-agnostic models for IaC solutions without replacing the
services offered by the most popular vendors, but enriching them.

4.6. Threats to Validity

In this section we discuss what are the threats to validity of our systematic literature
review.

For what concerns the internal validity, several threats can be found which, however, we
tried to mitigate as much as possible since we followed popular guidelines for SLRs. The
main internal of our study resides in the way the DevOps taxonomy has been developed.
As we previously said, before starting to make the taxonomy we looked at other papers,
not necessarily related to DevOps, which developed some taxonomies in order to have
a better clue on how to properly make one. Most of these papers followed an iterative

4| Systematic Literature Review 57

process where, considering the topics and keywords tackled by each publication found
in the search process, continuously optimize the taxonomy, starting from basic concepts,
in order to obtain, at each iteration, a more refined taxonomy. This is the process we
followed. However, the main difference between the other studies is that in our case the
taxonomy is valid also outside the SLR, in the sense that we tried to build an overall
taxonomy of DevOps concepts, and then we tried to fit our findings to it: the reason
why wanted to reason in this way is that we think that this taxonomy can be reused
and extended by other publications. Indeed, the main problem of our taxonomy is that
it might be incomplete. Also, other important threats to validity are the criteria used
to include papers in the study: in fact, given the the study has been conducted by
just one person, it is obvious that, even if we tried to stick to well-known guidelines,
the subjective component cannot be neglected: some relevant papers might have been
excluded. Furthermore, this applies also to the choice of snowballed papers, which choice
suffers even more to the author’s bias.

A threat to the external validity, still related to the fact that the SLR has been conducted
by one person, is the choice of the search engine: Elsevier’s Scopus. The choice of this
engine was made because, among all the others, it seemed to be the easiest to use, and also
it allows to export the results directly in a Comma-Separated Values (CSV) file without
the need of external tools: this allowed us to speed-up the review process. The problem
here is that the engine might have excluded some important references. Still related to
this problem, the way research has been conducted, i.e., through the use of a research
query, might have influenced the obtained results and important papers might have been
excluded. As mentioned in the previous sections, the research query has been built in
an iterative process, each time adding or removing keywords and modifying the query
structure. Although each time we compared the results and checked the kind of paper
were included in the results, we cannot be sure that the final query we used is the best
one, but we can be sure that is the one that produced the best results set we could have
worked on.

As we can see, although this study is not immune by threats, if we consider that the
research has been conducted by one person, we can assert that it has been reached a
reasonable level of objectivity.

4.7. Conclusions

In this chapter we presented a systematic literature review over a variety of topics, in
particular addressed towards IaC, Standardization and TOSCA, covering, in general, a

58 4| Systematic Literature Review

wide spectrum of the DevOps culture. We produce a threefold contribution with our work:
(a) a structured literature review of the most recent publications, addressing the lack of
state-of-the-art reviews regarding tools and standards in the IaC field; (b) a taxonomy of
the DevOps culture, which does not exist yet and helps to clarify the DevOps topics and
how they interact between each other; (c) an extensive analysis of the current challenges
of DevOps, with particular interest in Security, IaC, Tools and TOSCA. According to the
statistics we made in our research, we think that the main topics we addressed will remain
relevant for the near future in the research community, as they need further exploration
and as it is witnessed by the authors of the papers we found. In addition, our systematic
literature review helps to reduce the barrier for novice developers and researchers for
entering the very complex and multi-faced DevOps field. Finally, our findings can be used
as grounding for future studies, stimulating the research in IaC and standardization.

59

5| Proof-of-Concept: The
RADON methodology and the
Semiconductors Industry

In the previous chapters we shed light on many topics related to the DevOps methodology,
with particular interest in tools and standardization: within these two main research fields,
the OASIS Topology and Orchestration Specification for Cloud Applications standard
is the one that in the past recent years has gained a lot of attention by the research
community. Based on this standard, many tools have been proposed to help practitioners
develop IaC architectures in the various phases of the DevOps life-cycle, such as the
RADON IDE, PIACERE Project, SODALITE Project and other mentioned in the SLR
chapter. In particular, the RADON IDE project arouse our interest, as it provides a
set of different tools, combined in a unique Integrated Development Environment, which
are able to help developers in modeling, designing, deploying applications, but also to
predict and detect code smells: it covers a wide range of topics, and for this reasons we
want to investigate how it works, how easy it easy to use, what are its advantages and
disadvantages in a real word scenario. We propose in this section a case study, were we
apply the RADON IDE within a data producer team of a semiconductors company: NXP
Semiconductors. Before diving in our case study, we want to make a short introduction to
the semiconductor industry, and explain why we decided to chose that kind of company.

5.1. Semiconductor Industry Outlook

The semiconductor industry is one of the fastest growing markets which, in the past
recent years, have seen companies facing an ever-increasing amount of demand for their
products. Although this sounds like very good news for the industry, it is also source of
many problems which are catalyzed by many different factors, both internal and externals
to the industries themselves.

Chip shortages of the past recent years and the COVID-19 pandemic - that elicited even

60
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

more the demand - have worsened an already critical situation [8, 16, 17], leading to a
deep crisis affecting the entire industry, not only semiconductor value chains - from wafer
factories and chip design to PCB assembly - but also all the industries strictly dependent
to chip supply; in particular, the automotive market is the most affected by these shortages
[16]. Nonetheless, this situation was not caused only by COVID-19, which instead acted
as a catalyst in an already compromised situation, but was made even worse also by the
USA-China trade war, an intense competition within the industry itself, fabs operating
at full capacity and lack of semiconductors [8, 16, 17]: these are just few of the causes of
this crisis, and we are scratching the surface of a very complex problem.

Chip shortage has been caused also by structural deficiencies and bottlenecks in the
semiconductor industry: there are not just external causes, but also internal ones [8,
18]. Technology leadership, long-term R&D, resilience, talent, ecosystem capabilities
and greater capacity are the six critical areas [17] which suffer the most and that can
be severely improved. In general, semiconductor companies, and in particular integrated
device manufacturers, fall behind in each of these areas in comparison with other industries
[17, 18]: talent acquisition and retention has been highlighted as the most critical area
[17, 18].

All these problems are expected to get even worse, since it is expected to be a higher
demand in the next years, considering also new incoming technologies, which will stress
chip industry even more [10].

The solution to chip shortage would be to increase fabs output but, however, not all the
companies would benefit from it since each of them is different and costs to built new
plants are incredibly high - even for big companies - not considering the long times to
build them, which would not solve the problem in the short term [17]. Cheaper and faster
solutions are necessary to be found.

Business intelligence and competitive intelligence are two processes that encompass many
technologies such as analytics, dashboards, data mining and reporting to analyze data
and get information to support making critical and strategic decisions. These techniques
use an immense amount of data, stored in data warehouse, data marts and data lakes. In
addition to this, many operations running at chip-design level and hardware design pro-
cesses run on cloud infrastructure, which is stressed by an immense amount of structured
ad unstructured data and operations flowing through it. This is one area that requires
further investigation and improvements.

Analyzing this phenomenon alone would require too much time and effort, but most
importantly it is out of the scope of our work. However, it is important being aware of

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 61

the context we are working in and the challenges the industry is facing.

5.2. The Value of Data

Considering the discussion above, we can state that, even if it is not the direct subject of
our research, data are a fundamental underlying asset: they are the most valuable asset
of the last decade and it will be even more valuable in the future [9]. But why it is so
valuable? The answer to this question is not that straightforward, since it is not a topic
systematically evaluated.

Even if some common elements can be found when discussing why data are so valuable,
in order to give a clear answer we have to consider the context in which they are used.
We can say, however, that data are an important asset that, if used properly, can bring a
huge impact to a company’s business.

(Big) Data represent an opportunity for companies, and the ability of effectively man-
aging this opportunity is a key advantage over the competition. If used properly, data
represent a new factor on the same level of human capital and hard assets. If we consider
the manufacturing sector, factories equipped with the proper technologies can achieve
improvements in design, production and product quality: an industry adopting these
technologies is called Industry 4.0 [119].

Data value is generated in many different ways, and it has repercussions in a variety of
fields. Figure 5.1 represent the dimensions of the data value ecosystem. As we can observe,
there is a large variety of variables involved around big data. First of all, a high level of
expertise is necessary to bring value from data, as well as strong domain knowledge. The
right technologies must be carefully chosen to overcome the issues related to acquiring
heterogeneous data sources, store a huge amount of data, real-time data processing and
interoperability. Furthermore, applications are necessary to deliver data to customers to
support many different aspect of production and actively benefit from the value of data.
Business models should also be employed to simulate growth in economic activity. Finally,
it is also necessary to consider the social implications of big data and the legal aspects,
such as privacy and regulations.

62
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

Figure 5.1: Big Data Value Ecosystem [9].

Data are an asset, they are information. For this reason, to define value we can refer to
the Seven Information Laws proposed by Moody & Walsh in 1999 [73], who for the first
time identified the laws that govern information behavior as an economic resource:

• Information is infinitely shareable;

• The value of information increases with use;

• Information is perishable;

• The value of information increases with accuracy;

• The value of information increases when combined with other information;

• More is not necessarily better;

• Information is not depletable.

These laws helps us to reach the objective of defining value. However, determine value
is not possible if we do not define a purpose, as the interests in information define how
valuable actually is.

If we consider the semiconductor industry, data can be used not only to improve the quality
of the final products, enhancing the production line and increase the quality controls, but
also have extreme value for business decisions. For instance, hardware engineers use

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 63

Electronic Design Automation (EDA) tools to create and verify chip designs: these tools
use a huge amount of resources, and they are computationally intensive. Semiconductor
companies rely on very large High Performance Computing (HPC) systems that provide
all the necessary resources to the designers. However, resources are limited and some
EDA jobs occupy a large amount of resources. It might be necessary to kill jobs that
occupy compute slots for long time, idling. This example falls in the category of resource
optimization, and in order to do so, it is necessary to collect data through a Real-Time
Monitoring (RTM) system capable of collecting data of HPC nodes usage. By using
historical data, it is possible to predict the computational load of resources and manage
them properly, to avoid resource waste [119].

This is just an example of why data can be so valuable, but many other applications exist
where data are an important resource that can be used to make the right decisions. This
process is called data-driven decision making, and business intelligence is the discipline
that regulates it. It is in this context that we worked.

5.3. Introducing the Company’s Environment

Considering all the previous insights on the current status of the semiconductor indus-
try and the importance of data in the business intelligence decision-making process, we
conducted a study in collaboration with NXP Semiconductors (NXP from now on), one
of the largest semiconductors companies in the world. Their focus is the design and the
production of silicon technologies for - mainly - the automotive industry and smartphone
industry.

In the past recent years, NXP adopted the DevOps strategy to support the development
of the infrastructure used to retrieve data from different sources and load them in their
many data lakes, in order to support a wide range of governance decisions. In particular,
they use the well-known SCRUM methodology, scaled-up for big companies: the SAFe
methodology.

Both of these methods are the latest evolution of the Agile framework, which is, as we
have seen in our SLR, one of the pillars of the DevOps culture. SAFe allows teams
and stakeholders to align to a shared mission and vision. At the basis of the whole
process resides the following concept: The most efficient and effective method of conveying
information to and within a development team is a face-to-face conversation1. As we
have previously discussed, communication is the most important element of DevOps.

1https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

64
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

Daily meetings, weekly review sessions and planning weeks are there to enhance the
collaboration withing team members and different teams.

In our specific case, we worked with a data producer team, which is in charge of developing
and maintaining the platform used to collect data from different sources, clean them and
load them on the data lake. These data are used by other teams, as they apply machine
learning and statistical algorithms to retrieve useful information to support business and
governance decisions across the organization.

We worked with the team for a period of 5 months.Throughout this period, the team
experienced fluctuations in its resources. The core team consisted of six engineers, ex-
cluding ourselves and other students. This number falls exactly in the suggested size for
DevOps teams, as it has been proved that small teams - that is, ten or fewer individuals2

- suite better in the Agile framework.

For the whole period we worked with the company, the team was dealing with the problem
of maintaining a data ingestion infrastructure, while at the same time migrating from an
on-premises environment to a cloud platform. The company adopts a wide variety of
cloud tools provided by different vendors. The NXP employs various tools to facilitate
their daily operations, including log- and metric-collection, alerting, and notification via
ticketing-systems to detect and resolve operational issues. These tasks align with the
typical responsibilities of a DevOps team.

5.4. The Team and Its Goal

The SCRUM3 methodology suggests dividing the work into sprints, i.e., short periods of
time, were are defined a set of user stories. Each user story represents a specific topic
on which a team member should work, typically belonging to a bigger topic. Which
stories will be done on a specific sprint and how big a Story is, it is decided during the
planning sessions, where each team member can vote the amount of effort a Story requires
and, according to the team’s capacity (the working power), a certain amount of stories is
chosen.

During the 5 months period of collaboration with NXP, the team was focusing on improv-
ing the system developed in the past months, by introducing higher level of monitoring
and optimizing resource usage. However, to better understand the main objectives of the
team, here follows a list of all the team’s activities:

2https://scaledagileframework.com/agile-teams/
3https://www.scrum.org

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 65

• Build data ETL pipelines: ETL pipelines are necessary to ingest data from data
sources and load them on the Data Lake;

• Monitor data streams: ETL data streams must be monitored in order to be aware
of the status of the system and act in case of failures or other issues;

• Data gap detection: among the issues the team deals with, data gaps is the most
common one and detect it is compulsory;

• Re-ingestion to fix gaps: in case data gaps are detected, it is required to re-ingest
the data and fix the gaps;

• Data quality checking: data quality is another important activity carried out by the
team, since data loaded on the data lake must reach a certain level of quality;

• Notify data consumers: data consumers must always be aware of status of the
ingestion pipelines of their data;

• Clean data: among the data quality checks, data cleaning is the most common
practice;

• De-duplicate data: data de-duplication is a compulsory activity to remove duplicate
record: only one unique instance of data is kept;

• Share with consumers: consumers that used specific data must always be able to
access them;

• Manage cloud platform: the maintenance of the cloud platform is fully managed by
the team.

All of these activities are related to the environment depicted in Figure 5.2. As we can
see, we are dealing with 12 different data sources, which can be of 3 different kinds: files,
logs and data streams: in general, we can say that these data are related to time sheets,
project names, licenses, jobs, tools usage and project storage accounts.

Given the diversity in data sources, not only in the content but also in the type of
sources, we are dealing with a very complex environment. On each of these data sources
an ingestion process is performed, where data are cleaned and prepared for the data lake.

66
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

Figure 5.2: Team activities overview.

In the picture it is not shown the process of ingesting data - as we will discuss it later -
but it is show how data are used by the stakeholders: mostly, reports and analyses are
performed to improve efficiency and in the end, cost reduction, typically by the help of
ML-trained models.

5.5. The Proof-of-Concept

Given all the previous considerations, in this section we introduce the reader to the work
done in collaboration with NXP Semiconductors.

5.5.1. Introduction

In their cloud environment, the team is dealing with around 200 ETL pipelines. ETL
jobs are deployed through a serverless data integration service, that allows the creation
of complex ETL pipelines to load data into data lakes. The service is based on Apache
Spark4, the open-source multi-language unified analytics engine for executing large scale
data processing.

Most of the jobs configured in the deployment environment are used to retrieve data
from different on-premises data sources and load them, after several quality checks, on

4https://spark.apache.org/

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 67

the team’s data lake. For this reason, these jobs, among other configuration settings,
need a Virtual Private Cloud (VPC) connection, as they need to connect through several
sub-nets to the local database instances.

Figure 5.3: Architecture overview.

ETL jobs are configured to retrieve data from a wide variety of sources, and in order to
do so they rely on other services provided by the cloud vendors, which are storage services
and NoSQL databases. The important aspect to consider is that they have been chosen
to benefit from scalability support, data availability, security and performance offered by
the fully-managed services.

Figure 5.3 depicts the high-level architecture of the system we are dealing with. As we can
see, jobs need to connect to a VPC in order to access the on-premises HPC Clusters, where
most of the data sources reside. Supposing that no issues happen during this process,
each ETL job accesses a storage unit to load the ingested data. This is an over-simplified
view of the real architecture, and there are some issues that needs to be solved, as we will
see in the next section.

Figure 5.4: ETL pipelines architecture, with data source and target.

Figure 5.4 gives us further details regarding the high-level architecture of the system we
are dealing with. In particular, we can see how ETL jobs are scheduled in the team’s

68
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

cloud environment. Time-based events trigger a workflow, also known as an orchestrator
or state machine. Each step in a workflow is called a state: a unit of work, with inputs
and outputs that a cloud service performs. This service is used to start the serial or
parallel execution of a predefined set of ETL pipelines within the function orchestrator:
this is the place were issues might arise due to the connection to Virtual Private Cloud
required by the ETL jobs. Finally, the ingestion pipelines write the processed and raw
data to their target storage folder. From here, data consumers accounts can read data,
which are shared with them, to made further processing and evaluation.

5.5.2. The issues

The architecture discussed above, although it satisfies the preliminary requirements for
a basic working of the ingestion pipelines, shows some defects, mainly related to lack of
complex control flow and readiness checks. In this section we explain which are the main
issues that the team is aware of and needs to solve.

We begin by discussing a resource limitation: the number of IP addresses available. This
kind of resources are provided by the team through requests presented to the Cloud
Center of Excellence (CCoE) which is a centralized governance function, a task force
built to ensure the correct adoption of cloud across the organization.

Following the diagram (Figure 5.5), we can observe the problem. At peak load, jobs
can fail due to IP address exhaustion (the pool of unallocated IPv4 addresses is drained,
causing job launch failures).

Figure 5.5: High-level architecture overview with IP limitation issue.

The issue we just mentioned is related to resources limitation. However, there are other
known issues within the adopted architecture. In order to explain which are the other

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 69

problems, we will use as a reference example presented in Figure 5.6. It represents the high
level logic of one of the orchestrators created to manage the complex application workflows.
In the cloud environment, ETL jobs are grouped by data source type, and for each data
source an orchestrator regulates the execution of the related pipelines. Executions can
be serial or parallel, depending on the type of jobs involved, i.e., incremental or batch,
and the resource type: for instance, serial execution is preferred when large batch jobs
need to be executed and to avoid overloading the data source with multiple parallel jobs.
With the current status of the system, it is not possible to recover from possible errors
that might rise during a pipeline execution since, as we can see, there is no try-catch
mechanism implemented.

Figure 5.6: Function orchestrator example with serial execution of different ETL Jobs.

This implies that, if a job fails to execute, the whole orchestrator fails and, as a conse-
quence, all the other jobs in the same sequence do not execute.

Missing the try-catch feature implies that it is not possible to implement some kind of
retry mechanism: in principle, it is possible to set, during the configuration of a function

70
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

orchestrator, the number of times a step execution can be attempted; however, this does
not allow reporting what cause the execution to fail. Furthermore, there are some jobs,
i.e., the incremental ones (also named snapshot jobs) that have higher priority on the
batch-type jobs: so, supposing to have a retry mechanism, it is need a check that assess
the type of job, so that only in case it is a snapshot one the execution is attempted again.

On top of these issues, there is lack of monitoring. As we have seen in our SLR chapter,
we have found very few papers tackling monitoring, and this does not mean that the
topic is not relevant. It is the opposite: without monitoring, there is no insight over the
status of the system, and there is no way to know what are the failing jobs and why. Also
monitoring is necessary on the resources, since in order to run ETL jobs it is necessary to
have enough IP addresses available. For these reason, in the past few months the team
worked hard to achieve a certain level of monitoring, by collecting metrics and creating
dashboard and alerts. For instance, ETL pipelines are monitored and metrics related to
the execution status, outcome and cause of failure are collected in a unique dashboard, so
that the team can now visualize the status of jobs and evaluate statistics such how often
jobs fail and what are the most common causes. This step was crucial in order to design,
later, a solution to address the most common problems, as we will see in the next section.
Also, a monitoring system has been design to get insight on the status of the IP subnets
usage.

To conclude this section, we just highlight how without these two monitoring systems
would have not been possible to design a solution to address these problems. Having eyes
on what happens in a system it is a necessary step to non only understand why errors
arise, but also to properly solve them, as stated by all the team members.

5.5.3. The solution

In order to solve the issues mentioned in the previous sections, we envisioned the design
and implementation of a new state-of-the-art job orchestrator. The baseline idea consists
of adding several steps to the current orchestrators in use, in order to introduce readiness
checks and more complete logic. At design stage there have been several discussions on
which could be the most sound and complete tool to use, as developers did not know yet
if the one offered by a vendor is capable of not of addressing all the issues rather than the
service offered by a different vendor. Thus, during the design stage there was not only
doubt regarding how to address each of the aforementioned issues, but also the final tool
to be used.

Now we present the model of the solution proposed. However, we will not discuss here

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 71

how we reached to the model or what are the tools used to model and deploy it: this
is due to the fact that in the next sections we will discuss two methodologies to reach
this goal, designing experiments in order to understand which of the two methodologies
is better. So, here we will just discuss the logic lying behind the model. Before discussing
the model depicted in Figure 5.7, we explain what is the language model used, and why
we used it.

The Business Process Modeling Notation5 (BPMN) is a popular standard for modeling
enterprise process workflows, providing a visual notation, capable of capture business pro-
cesses in a clear and consistent way. BPMN process are composed by two main elements,
activities and events, connected together by sequence flows. Tasks represent atomic units
of work, and they can be either atomic or compound (sub-processes): they are both rep-
resented by rounded rectangles, with the difference that sub-processes contain a process
inside. Events on the other hand are represented by circles and depict an occurrence of
a fact: for instance, in Fig. 5.7 we have a start and an end event. Finally, we have gate-
ways, which are capable of expressing divergence of convergence of sequence flow: they
are diamond-shaped with a symbol that describe the type of gateway that is, for instance
exclusive or the logical AND. In Fig. 5.7 we can observe exclusive gateways, with the
purpose of representing a choice, similar to an if-else statement.

Now we discuss the logic behind the model in Fig. 5.7. Right after the start event -
right now is not relevant what kind of event triggers the execution, we will discuss it in
the next chapters - we have a task that is meant to read from a table and a compound
task, parallelSetExecution, that executes in parallel each set of jobs that needs to be run.
For each set of jobs, in the compound task we have at the very beginning a task that
transforms the dataset in a list of jobs, so that it is possible to execute each job in the list
in parallel, thanks the sub-process named parallelJobExecution. Inside this task we can
find the actual logic that handles the execution of each job: the retryExecutionLoop.

5https://www.bpmn.org/

72
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

Figure 5.7: BPMN model of the proposed solution.

In the loop, the following issues are addressed: concurrency of a job, IP space availability
and retry execution of incremental (snapshot) jobs. In principle, also a try-catch statement
is foreseen for the executeJob; however, it is not possible to see it in the BPMN model. At
the beginning of the loop, the execution attempt counter of the current job is updated:
the loop keeps going at most for three attempts. It is subsequently checked if another
instance of the same job is run, to avoid concurrency issues. Then, IP addresses availability
is checked: if not enough IPs are available or another instance of the job is running, we
do not execute the job; otherwise, the job is executed.

The jobs executions are usually parallel. However, for certain jobs might be serial. For
each ETL job, the loop ends if there is a successful execution or if the maximum attempts
for a job are reached (three at most).

In the following chapters we show what are the two approaches we compare in order
to model, develop and deploy this job orchestrator solution, by modeling two kinds of
experiments, collecting data and discussing the results, in order to assess the pros and
cons of both methodologies.

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 73

5.6. Two Approaches: RADON and Baseline

In this study we want to compare the RADON approach to model, develop and deploy
FaaS solutions, with the baseline approach, i.e., design and deploy a solution by using
directly the tools provided by the cloud services provider. At the basis of both approaches
we assume a design phase where all the team members discussed the requirements that
the new job orchestrator should satisfy, as we have seen in the previous section.

5.6.1. The Baseline Approach

The baseline approach represents the case where, in order to design and deploy a new job
orchestrator solution, we did not rely on the support of any extra tool or tool-set, but only
on the tools provided by the cloud services vendor. With this approach we only manually
developed all the necessary steps with the different kind of services needed, without the
need of any extra abstraction layer, which instead provided by RADON. In order to
model the job orchestrator, we directly relied on the function orchestrator modeling tools
provided by the cloud vendor. Also, we used many serverless functions, in order to
properly make readiness checks, which were triggered by the function orchestrator, since
the latter one is used to specify the execution flow and not the content of the steps itself.

Figure 5.8: Function orchestrator graph: final solution.

74
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

Figure 5.8 shows the graph of the final function orchestrator deployed. We discuss now
the steps, and what they represents. However, we do not discuss here what is the though
process behind the decision taken to design the function orchestrator, since we will do it
in the next chapter, where we compare this approach with the RADON approach, and
the results of the experiments.

In order to understand the image, we assume that every minute a serverless function
is triggered. The serverless function reads from a key-value database table the list of
jobs that needs to be executed at a given time, and creates an instance of the function
orchestrator on the left of the image for each set of at most five ETL jobs. Suppose that at
12:00 13 jobs needs to be executed: then, the serverless function creates sets of five jobs;
in this case, we have three sets, two composed of five jobs and one of three jobs. For each
of these sets, a function orchestrator instance is executed. The orchestrator then calls, in
a series of steps, for each ETL pipeline in the set, different serverless functions which are
in charge of: updating the execution attempt of an ETL job, perform readiness checks (in
a different function orchestrator) such as IP space availability and job concurrency, and
if these checks are good, then the execution of the job starts; otherwise, if the job is of
type snapshot, the execution is attempted again at most three times.

5.6.2. The RADON Approach

As we have seen in the previous section, the Baseline approach requires the direct use of
different technologies offered on a cloud platform, with no need of an extra abstraction
layer on top of them. However, most of the technologies offered by one vendor are not
available on another platform, and if a company wants to adopt another cloud services
provider, there is the need to learn to use their specific equivalent services, when they
exist.

A novel tool-set and methodology has been developed to address these issues: RADON.
RADON is a framework that not only provides and end-to-end application life-cycle man-
agement methodology and tools, by envisioning a model-based approach to manage var-
ious aspects of serverless application development, such as verification, decomposition,
defect prediction, continuous testing, monitoring and CI/CD, compatible with a variety
of cloud platform. Indeed, the RADON IDE has to be intended has an extra layer that is
build on top of the most popular cloud services, and it does not represent a replacement
to the proprietary tools offered by these vendors, but it is a methodology which aims
to reduce workload and effort on practitioners working with this kind of technologies.
The RADON methodology has been developed by applying method engineering and the

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 75

Topology and Orchestration Specification for Cloud Application (TOSCA) as the baseline
for models definition.

Figure 5.9: RADON DevOps model [29].

Figure 5.9 shows the model of the RADON DevOps life-cycle. This schema reflects

76
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

the structure of the traditional DevOps life-cycle, but it adds, for each phase, the tools
RADON uses to apply the theoretical concepts. As we can observe, many tools are
present within the RADON framework but, however, this is not a proper novelty since,
for instance, similar capabilities are reached by other services. RADON, is open-source
and offers a unique characteristics: it offers multi-cloud portability, by combining graph-
ical modeling and TOSCA-based templates to abstract deployment characteristics. For
these reasons, RADON provides a valuable support to DevOps teams working with cloud
services.

In our research, we will focus on a subset of technologies adopted by the RADON frame-
work, all of them open source, described in detail by [29], where the TOSCA language is
extended to support the development of serverless function orchestrators. In particular,
our focus is directed towards the Graphical Modeling Tool (GMT), namely Eclipse Win-
ery, the deployment tool, xOpera - both TOSCA compliant - and another tool developed
by the authors of the cited study, that is, BPMN4FO. In the next subsections we provide
a brief description of the purpose and capabilities of each tool.

Workflow overview

RADON, as is in the current development status, only supports the development of FaaS
microservices, hosted on cloud VMs, provided by different vendors. Yussupov et al.,
in their study, extend the capabilities of TOSCA by creating specific node types and
relationships to support the modeling and deployment of serverless function orchestrators.

The proposed workflow is structured as follows: first, Business Process Model and No-
tation (BPMN) is used to model serverless function orchestration and then transform it
in target orchestration formats. Then, the TOSCA-based deployment modeling approach
(Eclipse Winery, based on TOSCA) is extended to support function orchestration and
finally xOpera, the deployment automation technology, is used to deploy the model on
the target service.

Figure 5.10: Tool-chain for modeling and deployment of function orchestrations [118].

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 77

Figure 5.10 shows the tools used to implement the concepts previously described. All the
tools used are open-source and are based on well-known standards: BPMN and TOSCA.
The first tool is BPMN4FO, which is used to graphically create the function orchestrator
model and generate the target model. Then, Eclipse Winery, used in the RADON project
and here used on top of a TOSCA extended version, is used to model the application
deployment and generated the IaC code in a compressed format (CSAR file), which is then
used by the last tool, xOpera, to execute the deployment on the target cloud technology.

BPMN4FO

BPMN for Function Orchestration (BPMN4FO6), currently at prototype stage, is used
to design serverless function orchestration models. It is based on bpmn-js7, which is a
graphical BPMN-compliant editor adapted such that it is possible to create technology-
agnostic function orchestration models in a way that, if the model is compliant to the
supported technology, it is possible to generate the target-technology models. In order
to obtain these capabilities, the technology-specific constructs have been uniformed and
applied to the BPMN elements. For this reason, only the common constructs have been
modeled, while the ones which are present only in one of the supported technology must
be manually added at a later stage; however, the authors claim to extend the support
also to these constructs. This tool is capable of exporting both the BPMN model of the
function orchestrator and the technology-specific model.

Eclipse Winery

Eclipse Winery8 is a web-based environment, included in the RADON project, which
provides a GUI for not only topology modeling, but also to define TOSCA constructs.
Indeed, in the study a set of new constructs is presented, which is capable of support the
deployment modeling on the aforementioned technologies. The most important construct
is the Orchestrator Node Type - which is slightly different for each provider - that repre-
sents the orchestrator technology and is meant to store the orchestrator model generated
by BPMN4FO. The Orchestrator node then is connected to the different other nodes
through the Orchestrates relationship, and each node represent a BPMN Task, that is,
a serverless function. Of course, these constructs are compatible with the all the other
TOSCA constructs provided by RADON. The resulting model can be exported as a Cloud
Service ARchive (CSAR file), which is the compressed IaC code, with all the constructs

6https://github.com/iaas-splab/matoswo
7https://bpmn.io/toolkit/bpmn-js/
8https://github.com/eclipse/winery

78
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

and artifacts to deploy the model. In order to conduct our experiment, we used the docker
container provided by the RADON project (RADON GMT).

xOpera

xOpera9 is a TOSCA compliant orchestrator to automate deployment of TOSCA-compliant
models. In our case, it is the CSAR file provided by Eclipse Winery. Assuming all the
target account info is provided in the CSAR file, xOpera automatically deploys the model.
xOpera is available is different versions, such as CLI or SaaS. For our experiments, we
used xOpera CLI 0.6.5 in a Python 3.8 virtual environment.

5.7. Design of the Experiments

In order to conduct our study, we defined a family of experiments, that is, a set of
experiments that share the same goal so that it is possible to combine the results in order
to enhance their maturity. With that in mind, we followed the guidance of Santos et al.
[94], where they suggest having at least three experiments to compose a family. Each
experiment is composed of one factor, that is, the methodology employed to design and
develop the job scheduler, and two treatments, that is, the RADON approach and the
Baseline approach.

5.7.1. Goal and Research Questions

Our family of experiments share the same goal: analyze the design and deployment of a
function orchestrator in a serverless environment, with and without using RADON, with
the purpose of estimating them with respect to their effectiveness, efficiency, perceived ease
of use, perceived usefulness, and intention of use from the viewpoint of novice practitioners
in the context of DevOps team. By chasing this goal, we address the following research
questions:

• RQ1: Which is the most effective approach to design and deploy function orches-
trators?

• RQ2: Which is the perceived easiest approach?

• RQ3: Which approach is more useful?

• RQ4: Which tool is intended to be used?

9https://github.com/xlab-si/xopera-opera

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 79

5.7.2. Context

The context in which the experiments have been conducted has already been described in
detail in the previous sections; here we summarize it. The context of this research is the
design and deployment of function orchestrators on a cloud platform. In particular, the
context is defined by (i) the infrastructure resources, that is, the cloud services platform
used by the DevOps team: in our case, we used the AWS, among the many platforms
available; (ii) the methods selected, that is RADON and baseline, extensively described
in the previous sections; (iii) and the selection of participants to the experiments.

5.7.3. Participants

According to Kitchenham et al [58, 59] students are the most interesting participants
when conducting experiments, since they are next generation of practitioners. In partic-
ular, well-trained final-year students can be considered as valid experimental subjects. In
particular the experiments have been conducted by the authors of this study, with the
support of trained practitioners, i.e., the other team members, who have experience that
spans from a minimum of two year to several decades in the IT field. We included them in
the study since they supported the main participants in making assessments and reasoned
judgments.

Figure 5.11: Sequence of experiments with factor, treatments and variables involved.

5.7.4. Experiments

The three experiments we conducted are similar, in the sense that they involve the same
participants in the same context.

80
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

However, they differ on one aspect: for each experiment has been designed and deployed
a different version of the job scheduler, and each experiment introduced more complexity
in the solution.

This was made to have, in the end, a combination of results that are not biased by the
complexity of the function orchestrator designed and deployed. The complexity of each
job scheduler solution has been measured by counting the number of steps involved in
the orchestrator and the number of branches in the model; in the end, we obtain three
different complexity levels: low, medium and high, as we can see in Table 5.4.

Figure 5.11 shows the sequence of experiments performed in the chronological order,
highlighting the complexity of the job scheduler solution involved.

We adopted the Method Evaluation Model in conjunction with factorial as theoretical
reference for our experiments: in the following sections, we describe in detail how we
structured our work.

Figure 5.12: Method Evaluation Model.

5.7.5. Variables selection

The Method Evaluation Model (MEM) [72] is a method that derives from the Technology
Acceptance Model (TAM) [31]; the MEM defines the theoretical approach to follow for
the evaluation of our two methods.

It assumes two different dimensions: actual efficacy and adoption in practices. It makes
uses of several constructs, defined in Figure 5.12.

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 81

In particular, to measure performance are envisioned two constructs: Actual Efficiency
and Actual Effectiveness, which represent the effort required to apply a method and the
degree to which a method achieves its objectives, respectively. Perceived Ease of Use
represents the degree to which a person feels comfortable using a method, while Perceived
Usefulness represents how a person feels that a method is useful to achieve the intended
objectives. The Intention to Use, instead, represents the extent to which a person is
willing to use a particular method. Finally, Actual Usage is the extent to which a method
is used in practice. In our experiments we will use all of these constructs as dependent
variables. Table 5.1 summarizes all the variables used in our experiments.

Name Measure Scale

Effectiveness (EFCT)
Number of Requirements Satisfied

Total Number of Requirements

Ratio

Efficiency (EFFC)
Effectiveness

Time

Ratio

Perceived Ease of Use (PEOU) 5-point Likert Scale Ordinal

Perceived Usefulness (PU) 5-point Likert Scale Ordinal

Intention to Use (ITU) 5-point Likert Scale Ordinal

Table 5.1: List of dependent variables.

The first two variables are performance-based: Effectiveness is defined as the number of
requirements satisfied by designing and deploying the function orchestrator, given the
experiment, over the total number of requirements. The efficiency instead is Effectiveness
over time, since it represent how long a participant took to perform the task. To each
satisfied requirement has been assigned an All-Or-Nothing-Metrics, that is, only two pos-
sible values are usable: 1 for satisfied requirement, 0 for non satisfied requirement. All the
other variables are formulated as a 5-point Likert scale, with opposite-statement question
format.

82
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

Variable Statement

Perceived Ease of Use This method was easy to learn and to use.

Perceived Usefulness This method is effective in supporting the development
of high quality software, with low effort and time.

Intention to Use If I am working in a company, I would suggest to use
this IaC development method.

Table 5.2: List of dependent variables.

Table 5.2 provides a summary with all the statements we used for our 5-point Likert Scale,
relative to the variables Perceived Ease of Use, Perceived Usefulness and Intention to Use.

5.7.6. Null Hypotheses

For each of the three experiments, the same Null Hypotheses hold. The Null Hypotheses
have been formulated directly from the dependent variables. The Null Hypotheses of our
experiments are:

• H10: EFCT (RADON) = EFCT (Baseline);

• H20: EFFC (RADON) = EFFC (Baseline);

• H30: PEOU (RADON) = PEOU (Baseline);

• H50: PU (RADON) = PU (Baseline);

• H60: ITU (RADON) = ITU (Baseline);

• H70: AU (RADON) = AU (Baseline);

The goal is to reject the null hypotheses and accept alternative ones.

5.7.7. Design

To properly design our experiments, we make use of 3 x 2 factorial design, capable of
addressing the issue of small sample sizes, increasing sensitivity of experiments. We also
used this technique because, given the limitations related to the number of participants,
it was impossible to adopt other experiment design such as AB/BA crossover design,
which requires the definition of two group to which assign factors and treatments. So,
with Table 5.3 we show how we combined the different complexities of the Job Orches-
trator design with respect to the two treatments, that is, RADON and BASELINE. For

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 83

each combination we considered, we show how they are assigned to each Week-Period of
experimentation.

Design complexity RADON BASELINE

LOW Week 1 Week 1

MEDIUM Week 2 Week 2

HIGH Week 3 Week 3

Table 5.3: Design of our experiments.

As we mentioned in the subsection where we describe the variables involved during the
experiments, Effectiveness and Efficiency are based on the requirements satisfied. Each
period of experimentation refers to a different level of complexity in the design of the or-
chestrator which, in the end, directly depends on the number of requirements the solution
should satisfy.

Table 5.4 summarizes the requirements that the Job Orchestrator solution must satisfy, for
each level of complexity. The idea is that the lowest complexity solution must be able to
manage the basic features to orchestrate all the services to execute a set of predetermined
ETL Jobs in series, that is, the orchestrator gets as input a set of ETL job names, and for
each of them must check if another instance is running, to avoid concurrency issues and,
in case the execution of a job fails, catch the error for reporting the issue. The reason
why the execution of multiple jobs is serial resides in the fact that the team does not
want to overload the data source, and thus a synchronized serial execution avoids this
issue. Synchronized means that the orchestrator not only is in charge on starting the
execution of an ETL pipeline, but also waits until the execution ends to start a new one.
The medium complexity requirements comprise the ones of the low complexity case, but
they also add the need of implementing other two features, that is, IP space availability
checks before executing a job, and a retry mechanism for snapshot (incremental) jobs,
that have a higher priority over the other ones, that is, batch jobs. Finally, the high
complexity design gets the same features as the medium ones, except for requirement 7:
indeed, in this case the jobs that needs to be executed is no more fixed, but dynamic. It
is foreseen a table, where a list of jobs is stored with all the information necessary to run
them at a given schedule; the orchestrator should be able to read the table every minute
to check if, at a given time, jobs needs to be run, and run them serially. In the first two
cases, instead, the assumption is that the hard-coded jobs have the same schedule, and
the orchestrator is triggered according to that schedule.

84
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

Req. ID Req. Description LOW
Compl.

MEDIUM
Compl.

HIGH
Compl.

R1 The Scheduler Table must always
be available to the Job Scheduler

X

R2 The Scheduler Table must be up-
dated every time an ETL job is
selected for execution

X

R3 The Scheduler Table must con-
tain all the fields necessary to the
Job Scheduler for deciding which
Job must be executed at a given
time

X

R4 The Job Orchestrator must read
the scheduler table every minute

X

R5 Snapshot Jobs require a retry
mechanism if the execution fails

X X

R6 A Snapshot Job can retry the ex-
ecution at most 3 times

X X

R7 The list of jobs the orchestrator
must execute are hard-coded in
the input schema

X X

R8 The Job Orchestrator must check
if IP addresses are available be-
fore executing a job

X X

R9 The Job Orchestrator must, be-
fore executing a Job, must check
if another instance of that Job is
running (Concurrency check)

X X X

R10 The Job Orchestrator must im-
plement a try-catch mechanism
when executing an ETL Job

X X X

R11 The execution of multiple ETL
pipelines must be serial

X X X

R12 The execution of multiple ETL
pipelines must be synchronized

X X X

Table 5.4: Requirements for each design complexity.

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 85

5.7.8. Experimental material and assumptions

In order to properly conduct the experiments and avoid biasing the considerations made
towards one of the two approaches, we made some assumptions. At the beginning of this
chapter we described how the goal is to design, develop and deploy through IaC an ETL
job scheduler, with increasing complexity levels. Both approaches, however, have some
preliminary steps in common, which we consider among our assumptions: the scheduler
has been implemented, in every phase of the experiments, through the combination of
function orchestrators and step serverless functions provided by the supported cloud plat-
forms. Although the relationship between each step and between the components vary for
each experiment and method employed, the code of the steps in the serverless functions is
the same across all the phases. For this reason, we assume that the code of each serverless
function has been already developed and tested, and provided as artifact at the beginning
of each experiment. This however does not include slight modifications that might be or
might not be necessary to adapt the code to slightly different deployments, due to the
different capabilities of the methodology employed and the different vendors.

Furthermore, in our experiments we do not consider the time needed to read the docu-
mentation of each tool employed by both methodologies. However, we consider within our
metrics the time used to solve possible issues and errors related to lack of documentation
for a given tool or unforeseen events that slowed down the development process that are
not attributable to a deficiency of the person conducting the experiment.

We relied on using the official documentation provided by each tool and service involved.

5.8. Results

In this section we present the empirical evidences collected during our experiments, ac-
cording to the hypotheses and considerations stated in the previous sections.

Table 5.5 presents the list of the values collected for the variables involved in the experi-
ments, averaged among the experiments. We added the duration variable that, even if we
did not mention it in the previous sections since it is a variable which value is not directly
assigned by the participants, we found important to include in the list since it gives an
additional important information regarding the experiments and helps to the discussion
of the results. Indeed, time is a factor that indirectly or not influences the values assigned
to all the other variables.

86
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

Variable RADON BASELINE

Effectiveness 1 1

Efficiency 0.077 0.69

Duration 15.33h 14.66h

Perceived Ease of Use 2.66 3.66

Perceived Usefulness 4.33 4

Intention to Use 2.67 4.33

Table 5.5: Collected results: all values represent the average over the experiments; values
are dimensionless, except for duration which unit is hours.

The most important observation about time is the following: in principle, one could
state that time should increase as the complexity of the solution to be deployed increases.
However, this is not true, since one aspect to take into account is the reuse of components.
Indeed, in both methodologies is it possible to used part of the artifacts generated by one
solution for another. Although this would seem to alter the results of our experiments,
because reusing components among each other would imply to make each experiment
dependent from another, it actually does not: the reuse of a component is a crucial aspect
of Infrastructure as Code, and not taking advantage of it would make the results less
reliable. Indeed, since we did it for both methodologies, the results are coherent.

With the collected experience, we can make the following considerations, that we will use
later to give an answer to our research questions.

5.8.1. Effectiveness

Effectiveness score is high in both approaches: in particular, the maximum score has
been reached by the Baseline approach, with the RADON approach scoring lower. The
Baseline approach, indeed, offer higher granularity and more precision while developing
the infrastructure, since it exploits directly the capabilities of the tools offered by cloud
platforms, that on the other side are used over an abstraction layer, namely through
TOSCA constructs, in the RADON approach.

Using directly the cloud services gives the developer of higher level of control on each
component, giving the possibility to specify some behaviors and deployment settings that
are not available (yet) with the RADON approach. Nonetheless, this does not mean that
the RADON approach is a limitation: actually, it is an enhancement since it gives the

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 87

opportunity to a developer to have a graphical overview of the deployment model, which
helps to better visualize all the variables involved in the application, an aspect that is
crucial in DevOps since development and operations stages continuously interchange.

With BPMN and Eclipse Winery combined, it has been possible to continuously update
team members, including product owners and SCRUM master, and make everybody to
understand what the objective of the project was, even to the ones with less technical ex-
pertise. This is an aspect that should not be neglected, since we view it as an opportunity
for managers to have a better understanding on the status of issues and stories (speaking
in SCRUM terms).

However, we have to highlight few limitations in the RADON method that caused concern
during the development process: first of all, BPMN4FO translates BPMN tasks to target-
specific serverless functions; if it is needed to use other function orchestrator target-specific
states, it is necessary to make a more complex serverless functions to address the lack of
states. In principle, this is not a big issues, but in the Baseline Approach it is possible to
directly exploit this functionality, due to the state-of-the-art support provided by cloud
vendors.

Another limitation reside in the fact that sometimes it is not possible to set some advanced
function orchestrator settings: for instance, in order to model a parallel execution state in
BPMN4FO is is necessary to create a sub-process task and add the parallel flag; however,
it is not possible to set it as a serial execution. In our case, in fact, it was not possible to
execute ETL jobs sequentially by using the model created on BPMN4FO.

Finally, one big limitation is to be found in the lack of debugging info in the graphical
interface of BPMN4FO: at the very beginning, when learning to use the tool, this is
very frustrating since it can make the learning curve very stiff, leading to trial and error.
Nonetheless, we have to mention that the version used is a prototype, and it is possible
that in the future this issue will be addressed.

5.8.2. Efficiency

The next metric we analyze is efficiency. By looking at Table 5.5, we can see how RADON
have been recorded to be more efficient than the baseline approach. This result is a conse-
quence of how the RADON method is structured, with respect to the baseline approach.
Indeed, with the baseline methodology it is necessary to first model and create the com-
ponents in each cloud service involved, from serverless functions to function orchestrators.

Then, it is necessary to create the infrastructural code: even by using proprietary tech-

88
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

nologies, that in some cases allow to create the infrastructure using common languages
such as Python, this two-steps process can be quite slow. However, very experienced
programmers can develop applications directly through them; nonetheless, this was not
our case. BPMN4FO, Eclipse Winery and xOpera tool-chain results being more efficient
since it provides a well-defined sequence of steps which leads to the deployment of the
infrastructure with very little effort, once the user learns to use each tool in a proficient
way.

The tool-chain provided by the RADON approach, moreover, improves efficiency since
with the Eclipse Winery blueprints it is possible to re-use deployment models and adapt
them to new requirements with very little effort, and everything is done through a graph-
ical interface. On the other hand, on the Baseline approach of course you can reuse every
single component created before, but it is more difficult to have a clearer view of the
infrastructure since blueprints and graphical tools are - most of the time - not available.

5.8.3. Perceived Ease of Use

Perceived ease of use is the first variable we find that drives points in favour of the baseline
approach: indeed, learning to use the RADON tool-chain and using is has been perceived
to be much more difficult than the Baseline approach.

First, learning to use each cloud service necessary for the solution is much easier due
to better documentation and also greater support from the community and the vendors.
Also, cloud vendors offer a dedicated support service that, when some suggestions or
reviews are necessary, is very helpful. On the other side, the whole RADON tool-chain is
open source, it is at prototype stage and does not have a huge user base. This implies that
all the information a user needs can only be found in the official documentation which,
however, is still unripe.

For this reason, learning to use every tool, especially BPMN4FO and Eclipse Winery,
can be time consuming and frustrating: in addition, there is no user-friendly debugger
in both cases, and this leads to unfortunate situations were the user must learn by trial
and error the root cause of issues. For instance, in BPMN4FO sometimes it is difficult to
understand why the tool does not generate the target declaration of function orchestrator,
since does not show where the model does not comply with the standard ways of modeling.
Also, Eclipse Winery, besides the fact that is prone to crashes and errors while running,
does not provide a automatic way of assessing whether or not a blueprint is ready for
deployment: if something is missing, in order to detect it, it is sometimes necessary to
export the CSAR file and verify the deployment on xOpera, then go back on Winery and

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 89

fix the issues.

5.8.4. Perceived Usefulness

Considering just the requirements that needs to be satisfied by the deployed application,
both approaches are perceived similarly by user. Indeed, both of them are are capable
of achieving the intended objectives. However, it is interesting to notice that if we take
into account the fact that one approach - RADON - offers the possibility to migrate to
another platform vendor with little or no effort.

However, this is not the only thing to consider. Indeed, RADON offers two levels of
standardization. One the one hand, it relies on the TOSCA standard and thus it is able
to create a deployment model compliant to a state-of-the-art standard which, in the end,
offers the aforementioned capability of developing application in a technology-agnostic
manner, but also it offers a standard to another level: the way of working.

Even if the team we worked with has well-defined ways of working and guidelines are
offered to schedule each step of the development process of a new feature in the cloud
platform, it is not always the case that these rules are followed. It happened multiple
times, also outside of our experiments, that team members adapted the way of working
according to the specific task they wanted to accomplish: this is an issue, since it violates
all the rules the tam imposed to itself to achieve better software quality and control.

RADON solves this issue by defining a structured way of working which is not possible to
violate since each step is depended from the previous one and each step relies on a different
tool. This creates a reliable way of working which assures a level of software quality that
is not achievable otherwise, and this is where we can find the strong perceived usefulness.

5.8.5. Intention to Use

The Intention to Use is the variable that contains the most uncertainty and doubt, if we
consider the RADON approach.

Concerning the Baseline approach, we have the maximum adoption score since it is not
only the standard way of working the team we worked with adopted, but also it is the
common approach adopted by many other teams in the company, and it is of course the
way of working suggested by the cloud service providers’ support. This is also the method
the team will most probably work with in the future.

On the other hand, the RADON approach is very appealing due to its obvious benefits

90
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

which spans over different levels of the DevOps culture. Nonetheless, due to the lack of
support and the early stage of development, it is difficult to assess whether the tool is to
be used in the future. For this reason, the score for the RADON approach is low.

However, this is not the only reason why the intention to use is low. There is also to
consider that practitioners are familiar with the most well-known platforms’ environment,
and it would be necessary to spend resources and time in making the team members learn
to use the tool, on top of the others: this is a grey area, since, although the benefits of
adopting the tool are known, it is not clear if they cover the costs spent to use to learn
the tool, due to lack of documentation in this topic.

5.8.6. Hypotheses Testing

Considering the low-level expertise of the participant and the discussion made in the
previous sections, we test the Hypotheses. In particular, we found that:

• H11: EFCT (RADON) = EFCT (Baseline);

• H21: EFFC (RADON) > EFFC (Baseline);

• H31: PEOU (RADON) < PEOU (Baseline);

• H41: PU (RADON) > PU (Baseline);

• H51: ITU (RADON) < ITU (Baseline);

The new Hypotheses Hn1 show in a clearer way what we obtained by our experiments.
In particular, for the Effectiveness variable we can say that, although reached in different
ways, all the objectives and requirements were satisfied in both cases. For what concerns
the Efficiency, which is measured as effectiveness over time, given the same level of Ef-
fectiveness reached in both methods, time was higher for the Baseline approach and the
two-step process necessary to deploy the IaC, while RADON provides a seamless tool-
chain which improves the delivery times. However, this does not mean that the Perceived
Ease of Use is lower for RADON but, as opposite, it is lower for the Baseline approach:
as we explained before, however, this is due to the fact that the tool-chain we used in the
RADON methodology is mostly at prototype stage and it has been found difficult to use.
However, the Perceived Usefulness is higher for RADON since the benefits have been rec-
ognized to be important. Nonetheless, the Intention to Use is still lower for RADON since
it is unclear how it will be improved in the future and to what extent will be supported
by the community.

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 91

5.8.7. Answering the Research Questions

We now answer to the research questions we declared at the beginning of this study:

• RQ1. Which is the most effective approach to design and deploy function orches-
trators? With the evidence we produced, we can assess that the most effective
approach is RADON. As we already mentioned, the RADON approach, if correctly
implemented and completely learned, can introduce a level of efficiency which is not
reachable otherwise. The tool-chain is a powerful element that rigorously defines
a way of working that cannot be broken, and it also leverages the standardization
such that teams become no longer dependent to a specific service they use, and
teams are also capable of presenting the projects they bring on to people with little
technical knowledge.

• RQ2. Which is the perceived easiest approach? Even if RADON is the most effec-
tive, for sure it is not the easiest. Again, the lack of documentation and support
from the community play a crucial role here, as opposite to the Baseline approach
that, even is less organic and fragmented, results is an easier use thanks to the
extensive documentation provided by cloud platform vendors and the large amount
of projects and community members available on the web.

• RQ3. Which approach is more useful? We can answer to this question on two
different levels. If we just consider the objectives the methods need to reach, both are
on the same level. They reach the objective using different paths and techniques, but
in the end the result is very similar and the difference cannot be noticed. However,
as soon as we introduce the possibility of migrating from a vendor to another, it
is clear how the usefulness of RADON approach out-ranges the Baseline approach.
Overall, we can say that an approach like RADON is extremely useful when the
possibility of migrating from one system to another is a real possibility, or if the
same part of infrastructure are often reused within the same team or among teams,
since it offers the opportunity to reuse blueprints. Another aspect to consider is
also the design stage, as the BPMN4FO tool offers a great support in this phase.

• RQ4. Which tool is intended to be used? Although RADON has been welcomed
with great enthusiasm by many team members and although the benefits of RADON
has been recognized, it does not seem the case that RADON will be adopted any
soon, at least in the current status. The adoption of a new tool represents a sort of
threat to the efficiency of teams, given that they might be an obstacle at the very
beginning that can significantly slow down the operations: learning a new tool is
always a critical aspect to be considered.

92
5| Proof-of-Concept: The RADON methodology and the Semiconductors

Industry

5.9. Conclusions

In this chapter we brought testimony of the numerous challenges we have depicted in the
SLR chapter, in an industrial environment, adopting the DevOps culture. Our goal was to
provide a proof of concept to verify what are the potentialities of using a novel tool-chain,
composed of BPMN4FO, Eclipse Winery and xOpera - to be used in conjunction with
well-known cloud services vendors - by comparing it the baseline approach used by the
team we worked with.

Before presenting the results, we first described why we have chosen a semiconductor
company, NXP, as theater for our experiments, shedding light on the current difficulties
and challenges companies in this sector are facing. In particular, we have seen how the
chip shortage crisis have been made even worse by the COVID-19 pandemic, and we have
pointed out how it is necessary to found novel solutions and methodologies to improve
chip production without the need of building new fabs.

Then, we have described why data are so valuable, especially in the semiconductor indus-
try, bringing some examples of valuable data in this industry and describing what are the
origins of the data value definition.

We moved, therefore, to the description of the environment we worked with, that is a
small team responsible for building and maintaining a data lake collecting business data
from multiple data sources. The team provides data to multiple consumers by using cloud
platforms, in an DevOps environment which makes use of the SCRUM methodology and
its scaled-up evolution, SAFe. We described in detail what are the goals of the team and
the challenges it is facing.

Just before moving to the description of the experiments we conducted, we made a brief
digression on what are the most recent developments in the ETL pipelines: ETL pipelines
are the tool used by the team to get the data from each source and load them to the data
lake. We have seen how ETL pipelines evolved to cope with streaming data, and how ML
can be used to improve their monitoring.

Finally, we presented our proof of concept, by describing the issues we wanted to address
and how we applied the novel tool-chain we wanted to test. We compared this approach
with the baselines by building a ETL job scheduler, at different levels of complexity, using
both methods and comparing the results according to different metrics used.

We found out that practitioners can gain great benefits from the adoption of the RADON
tool-chain and methodology, in conjunction with the cloud services providers. Indeed,

5| Proof-of-Concept: The RADON methodology and the Semiconductors
Industry 93

although we verified the effectiveness of a subset of the whole tool-chain, RADON cov-
ers most of the areas in the DevOps life-cycle that present criticality. We have focus
on the design and modeling of function orchestrators in a standardized way and their
deployment: using BMPN modeling standard, is it possible to define the logic of function
orchestrators in a technology-agnostic environment, and then produce the target model in
the corresponding format; at the moment, the supported target technologies are offered
by AWS, Microsoft Azure, Apache Openwhisk Composer and IBM Composer. In this
way, a team can reach a higher level of independence from the actual target platform, but
also enable to team to work and produce application components in a standardized way,
across the whole organization. The other benefit we found by adopting this novel tech-
nology was that Eclipse Winery allow to create deployment model templates. This means
that it is possible to re-use the same topology for many different purposes, and adapt it
to the needs of the specific application. On top of that, it is possible to create new node
types and relationships through the graphical interface, allowing enhancing even more
the capabilities of the TOSCA standard, which Winery is based on. Another important
benefit of the adoption of tool-chain is the effortless deployment of the application model,
which is done automatically by xOpera.

Nevertheless, although we found a lot of benefits, there are also some drawbacks. They
are mostly related to the fact that the tool-chain is not mature enough to be adopted
in an industrial environment. Documentation is not clear, and most of the time prac-
titioners have to find out themselves why something went wrong and fix compatibility
issues between the versions of the tools. Also, the tools do not provide a comprehensive
debugging support, and this means that sometimes it is necessary to adopt a trial and
error strategy to cope with problems in the model. Even though RADON is provided also
in a SaaS package, to be easily deployed on, for instance, a container hosted on one of
the supported cloud providers, the company we worked in was concerned about possible
security issues, and the tools’ documentation itself explicitly warns the users about this.
If the tools were more mature, the team we worked with was actually prone to consider
their adoption.

95

6| Conclusions and future

developments

DevOps is a culture that is gaining more and more popularity among practitioners and
many companies are adopting it due to its proven benefits. This discipline covers a wide
range of topics regarding software development life-cycle. Among these, Infrastructure as
Code is a rather recent process created to manage and provision data center infrastructure
through code instead of manual process. There are many tools and techniques developed
to support this process, but there are some areas still under research.

Among the many areas DevOps covers, we found that standardizing Infrastructure as
Code development has paramount importance in this fields, since there is evidence to
state that the adoption of standards-based strategies could lead to great benefits both
in terms of resource reduction and cuttings costs, since standards-based procedures can
reduce the amount of time to deliver new deployments and reduce the complexity of large
scale applications.

Many technologies are currently available on the market to support IaC development, and
this is a problem: the wide variety of tools has an impact on practitioners, who have to
deal with many different tools even within the same team. This is another reason why
standardization is necessary.

The standard we focused on is the OASIS TOSCA, the most popular one and used by a
wide spectrum of tools and frameworks. Among these, we found RADON as one of the
most advanced and mature tool-chains capable not only of supporting standards-based
IaC development, but it provides a complete methodology to design, model and deploy
serverless functions.

By looking for related works, we found that, even though these are very popular topics
among the research community, they need a deeper investigation, also because there are
relatively recent with respect to other similar topics: for instance, the TOSCA standard,
which was presented in 2013, gained popularity among IaC tool only around 2018.

96 6| Conclusions and future developments

With these considerations, we conducted two studies to go into details of these issues
both from a theoretical perspective and a practical one. Our work provides two main
contributions: a systematic literature review and a proof-of-concept.

6.1. Systematic Literature Review

In our SLR we provided a set of 71 publications, which were analyzed and classified to
answer four research questions. These questions, and the answers, are summarized in
Table 6.1.

Research Question Result

RQ1 What are the current challenges De-
vOps discipline is facing?

Sheer amount of tools, techniques
and languages introduce a high level
of fragmentation; monitoring, IaC
automation and standardization are
critical areas.

RQ2 What is the role of Infrastructure as
Code in DevOps?

IaC allows developers to reach a
higher level of automation in CI/CD
pipelines and reduces the responsi-
bilities of team members in infras-
tructure maintenance.

RQ3 How TOSCA standard can improve
the development and adoption of In-
frastructure as Code?

The adoption of TOSCA-based tools
reduces the risk of platform depen-
dency, automates deployment and
reduces development times.

RQ4 What are the most recent tools de-
veloped to support standards-based
IaC code development?

RADON, PIACERE, SODALITE,
GLITCH, xOpera, Eclipse Winery,
BPMN4FO are some examples.

Table 6.1: SLR: research questions and answers summary.

With the SLR we provide the following contributions: (i) with RQ1 we produce an inves-
tigation on what are the current challenges, difficulties and pitfall of DevOps disciplines
from a high-level perspective, with particular focus for IaC and standardization; (ii) we
then shed light on why IaC is so important in the most recent adoptions of DevOps,
with RQ2, and how it pushes automation on the next level; also, we highlighted the chal-
lenges IaC is currently facing; (iii) subsequently we analyzed, by answering RQ3, why the

6| Conclusions and future developments 97

TOSCA standard is so important in this field and what are the benefits of adopting it
during IaC development; (iv) With the last research question (RQ4) we conclude by pro-
viding the state-of-the-art for what concerns tools which adopt and support the TOSCA
standard.

On top of these contributions, which strictly derive from the research questions, we also
have produced an analysis of how publications are distributed over the years, which are the
most prolific authors on particular subjects and finally we produced a taxonomy regarding
DevOps concepts. This taxonomy, that has been derived from the concepts we found in
the publications we analyzed, might not be complete, but as far as our knowledge goes,
we could not find any other similar work. Indeed, we found taxonomies regarding specific
DevOps subjects, such as TOSCA and code smells or bad practices, but we could not
find a comprehensive and updated taxonomy of the main concepts of the DevOps culture.
The only work we found, which we based on, is the set of conceptual maps provided by
Leite et al. [64]: this is the most complete work we found, however it does not provide an
actual taxonomy but rather a conceptual map. For these reasons we think that, even if
it might not be complete, our taxonomy is a great contribution for researcher who start
digging in this field.

6.2. Proof-of-Concept

The second main contribution of our study is the proof-of-concept we worked on in col-
laboration with NXP Semiconductors. Thanks to our work, we made a step forward in
understanding the capabilities, positive and negative aspects of adopting standards-based
tools for IaC development and, in particular, the RADON methodology: RADON is one
of the most recent tool-chains developed in the past recent years, and we found it during
our SLR research. The choice of this particular tool was due to the fact that this frame-
work has not yet reached a level of maturity so high to be adopted by a large company,
and for this reason we wanted to contribute by providing evident of its effectiveness. We
tested only a small portion of the whole RADON IDE, the one devoted to the design,
modeling and deployment of serverless functions.

In addition to that, we also witnessed all the challenges that teams face in a DevOps
environment, reflecting the challenges theoretically described in theory by most of the
papers found in the SLR, and the actions taken by team members to overcome them.

The goal of our proof-of-concept was to answer to four research questions, which are
summarized in Table 6.2.

98 6| Conclusions and future developments

Research Question Result

RQ1 Which is the most effective approach
to design and deploy function or-
chestrators?

RADON tool-chain is more effective
than the Baseline approach.

RQ2 Which is the perceived easiest ap-
proach?

Due to the low maturity of the tool-
chain, RADON is more difficult to
use than the Baseline method.

RQ3 Which approach is more useful? Depending on the environment, the
RADON approach might be very
useful.

RQ4 Which tool is intended to be used? Due to lack of support and scarce
documentation, we do not see inten-
tion to adopt the RADON approach
in the near future.

Table 6.2: Proof-of-Concept: research questions and answers summary.

The contributions of our proof-of-concept can be summarized as follows, according to the
research questions: (i) we applied three tools of the RADON framework - BMPN4FO,
Eclipse Winery and xOpera - in an industrial environment - in conjunction with cloud
services - producing another evidence for the applicability of the tool-chain; (ii) we com-
pared the RADON approach to the baseline approach, i.e., the traditional way of working
that the team we worked with adopted before; (iii) based on the comparison we produced
a discussion regarding the pros and cons of adopting that approach, highlighting what
are its main limitations and pitfalls; (iv) we also shared another contribution by apply-
ing the RADON approach to serverless function orchestration deployments, which is a
recent addition to the original RADON methodology; (v) we discussed what solution we
envisioned to solve some common issues related to ETL pipelines.

Our findings show that the RADON methodology has a lot of capabilities and it is able
to solve most of the issues related to IaC deployment, if adopted correctly. Standard-
ization has been proven again to be, at the moment, the real solution to many problems
practitioners are currently facing when dealing with serverless applications deployment
in a DevOps environment. However, there is no free lunch. The adoption of RADON
in a small team would require, at the current development stage, a lot of initial effort:
documentation is not clear, and the tools we tested lack of a complete debugging interface,
which means that sometimes, to understand if deployed topologies are TOSCA compliant

6| Conclusions and future developments 99

or not, trial and error is needed. Even if this initial effort is surmountable, the tools lack
support from community and so maintaining them could be quite expensive.

6.3. Future Developments

With the previous considerations we can find many different paths to which direct future
research, not only by expanding and improving our work, but also by investigating in
some of the fields we found that need further exploration in our SLR.

For instance, considering our experience at NXP and also the few papers we found regard-
ing monitoring in a serverless cloud environment, we find that a state-of-the-art review
in this sense is needed: SLRs and Surveys regarding monitoring could be helpful to asses
what are the most recent developments in this area, and with recognize that although
theoretical studies are necessary, insights from industry are also important since they
provide a practical view of the issues.

There is also a lot of interest in code smells and bad practices regarding infrastructure
as code development: however, according to our findings, most of these studies related
to this topic are produced by the same circle of authors around A. Rahaman. On one
side, this is good news since we have very high experienced researched dealing with a
non-trivial topic but, however, this implies that the view over these issues in confined to
the one of this rather small set of authors. It would be interesting to verify their results
from another perspective, and maybe expand their findings by applying them to other
IaC tools different from the most traditional ones.

On this topic, we also consider that, even if a wide variety of tools have been developed
to detect and also predict these kind of smells and defects in IaC scripts, the evidence of
their efficacy is mostly related to smalls sets and open source ones: to have further details
and more evident, it would be interesting to see how these tools perform in a real worlds
scenario.

However, considering our specific work, we would suggest continuing on reviewing litera-
ture by deepening the finding on the topics which were not the main target of our research:
by doing this, it would be possible to verify our results and also to expand the DevOps
taxonomy we produced, that we know it might not be completed to the limitations we
encountered during our research.

For what concerns our proof-of-concept and RADON, instead, we have some aspects that
we would like to investigate even more in detail. In particular, our study was limited
by time and number of participants. It would be interesting if the same results could

100 6| Conclusions and future developments

be obtained by involving a broader range of participants; another aspect we were not
able to verify was also the following: in our experiments we tested only three tools -
xOpera, Winery and BPMN4FO - which do not represent the full potential of RADON.
Indeed, another possible expansion of our work would be to verify the efficacy of the
whole RADON IDE and its methodology, by applying it to the development of a complex
serverless application.

As an example, RADON provides, among the other tools, DEFUSE, which is capable of
detecting defects in IaC scripts. Very the efficacy of this tools in a real world scenario
would contribute to prove its usefulness and applicability: this connects to the other
development we suggested above regarding testing other security related tools.

The final suggestion would be to collaborate with the RADON project itself and expand
the support of TOSCA node and relationships to support the deployment of even more
complex applications, since at the moment it officially supports serverless function de-
ployment or function orchestrators. Also, the approach we used support the deployment
of function orchestrators provided by a limited number of vendors: we suggest expanding
the support to other kind of orchestrators, such as Apache Airflow.

101

Bibliography

[1] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis, M. Balazinska, P. A. Bernstein,
P. Boncz, S. Chaudhuri, A. Cheung, A. Doan, L. Dong, M. J. Franklin, J. Freire,
A. Halevy, J. M. Hellerstein, S. Idreos, D. Kossmann, T. Kraska, S. Krishnamurthy,
V. Markl, S. Melnik, T. Milo, C. Mohan, T. Neumann, B. C. Ooi, F. Ozcan, J. Patel,
A. Pavlo, R. Popa, R. Ramakrishnan, C. Re, M. Stonebraker, and D. Suciu. The
seattle report on database research. Commun. ACM, 65(8):72–79, jul 2022. ISSN
0001-0782. doi: 10.1145/3524284. URL https://doi.org/10.1145/3524284.

[2] D. J. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein, M. J. Carey,
S. Chaudhuri, J. Dean, A. Doan, M. J. Franklin, J. Gehrke, L. M. Haas, A. Y.
Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish, D. Kossmann, S. Madden,
S. Mehrotra, T. Milo, J. F. Naughton, R. Ramakrishnan, V. Markl, C. Olston, B. C.
Ooi, C. Ré, D. Suciu, M. Stonebraker, T. Walter, and J. Widom. The beckman
report on database research. Communications of the ACM, 59:92 – 99, 2016.

[3] J. Alonso, C. Joubert, L. Orue-Echevarria, M. Pradella, and D. Vladusic. Piacere:
Programming trustworthy infrastructure as code in a secure framework. 2021.

[4] F. Aqlan and J. Nwokeji. Big data etl implementation approaches: A systematic
literature review. 07 2018. doi: 10.18293/SEKE2018-152.

[5] I. Aviv, R. Gafni, S. Sherman, B. Aviv, A. Sterkin, and E. Bega. Infrastructure
from code: The next generation of cloud lifecycle automation. IEEE Software, 40
(1):42–49, 2023. doi: 10.1109/MS.2022.3209958.

[6] K. Bahadori and T. Vardanega. Devops meets dynamic orchestration. In J.-M.
Bruel, M. Mazzara, and B. Meyer, editors, Software Engineering Aspects of Con-
tinuous Development and New Paradigms of Software Production and Deployment,
pages 142–154, Cham, 2019. Springer International Publishing. ISBN 978-3-030-
06019-0.

[7] L. Baresi, G. Quattrocchi, D. A. Tamburri, and L. Terracciano. A declarative
modelling framework for the deployment and management of blockchain applica-

https://doi.org/10.1145/3524284

102 | Bibliography

tions. In Proceedings of the 25th International Conference on Model Driven En-
gineering Languages and Systems, MODELS ’22, page 311–321, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450394666. doi:
10.1145/3550355.3552417. URL https://doi.org/10.1145/3550355.3552417.

[8] H. Bauer, O. Burkacky, P. Kenevan, A. Mahindroo, and M. Patel. How the semicon-
ductor industry can emerge stronger after the covid-19 crisis. Electronic document
available at https://www.mckinsey.com/industries/industrials-and-electronics/our-
insights/how-the-semiconductor-industry-can-emerge-stronger-after-the-covid-19-
crisis, 2020.

[9] T. Becker, E. Curry, A. Jentzsch, and W. Palmetshofer. New Horizons for a Data-
Driven Economy: Roadmaps and Action Plans for Technology, Businesses, Policy,
and Society, pages 277–291. Springer International Publishing, Cham, 2016. ISBN
978-3-319-21569-3. doi: 10.1007/978-3-319-21569-3_16. URL https://doi.org/

10.1007/978-3-319-21569-3_16.

[10] K. Beckmann. Semicondutor industry challenges in 2022: supply
chains, data, and sustainability. Electronic document available at
https://www.merckgroup.com/en/the-future-transformation/semiconductor-
industry-challenges-2022.html, 2022.

[11] J. Bellendorf and Z. Á. Mann. Specification of cloud topologies and orchestration
using tosca: a survey. Computing, 102:1793 – 1815, 2019.

[12] B. Bilalli, A. Abelló, T. Aluja-Banet, and R. Wrembel. Intelligent assistance
for data pre-processing. Computer Standards & Interfaces, 57:101–109, 2018.
ISSN 0920-5489. doi: https://doi.org/10.1016/j.csi.2017.05.004. URL https:

//www.sciencedirect.com/science/article/pii/S0920548916302306.

[13] N. Borovits, I. Kumara, P. Krishnan, S. D. Palma, D. Di Nucci, F. Palomba, D. A.
Tamburri, and W.-J. van den Heuvel. Deepiac: Deep learning-based linguistic
anti-pattern detection in iac. In Proceedings of the 4th ACM SIGSOFT Interna-
tional Workshop on Machine-Learning Techniques for Software-Quality Evaluation,
MaLTeSQuE 2020, page 7–12, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450381246. doi: 10.1145/3416505.3423564. URL
https://doi.org/10.1145/3416505.3423564.

[14] H. Brabra, A. Mtibaa, W. Gaaloul, B. Benatallah, and F. Gargouri. Model-driven
orchestration for cloud resources. In 2019 IEEE 12th International Conference on

https://doi.org/10.1145/3550355.3552417
https://doi.org/10.1007/978-3-319-21569-3_16
https://doi.org/10.1007/978-3-319-21569-3_16
https://www.sciencedirect.com/science/article/pii/S0920548916302306
https://www.sciencedirect.com/science/article/pii/S0920548916302306
https://doi.org/10.1145/3416505.3423564

| Bibliography 103

Cloud Computing (CLOUD), pages 422–429, 2019. doi: 10.1109/CLOUD.2019.
00074.

[15] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, and J. Wettinger.
Combining declarative and imperative cloud application provisioning based on tosca.
In 2014 IEEE International Conference on Cloud Engineering, pages 87–96, 2014.
doi: 10.1109/IC2E.2014.56.

[16] O. Burkacky, M. de Jong, A. Mittal, and N. Verma. Value creation: How can
the semiconductor industry keep outperforming? Electronic document avail-
able at https://www.mckinsey.com/industries/semiconductors/our-insights/value-
creation-how-can-the-semiconductor-industry-keep-outperforming, 2021.

[17] O. Burkacky, M. de Jong, and J. Dragon. Strategies to lead
in the semiconductor world. Electronic document available at
https://www.mckinsey.com/industries/semiconductors/our-insights/strategies-
to-lead-in-the-semiconductor-world, 2022.

[18] O. Burkacky, U. Kingsbury, A. Pedroni, G. P. nad Matt Schrimper,
and B. Weddle. How semiconductor makers can turn a talent chal-
lenge into a competitive advantage. Electronic document available at
https://www.mckinsey.com/industries/semiconductors/our-insights/how-
semiconductor-makers-can-turn-a-talent-challenge-into-a-competitive-advantage,
2022.

[19] A. M. Buttar, A. Khalid, M. Alenezi, M. A. Akbar, S. Rafi, A. H. Gumaei, and
M. T. Riaz. Optimization of devops transformation for cloud-based applications.
Electronics, 12(2), 2023. ISSN 2079-9292. doi: 10.3390/electronics12020357. URL
https://www.mdpi.com/2079-9292/12/2/357.

[20] D. Calcaterra and O. Tomarchio. Automated generation of application man-
agement workflows using tosca policies. pages 97–108, 01 2022. doi: 10.5220/
0011096200003200.

[21] D. Calcaterra and O. Tomarchio. Policy-based holistic application management
with bpmn and tosca. SN Computer Science, 4, 02 2023. doi: 10.1007/
s42979-022-01616-w.

[22] M. Chiari, M. De Pascalis, and M. Pradella. Static analysis of infrastructure as
code: a survey. In 2022 IEEE 19th International Conference on Software Architec-
ture Companion (ICSA-C), pages 218–225, 2022. doi: 10.1109/ICSA-C54293.2022.
00049.

https://www.mdpi.com/2079-9292/12/2/357

104 | Bibliography

[23] C. Cichy and S. Rass. An overview of data quality frameworks. IEEE Access, 7:
24634–24648, 2019. doi: 10.1109/ACCESS.2019.2899751.

[24] T. Dai, A. Karve, G. Koper, and S. Zeng. Automatically detecting risky scripts in
infrastructure code. In Proceedings of the 11th ACM Symposium on Cloud Com-
puting, SoCC ’20, page 358–371, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450381376. doi: 10.1145/3419111.3421303. URL
https://doi.org/10.1145/3419111.3421303.

[25] S. Dalla Palma, C. van Asseldonk, G. Catolino, D. Di Nucci, F. Palomba, and D. A.
Tamburri. “through the looking-glass . . . ” an empirical study on blob infrastructure
blueprints in the topology and orchestration specification for cloud applications.
Journal of Software: Evolution and Process, n/a(n/a):e2533. doi: https://doi.org/
10.1002/smr.2533. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

smr.2533.

[26] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri. Toward a cat-
alog of software quality metrics for infrastructure code. Journal of Systems and
Software, 170:110726, 2020. ISSN 0164-1212. doi: https://doi.org/10.1016/j.
jss.2020.110726. URL https://www.sciencedirect.com/science/article/pii/

S0164121220301618.

[27] S. Dalla Palma, M. Garriga, D. Di Nucci, D. A. Tamburri, and W.-J. Van
Den Heuvel. Devops and quality management in serverless computing: The radon
approach. In C. Zirpins, I. Paraskakis, V. Andrikopoulos, N. Kratzke, C. Pahl,
N. El Ioini, A. S. Andreou, G. Feuerlicht, W. Lamersdorf, G. Ortiz, W.-J. Van den
Heuvel, J. Soldani, M. Villari, G. Casale, and P. Plebani, editors, Advances in
Service-Oriented and Cloud Computing, pages 155–160, Cham, 2021. Springer In-
ternational Publishing. ISBN 978-3-030-71906-7.

[28] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri. Within-project
defect prediction of infrastructure-as-code using product and process metrics. IEEE
Transactions on Software Engineering, 48(6):2086–2104, 2022. doi: 10.1109/TSE.
2021.3051492.

[29] S. Dalla Palma, G. Catolino, D. Di Nucci, D. A. Tamburri, and W.-J. van den
Heuvel. Go serverless with radon! a practical devops experience report. IEEE
Software, 40(2):80–89, 2023. doi: 10.1109/MS.2022.3170153.

[30] A. Dalvi. Cloud infrastructure self service delivery system using infrastructure
as code. In 2022 International Conference on Computing, Communication, and

https://doi.org/10.1145/3419111.3421303
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2533
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2533
https://www.sciencedirect.com/science/article/pii/S0164121220301618
https://www.sciencedirect.com/science/article/pii/S0164121220301618

| Bibliography 105

Intelligent Systems (ICCCIS), pages 1–6, 2022. doi: 10.1109/ICCCIS56430.2022.
10037603.

[31] F. D. Davis. A technology acceptance model for empirically testing new end-user
information systems: Theory and results. PhD thesis, Massachusetts Institute of
Technology, 1985.

[32] P. Debois. Agile infrastructure operations. 2008. doi: http://www.jedi.be/
presentations/agile-infrastructure-agile-2008.pdf.

[33] C. K. Dehury, P. Jakovits, S. N. Srirama, G. Giotis, and G. Garg. Toscadata:
Modeling data pipeline applications in tosca. Journal of Systems and Software, 186:
111164, 2022. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2021.111164. URL
https://www.sciencedirect.com/science/article/pii/S0164121221002508.

[34] J. DesLauriers, J. Kovacs, and T. Kiss. Abstractions of abstractions: Metadata to
infrastructure-as-code. In 2022 IEEE 19th International Conference on Software Ar-
chitecture Companion (ICSA-C), pages 230–232, 2022. doi: 10.1109/ICSA-C54293.
2022.00051.

[35] A. Dhaouadi, K. Bousselmi, M. M. Gammoudi, S. Monnet, and S. Hammoudi.
Data warehousing process modeling from classical approaches to new trends: Main
features and comparisons. Data, 7(8), 2022. ISSN 2306-5729. doi: 10.3390/
data7080113. URL https://www.mdpi.com/2306-5729/7/8/113.

[36] P. Di Nitto. Piacere: Programming trustworthy infrastructure as code in a secure
framework. In Short Papers Proceedings of the First SWForum workshop on Trust-
worthy Software and Open Source 2021 (TSOS 2021), Virtual Conference, March
23-25, 2021, volume 2878, pages 8–15, 2021. doi: https://ceur-ws.org/Vol-2878/
paper4.pdf.

[37] J. Dsouza and S. Velan. Preventive maintenance for fault detection in transfer
nodes using machine learning. In 2019 International Conference on Computational
Intelligence and Knowledge Economy (ICCIKE), pages 401–404, 2019. doi: 10.
1109/ICCIKE47802.2019.9004230.

[38] T. F. Düllmann, A. van Hoorn, V. Yussupov, P. Jakovits, and M. Adhikari. Ctt:
Load test automation for tosca-based cloud applications. In Companion of the 2022
ACM/SPEC International Conference on Performance Engineering, ICPE ’22, page
89–96, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450391597. doi: 10.1145/3491204.3527484. URL https://doi.org/10.1145/

3491204.3527484.

https://www.sciencedirect.com/science/article/pii/S0164121221002508
https://www.mdpi.com/2306-5729/7/8/113
https://doi.org/10.1145/3491204.3527484
https://doi.org/10.1145/3491204.3527484

106 | Bibliography

[39] A. Dyck, R. Penners, and H. Lichter. Towards definitions for release engineering
and devops. 2015 IEEE/ACM 3rd International Workshop on Release Engineering,
pages 3–3, 2015.

[40] Z. El Akkaoui., A. Vaisman., and E. Zimányi. A quality-based etl design evalua-
tion framework. In Proceedings of the 21st International Conference on Enterprise
Information Systems - Volume 1: ICEIS,, pages 249–257. INSTICC, SciTePress,
2019. ISBN 978-989-758-372-8. doi: 10.5220/0007786502490257.

[41] O. Elazhary, C. Werner, Z. Li, D. Lowlind, N. Ernst, and M.-A. Storey. Uncovering
the benefits and challenges of continuous integration practices. IEEE Transactions
on Software Engineering, PP:1–1, 03 2021. doi: 10.1109/TSE.2021.3064953.

[42] N. Eskandani and G. Salvaneschi. The uphill journey of faas in the open-
source community. Journal of Systems and Software, 198:111589, 2023. ISSN
0164-1212. doi: https://doi.org/10.1016/j.jss.2022.111589. URL https://www.

sciencedirect.com/science/article/pii/S0164121222002655.

[43] S. Glen. Devs don’t trust ai in software testing. Electronic document avail-
able at https://www.techtarget.com/searchsoftwarequality/news/252523596/Devs-
dont-trust-AI-in-software-testing, 2022.

[44] M. Gokarna and R. Singh. Devops: A historical review and future works. In 2021
International Conference on Computing, Communication, and Intelligent Systems
(ICCCIS), pages 366–371, 2021. doi: 10.1109/ICCCIS51004.2021.9397235.

[45] S. Gorhe. Etl in near-real-time environment: A review of challenges and possible
solutions. 04 2020.

[46] J. Grogan, C. Mulready, J. McDermott, M. Urbanavicius, M. Yilmaz, Y. Abgaz,
A. Mccarren, S. Macmahon, V. Garousi, P. Elger, and P. Clarke. A Multivocal
Literature Review of Function-as-a-Service (FaaS) Infrastructures and Implications
for Software Developers, pages 58–75. 08 2020. ISBN 978-3-030-56440-7. doi:
10.1007/978-3-030-56441-4_5.

[47] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba. Adoption, support,
and challenges of infrastructure-as-code: Insights from industry. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages
580–589, 2019. doi: 10.1109/ICSME.2019.00092.

[48] M. M. Hasan, F. A. Bhuiyan, and A. Rahman. Testing practices for infras-
tructure as code. In Proceedings of the 1st ACM SIGSOFT International Work-

https://www.sciencedirect.com/science/article/pii/S0164121222002655
https://www.sciencedirect.com/science/article/pii/S0164121222002655

| Bibliography 107

shop on Languages and Tools for Next-Generation Testing, LANGETI 2020, page
7–12, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450381239. doi: 10.1145/3416504.3424334. URL https://doi.org/10.1145/

3416504.3424334.

[49] C. Hashemi-Pour. How ai and automation play a role in itops. Electronic doc-
ument available at https://www.techtarget.com/searchenterpriseai/feature/How-AI-
and-automation-play-a-role-in-ITOps, 2022.

[50] H. Hassan, S. Barakat, and Q. Sarhan. Survey on serverless computing. Journal of
Cloud Computing, 10, 07 2021. doi: 10.1186/s13677-021-00253-7.

[51] F. Haupt, F. Leymann, A. Nowak, and S. Wagner. Lego4tosca: Composable building
blocks for cloud applications. In 2014 IEEE 7th International Conference on Cloud
Computing, pages 160–167, 2014. doi: 10.1109/CLOUD.2014.31.

[52] F. Helwani and J. Jahić. Acia: A methodology for identification of architectural
design patterns that support continuous integration based on continuous assessment.
In 2022 IEEE 19th International Conference on Software Architecture Companion
(ICSA-C), pages 198–205, 2022. doi: 10.1109/ICSA-C54293.2022.00046.

[53] M. Isakov, M. Currier, E. del Rosario, S. Madireddy, P. Balaprakash, P. Carns,
R. B. Ross, G. K. Lockwood, and M. A. Kinsy. A taxonomy of error sources in hpc
i/o machine learning models, 2022.

[54] L. Jiang and A. Eberlein. An analysis of the history of classical software development
and agile development. In 2009 IEEE International Conference on Systems, Man
and Cybernetics, pages 3733–3738, 2009. doi: 10.1109/ICSMC.2009.5346888.

[55] M. Jiménez, N. M. Villegas, G. Tamura, and H. A. Müller. Deployment specification
challenges in the context of large scale systems. In Proceedings of the 27th Annual
International Conference on Computer Science and Software Engineering, CASCON
’17, page 220–226, USA, 2017. IBM Corp.

[56] V. Kartheeyayini, S. Madhumitha, G. Lalitha, C. Jackulin, and K. Subramanian.
AWS cloud computing platforms deployment of landing zone - Infrastructure as
a code. AIP Conference Proceedings, 2393(1), 05 2022. ISSN 0094-243X. doi:
10.1063/5.0079757. URL https://doi.org/10.1063/5.0079757. 020175.

[57] R. S. Keskin and P. Pileggi. Making the cloud monitor real-time adaptive. In 2022
IEEE Cloud Summit, pages 69–74, 2022. doi: 10.1109/CloudSummit54781.2022.
00017.

https://doi.org/10.1145/3416504.3424334
https://doi.org/10.1145/3416504.3424334
https://doi.org/10.1063/5.0079757

108 | Bibliography

[58] B. Kitchenham and P. Brereton. A systematic review of systematic review pro-
cess research in software engineering. Information and Software Technology, 55:
2049–2075, 12 2013. doi: 10.1016/j.infsof.2013.07.010.

[59] B. Kitchenham and S. Charters. Guidelines for performing systematic literature
reviews in software engineering. 2, 01 2007.

[60] S. Kokuryo, M. Kondo, and O. Mizuno. An empirical study of utilization of
imperative modules in ansible. In 2020 IEEE 20th International Conference
on Software Quality, Reliability and Security (QRS), pages 442–449, 2020. doi:
10.1109/QRS51102.2020.00063.

[61] G. S. S. Kumar and M. R. Kumar. Dimensions of automated etl management: A
contemporary literature review. In 2022 International Conference on Automation,
Computing and Renewable Systems (ICACRS), pages 1292–1297, 2022. doi: 10.
1109/ICACRS55517.2022.10029274.

[62] I. Kumara, M. Garriga, A. U. Romeu, D. Di Nucci, F. Palomba, D. A. Tamburri, and
W.-J. van den Heuvel. The do’s and don’ts of infrastructure code: A systematic
gray literature review. Information and Software Technology, 137:106593, 2021.
ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2021.106593. URL https:

//www.sciencedirect.com/science/article/pii/S0950584921000720.

[63] I. Kumara, P. Mundt, K. Tokmakov, D. Radolović, A. Maslennikov, R. González,
J. Fernández Fabeiro, G. Quattrocchi, K. Meth, E. Nitto, D. Tamburri, W.-J.
Heuvel, and G. Meditskos. Sodalite@rt: Orchestrating applications on cloud-
edge infrastructures. Journal of Grid Computing, 19:29, 09 2021. doi: 10.1007/
s10723-021-09572-0.

[64] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles. A survey of devops
concepts and challenges. ACM Comput. Surv., 52(6), nov 2019. ISSN 0360-0300.
doi: 10.1145/3359981. URL https://doi.org/10.1145/3359981.

[65] P. Leitner, E. Wittern, J. Spillner, and W. Hummer. A mixed-method empirical
study of function-as-a-service software development in industrial practice. Journal
of Systems and Software, 149:340–359, 2019. ISSN 0164-1212. doi: https://doi.
org/10.1016/j.jss.2018.12.013. URL https://www.sciencedirect.com/science/

article/pii/S0164121218302735.

[66] A. Levi. 4 ways ai-driven etl monitoring can help avoid glitches. Electronic document
available at https://www.techopedia.com/4-ways-ai-driven-etl-monitoring-can-help-
avoid-glitches/2/33969, 2019.

https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://doi.org/10.1145/3359981
https://www.sciencedirect.com/science/article/pii/S0164121218302735
https://www.sciencedirect.com/science/article/pii/S0164121218302735

| Bibliography 109

[67] G. Machado, I. Cunha, A. Pereira, and L. Oliveira. Dod-etl: distributed on-demand
etl for near real-time business intelligence. Journal of Internet Services and Appli-
cations, 10, 12 2019. doi: 10.1186/s13174-019-0121-z.

[68] M. D. Mascarenhas and R. S. Cruz. Int2it: An intent-based tosca it infrastructure
management platform. In 2022 17th Iberian Conference on Information Systems and
Technologies (CISTI), pages 1–7, 2022. doi: 10.23919/CISTI54924.2022.toscaintent.

[69] A. Mathew, V. Andrikopoulos, and F. J. Blaauw. Exploring the cost and per-
formance benefits of aws step functions using a data processing pipeline. In Pro-
ceedings of the 14th IEEE/ACM International Conference on Utility and Cloud
Computing, UCC ’21, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450385640. doi: 10.1145/3468737.3494084. URL https:

//doi.org/10.1145/3468737.3494084.

[70] S. McCarthy, A. McCarren, and M. Roantree. A method for automated transfor-
mation and validation of online datasets. In 2019 IEEE 23rd International Enter-
prise Distributed Object Computing Conference (EDOC), pages 183–189, 2019. doi:
10.1109/EDOC.2019.00030.

[71] K. C. Mondal, N. Biswas, and S. Saha. Role of machine learning in etl automation.
In Proceedings of the 21st International Conference on Distributed Computing and
Networking, ICDCN ’20, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450377515. doi: 10.1145/3369740.3372778. URL https:

//doi.org/10.1145/3369740.3372778.

[72] D. Moody. The method evaluation model: A theoretical model for validating infor-
mation systems design methods. pages 1327–1336, 01 2003.

[73] D. L. Moody and P. Walsh. Measuring the value of information - an asset valuation
approach. In European Conference on Information Systems, 1999.

[74] K. Morris. Infrastructure as Code: Managing Servers in the Cloud. O’Reilly Media,
Inc., 1st edition, 2016. ISBN 1491924357.

[75] G. Novakova Nedeltcheva, A. De La Fuente Ruiz, L. Orue-Echevarria Arrieta,
N. Bat, and L. Blasi. Towards supporting the generation of infrastructure as code
through modelling approaches - systematic literature review. In 2022 IEEE 19th In-
ternational Conference on Software Architecture Companion (ICSA-C), pages 210–
217, 2022. doi: 10.1109/ICSA-C54293.2022.00048.

[76] E. Ntentos, U. Zdun, G. Falazi, U. Breitenbücher, and F. Leymann. Assessing archi-

https://doi.org/10.1145/3468737.3494084
https://doi.org/10.1145/3468737.3494084
https://doi.org/10.1145/3369740.3372778
https://doi.org/10.1145/3369740.3372778

110 | Bibliography

tecture conformance to security-related practices in infrastructure as code based de-
ployments. In 2022 IEEE International Conference on Services Computing (SCC),
pages 123–133, 2022. doi: 10.1109/SCC55611.2022.00029.

[77] E. Osaba, J. Diaz-de Arcaya, L. Orue-Echevarria, J. Alonso, J. L. Lobo, G. Ben-
guria, and I. n. Etxaniz. Piacere project: Description and prototype for optimiz-
ing infrastructure as code deployment configurations. In Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, GECCO ’22, page
71–72, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392686. doi: 10.1145/3520304.3533938. URL https://doi.org/10.1145/

3520304.3533938.

[78] S. D. Palma, D. Di Nucci, and D. Tamburri. Defuse: A data annotator and model
builder for software defect prediction. In 2022 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 479–483, 2022. doi: 10.1109/
ICSME55016.2022.00063.

[79] A. Pareek, B. Khaladkar, R. Sen, B. Onat, V. Nadimpalli, and M. Lakshmi-
narayanan. Real-time etl in striim. In Proceedings of the International Work-
shop on Real-Time Business Intelligence and Analytics, BIRTE ’18, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 9781450366076. doi:
10.1145/3242153.3242157. URL https://doi.org/10.1145/3242153.3242157.

[80] N. Petrović, M. Cankar, and A. Luzar. Automated approach to iac code inspec-
tion using python-based devsecops tool. In 2022 30th Telecommunications Forum
(TELFOR), pages 1–4, 2022. doi: 10.1109/TELFOR56187.2022.9983681.

[81] R. Pushpaleela, S. Sankar, K. Viswanathan, and S. A. Kumar. Application
modernization strategies for aws cloud. In 2022 1st International Conference
on Computational Science and Technology (ICCST), pages 108–110, 2022. doi:
10.1109/ICCST55948.2022.10040356.

[82] G. Quattrocchi and D. A. Tamburri. Predictive maintenance of infrastructure
code using “fluid” datasets: An exploratory study on ansible defect proneness.
Journal of Software: Evolution and Process, 34(11):e2480, 2022. doi: https:
//doi.org/10.1002/smr.2480. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/smr.2480.

[83] A. Rahman and L. Williams. Source code properties of defective infrastructure
as code scripts. Information and Software Technology, 112:148–163, 2019. ISSN

https://doi.org/10.1145/3520304.3533938
https://doi.org/10.1145/3520304.3533938
https://doi.org/10.1145/3242153.3242157
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2480
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2480

| Bibliography 111

0950-5849. doi: https://doi.org/10.1016/j.infsof.2019.04.013. URL https://www.

sciencedirect.com/science/article/pii/S0950584919300965.

[84] A. Rahman and L. Williams. Different kind of smells: Security smells in in-
frastructure as code scripts. IEEE Security & Privacy, 19(3):33–41, 2021. doi:
10.1109/MSEC.2021.3065190.

[85] A. Rahman, R. Mahdavi-hezaveh, and L. Williams. A systematic mapping study
of infrastructure as code research. Information and Software Technology, 108, 12
2018. doi: 10.1016/j.infsof.2018.12.004.

[86] A. Rahman, C. Parnin, and L. Williams. The seven sins: Security smells in in-
frastructure as code scripts. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 164–175, 2019. doi: 10.1109/ICSE.2019.00033.

[87] A. Rahman, E. Farhana, C. Parnin, and L. Williams. Gang of eight: A defect
taxonomy for infrastructure as code scripts. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), pages 752–764, 2020. doi: 10.1145/
3377811.3380409.

[88] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams. Security smells in ansible
and chef scripts: A replication study. ACM Trans. Softw. Eng. Methodol., 30(1), jan
2021. ISSN 1049-331X. doi: 10.1145/3408897. URL https://doi.org/10.1145/

3408897.

[89] A. A. U. Rahman, S. Elder, F. H. Shezan, V. Frost, J. Stallings, and L. A. Williams.
Categorizing defects in infrastructure as code. ArXiv, abs/1809.07937, 2018.

[90] G. Recupito, F. Pecorelli, G. Catolino, S. Moreschini, D. D. Nucci, F. Palomba, and
D. A. Tamburri. A multivocal literature review of mlops tools and features. In 2022
48th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pages 84–91, 2022. doi: 10.1109/SEAA56994.2022.00021.

[91] O. Romero and R. Wrembel. Data engineering for data science: Two sides of the
same coin. In M. Song, I.-Y. Song, G. Kotsis, A. M. Tjoa, and I. Khalil, editors,
Big Data Analytics and Knowledge Discovery, pages 157–166, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-59065-9.

[92] N. Saavedra and J. Ferreira. Glitch: Automated polyglot security smell detection
in infrastructure as code. pages 1–12, 01 2023. doi: 10.1145/3551349.3556945.

[93] J. Sandobalín, E. Insfran, and S. Abrahão. On the effectiveness of tools to support

https://www.sciencedirect.com/science/article/pii/S0950584919300965
https://www.sciencedirect.com/science/article/pii/S0950584919300965
https://doi.org/10.1145/3408897
https://doi.org/10.1145/3408897

112 | Bibliography

infrastructure as code: Model-driven versus code-centric. IEEE Access, 8:17734–
17761, 2020. doi: 10.1109/ACCESS.2020.2966597.

[94] A. Santos, O. Gómez, and N. Juristo. Analyzing families of experiments in se:
A systematic mapping study. IEEE Transactions on Software Engineering, 46(5):
566–583, 2020. doi: 10.1109/TSE.2018.2864633.

[95] W. Shin, W.-H. Kim, and C. Min. Fireworks: A fast, efficient, and safe serverless
framework using vm-level post-jit snapshot. In Proceedings of the Seventeenth Eu-
ropean Conference on Computer Systems, EuroSys ’22, page 663–677, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450391627. doi:
10.1145/3492321.3519581. URL https://doi.org/10.1145/3492321.3519581.

[96] C. Siebra, R. Lacerda, J. Quintino, I. Cerqueira, F. Silva, and A. Santos. From the-
ory to practice: The challenges of a devops infrastructure as code implementation.
07 2018. doi: 10.5220/0006826104270436.

[97] D. Sokolowski. Deployment coordination for cross-functional devops teams. In Pro-
ceedings of the 29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2021, page 1630–1634, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450385626. doi: 10.1145/3468264.3473101. URL https:

//doi.org/10.1145/3468264.3473101.

[98] D. Sokolowski. Infrastructure as code for dynamic deployments. In Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2022, page 1775–1779, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450394130. doi:
10.1145/3540250.3558912. URL https://doi.org/10.1145/3540250.3558912.

[99] D. Sokolowski, P. Weisenburger, and G. Salvaneschi. Automating serverless de-
ployments for devops organizations. In Proceedings of the 29th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2021, page 57–69, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN 9781450385626. doi:
10.1145/3468264.3468575. URL https://doi.org/10.1145/3468264.3468575.

[100] D. Sokolowski, P. Weisenburger, and G. Salvaneschi. Dependencies in devops survey
2021. Apr. 2022. doi: 10.5281/zenodo.6372120. URL https://doi.org/10.5281/

zenodo.6372120.

[101] M. Son, S. Mohanty, J. R. Gunasekaran, A. Jain, M. T. Kandemir, G. Kesidis,

https://doi.org/10.1145/3492321.3519581
https://doi.org/10.1145/3468264.3473101
https://doi.org/10.1145/3468264.3473101
https://doi.org/10.1145/3540250.3558912
https://doi.org/10.1145/3468264.3468575
https://doi.org/10.5281/zenodo.6372120
https://doi.org/10.5281/zenodo.6372120

| Bibliography 113

and B. Urgaonkar. Splice: An automated framework for cost-and performance-
aware blending of cloud services. In 2022 22nd IEEE International Symposium
on Cluster, Cloud and Internet Computing (CCGrid), pages 119–128, 2022. doi:
10.1109/CCGrid54584.2022.00021.

[102] A. Sorour and A. Hamdy. Devops and iac to automate the delivery of hands-on
software lab exams. In 2022 6th International Conference on Computer, Software
and Modeling (ICCSM), pages 28–35, 2022. doi: 10.1109/ICCSM57214.2022.00012.

[103] M. Souibgui, F. Atigui, S. Zammali, S. Cherfi, and S. B. Yahia. Data quality in etl
process: A preliminary study. Procedia Computer Science, 159:676–687, 2019. ISSN
1877-0509. doi: https://doi.org/10.1016/j.procs.2019.09.223. URL https://www.

sciencedirect.com/science/article/pii/S1877050919314097. Knowledge-
Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd
International Conference KES2019.

[104] I. S. e. Souza, D. P. Franco, and J. P. S. G. Silva. Infrastructure as code as a
foundational technique for increasing the devops maturity level: Two case studies.
IEEE Software, 40(1):63–68, 2023. doi: 10.1109/MS.2022.3213228.

[105] O. Standard. Topology and orchestration specification for cloud applications version
1.0. 2013. doi: http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.
html.

[106] M. Staron, S. Abrahão, B. Penzenstadler, and L. Hochstein. Recent research into
infrastructure as code. IEEE Software, 40(1):86–88, 2023. doi: 10.1109/MS.2022.
3212035.

[107] U. STATES. Symposium on advanced programming methods for digital computers:
Washington, d.c., june 28, 29, 1956. 1956.

[108] A. Suleykin and P. Panfilov. Metadata-driven industrial-grade etl system. In 2020
IEEE International Conference on Big Data (Big Data), pages 2433–2442, 2020.
doi: 10.1109/BigData50022.2020.9378367.

[109] D. Tamburri, W.-J. Heuvel, C. Lauwers, P. Lipton, D. Palma, and M. Rutkowski.
Tosca-based intent modelling: goal-modelling for infrastructure-as-code. SICS
Software-Intensive Cyber-Physical Systems, 34, 06 2019. doi: 10.1007/
s00450-019-00404-x.

[110] H. Teppan, L. H. Flå, and M. G. Jaatun. A survey on infrastructure-as-code
solutions for cloud development. In 2022 IEEE International Conference on

https://www.sciencedirect.com/science/article/pii/S1877050919314097
https://www.sciencedirect.com/science/article/pii/S1877050919314097

114 | Bibliography

Cloud Computing Technology and Science (CloudCom), pages 60–65, 2022. doi:
10.1109/CloudCom55334.2022.00019.

[111] V. Theodorou, A. Abelló, W. Lehner, and M. Thiele. Quality measures for etl
processes: from goals to implementation. Concurrency and Computation: Practice
and Experience, 28(15):3969–3993, 2016. doi: https://doi.org/10.1002/cpe.3729.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3729.

[112] P. Vassiliadis, A. Simitsis, and E. Baikousi. A taxonomy of etl activities. In Pro-
ceedings of the ACM Twelfth International Workshop on Data Warehousing and
OLAP, DOLAP ’09, page 25–32, New York, NY, USA, 2009. Association for Com-
puting Machinery. ISBN 9781605588018. doi: 10.1145/1651291.1651297. URL
https://doi.org/10.1145/1651291.1651297.

[113] P. Vassiliadis, A. Simitsis, and E. Baikousi. A taxonomy of etl activities. pages
25–32, 11 2009. doi: 10.1145/1651291.1651297.

[114] B. Violino. Defining enterprise ai: From etl to mod-
ern ai infrastructure. Electronic document available at
https://www.techtarget.com/searchenterpriseai/feature/Defining-enterprise-AI-
From-ETL-to-modern-AI-infrastructure, 2019.

[115] N. Wirth. A brief history of software engineering. IEEE Annals of the History of
Computing, 30(3):32–39, 2008. doi: 10.1109/MAHC.2008.33.

[116] R. Wrembel. Data integration, cleaning, and deduplication: Research versus indus-
trial projects. In E. Pardede, P. Delir Haghighi, I. Khalil, and G. Kotsis, editors,
Information Integration and Web Intelligence, pages 3–17, Cham, 2022. Springer
Nature Switzerland. ISBN 978-3-031-21047-1.

[117] M. Wurster, U. Breitenbücher, K. Képes, F. Leymann, and V. Yussupov. Modeling
and automated deployment of serverless applications using tosca. In 2018 IEEE
11th Conference on Service-Oriented Computing and Applications (SOCA), pages
73–80, 2018. doi: 10.1109/SOCA.2018.00017.

[118] V. Yussupov, J. Soldani, U. Breitenbücher, and F. Leymann. Standards-based
modeling and deployment of serverless function orchestrations using bpmn and
tosca. Software: Practice and Experience, 52(6):1454–1495, 2022. doi: https:
//doi.org/10.1002/spe.3073. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/spe.3073.

[119] Z. Yusufi, S. J. Preis, D. Kraus, U. Kruschwitz, and B. Ludwig. Data value as-

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3729
https://doi.org/10.1145/1651291.1651297
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3073
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3073

6| BIBLIOGRAPHY 115

sessment in semiconductor production: An empirical study to define and quan-
tify the value of data. In Proceedings of the 6th International Conference on E-
Commerce, E-Business and E-Government, ICEEG ’22, page 109–116, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450396523. doi:
10.1145/3537693.3537725. URL https://doi.org/10.1145/3537693.3537725.

[120] A. Yıldırım. Devops lifecycle: Continuous integration and development.
Electronic document available at https://medium.com/t%C3%BCrk-telekom-
bulut-teknolojileri/devops-lifecycle-continuous-integration-and-development-
e7851a9c059d, 2019.

[121] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora, H. Gall, and M. Di Penta.
An empirical characterization of bad practices in continuous integration. Empirical
Software Engineering, 25, 03 2020. doi: 10.1007/s10664-019-09785-8.

[122] E. Zdravevski, P. Lameski, A. Dimitrievski, M. Grzegorowski, and C. Apanowicz.
Cluster-size optimization within a cloud-based etl framework for big data. pages
3754–3763, 2019. doi: 10.1109/BigData47090.2019.9006547.

https://doi.org/10.1145/3537693.3537725

117

A| Appendix: Extract,
Transform, Load pipelines
survey

This appendix represents a brief survey we conducted to better understand the main
technology used to ingest data by the team we worked with for our proof-of-concept. To
support the work made at NXP Semiconductors, we want to briefly report out the current
challenges and state-of-the-art of data ingestion pipelines.

A.1. Extract, Transform, Load: the role of pipelines

Extract, Transform, Load: these are three terms used to identify a sequence of actions
that needs to be taken when dealing with collection, cleaning and standardization of data.
ETL pipelines are the means through which this idea is modeled.

ETL pipelines are at the basis of data marts and data warehouses, since they handle
the collection, cleaning and standardization of structured and unstructured data coming
from multiple, heterogeneous, sources. This set of processes has been extensively studied,
and many frameworks [23, 35, 40] are available. In the past years, many techniques to
improve ETL efficiency have been proposed, and many performance indexes have been
found. This witnesses the relevance of the topic and the awareness of researchers of the
need to further investigate the concept.

However, studies on this topic typically focus on the process itself, neglecting some aspects
such as data quality. In this scenario, it is very hard to find sound and complete research
works that provide deep analysis of data quality techniques - belonging to, in general,
the broad field of software engineering - without, however, providing practical tools and
methodologies to implement them, while other studies shift the problem to quality of the
ETL pipeline itself rather than quality of the data flowing through it. Most of them,
although considering interesting and innovative concepts and ideas [70, 71, 111], are a

118 A| Appendix: Extract, Transform, Load pipelines survey

presentation of these notions, making little or none experiments and deep investigation
of the involved phenomena: they are inconclusive. However, this opinion arises from a
preliminary investigation in research literature, and it does not mean that high quality
studies have never been conducted: a deeper investigation is required. Nonetheless, the
aforementioned studies are not useless since they give us an idea which direction the
research is going.

One crucial aspect of ETL pipelines is the lack of automation: this is not referred to code
generation or single steps of the pipeline, for instance merging two data sources, where
automation already exists, but what is lacking in the process is a comprehensive automa-
tion between steps and automation when errors arise. Some articles suggest reaching a
higher level of automation in ETL pipelines, i.e., reducing as much as possible human
intervention, to achieve the following improvements: higher data quality - as an auto-
mated process is less prone to human error - and better decision making - working on
high quality data has been shown to produce benefits at business decision levels [111].

In this scenario, machine learning techniques might be helpful to increase quality levels
[71]. One crucial challenge is finding the areas in an ETL process where automation is
actually helpful, using known performance indexes, and where ML could be implemented
to improve the final product of the pipeline, through the investigation of known but also
possibly new performance indexes. Performance indexes are crucial in this scenario, since
are the means through which is possible to measure if improvements are made or not
[103, 111].

Even though ETL pipelines are presented as the crucial component of Business Intelligence
and powerful tool for enterprise-level decision-making, research in this field seems to be
conducted in a non-systematic way, and much of the studies represent a wrap-up of what
has been done in the last years. In particular, traditional ETL pipelines, which are often
called "Batch ETL" [45, 67], are well documented and many commercial tools exist.
The only aspect which is acknowledged to be improved in batch ETL is data quality,
which, however, is a problem which affects many fields of computer engineering. Albeit
data quality is a well-studied subject, every consideration is derived from what existing
tools can provide and, thus, all the possible improvements might be found in proprietary
systems: however, companies are jealous about sharing their achievements in this strategic
area and the studies that propose novel solutions claim to bring improvements which are
confined to very specific use-cases and tested only on very small datasets [122]. Thus,
scalability remains an issue.

Moving the focus away from data quality alone, three critical areas are still under research:

A| Appendix: Extract, Transform, Load pipelines survey 119

(near) real-time ETL pipelines, AI-Driven ETL monitoring and standardization [1, 2]

A.2. (Near) Real-Time ETL Pipelines

Near real-time ETL pipelines represent the evolution of batch ETL: many studies [45, 67,
79, 108] describe this recent concept as a necessity for for Big Tech companies, which need
to analyze much more data nowadays, in real-time. Indeed, the main issue of batch ETL
is that they are typically run overnight and require a lot of time to complete; furthermore,
their output is highly affected by the quality of the input: as they say, garbage in, garbage
out [66]. Near real-time ETL applies data streaming tools to batch ETL, often by using a
combination of these tools such as Apache Kafka and Apache Spark [45, 67, 79]. The most
efficient technique seems to be applying Change Data Capture (CDC) design patter to
streaming data on top of the aforementioned tools, as some studies claim its effectiveness.
Anyways, other techniques are still under investigation but, overall, they try to minimize
the amount of data on which the Transformation step works on, by taking small chunks
of data each time. Therefore, they are called "near" real-time, because typically these
pipelines produce data every hour or less but are not properly real-time. The crucial aspect
of this new kind of ETL process is the fact that it is designed to work on a cloud-based
distributed setting. Following this new technique of designing ETL pipelines, one aspect
which is typically not considered at research level is cost-optimization: using services such
as AWS has a cost, and companies want the most effective but cheapest solution [122].

A.3. AI-Driven ETL Monitoring

For what concerns AI-Driven monitoring, things are quite tricky. AI has been shown to be
effective in many situations, and sometimes perform even better than humans. Given the
large amount of data ETL processes analyze, it is clear that there is space for Machine
Learning and AI techniques in this scenario. Most of the attention [4, 37, 61, 114] is
turned to the application of automated tasks to ETL monitoring. An ETL process should
produce consistent results regardless the flow of data under analysis: a sudden change
could be detected by an automated algorithm and generate an alert. Also, machine
learning can provide real-time detection for bottlenecks, allowing developers to address
problems faster. Furthermore, it can reduce cost of operation since, given a problem, can
send alerts directly to who is devoted to solve it, letting the rest of the departments free.

Another powerful application is to directly use ML to develop ETL solutions [12, 114].
This could enhance software engineering quality [49]. There are already ETL-developing

120 A| Appendix: Extract, Transform, Load pipelines survey

software that provide this feature, but ML action is still limited [49, 116]. Overall, ML is
capable of reducing human intervention and costs.

However, there is a caveat. ML and AI sound as great solutions, but in order to use
them in an effective way, developers should trust them. This does not seem to be the
case. The reasons of this distrust reside in the fact that the technology is typically hard
to comprehend. This is the reason why it has been documented that managers, even
with clear evidence provided by software - for instance, non AI-powered ETL pipelines -,
typically make decisions on their own [43].

A.4. ETL pipelines: towards standardisation

Another important problem, that has widespread impact on ETL pipelines and, in gen-
eral, data engineering, regards lack of standardization in data integration, data mining,
evaluation and interpretation [1, 2]. Different needs in the past years have influenced
the development of heterogeneous system that, even if they are really powerful and rely
on common technologies, work very differently [116] and this is an issue at development
stage since programmers might slow the development due to the need of learning a new
programming paradigm; furthermore, complex systems rely on different technologies that
at a certain point must be integrated together [91]. This is a problem, especially if we
consider that, in many situations, data engineering tasks are left to data scientists and
analysts which, in many cases, are not familiar with such tools [91, 116]. Indeed, nowa-
days there is a wide use of notebooks [1, 91], even at enterprise level, for data integration,
cleaning and evaluation task: although notebooks ease the job to programmers for their
flexibility and their use of general-purpose languages - which are more familiar to devel-
opers -, lack of the power legacy tools provide, and thus it might limit the effectiveness
of their tasks [91].

At the basis of all these problems, there is a lack of standardization. This holds not only
for what concerns the development stage of data integration systems, but also it is true
for research. Indeed, there is a discrepancy between research and industrial projects [116].
Typically, research projects rely unrealistic assumption and tests are conducted on small
datasets. Research projects most of the time try to find improvements in optimization and
design methods but the effectiveness on the field is still unknown for the aforementioned
reasons. However, recently there has been movement towards standardization [1, 91,
112, 116]. On the other hand, industrial projects mainly focus on cost-reduction and ad
hoc solutions which, although might be great for a specific application, they worsen the
problem. Also, it is hard to measure the cost-effectiveness of new systems since, in most

A| Appendix: Extract, Transform, Load pipelines survey 121

cases, it is hard to measure the return of investment. This is the reason why the whole
standardization process is very slow.

Since standardization is inevitable to achieve improvement in this field, It is crucial to
make a step forwards in this direction [91].

123

B| Appendix: Additional Insights

on The Proof-of-Concept

In this appendix we would like to share some additional insights and picture of the ex-
periments we conducted, since we did not want to use too much space on the main block
of our work.

Here we will just share the images of the function orchestrators models created with
BPMN4FO and the deployment models designed with the RADON Graphical Modeling
Tool (Eclipse Winery), so that the reader has a clearer idea of the work we did during
our experiment. Indeed, the differences among each experiment will become even clearer
with this direct comparison.

In this way we are able to directly observe the connections between the BPMN models
and the TOSCA-compliant deployment.

B.1. BPMN4FO Models

Figures B.1, B.2 and B.3 show the different models obtained at each complexity stage of
our experiments. At a first glance, the complexity gap is much higher between the low
and medium complexity solutions rather than the medium and high complexity ones.

This is due to the fact that in the first level of complexity we envisioned just the checks
for ETL job concurrency, and only two serverless functions are required to manage all the
steps involved: the main one, delimited by the start and end events, and the internal one,
denoted by the sub-process named parallelJobExecution which implements the main logic
of the orchestrator.

However, as soon as we consider the medium complexity solution, the complexity increases
significantly due to the presence of more tasks and three different function orchestrators.
In particular, we want to highlight how the sub-process named retryExecutionLoop.

124 B| Appendix: Additional Insights on The Proof-of-Concept

Figure B.1: Low complexity BPMN4FO function orchestrator model.

The retryExecutionLoop represent a loop that is executed at most three times, since when
the execution of a job fails, it is re-attempted. In principle, this loop could be modeled by
connecting the final state to the first one with a choice state, if we use directly the tools
offered by cloud vendors to model function orchestrators. However, since with BPMN4FO
we are dealing with a standardized way of working, and the loop is represented differently
by other solutions, in order to achieve standardization, a sub-process is required.

This leads in the end to the creation of another target-specific file for a function orchestra-
tor that implements this logic. If done directly on the cloud provider platform, the same
objective could be achieved without the need of another intermediate serverless function.
This, however, does not change the final result since both solution accomplish the same
objective. It is just a different implementation style.

For what concerns the high-complexity solution, the model is very similar to the medium
complexity one, with the main difference that there is an additional sub-process that is
in charge of splitting all the jobs that needs to be executed on a smalls sets.

B| Appendix: Additional Insights on The Proof-of-Concept 125

Figure B.2: Medium complexity BPMN4FO function orchestrator model.

Figure B.3: High complexity BPMN4FO function orchestrator model.

126 B| Appendix: Additional Insights on The Proof-of-Concept

B.2. RADON GMT Blueprints

It is finally interesting to observe how the deployment models differ from each other, and
how they are connected to the BPMN Function Orchestrator models. In this section we
present the deployment model for a specific target platform: the Amazon Web Services.
Considering that in BMPN4FO a process or a sub-process represents a target function
orchestrator and a task translated to a target serverless function, we obtained deployment
models with two, three and four function orchestrators for the low, medium and high
complexity solutions, respectively.

As we can observe in Figures B.4, B.5 and B.6, for each solution the number of Lambda
Function nodes and the number of Step Function nodes (namely AwsSFOrchestration)
are exactly the same as the number of tasks and processes or sub-processes present in the
BPMN models shown in the previous section.

Figure B.4: Low complexity Eclipse Winery deployment model.

Figure B.5: Medium complexity Eclipse Winery deployment model.

In particular, each AwsSFOrchestration node contains (attached as an artifact) the ASL

B| Appendix: Additional Insights on The Proof-of-Concept 127

file generated by the BPMN4FO tool. Then, each of these nodes is connected to the Step
Function it orchestrates with the AwsSFOrchestrates relationship. Notice how, instead,
when a Step Function contains a nested Step Function (a sub-process), it connects to it
with the DependsOn relationship.

Then, each AwsSFOrchestration and AwsLambdaFunction node connects to the only
AwsPlatform node with the HostedOn relationship. The AwsPlatform node contains the
general deployment attributes of the target AWS account, such as the region (in our case,
eu-west-1). Each AwsLambdaFunction node containers on the other hand some specific
properties such as the memory size (we used for every node of this type 128 MB), the
additional layers (if needed) and most importantly we attached the respective python file
with the function handler.

Figure B.6: High complexity Eclipse Winery deployment model.

Each of these deployment models have been exported as a CSAR file. Then, we deployed
them using xOpera CLI. At the deployment stage, the CSAR file is extracted and all
the nodes, relationship and artifacts are managed such that can be deployed on the
target environment using Ansible IaC code, which is automatically generated. The target
account is automatically retrieved in the Python virtual environment where xOpera and
AWS CLI are both installed: the access keys to the target account are retrieved from the
AWS CLI configuration file, which is defined using the aws configure command.

129

List of Figures

1.1 Study design overview. 3

2.1 DevOps tool-chain stages [120]. 7
2.2 OASIS TOSCA Service Template overview. 11

4.1 Overview of Systematic Literature Review methodology. 23
4.2 Publications distribution per year from 2019 to 2023. 28
4.3 Bar chart depicting the authors with most publications. 29
4.4 DevOps taxonomy and key concepts. 31
4.5 Percentage of topic share among all the papers found. 36
4.6 Top authors with relationship among publications and other authors. . . . 37

5.1 Big Data Value Ecosystem [9]. 62
5.2 Team activities overview. 66
5.3 Architecture overview. 67
5.4 ETL pipelines architecture, with data source and target. 67
5.5 High-level architecture overview with IP limitation issue. 68
5.6 Function orchestrator example with serial execution of different ETL Jobs. 69
5.7 BPMN model of the proposed solution. 72
5.8 Function orchestrator graph: final solution. 73
5.9 RADON DevOps model [29]. 75
5.10 Tool-chain for modeling and deployment of function orchestrations [118]. . 76
5.11 Sequence of experiments with factor, treatments and variables involved. . . 79
5.12 Method Evaluation Model. 80

B.1 Low complexity BPMN4FO function orchestrator model. 124
B.2 Medium complexity BPMN4FO function orchestrator model. 125
B.3 High complexity BPMN4FO function orchestrator model. 125
B.4 Low complexity Eclipse Winery deployment model. 126
B.5 Medium complexity Eclipse Winery deployment model. 126
B.6 High complexity Eclipse Winery deployment model. 127

131

List of Tables

4.1 List of milestones. 21
4.2 Design of our experiments. 25
4.3 Keywords list with their priority level in the queries and, grouped by topics. 26
4.4 List of snowballed papers. 30
4.5 Papers classification according to publication types and topics. 34

5.1 List of dependent variables. 81
5.2 List of dependent variables. 82
5.3 Design of our experiments. 83
5.4 Requirements for each design complexity. 84
5.5 Collected results: all values represent the average over the experiments;

values are dimensionless, except for duration which unit is hours. 86

6.1 SLR: research questions and answers summary. 96
6.2 Proof-of-Concept: research questions and answers summary. 98

133

Acknowledgements

Even though this work is the result of my effort, there should be the names of all those
who, in different ways, offered me guidance, assistance and encouragement, without whom
all of this would not have been possible. I am very grateful to all of these people.

This thesis represents my final challenge at Politecnico di Milano, and it would have not
been possible without the opportunity that my supervisor, Professor Damian Andrew
Tamburri, gave me: the help and support was fundamental for this work, but most
importantly I am very grateful to him since, from the very beginning, he trusted me.

I am very grateful also to NXP Semiconductors that welcomed me and allowed me to
carry out this work in an avant-garde environment: in particular, I must thank all the
team members I worked with, and everybody in the company that helped me.

Thank you all.

	Abstract
	Contents
	Introduction
	Study Design
	Background
	DevOps Overview
	Infrastructure as Code
	Standards: TOSCA

	Related Work
	SLR
	Proof-of-Concept

	Systematic Literature Review
	Study design: background and research questions
	Study selection criteria and quality concept definition
	Research queries
	Sources result and classification
	DevOps Taxonomy
	Classification

	Results discussion
	CI/CD
	Infrastructure Management
	Culture
	Final Discussion: Answering To The Research Questions

	Threats to Validity
	Conclusions

	Proof-of-Concept: The RADON methodology and the Semiconductors Industry
	Semiconductor Industry Outlook
	The Value of Data
	Introducing the Company's Environment
	The Team and Its Goal
	The Proof-of-Concept
	Introduction
	The issues
	The solution

	Two Approaches: RADON and Baseline
	The Baseline Approach
	The RADON Approach

	Design of the Experiments
	Goal and Research Questions
	Context
	Participants
	Experiments
	Variables selection
	Null Hypotheses
	Design
	Experimental material and assumptions

	Results
	Effectiveness
	Efficiency
	Perceived Ease of Use
	Perceived Usefulness
	Intention to Use
	Hypotheses Testing
	Answering the Research Questions

	Conclusions

	Conclusions and future developments
	Systematic Literature Review
	Proof-of-Concept
	Future Developments

	Bibliography
	Appendix: Extract, Transform, Load pipelines survey
	Extract, Transform, Load: the role of pipelines
	(Near) Real-Time ETL Pipelines
	AI-Driven ETL Monitoring
	ETL pipelines: towards standardisation

	Appendix: Additional Insights on The Proof-of-Concept
	BPMN4FO Models
	RADON GMT Blueprints

	List of Figures
	List of Tables
	Acknowledgements

