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Abstract

KEEPING risk under control is a primary concern in many critical real-world do-
mains, including finance and healthcare. The literature on risk-averse rein-
forcement learning (RL) has mostly focused on designing ad-hoc algorithms

for specific risk measures. As such, most of these algorithms do not easily generalize
to measures other than the one they are designed for. Furthermore, it is often unclear
whether state-of-the-art risk-neutral RL algorithms can be extended to reduce risk. In
this dissertation, we take a step towards overcoming these limitations, by following two
different paths.

The first one consists in proposing a single framework to optimize some of the
most popular risk measures, including conditional value-at-risk, utility functions, and
mean-variance. Leveraging theoretical results on state augmentation, we transform the
decision-making process so that optimizing the chosen risk measure in the original en-
vironment is equivalent to optimizing the expected return in the transformed one. We
then present a risk-sensitive meta-algorithm that transforms the trajectories it collects
from the environment and feeds these into any risk-neutral policy optimization method.

The second path we follow consists in considering, for the first time, risk-measures
connected to the state-action occupancy distribution, instead of the return one. We
define a novel measure of risk, which we call reward volatility, consisting of the vari-
ance of the rewards under the state-occupancy measure, and we study the optimization
of a trade-off objective called mean-volatility. We provide a monotonic improvement
theorem for this objective, which allows then to derive a TRPO-like algorithm for risk-
averse optimization.

Finally, in order to understand the impact of mean-volatility optimization on sample-
complexity, we study the convergence rate of an actor-critic approach optimizing this
criterion. Thus, we extend recent analyses in the risk-neutral actor-critic setting to the
mean-volatility case, in order to establish the sample-complexity required to attain an
ε-accurate stationary point.

All contributions are empirically validated with extensive experimental analyses on
challenging benchmarks.
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CHAPTER1
Introduction

Everyday life is one of the clearest examples of what a stochastic environment is. The
decisions that we take at any moment have, indeed, only a limited impact on the dy-
namics of what happens around us. No matter how accurate our plans are, the presence
of random events, which we cannot predict or control, makes impossible for us to fore-
see a certain outcome for them. Thus, we always have to account for a certain degree
of variability, which may alter the result of our actions, in either a positive or a negative
way. The amount of variability that one can tolerate is a subjective quantity, which
depends on how much one is averse to the possible risks. When the fulfillment of our
objectives does not go in the same direction of reducing risk, we are in presence of a
trade-off, whose solution strongly depends on our degree of risk-aversion.

This dilemma is common in every context where some kind of randomness, noise
or uncertainty is present. In all these kinds of situations, taking a decision cannot
overlook the possible negative outcomes due to risk. The focus of this dissertation is to
build artificial agents which are capable of handling the risk-return trade-off, by means
of reinforcement learning.

1.1 The Reinforcement Learning Framework

Reinforcement learning (RL) is a term used to indicate at the same time a problem, the
framework describing it, and the several techniques that can be used to provide it with
a solution.

What reinforcement learning aims at doing is solving sequential decision-making
problems by means of a learning process that, in a trial and error fashion, is capable of
gradually improving the quality of the produced decisions, guided by a reinforcement
signal. This learning process resembles what happens when one tries to teach a dog to

1
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Chapter 1. Introduction

bring the stick back. By rewarding the dog for correct actions, the owner can modify
the dog’s behavior according to the desired task. It is also similar to what we experience
every time we need to learn a new skill. At school for instance, when a teacher tries to
teach her students how to write: she can reward the students when they wrote a letter
with the correct shape, but she cannot tell them how to exactly move the muscles of
their hand to do that. Therefore, students have to repeatedly try, fail, and learn from
their failures, in order to finally being able to become good writers.

The RL framework features two main actors: the agent and the environment. The en-
vironment is characterized by a state, which describes its main properties, and evolves
according to a certain dynamics. The agent is supposed to be able to observe the envi-
ronment state, and to interact with the environment by means of actions. The environ-
ment dynamics, in turn, is influenced by agent actions. Together with the new state, the
environment dynamics produces a reward which is given as a further feedback to the
agent. The goal of the agent is, thus, to adapt its behavior to gather as much of these
rewards as possible. Thanks to its simplicity, this framework is general enough to be
applicable to a wide set of problems. Its main advantage is that it does not require the
knowledge of the environment dynamics, which in many real-world contexts may be
unknown or difficult to simulate.

Solution methods for RL problems are all influenced by a principle called dynamic
programming (Bellman, 1954). Its main idea consists in exploiting the structure of the
main problem to splitting it into sub-problems, which can be solved in a easier way,
and then combining the solutions to solve the original task. Thanks to the introduc-
tion of temporal-difference (TD) learning (Sutton, 1984; Klopf, 1988) it is possible
to translate this principle to the aforementioned framework, which is agnostic of the
real environment dynamics. This idea was inspired from psychology studies on clas-
sical conditioning (Pavlov and Anrep, 1927) and was later found to be at the basis of
dopamine neuron activity (Montague et al., 1996). The recent developments in rein-
forcement learning approaches, coupled with the great approximation power of deep
neural networks, have allowed to obtain astonishing results on many challenging fields
such as board games (Silver et al., 2016), robotic locomotion (Schulman et al., 2015b),
single-player (Mnih et al., 2015) and multi-player video-games (Berner et al., 2019).

1.2 Reinforcement Learning for Real-World Applications

The wide applicability of the RL framework makes it suitable not only for simulated
benchmarks, but also for real-world problems. While, in principle, reinforcement learn-
ing could fit to almost all settings in which traditional control systems can be developed,
in practice, it is particularly interesting to employ it in contexts where standard ap-
proaches struggle to succeed. Whenever it is difficult to have a good model for the
environment, for instance in finance, agriculture settings, or when it is difficult to con-
ceive a valid control policy from scratch, as it happens for some complex robotics or
healthcare tasks, reinforcement learning may represent an interesting alternative. How-
ever, despite its success on difficult domains, reinforcement learning is still not ready
to become a mature technology. The first issue that prevents the widespread adoption
of reinforcement learning techniques is its huge sample-complexity. RL approaches,
being sample-based, need to interact a large number of times with the environment

2
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1.3. Risk-averse Approaches for Reinforcement Learning

before obtaining the superior performance they show on the aforementioned contexts.
Furthermore, real-world environments present a number of additional challenges for re-
inforcement learning methods, such as non-stationarity (Even-Dar et al., 2009), delays
Schuitema et al. (2010) or partial information (Monahan, 1982). While the RL com-
munity is working on remedies for each of these issues, they are still open problems
nowadays.

Stochastic tasks are the ideal target for RL applications. First, they naturally fit
the RL formulation, and, second, they are typically difficult to solve with traditional
methods, hence, they could benefit more from the use of an RL approach. However,
dealing with randomness, one has always to take into account some uncertainty related
to the final performance, as already mentioned. Unfortunately, it is not always the
case that the solution yielding the best (expected) gain is also the one minimizing its
variability. In fact, it often happens that a trade-off is present between higher expected
performance and risk. The financial case represents a good example for these kind of
situations. Let’s imagine to be trading on a financial market. When the market volatility
is high, it’s easier to make higher profits, since prices have larger oscillations. Clearly,
for the same reason, it is also easier to lose a great amount money. On the other hand,
in low volatility situations, profit opportunities are few, but also the risk is low. In those
cases, measuring risk is not sufficient: stakeholders must be able to choose between a
variety of possible trade-offs. To ensure that, reinforcement learning should be able to
explicitly direct the learning process towards risk-averse behaviors.

1.3 Risk-averse Approaches for Reinforcement Learning

The goal of standard reinforcement learning is the maximization of the expected value
of the (possibly discounted) cumulative sum of the rewards, also known as return. This
means that the usual RL objective ignores the variability connected to the return, hence,
it seems to be inappropriate for dealing with the aforementioned trade-off. A common
criticism which is opposed to this claim is that: “reward is not money”. The meaning
of this iconic sentence is the following: what we may naturally consider a reward in
the real-world task (for instance money, if we are dealing with a financial setting) does
not necessarily need to be the reward of the RL model we employ to solve the problem.
In other words, according to this view, it is always possible to conceive some scalar
reward which accounts for the desired objective (Silver et al., 2021). To say it with
Sutton’s words:

“That all of what we mean by goals and purposes can be well thought of as max-
imization of the expected value of the cumulative sum of a received scalar signal (re-
ward)”.

While it is hard to say whether this claim is ultimately true or not, it should be no-
ticed that, provided that such reward exists, computing it may be a difficult task (Ng
et al., 2000), which could even require having already solved the risk-averse problem
beforehand. Therefore, modifying the objective is sometimes the only available option.
However, most of the time, this modification does not allow to directly use methods
and results from the risk-neutral case, calling, then, for ad-hoc methods.

3



i
i

“output” — 2022/2/22 — 20:37 — page 4 — #12 i
i

i
i

i
i

Chapter 1. Introduction

1.4 Original Contribution

Since there are several possible ways to measure risk or to model risk-aversion, a
plethora of risk-averse approaches have been developed in the RL literature in the past
years. This means that, in order to transfer the advantages of state-of-the-art develop-
ments to the risk-averse setting, one has to explicitly extend (if possible) the considered
methods for the target risk-averse objective. This complicates the use of reinforcement
learning in risk-averse tasks, thus, limiting its applicability to some relevant real-word
settings. This dissertation’s main goal is to study how it is possible to ease the appli-
cation of state-of-the-art risk-neutral methods to risk-averse objectives, reducing the
performance gap between the two settings. In order to approach this broader goal, two
main paths are followed.

The first one is related to the optimization of standard return-based risk-measures.
Adapting a new technique to each of the classical risk-measures requires a lot of effort
and it may be a hard task, as already explained. For this reason, as a first contribution,
we study a unified framework, that allows to consider under the same formalism three of
the most common risk-averse objectives. This work exploits some state-augmentation
techniques available from the literature to devise a unified approach which translates
a risk-averse problem into a sequence of simpler risk-neutral RL tasks. Solving these
simpler tasks, even in an approximated way, allows then to obtain a solution for the risk-
averse main problem. Any RL method can be employed to solve the sub-problems,
allowing then to directly connect the risk-neutral world to the risk-averse one. The
proposed technique is empirically validated with an extensive analysis that involves
the application of several recent RL approaches to complex domains such as robotic
locomotion and simulated trading.

The other path that we follow is about the study of a novel class of risk-measures,
which captures a different kind of risk. These risk-measures are computed by consid-
ering as a random variable the per-step reward which is distributed according to the
state-action occupancy distribution. Our second contribution consists, in particular, in
studying the variance of this random variable, which we called reward-volatility. We
show that this new risk-measure exhibits interesting mathematical properties, that ease
the direct application of some important results from the risk-neutral policy optimiza-
tion literature. Furthermore, we can demonstrate that the minimization of the reward-
volatility also bounds the classical return variance. After the formulation of a novel
trade-off objective, called mean-volatility, we study how to extend results from the safe
RL literature to obtain a monotonic improvement bound which is then exploited by a
practical TRPO-style algorithm. We also present the results of applying this approach
to challenging financial environments based on real-world data.

As already discussed, risk-averse approaches typically add a further layer of com-
plexity to the RL problem. While standard reinforcement learning allows to have some
global optimality guarantees, at least in some particular settings, this kind of result is
typically harder to obtain when risk is involved (Mannor and Tsitsiklis, 2011). Reach-
ing a local optimum is a more affoardable goal, and it is often enough to obtain rea-
sonable solutions. While many works prove asymptotic convergence guarantees for
their approaches (Tamar et al., 2012a, 2015a; Chow et al., 2017), only a few focus
on the actual convergence rate (Jiang and Powell, 2018; Fei et al., 2020). Since sam-

4
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ple complexity is one of the main issues of modern reinforcement learning, our third
contribution consists in a finite-sample analysis of a mean-volatility actor-critic algo-
rithm. Our goal is to study to which extent a risk-averse optimization may impact on
the overall sample-complexity.

1.5 Overview

This dissertation is organized as follows. The first two chapters represents an introduc-
tion for the reader to the state-of-the-art of risk-averse reinforcement learning literature:

• In Chapter 2 we present an introduction to the reinforcement learning framework.
We first describe the Markov Decision Process formalism, and the exact methods
that may be used to solve this kind of problems, by knowing the model. We then
introduce the main concepts of model-free reinforcement learning, illustrating the
main tools that will be used in the later chapters.

• In Chapter 3 we introduce the risk-averse reinforcement learning literature. In
the first part we present the main available approaches to model risk, discussing
possible criteria to choose the risk-averse objective in the most suitable way. We
then survey the main state-of-the-art approach for solving each of the described
problems.

The following chapters represent instead the original contribution of this dissertation:

• In Chapter 4 a unified framework for the optimization of some of the most com-
mon return-based risk-measures is presented. We devise a meta-algorithm that,
thanks to a state-augmentation, allows the application of risk-neutral approaches
to the target risk-averse objective. An experimental analysis is conducted to em-
pirically evaluate the performance of this method, testing several combinations of
risk-averse objectives and RL algorithms on a set of challenging domains. The
work described in this chapter is, at the time of writing, under revision for the
“Special Issue on Risk-aware Autonomous Systems: Theory and Practice” in the
Artificial Intelligence Journal.

• In Chapter 5 we present a novel risk-averse objective which is a trade-off between
the expected return and the variance of the reward under the state-action occu-
pancy distribution. We show interesting properties of this risk-measure and we
obtain monotonical improvement bounds. Exploiting these result, we also devise
a pratical TRPO-like algorithm, which we show to be effective in deriving approx-
imated Pareto frontiers for the mean-volatility trade-off, on a complex real-world
based financial task. The content of this chapter has been published in (Bisi et al.,
2020c).

• In Chapter 6 we analyse the finite-sample complexity of an actor-critic algorithm
optimizing the mean-volatility trade-off. We propose two general methods for pol-
icy evaluation, the direct approach and the factored one, obtaining a finite sample
bound for the critic. By extending the analysis of (Xu et al., 2020b) to the mean-
volatility case, we obtain a result for the actor-critic algorithm, bounding the sam-
ple complexity needed to reach an ε-accurate stationary point. The content of this
chapter has been accepted as a conference paper for AISTATS 2022.

5



i
i

“output” — 2022/2/22 — 20:37 — page 6 — #14 i
i

i
i

i
i

Chapter 1. Introduction

Finally, Chapter 7 summarizes the contribution of this work, highlighting its main lim-
itations and indicating some possible future directions. Additional results and proofs,
which have been omitted from the main work, can be found in Appendix A, while some
further preliminary work about mean-volatility can be found in Appendix B.

6
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CHAPTER2
Reinforcement Learning

2.1 Introduction

A sequential decision process models the interaction of an agent with an environment.
Each interaction is composed by the following steps:

• the agent receives an observation from the environment;

• the agent chooses an action;

• the environment, influenced from the chosen action, transitions to a new state,
according to its dynamics;

• the environment produces a reward.

This loop repeats while the agent is in the condition of interacting with the environment.
In this chapter, we will review the main theoretical results regarding the mathematical
tool used to model these interactions, that is the Markov Decision Process. We will also
study the main exact methods which can be employed when the model is known.

In case the model is not available instead, reinforcement learning methods allow to
learn the best solution directly from the interactions with the environment. We will
describe the main RL ideas and settings, surveying some of the most important ap-
proaches. This introduction has the purpose to present the fundamental RL tools that
will be employed in the next chapters, thus, it does not claim to be complete. We in-
vite the reader to refer to (Sutton and Barto, 2018; Bertsekas, 2019; Agarwal et al.,
2019; Szepesvári, 2010) for an extensive review of the main aspects of reinforcement
learning.
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Chapter 2. Reinforcement Learning

2.2 Markov Decision Processes

Sequential decision making problems are typically modelled under the formalism of
Markov Decision Processes (MDP) (Puterman, 2014). This framework derives from
the seminal work by Bellman (1954). The main assumption of this model is that the
state is completely observable1 and markovian. The latter feature means that dynamics
depends only on the current state and on the chosen action, and does not present any
dependence on the previous history. We restrict our attention to the case of discrete-time
MDPs, where time is conceived as a discrete set of instants called decision time-steps.

Definition 2.2.1 (Markov Decision Processes (Puterman, 2014)). A discounted Markov
decision process (MDP) is a tuple M = (S,A, P, R, µ, γ), where:

• S is a measurable state-space, containing all the states the agent may visit;

• A is a measurable action-space, containing all the actions the agent may take;

• P : S ×A → ∆(S) is the transition kernel;

• R : S ×A → R is the reward function;

• µ : S → ∆(S) is the initial-state distribution;

• γ ∈ [0, 1) is the discount factor;

Here ∆(S) denotes the set of probability measures over S . The decision process
works as follows. First, the initial state s0 is drawn from µ. Then, the agent takes
an action a0, it transitions to a new state s1 ∼ P (·|s0, a0), it receives the reward
r1 = R(s0, a0), and so on. As it may be noticed, the transition depends, once the
action is chosen, only on the current state, independently from the previous ones. This
memorylessness feature is known as the Markov property. The sequence of states, ac-
tions and rewards up to a certain time-step t is called the history and it can be defined
as:

Ht := (s0, a0, r1, s1, a1 . . . , st, rt).

We define the set of such histories as Ht. The interaction between the agent and the
environment lasts for a certain horizon T , which can be either finite (T <∞) or infinite
(T =∞): in this thesis we focus on the latter case. Accordingly we define as trajectory
the (possibly infinite) history τ = HT , and the set of all possible trajectories as T .
Given a certain discount factor γ, we define the return function Gγ : T → R of any
trajectory τ as:

Gγ(τ) :=
T∑
t=0

γtrt+1,

where γ is dropped when clear from the context. We shall also consider the following
standard assumption on the boundedness of the rewards.

Assumption 1 (Bounded Rewards). The reward function is uniformly bounded, i.e.,
there exists a finite constant Rmax > 0, such that:

‖R‖∞ = sup
(s,a)∈S×A

|R(s, a)| ≤ Rmax

1When this is not the case, the correct framework is Partially Observable MDPs (POMDP) (Monahan, 1982)
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2.2. Markov Decision Processes

There is a class of MDPs, which we will refer to in some cases, for which each
sequence of states eventually ends in an absorbing (self-loop) zero-reward state. These
MDPs are called episodic and we can consider for them an (effective) horizon T = T̂ ,
where T̂ is the first time the agent encounters the absorbing state. When state and
action spaces are discrete sets, we call the MDP finite, otherwise we call it continuous.

2.2.1 Decision Rules and Policies

A decision rule is an action selection procedure for each state at a specified decision
epoch t. Based on their domain and codomain, decision rules are classified as follows:

• history-dependent randomized (stochastic): dHR : H → ∆(A);

• history-dependent deterministic: dHD : H → A;

• Markovian randomized (stochastic): dMR : S → ∆(A);

• Markovian deterministic: dMD : S → A;

where ∆(A) denotes the set of probability measures overA, andH is the set of histories
at each possible time-step 0 ≤ t ≤ T . A policy is defined as a sequence of decision
rules:

π = (d1, d2, . . . , dT−1). (2.1)

Policies are called non-stationary if the decision rule may change at each step, and they
are labelled instead as stationary if the decision rule is always the same2. We further
define the following policy sets:

• the set of all non-stationary policies, whose decision rule may be history-dependent
and randomized ΠHR;

• the set of stationary policies whose unique decision rule is Markovian and ran-
domized: ΠSR;

• the set of stationary policies whose unique decision rule is Markovian and deter-
ministic: ΠSD.

Fixing a policy π ∈ ΠSR induces the (discounted) state-occupancy measure or on-
policy distribution :

dπµ(s) := (1− γ)

∫
S
µ(s0)

∞∑
t=0

γtpπ(s0
t−→ s) ds0, (2.2)

where pπ(s0
t−→ s) is the probability of reaching state s in t steps from s0 following pol-

icy π. This distribution measures the discounted probability of visiting a state at some
point of the interaction, by employing a certain policy. Moreover, the complete knowl-
edge of the MDP and the current policy is sufficient to determine also the distribution
of the (sub-)trajectories of length T :

pπ(τ) = µ(s0)
T−1∏
t=0

π(at|st)P (st+1|st, at). (2.3)

2Since in this work the decision rule is the same in all time-steps, we always use the two terms interchangeably.
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Chapter 2. Reinforcement Learning

2.2.2 Performance Measures: Value Functions and Expected Return

The object of interest of RL is the return, a quantity that each RL agent wants to be as
high as possible. In particular, the focus of standard risk-neutral reinforcement learning
is the expected return. Value functions are a core concept in this discipline, since they
allow to map a state or a state-action pair to the corresponding expected value of the
return, conditioning the trajectory to start from the target state or state-action pair. The
state-value function (or, simply, value function) is, more formally, defined as follows.

Definition 2.2.2 (State Value function). Let π be a policy and s be any state. The value
function Vπ : S ×A → R is:

Vπ(s) := E
at∼π(·|st)

st+1∼P (·|st,at)

[
T∑
t=0

γtR(st, at)|s0 = s

]
= E

τ∼pπ(·)
[G(τ)|s0 = s] . (2.4)

We define also the state-action value function, sometimes simply called Q-function or
action-value function.

Definition 2.2.3 (Action-Value function). Let π be a policy and s be any state. The
action-value function Qπ : S ×A → R is:

Qπ(s, a) := E
st+1∼P (·|st,at)
at+1∼π(·|st+1)

[ ∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
. (2.5)

The difference between these two functions for each state-action pair is the so-called
advantage function:

Aπ(s, a) = Qπ(s, a)− Vπ(s), (2.6)
and it measures the advantage of deviating from the current policy for one single step.
Value functions allow to measure the value of each state (or state-action pair), however,
one may be interested in evaluating some overall performance according to a certain
distribution over the state space.

Definition 2.2.4 (Expected Discounted Return). The expected discounted return from
a distribution ρ and following a policy π is:

Jρ(π) :=

∫
ρ(s0)Vπ(s0) d(s0). (2.7)

Typically, this distribution ρ is the initial state distribution µ. Sometimes we want
to learn or to approximate a value function using some function fV : S → R or
fQ : S × A → R: in those contexts we call also those functions, respectively, value
or action-value functions, even if they do not actually match the expected return of
any real policy. Importantly, value functions have a fundamental role in performance
optimization, since they can be the starting point for policy improvement. Any function
fQ, indeed, may be associated to a special kind of policy, called greedy policy.

Definition 2.2.5 (Greedy Policy). Given any function fQ : S × A → R, we define
π̄ ∈ ΠSD as greedy policy if:

∀s ∈ S : π̄(s) := arg max
a∈A

fQ(s, a) (2.8)

10
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2.2. Markov Decision Processes

2.2.3 Optimality Criteria

The first optimality criterion we describe for the discounted case is the standard one
(Puterman, 2014).

Definition 2.2.6 (Optimality). A history-dependent policy π? ∈ ΠHR is optimal if:

∀s ∈ S : Vπ?(s) = sup
π∈ΠHR

Vπ(s). (2.9)

While, according to this definition, optimal policies belong to ΠHR, it is possible to
restrict our focus to ΠSR, since in the discounted setting it is always possible to derive a
stochastic Markovian policy that has the same value function as any history-dependent
one (Puterman, 2014). It is possible to define also the optimal value function and the
optimal action-value function as:

V ∗(s) := Vπ?(s), (2.10)
Q∗(s, a) := Qπ?(s, a). (2.11)

A different approach consists in considering as optimal all the policies that optimize
the expected discounted return from some distribution.

Definition 2.2.7 (Jρ-optimality). A policy π? is Jρ-optimal if:

π? = arg max
π∈ΠSR

Jρ(π). (2.12)

It is easy to see that optimal policies are also Jρ-optimal for any distribution ρ, while the
converse is not necessarily true. The latter definition allows to measure the optimality
trough a single index, hence, it is more suitable for policy search approaches.

2.2.4 Bellman Equations and Operators

Value functions enjoy fundamental recursive relations called Bellman equations.

Proposition 2.2.8 (Bellman Equations (Bellman, 1954)). Let π ∈ ΠSR, then:

Qπ(s, a) = R(s, a) + γ

∫
S
P (ds′|s, a)Vπ(s′), (2.13)

Vπ(s) =

∫
A
π(da|s)Qπ(s, a). (2.14)

To better understand the properties of such equations, it is useful to define some
appropriate operators.

Definition 2.2.9 (Bellman Expectation Operators). Let π ∈ ΠSR and fV : S → R, then
the Bellman expectation operator for the value function is:

(T πfV )(s) :=

∫
A
π(da|s)

(
R(s, a) + γ

∫
S
P (ds′|s, a)fV (s′))

)
, (2.15)

while, being fQ : S × A → R, the Bellman expectation operator for the action-value
function is:

(T πfQ)(s, a) := R(s, a) + γ

∫
S
P (ds′|s, a)

∫
A
π(da′|s′)fQ(s′, a′), (2.16)

11



i
i

“output” — 2022/2/22 — 20:37 — page 12 — #20 i
i

i
i

i
i

Chapter 2. Reinforcement Learning

These operators are linear and they are γ-contractions under the L∞-norm (Puterman,
2014). Thanks to the Banach fixed point theorem (Banach, 1922), each of them ad-
mits a unique fixed-point: they are, respectively, the value and action-value functions.
Therefore equations (2.14) and (2.13) can be re-written as the fixed point equations:

Vπ = T πVπ, (2.17)
Qπ = T πQπ. (2.18)

Optimal value functions also enjoy useful recursive relations and operators.

Proposition 2.2.10 (Bellman Optimality Equations, Bellman (1954) ). Let π ∈ ΠSR,
then:

Q?(s, a) = R(s, a) + γ

∫
S
P (ds′|s, a)V ?, (2.19)

V ?(s) = sup
a∈A

Q?(s, a). (2.20)

Definition 2.2.11 (Bellman Optimality Operators). Let π ∈ ΠSR and fV : S → R,
then the Bellman optimality operator for the value function is:

(T ?fV )(s) := sup
a∈A

(
R(s, a) + γ

∫
S
P (ds′|s, a)fV (s′))

)
, (2.21)

while, being fQ : S × A → R, the Bellman optimality operator for the action-value
function is:

(T ?fQ)(s, a) := R(s, a) + γ

∫
S
P (ds′|s, a) sup

a′∈A
fQ(s′, a′), (2.22)

It can be shown that these (non-linear) operators are γ-contractions for the L∞ norm
too, moreover, they enjoy a monotonicity property (Puterman, 2014). In fact, for any
pair of value functions (f, f ′), defined as above, it holds that:

∀s ∈ S : (T ?f)(s) ≥ (T ?f ′)(s), (2.23)

and similarly for action value functions. The fixed points of these contracting operators
are, respectively, V ? and Q?.

A policy which is optimal (according to Equation 2.2.6) can be obtained by acting
greedily w.r.t. Q?. These result allow to show that one can always retrieve an optimal
policy which is stationary, Markovian, and deterministic (Puterman, 2014, Theorem
6.2.7).

2.2.5 Exact Solution Methods for Finite MDPs

In this section we describe some exact solution methods for finite Markov Decision
Processes, that are based on a complete knowledge of the MDP. All of these approaches
exploit the dynamic programming principle by means of the Bellman equations. The
tasks these methods aim at solving are two:

• policy evaluation, which consists in determining the value function given a certain
policy;

12
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2.2. Markov Decision Processes

• policy/value optimization, which amounts to finding the optimal policy (or value
function) for the MDP.

The algorithms we show here, together with their properties, are taken from (Puterman,
2014).

Policy Evaluation

As shown in Equations (2.17) and (2.17), value functions of a certain policy π ∈ ΠSR

are the fixed points of the Bellman Expectation Operators T π. Since we assumed finite
MDPs, we can re-write our quantities according to matrix notation with:

• r: the reward vector, of lenght |S|, in which each i-th component corresponds to
the expected reward of the i-th state:

∫
a∈A π(da|si)R(si, a);

• v: the value function vector, in which each component corresponds to the value of
a state, which has then length |S|;

• P π the transition kernel matrix for the action-state transition kernel P and the
policy π which has dimension |S| × |S|.

Bellman equation (2.14) can be written as:

Vπ = r + γP πVπ, (2.24)

which amounts to a linear system of equations, hence, it can be solved in closed form3

Vπ = (I − γP π)−1r. While this approach allows to obtain the exact value function
for the policy, matrix inversion may be computationally expensive or unfeasible based
on the size of the state space. A possible alternative consists in using an iterative
approach, which is based on the repeated application of the T π operator, corresponding
to the following update:

Vk ← r + γP πVk−1. (2.25)

Since the operator is a γ-contraction, then it is possible to upper bound the error w.r.t.
the true value function at each iteration with:

‖Vk − Vπ‖∞ ≤
1

1− γ ‖Vk − Vk−1‖∞,

starting from any value function V0 (Puterman, 2014). Therefore, one can obtain a
value function approximation to the true value function with the desired precision ε, by
stopping when

‖Vk − Vk−1‖∞ ≤ ε(1− γ),

or one can decide to continue until complete convergence, by setting vk = vk−1 as
termination criterion. The convergence in a finite number of steps is guaranteed in
finite MDPs.

Policy and Value Function Optimization

We present the two main algorithms used for the exact solution of finite MDPs: value
iteration and policy iteration.

3It can be shown that (I − γPπ)−1 exists (Puterman, 2014, Appendix C4).
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Chapter 2. Reinforcement Learning

Value Iteration While the operator T π offers a straightforward ways to estimate the
value function, the Bellman Optimality Operator T ? can be used to estimate the optimal
value function, hence, solving the MDP. Unfortunately, since the Bellman Optimality
Equations (2.21) and (2.22) are not linear, a solution in closed form does not exists.
However, it is still possible to iteratively apply T ? for approaching the optimal value
function up to the desidered accuracy, as for the previous policy evaluation method.
With this technique, known as value iteration, one may solve the MDP by repeatedly
applying the update rule:

Qk = T ?Qk−1 (or Vk = T ?Vk−1).

The optimal policy may be retrieved by acting greedily w.r.t. the Q-function4.

Policy Iteration An alternative approach for optimization consists in alternating policy
evaluation and policy improvement steps, and takes the name of policy iteration. While
policy evaluation may be performed with any of the approaches described in Section
2.2.5, the policy improvement steps simply corresponds to computing the greedy pol-
icy (see Definition 2.2.5) w.r.t. the current policy value function. This process yields
a sequence of Markovian deterministic policies, with monotonically improving value
functions, which is guaranteed to converge to the optimal solution in finite time.

2.3 Learning the Optimal Solution with Reinforcement Learning

Exact approaches assumes the full-kwowledge of the MDP and requires states and ac-
tion to be finite5, however this is not always the case, especially in real-world problems.
Typically, the state space (or also the action one) may be continuous or just very large.
Moreover, some part of the model as the transition kernel or the reward function, may
be unknown. These characteristic may prevent the application of exact methods, or
make them inefficient. Reinforcement Learning(Sutton and Barto, 1998) deals with the
two problems of learning how to predict value functions for some given policy, and
how to control in the best possible way MDPs which cannot be solved with exact meth-
ods. These complementary tasks can be solved with different approaches based on the
contexts the learning task is framed in. A typical classification for the main RL settings
can be provided by means of the following dichotomies:

• Prediction and Control. The policy evaluation task is also called prediction in the
RL context, in order to highlight the approximate nature of the estimate. Policy
or value function optimization, instead, are known as control (Sutton and Barto,
2018).

• Model-Free and Model-Based. Model-based approaches (Deisenroth and Ras-
mussen, 2011; Nagabandi et al., 2018) aims at estimating either the transition
model or the reward one, in order to then solve the MDP by using exact solutions
or approximated ones. On the other hand, model-free techniques work without
the necessity of estimating a complete model, but they have as the object of their
learning task the value function or the policy itself.

4If the value function is computed instead of the action-value function one, one needs to compute theQ-function with Equation
(2.16), which is always possible when we know the model.

5Extensions are possible for compact action set, (Puterman, 2014, Section 6.4.3)
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2.3. Learning the Optimal Solution with Reinforcement Learning

• Online and Offline. Online approaches (Williams, 1992; Schulman et al., 2017)
consider a scenario in which the agent learns while interacting with the environ-
ment. This means that, at each timestep, the agent may receive new samples from
the environment which may be useful for the learning task. In an offline setting6

(Lange et al., 2012; Ernst et al., 2005b), instead, all the samples are assumed to be
available from the beginning of the task and no further interaction with the envi-
ronment is possible. An intermediate setting is possible, where the interaction is
limited, but it allow to periodically produce new batch of samples: this setting is
called semi-batch.

• On-Policy and Off-Policy. The learning task, either prediction or control, does
not need necessarily to target the current policy. An agent may interact with the
environment with some policy and learn some information on another one. For
instance, the policy used to interact may be explorative, hence, more effective
in gathering the information necessarily for the learning process than the target
one. When the target and the behavioral policies coincide, the setting is called
on-policy Williams (1992), otherwise it is called off-policy (Watkins and Dayan,
1992; Ernst et al., 2005b; Silver et al., 2014; Schulman et al., 2017).

• Tabular and Function Approximation. When the MDP is finite, the setting is also
called tabular, since we may imagine value functions and policies as tables (or
matrices). In case the state-action space is infinite, this view is not valid anymore,
it is not even possible to observe each state-action pair once. In such situations,
one has to resort to function approximation for estimating the value function, or
the policy, in unseen state-action pairs, generalizing what it has been learned for
the more similar ones.

• Value-Based, Policy-Based and Actor-Critic. Value-based (or critic-only) methods
(Ernst et al., 2005b; Mnih et al., 2015) tries to learn the optimal value function
as it happens in the exact case for value iteration (Section 2.2.5). They usually
try to apply the dynamic programming principle by means of temporal-difference
learning (Sutton and Barto, 1998). Policy based ones (sometimes called actor-
only), instead, aims at directly finding the optimal policies, typically w.r.t. the
Jρ criterion of Definition 2.2.7 (Williams, 1992; Schulman et al., 2015a, 2017;
Papini et al., 2017). They usually do not exploit the value function, but they
search instead for the optimal solution in the parameter space (e.g. following a
gradient). The combination of the two approaches results in a very effective class
of algorithms called actor-critic, which try to combine the best from both worlds.

In the following sections we will introduce some of the main approaches for tabular
(Section 2.4) and function approximation (Section 2.5) reinforcement learning, for what
concerns both the prediction and control tasks. In this thesis work we will only focus on
model-free RL, hence, we will not cover model-based approaches in this introduction.

6It is also known as batch setting.
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Chapter 2. Reinforcement Learning

2.4 Reinforcement Learning: Tabular Methods

Here we review some of the main prediction and control methods for tabular reinforce-
ment learning. This setting considers only finite MDPs and, although restrictive, it is
fundamental to understand some basic principles which can then be extended in the
function approximation case. Most of the content exposed here is taken from (Sutton
and Barto, 1998).

2.4.1 Prediction

In a prediction task, the goal is to learn the expected value of the return by following
some fixed policy π, either starting from a single state (the value function Vπ), or from
a distribution ρ of them (Jρ(π)). In either case, the possible approaches are mainly two:
Monte-Carlo and Temporal Difference (TD) learning. The first one allows for unbiased
estimate, but it suffers large variance, while the second one introduces some bias, but
permits to reduce variance. This trade-off can be regulated in a smooth way thanks to
hybrid methods as the n-step TD and TD(λ) algorithms.

Monte-Carlo Prediction Monte-Carlo methods are based on a straightforward averaging
the collected samples to estimate their mean. Let’s consider, for instance, the Jρ(π)
Monte-Carlo prediction task. Given a batch of N trajectories with length T , obtained
starting from a distribution ρ and following the policy π, an estimator for Jρ(π) can be
provided by:

Ĵρ(π) :=
N−1∑
i=0

G(τi) =
n−1∑
i=0

T−1∑
t=0

γtri,t+1.

Since it is the average of i.i.d. samples of the G random variable, it is an unbiased
estimate with mean E[Ĵρ(π)] = Jρ and variance Var[Ĵρ(π)] = Var[Ĵρ(π)]

n
. With n→∞

the variance goes to zero, hence, the estimator coincides with Jρ(π) and it is, thus,
consistent. By starting from a single state instead of from a distribution of them, one
can find an unbiased and consistent estimate of the value function, called first-visit
estimator. One might even consider also all the partial returns starting from each visit
of the state of interest. The resulting estimator is called every-visit and it is no longer
unbiased, but it enjoys lower variance.

TD prediction Unfortunately, Monte-Carlo estimators cannot learn from incomplete
trajectories, hence, they are not suitable for online-learning tasks. Moreover, the large
variance they suffer may be an issue when the available samples are few. Temporal
difference methods (Sutton, 1984) allow to tackle this issue by estimating the value
function in an iterative way, using previous estimates for computing the new ones. This
approach, reminiscent of iterative policy evaluation, is also known as bootstrapping.
All TD prediction methods employ an update rule with this common form:

Vk+1(st)← Vk−1(st) + α[Gt − Vk−1(st)], (2.26)

where Gt is some estimator of the value function starting from st, also known as the
target, t is the current timestep and k is the current iteration of the learning process.
Let’s τst be the sampled trajectory starting from st. By properly setting α, and by

16



i
i

“output” — 2022/2/22 — 20:37 — page 17 — #25 i
i

i
i

i
i

2.4. Reinforcement Learning: Tabular Methods

setting Gt = G(τt), the method reduces to Monte Carlo every-visit update. Using
instead G1

t = Rt+1 + γVk−1(st), one obtains the TD(0), or one-step TD, update rule:

Vk+1(st)← Vk−1(st) + α[Rt+1 + γVk−1(st+1)Vk−1(st)]. (2.27)

The term Gt−Vk(st) is called TD-error, and it measures the difference between the old
estimate for the value function and the next value, which combines the new available
samples to the bootstrap. Another advantage of TD consists in exploiting the structure
of the problem, by taking advantage of the Markovianity of the state (when present)
by means of approximated Bellman updates. In order to trade-off between the bias
introduced by using TD and the high variance of Monte Carlo estimates, a possible
hybrid target is the n-step TD one:

Gn
t =

n−1∑
i=0

γiRt+i+1 + γnVk(st+n).

One can also exponentially average among n-step TD updates to obtain the TD(λ)
target:

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gn
t ,

for some coefficient λ regulating the trade-off. When λ = 0 we recover TD(0) updates,
while with λ = 1 we have the Monte Carlo one. While Gλ

t would require in princi-
ple complete trajectories, it is possible to show that properly weighting updates using
eligibility traces allow to apply Gλ

t also in an online way.

2.4.2 Control

Control methods have the goal of finding the optimal policy or the optimal value func-
tion. In a tabular context it is still possible to adopt the traditional optimality definition
(see Definition 2.2.6), hence, trying to maximize the value function in each state. Here
we review two of the most relevant tabular control methods: SARSA and Q-Learning.
They can be seen, in a sense, as the TD version of, respectively, policy and value
iteration. However, RL methods have some crucial differences w.r.t. their dynamic
programming counterparts:

• updates are based on samples and not on expectation, hence, they introduce esti-
mation errors;

• samples needs to be actively gathered by the interaction with the environment,
while expectation are taken thanks to the knowledge of the model.

Therefore, RL agents are forced to continuously explore the environment, trying to im-
prove their value function estimates, but possibly renouncing to exploit the information
they have to gain some reward. This trade-off they have to face is known as exploration-
exploitation dilemma. In order to correctly balancing between these two needs, there
are two main options:

• in an on-policy setting: forcing the policy used by the agent to be exploratory;
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Chapter 2. Reinforcement Learning

• in an off-policy setting: use samples gathered from an explorative behavioral pol-
icy to make target policy estimates.

The methods presented here are representative of both these categories.

SARSA: On-policy TD Control The most common on-policy control algorithm is SARSA
(Rummery and Niranjan, 1994). This methods is an instance of Generalized Policy
Iteration, where TD prediction is used for the policy evaluation part. At each iteration i,
the agent follows some policy πi and obtain an interaction tuple (st, a,rt+1, st+1, at+1),
from which the algorithm name derives. This tuple is used to update the Q function in
the following TD way:

Q(st, at)← Q(st, at) + α (rt+1 + γQ(st, at)−Q(st+1, at+1)) , (2.28)

which can be seen as an application of an empirical Bellman Expectation Operation, in
which next state and reward are represented by samples and not computed by means of
a model.

For what concerns the policy improvement step, this one is modified to guarantee
that the resulting policy is exploratory enough. Greedy policies used in standard policy
iteration are indeed deterministic, hence, they do not allow to actively explore other
actions than the greedy one. A first alternative to the pure greedy is to use an ε-greedy
policy, which select a random action with probability ε and the greedy one with proba-
bility 1 − ε. Otherwise, one can resort to some soft-greedy policy, as, for instance the
soft-max policy7. This policy gives to each action a probability that is proportional to
exp

(
Q(s,a)
c

)
, where c ∈ R+ is a temperature parameter, which regulates the policy en-

tropy. In this way, action with an higher value function will be chosen more often, but
also the other one will have the chance to be chosen. Both these policies can be made
Greedy in the Limit with Infinite Exploration (GLIE) by assuring that either ε → 0 or
c → 0. As long as all state-action pairs are visited an infinite number of times, the
improving policy is GLIE, and the Robbins-Moore conditions on the learning rate are
met, SARSA is guaranteed to converge to the optimal policy Singh et al. (2000).

Q-Learning: Off-policy TD Control One of the most known off-policy tabular control
algorithm is Q-Learning. Being off-policy, Q-Learning interacts with the environment
with a behavioral policy πb and then uses the sample gathered by the latter to update
the target Q function. Each interaction with the environment allows to obtain a tuple
(st, at, rt+1, st+1)8, which is employed according to the following update rule:

Q(st, at) = rt+1 + γmax
a′∈A

Q(st+1, a
′). (2.29)

This rule amounts to the application of an empirical Bellman Optimality Operator, in
which next state and reward are represented by samples and not computed by means of
a model. Q-learning is guaranteed to converge under the assumption that every state-
action pair is visited infinitely often and under the Robbins-Moore conditions on the
learning rate (Singh et al., 2000).

7Also known as Boltzmann distribution
8Differently from SARSA update, here we do not care about the next action taken by the behavioral policy.
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2.5 Reinforcement Learning: Approximate Methods

Despite its usefulness in reasoning on the fundamental challenges of RL, the finite
MDP assumption is often restrictive for most real-world problems. In many of the pos-
sible RL application one has instead to deal with infinite state spaces, infinite action
spaces or both. An infinite state-action space is clearly problematic for a prediction
problem because it becomes impossible to visit infinitely often any state-action pair,
but, on contrary, it may be difficult even to guarantee to visit each pairs once. Possible
workarounds consists in using discretization or aggregation to map back the problem
to the finite MDP setting. However, based on how fine the discretization (or the aggre-
gation) needs to be, the resulting space cardinality may make tabular approaches very
ineffective. An alternative consists in using instead function-approximation to learn the
value function. This approach has the disadvantage of constraining the learned value
function to a specific function set, however, it has the great advantage of promoting
generalization on unseen state-action pairs. The regularity of the chosen function al-
lows, indeed, to predict similar outputs for similar state-action inputs, providing then
satisfactory values even for novel state-action tuples.

From the control viewpoint, standard policy improvement is still viable when only
the state space is infinite, and it allows to build the so-called value-based control ap-
proaches. However, applying GPI scheme becomes problematic when also the action
one is infinite. In this case, one needs to solve a (possibly non-concave) maximization
problem at each improvement step, which may be computationally hard, even discretiz-
ing. By restricing to parametric policy classes, it is possible instead to substitute this
step with a search in the parameter space through the minimization of a suitable loss.

Prediction with approximation and policy search benefits can be put together with
actor-critic architectures, which build optimization targets for policy search with TD
predictions. These algorithms allow at the same time to use continuous action space
and to employ a temporal difference approach for the generation of the learning targets,
which allows to trade-off between bias and variance, and to exploit the Markovianity
of the states.

2.5.1 Prediction with Approximation

Learning how to map a some input to a certain output by means of examples of the
desired mapping is a type of tasks which is the object of study by the machine learning
area called supervised learning (Bishop, 2014). While, in principle, any supervised
learning algorithm may be used in an approximated RL prediction task, the reinforce-
ment learning context has a peculiar characteristic that need to be addressed: non-
stationarity. This features, which complicates the direct application of state-of-the-art
supervised approaches, arises from two main sources:

• Policy improvement: each time the policy is improved, the target value function
changes. While it is possible to issue a new learning task at each policy update,
this may be costly in practice, and one may want to carry on the two processes at
the same time.

• Temporal difference learning: if the first issue can be somehow overcome, this
one cannot be easily avoided. Temporal difference learning introduces the value
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Chapter 2. Reinforcement Learning

function inside the target, creating a circular dependency which has to be explicitly
taken into account during the learning process.

For these reasons, RL prediction task needs ad-hoc strategies preventing non-stationarity
to cause oscillations or divergence in the learning process. In the following, we will
focus, for ease of exposition, on the prediction of the value function: the exposed con-
cepts can be extended to the action value function case in a straightforward way.

Mean Squared Value Error

A first difference w.r.t. to tabular prediction methods is that, we cannot hope anymore
for an equal level of value function accuracy for each state. Due to the approximated
value function generalization capabilities, what we learn from a particular state will
affect also other states predictions. Therefore, we need to specify a scalar objective for
our optimization, accounting for our preferences on the state space. The most natural
choice is the mean squared value error:

V E :=

∫
s∈S

ρ(ds) [Vπ(s)− Vω(s)]2 , (2.30)

where Vω is some parametric value function approximator, with parameter vector ω,
and ρ is some distribution on the state space, which weights the states based on our
interest on them. Typically, ρ is chosen to be the on-policy distribution (see Definition
2.2), but it can be any valid distribution. Ideally, one would want to find a global
optimum V E on the parameter space, however, this is only guaranteed if the objective is
convex, as it happens with linear approximators. In all the other cases, obtaining a local
optimum is the best one can hope for. In what follows we focus on two categories of
approaches for solving the aforementioned minimization: stochastic gradient descent
and fitting. While the first approach is more suitable for an online context, the second
one is probably the best choice when learning happens offline. For both cases, we will
mainly focus on the linear setting, for which strong guarantees can be proved.

Stochastic-gradient and Semi-gradient Methods

Stochastic gradient descent (SGD) methods are among the most widely used of all func-
tion approximation methods and are particularly appropriate for online reinforcement
learning. Their principle consists in adjusting the weight vector based on the gradient
of the error function:

∇ωV E =

∫
s∈S
∇ω [Vπ(s)− Vω(s)]2 = −

∫
s∈S

ρ(ds)2 [Vπ(s)− Vω(s)]∇ωVω(s).

(2.31)
However, since the expectation over the states is typically unfeasible to take, one can
instead consider an estimate of the gradient based on the available samples (hence
stochastic), which, in the simplest case of one sample reduces to the following update
rule:

ωt+1 ← ωt −
1

2
α∇ω [Vπ(s)− Vω(s)]2 = ωt + α [Vπ(s)− Vω(s)]∇ωVω(s) (2.32)
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2.5. Reinforcement Learning: Approximate Methods

where α is step-size (or learning rate) parameter. The gradient appearing in the update
is exact, since it employs the real value function, however, the latter is not available in
practice, and a substitute target should be used instead:

ωt+1 ← ωt − α [Ut − Vω(s)]∇ωVω(s). (2.33)

The target Ut may be built as for the tabular prediction case, thus, using Monte-Carlo
returns or TD ones. While the first one is an unbiased estimate of the true gradient, the
second one is not, hence, methods using this approach instantiated with TD are called
semi-gradient algorithms.

An interesting choice for function approximators concerns linear ones. A linear
function approximator vω can be defined as:

vω(s) = ω>φ(s), (2.34)

where φ(s) := (φ0(s), . . . , φd−1(s)) denotes the feature vector of some state s. A
semi-gradient linear TD(0) update rule can be derived as:

ωt+1 ← ωt −
1

2
α
[
rt + γω>t φ(st+1)− ω>t φ(st)

]
φt(s). (2.35)

Assumed that the system has reached a steady state, then we must have that Eωt+1 =
Eωt, hence, E

[
(rt + γω>t φ(st+1)− ω>t φ(st)

)
φ(st)] = 0. We obtain then that the

fixed point of this equation is:
ωTD = Ab−1, (2.36)

where A := E
[
φ(st)(φ(st)− γφ(st+1)>)

]
and b−1 := E[rtφ(st)]. This point, called

TD fixed point is in general different from the optimal ω for V E, which can be reached
by using the Monte-Carlo target instead of the TD one. The potential loss can be
bounded by:

V EωTD ≤
1

1− γ min
ω
V Eω. (2.37)

With γ near to one, the loss can become large: this bias is the price to pay to avoid the
variance that one would experience using the Monte-Carlo update.

Least Square Temporal Difference

If the learning process takes place offline, one can avoid using gradient methods to
gradually minimize the error, and directly fit the approximator according to the target
loss function. This principle is the basis of the Least Square Temporal Difference algo-
rithm (LSTD) (Boyan, 1999). Let’s consider a trajectory τ , sampled follow some policy
π, with lenght T . Generalizing the previous TD fixed point equation (2.36) terms:

Ât :=
T−1∑
k=0

φ(sk)
(
φ(sk)

> − γφ(sk+1)>
)

b̂t :=
T−1∑
k=0

φ(sk)Rk,
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Chapter 2. Reinforcement Learning

we can directly obtain the fixed point solution

ωTD = Âb̂
−1
. (2.38)

This algorithm has the advantage of extracting the maximum amount of information
from the given samples, and avoids any hyper-parameters tuning. On the other sides,
it requires a considerable amount of computation (O(d3), due to matrix inversion) and
it is not suitable for the online context in which the target may be non-stationary. It is
possible to show that this algorithm converges to the optimal solution with the required
approximation in finite time (Lazaric et al., 2012).

2.5.2 Value-Based Control

The main idea for approximated value-based control approaches consists in extending
policy or value iteration to sample based versions, respectively, Approximated Pol-
icy Iteration (Scherrer, 2014, API) and Approximated Value Iteration (Gordon, 1995;
Munos, 2005, AVI). Severeal theoretical works studied the properties of these approxi-
mated value-based algorithms, trying to determine how errors due to estimation and ap-
proximation impact the solution quality (Munos, 2005; Farahmand, 2011; Antos et al.,
2008; Munos and Szepesvári, 2008). Practical algorithms have also been developed
both for the online case, as Deep Q-Network (Mnih et al., 2015, 2016) and the offline
case, as Fitted Q-Iteration (Ernst et al., 2005b; Riedmiller, 2005). These techniques
have proved to be very effective in solving difficult benchmarks as the Atari games
(Mnih et al., 2015) or challenging real-world problems (Castelletti et al., 2010; Bisi
et al., 2020a; Riva et al., 2021). While usually adopted for discrete action spaces only,
extensions have been proposed for the continuous case (Antos et al., 2007; Gu et al.,
2016).

2.5.3 Policy-Based Control

The control approaches that have been reviewed so far were all based on the GPI
paradigm. However, as already pointed out, when the state space is continuous, taking
the maximum of the action value function over the action space may be computation-
ally hard, even if one decides to discretize. The alternative consists in employing policy
search techniques (Deisenroth et al., 2013), in order to look for the best policy in a re-
stricted policy space. Policy search objective is to find the optimal Jρ (see Definition
2.2.7) in a constrained parametric policy set:

max
πθ∈ΠΘ

Jρ(πθ). (2.39)

If ΠΘ is a space of stochastic and differentiable policies in θ, then the expected return
Jρ(πθ) is differentiable in θ as well. Stochasticity is needed for two main reasons:

• ensuring exploration, as already discussed in the previous sections;

• deriving a policy gradient update formula which is independent from the transition
model9 (Deisenroth et al., 2013, Section 2.4.1.2), hence suitable for model-free
RL.

9A possible alternative consists in using the Deterministic Policy Gradient (Silver et al., 2014)
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2.5. Reinforcement Learning: Approximate Methods

Provided these conditions are satisfied, the gradient ∇θJ(θ) can be computed thanks
to the following result.

Theorem 2.5.1 (Policy Gradient Theorem (Sutton et al., 2000b)). Let πθ ∈ ΠΘ, If πθ
is stochastic and differentiable in θ, then the policy gradient can be expressed as

∇θJ(θ) =
1

1− γE s∼dπθµ (·)
a∼πθ(·|s)

[Qπθ(s, a)∇θ log πθ(a|s)] , (2.40)

where ∇θ log πθ(·|s) is also known as the policy score function. Another formulation
for the policy gradient, based on trajectories, can be derived (Peters and Schaal, 2008):

∇θJ(θ) =
1

1− γEτ∼pπθ (·) [∇θ log pθ(τ)Gγ(τ)] . (2.41)

Having access to the gradient allow to cast the RL problem as a stochastic optimization
problem. A simple approach to solve this problem consists in performing plain gradient
ascent (Peters and Schaal, 2008). However, it is possible to refine this approach, for
instance, pre-multipling the gradient with its Fisher Information Matrix (Amari, 1998),
hence following the natural gradient direction (Kakade, 2002; Peters et al., 2005).

Policy Gradient Estimators

The policy gradient formula depends, luckily, only on quantities which can be esti-
mated from the environment, without having access to the model, but only to samples.
Different gradient estimators can be developed by relying on the above formulas.

REINFORCE The first gradient estimator has been formulated in (Williams, 1992).
Considering an offline context, in which one has access to a dataset of n trajectories
τi = (si0, a

i
0, r

i
1, . . . , s

i
n) of length T , the following estimator can be derived from Equa-

tion (2.41):

∇̂RF
θ J(θ) :=

1

n

n−1∑
i=0

T−1∑
t=0

∇ log πθ(ait|sit)Gγ(τi), (2.42)

where the relationship ∇ log pπθ(τi) =
∑T−1

t=0 ∇ log πθ(ait|sit) has been used. It can be
shown that subtracting a baseline to the return allows to consirably reduce the variance
of the estimator (Peters and Schaal, 2008).

PGT and G(PO)MDP The REINFORCE estimator, however, contains some redundant
terms that increase its variance. In fact, it multiplies action score also to rewards coming
from the past. Intuitively, this can be avoided, since there those reward are independent
from future actions. This is exactly what is done when the Policy Gradient Theorem
(PGT) estimator is used instead:

∇̂PGT
θ J(θ) :=

1

n

n−1∑
i=0

T−1∑
t=0

∇ log πθ(ait|sit)
T−1∑
k=t

γkrk+1 =
1

n

n−1∑
i=0

T−1∑
t=0

∇ log πθ(ait|sit)Gt,

(2.43)
which can be derived from Equation (2.40), and where we define the Monte-Carlo
estimate of Q as Gt =

∑T−1
k=t γ

krk+1. An equivalent estimator called G(PO)MDP
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can be also derived (Baxter and Bartlett, 2001). As for REINFORCE, it is possible
to further reduce the variance of this estimator by subtracting to the returns a state-
dependent baseline (Sutton and Barto, 1998). Although the optimal baseline may be
computed Peters and Schaal (2006), a common baseline choice is to subtract some
estimator of the value function Vω, if available.

Vanilla Policy Gradient

Performing gradient ascent using either REINFORCE or PGT (with some baseline to
reduce variance) allows to obtain a policy search algorithm called vanilla policy gradi-
ent. The learning rate α may be fixed or may follow a particular schedule (Kingma and
Ba, 2014).

2.5.4 Actor-Critic Control

PGT is an unbiased Monte-Carlo estimator of the gradient, however, it suffers from
the variance due to estimating Q with samples. Following the Temporal Difference
principle, one can instead estimate the Q-function at time t with a TD(0) target:

G0
t := rt+1 + γVω(st+1),

which can be clearly generalized to the TD(λ) case. As it happens for the prediction
task, this choice will bias the estimate but it will reduce the variance, hence, giving
in practice an advantage in term of convergence speed. Techniques which uses at the
same time a policy search approach and a bootstrapped target fall under the name of
actor-critic algorithms. A typical choice consists in employing at the same time the
value function estimate as baseline and as component of the bootstrapped target:

GA2C
t := rt+1 + γVω(st+1)− Vω(st).

Since this target is in practice estimating the advantage function (2.6), it is known as
Advantage Actor Critic (A2C) approach Sutton and Barto (1998). By carefully choos-
ing the value function approximator it is also possible to avoid to bias the gradient
estimate. Functions that enjoy this property are called compatible value functions. Suf-
ficient condition to be compatible has been shown in (Sutton et al., 2000b) to be:

∇ωfω(s, a) = ∇θ log πθ(a|s),

and
Es∼dµ,πθ (·)
a∼πθ(·|s)

((Aπθ(s, a)− fω(s, a))∇ωfω(s, a)) = 0.

These principles allows to obtain more refine approaches as the natural actor critic
algorithms (Peters et al., 2005; Bhatnagar et al., 2009; Melo and Lopes, 2008).

2.5.5 Safe and Trust-Region Approaches

Policy gradient algorithms are first-order methods, since they are not aware of any cur-
vature information, as the policy Hessian for instance. While it is possible, in principle,
to compute it (Papini et al., 2019), the Hessian is typically computationally expensive
to obtain. It is, thus, difficult to choose a proper step-size for policy gradient updates
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due both to their locality and to the noise contained in their estimate. A seminal work
by Kakade and Langford (2002) though, establish a fundamental relationship between
policies performances.

Lemma 2.5.2 (Performance Difference (Kakade and Langford, 2002)). Let π, π̃ ∈
ΠSR, then their performance difference is:

Jπ̃ − Jπ =

∫
S
dπ̃µ(s)

∫
A
π̃(a|s)Aπ(s, a) da ds, (2.44)

which, with further derivations, permits to lower bound the performance of some pol-
icy π̃ using the performance and the advantage function of π. This result motivated the
first safe RL approach, Conservative Policy Iteration (CPI), which optimized a lower
bound derived from the lemma, in order to obtain monotonical improvement guarantees
for approximated policy iteration. Later works extended this approach to policy search
an derived guarantees allowing to choose safe step-sizes for policy gradient updates
(Pirotta et al., 2013, 2015; Papini et al., 2017, 2019). This lemma has revealed im-
portant also in studying the dominance property of gradient approches in RL (Agarwal
et al., 2021), which are fundamental to devise global optimality guarantees.

Unfortunately, algorithms derived by a rigorous application of theoretical bounds
have typically a low learning speed, which make them unsuitable for high-dimensional
complex tasks. However, this stream of research revealed some basic principles that
inspired the development of more practical algorithms, generically called trust-region
approaches (Schulman et al., 2015a, 2017; Metelli et al., 2018, 2020). The ratio be-
tween these techniques is guaranteeing that the next target policy is close enough (from
a distributional point of view, thus, in trust-region) to the previous one, in order to ex-
ploit the samples previously gathered with the latter to offer a reliable estimate of the
target one.

Trust-Region Policy Optimization

Here we provide some details for one of the most successful state-of-the-art algorithms:
Trust Region Policy Optimization (TRPO) Schulman et al. (2015a). The main idea
consists in optimizing a surrogate of the real objective:

Lπ(π̃) = J(π) +

∫
S
dπµ(s)

∫
A
π̃(a|s)Aπ(s, a) da ds,

which directly derives from Lemma 2.5.2. Then the following lower bound holds:

J() ≥ Lπ(π̃)− CDmax
KL (π, π̃),

where C = 2εγ
(1−γ)2 , ε = maxs |Ea∼π̃(·|s)[Aπ(s, a)]|, andDmax

KL is the maximum KL diver-
gence over states. The practical algorithm does not exactly optimizes the lower bound,
but instead optimizes the surrogate objective with a tunable constraint on the KL be-
tween successive policies. In practice, this has revealed to be very effective, producing
good results in challenging high-dimensional complex environments (Schulman et al.,
2015b).
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2.6 Multi-Objective RL

Some class of control problems are difficult to frame as Markov Decision Process be-
cause they involve the optimization of multiple objectives. Two frameworks have been
developed to deal with this kind of problems, extending the original MDP one:

• the Multi-Objective MDP (MOMDP) framework: which involves the simultane-
ous maximization of multiple criteria;

• the Constrained MDP (CMDP) framework: which involves the maximization of a
single objective, but constraining the other ones.

In this section, we will describe some important results for the first class of problems,
which are discuss in depth in (Roijers et al., 2013). For a complete dissertation on the
second setting instead, the interested reader can refer to (Altman, 1999).

2.6.1 Multi-Objective MDPs

A multi-objective MDP (MOMDP) is an MDP in which the reward function R : S ×
A → Rn describes a vector of n rewards, one for each objective, instead of a scalar.
The expected return Jπ in an MOMDP specifies the expected cumulative discounted
reward vector

Jπ := E
s0∼µ(·)

st+1∼P (·|st,at)
at∼π(·|st)

[ ∞∑
t=0

γtrt

]
,

and the multi-objective value of a state is described as

Vπ(s) := E
st+1∼P (·|st,at)
at∼π(·|st)

[ ∞∑
t=0

γtrt|s0 = s

]
,

While according to the reward hypothesis (Silver et al., 2021) a scalar reward function
should be adequate for all sequential decision-making tasks, this view does not imply
that multi-objective problems do not exist. On contrary, this assumption would im-
ply that MOMDPs can always be converted into single-objective MDPs with additive
returns.

Definition 2.6.1 (Scalarization Function). A scalarization function f is a function that
projects the multi-objective reward R to a scalar value:

V ωπ (s) = f(Vπ(s),ω), (2.45)

where ω is a vector parametrizing f .

An example of scalarization function is the linear one f(V,ω) = ω>V. Once
defined the scalarization, one could try to identify a single-objective MDP with additive
returns such that, its expected reward is equal to V ωπ . However, there are scenarios in
which this is not always possible or desirable:

• unknown weights: in this case, weights are unknown a priori;
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2.6. Multi-Objective RL

• unknown scalarization: in this case the scalarization function cannot be easily
specified;

• non-linear scalarization: in this case function and weights are known, but the
non-linearity of scalarization make the process more difficult.

The MDP framework struggles to give an answer to any of those questions. Moreover,
since scalarization cannot be even specified in the first two cases, multiple policies
should be provided as solution, in order to provide alternatives to the decision maker.
We denote this scenario, grouping the first two settings, as the multiple policies one.

2.6.2 Optimization Criteria for MOMDPs

In order to select the best policies in the set, an optimization criterion has to be formu-
lated.

Definition 2.6.2 (Undominated Policies). For an MOMDPM and a scalarization func-
tion f, the set of undominated policies, and a set of policies Π̄, U(Π̄), is the subset of
all possible policies in Π̄ for which there exists a ω such that the scalarized value is
maximal.

This set contains all the undominated policies, hence, obtaining this set corresponds to
solving the multi-objective problem, when multiple policies are sought. However, as
noticed in (Roijers et al., 2013), it may contain redundant policies that, while optimal
for some weights, are not the only optimal policy in the set for w. A set containing at
least one optimal policy for each value of the scalarization weights is called a coverage
set.

Definition 2.6.3 (Coverage Set, (Roijers et al., 2013)). For an MOMDP M and a
scalarization function f, and a set of policies Π̄, a set CS(Π̄) is a coverage set if it is a
subset of U(Π̄) and if, for every ω, it contains a policy with maximal scalarized value.

Based on the considered scenarios and, possibly, the policy set one is interested in
(e.g.: deterministic or stochastic, stationary or non stationary...), it is possible to define
a taxonomy of MOMDP problems. While a complete picture is given in (Roijers et al.,
2013), here we limit to highlight two interesting results about the multiple policies case.
The first one is related to the case in which a linear scalarization function is employed
f(V,ω) = ω>V. Before presenting it, we need to define two other sets.

Definition 2.6.4. For an MOMDP M, and a set of policies Π̄, the convex hull (CH)
is the subset of Π̄ for which there exists a ω such that the linearly scalarized value is
maximal.

This set contains also redundant policies w.r.t. the linear scalarization criterion, hence,
a coverage set can be defined.

Definition 2.6.5. For an MOMDP M, and a set of policies Π̄, the set CCS(Π̄) is a
convex coverage set if it is a subset of CS(Π̄) and if, for every ω, it contains a policy
such that the linearly scalarized value is maximal.

The following proposition highlight how this set is fundamental for MOMDP optimiza-
tion.
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Proposition 2.6.6 (Linear Scalarization). When a linear scalarization function is ap-
plied f(V,ω) = ω>V to a MOMDPM, in the multiple policy case, CCS(ΠSD) is
sufficient for optimality.

Thus, if a linear scalarization is provided, the convex hull of stationary deterministic
policies is enough, but, maybe surprisingly, it is sufficient for a larger set of problems.

Proposition 2.6.7 (Monotonically Increasing Scalarization). When a monotonically in-
creasing scalarization function is applied to a MOMDPM, in the multiple policy case,
if stochastic policies can be employed, the convex hull of deterministic stationary poli-
cies is still sufficient for optimality.

This result was obtained in (Vamplew et al., 2009), where it was also shown that the
convex hull of deterministic stationary policies can be obtained by mixing policies from
CCS(ΠSD). Therefore, linear scalarization can be used also when the actual scalariza-
tion function is non-linear (but monotonically increasing) with the goal of recovering
the sufficient set of optimal policies. If instead only deterministic policies are sought,
one has to resort to the Pareto front solution concept.

Definition 2.6.8. A policy π Pareto-dominates another policy π′ when its value is at
least as high in all objectives and strictly higher in at least one objective. The Pareto
front is the set of all policies that are not Pareto dominated by any other policy.

Multi-Objective Reinforcement Learning (MORL) approaches try to find approxima-
tion of those solution set. Both value based (Castelletti et al., 2011) and policy based
(Parisi et al., 2014) approaches are available, with a recent growing interest in applying
hybrid solutions involving deep reinforcement learning and evolutionary methods (Xu
et al., 2020a).
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CHAPTER3
Risk-Aversion in Reinforcement Learning

3.1 Introduction

The object of interest of reinforcement learning is the discounted cumulated reward,
also called return, which has to be maximized by the agent. In particular, the standard
RL framework has the objective of maximizing the expected value of the return. How-
ever, there are contexts in which one is not only interested in the mean of the return, but
also in the extent to which the return random variable can variate around its mean. This
variability, usually studied in statistics by means of dispersion measures, is labelled
as risk in optimization contexts. An agent which is somehow influenced by the return
variability is called risk-sensitive. In case the agent exhibits a preference towards high
variability scenarios it is called risk-seeking, otherwise, if it prefers to keep the risk low,
it is tipically referred to as risk-averse. On the other hand, an agent which is indifferent
to risk, but simply wants to optimize the expectation of the return is named risk-neutral:
these kinds of agents are the focus standard reinforcement learning. While it would be
difficult to understand why one should want to explicitly prefer a risk-seeking policy
w.r.t. to a risk-neutral one, risk-seeking behaviors may be observed as a result of agent
trying to explore the state-action space.

A risk-averse preference is instead more understandable, since peculiar of human
(and animal) reasoning. This tendency is a well-established phenomenon, which is
fundamental for modelling decision-making in economics (Bernoulli, 2011), ethology
(Kacelnik and Bateson, 1996), and neuroscience (Platt and Huettel, 2008). It consists in
preferring more certain outcomes w.r.t. uncertain ones, even when uncertainty may be
connected to an higher profit on average. Recent studies have shown that such disparity
can be even spot at the neural level (Niv et al., 2012), with negative events weighed
more than positive ones, and with structures dedicated to distributional learning (Dab-
ney et al., 2020). Risk-aversion can also be seen as a distorted way of perceiving
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Chapter 3. Risk-Aversion in Reinforcement Learning

random events (Wang, 1996), giving more weight to the negative ones. The reason why
we study this kind of behavior is that there are contexts where variability may have
catastrophic effects. To see this, one can try to think of settings in which a single catas-
trophic event may preclude any successive trial. For a robot exploring the surface of an
unknown planet, a failure is sufficient to invalidate the entire mission. An investment
bank that loses a huge amount of money for a single wrong decision is going to fail, no
matter how much its past decisions were profitable. An autonomous car is expected to
drive safe always, and not “on average”. More in general, for all high-stakes applica-
tions as health-care, finance or autonomous driving, it is mandatory to select policies
that limits performance oscillations, because the price to pay for each deviation from
the nominal behavior is high.

While risk and safety may have several different meanings (García and Fernandez,
2015), in this chapter we specifically focus on the inherent risk. This kind of risk
captures the variability of the performance which is due to the inherent stochastic nature
of the environment, which is absent in deterministic environments (e.g. in board games
as chess), but present in many real applications. In particular, in what follows we will
describe the main approaches that have been developed for modelling risk, and we
will survey the techniques developed to solve each of the corresponding risk-averse
objectives.

3.2 Risk-Averse Objectives

In this section we analyse different approaches that have been developed for dealing
with risk-aversion. While finance literature has focused on developing functionals for
directly measuring risk, the economics one has instead studied how to express this at-
titude trough utility functions that can map uncertain outcomes to some certain equiv-
alent. Finally, control literature has instead explored worst case optimization or robust
control, which can be seen as an extreme degree of risk-aversion, in which one wants
to protect himself from the worst possible realization. As it will be shown, robust opti-
mization has connections with some risk-measures and utility functions.

Developing the concept of risk-measure has been an object of study for the finan-
cial mathematics literature. Formally, a risk-measure1 or risk-averse objective can be
defined as the following mapping:

η : G → R, (3.1)

where G is the is a set of all real valued function (return functions) on T , the set of all
possible trajectories. The convention is important here:

• The random variableGmay be intended as a cumulated cost to be minimized or as
a cumulated reward to be maximized depending on the context. While the control
literature usually adopts the cost convention, the finance one usually talks about
monetary gains, and considers maximizing them. In reinforcement learning both
views are present, with a preference towards the reward one.

1Sometimes, to be considered a risk-measure, a mapping of this kind is required also to enjoy a list of additional properties,
which we do not take into account in this work. Risk-measures are organized according to a particular taxonomy, based on
their mathematical properties, which is connected, but not overlapped to another stream of literature studying general deviation
(Rockafellar et al., 2006). Since our focus is the application of those concepts to reinforcement learning, in what follows things
will be kept simpler, borrowing from this field only the concepts that have been in practice applied to the RL framework.
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3.2. Risk-Averse Objectives

Table 3.1: Consider the two payment methods, A and B. With A, we pay $1,000 today (Day 0). With B, we
might pay $1,000 on each of the consecutive 20 days starting from today, but the payment is needed
only with probability 0.0475. The expected amount of total payment with B is $950, which is smaller
than the $1,000 with A. However, B would require a huge amount of $20,000 with nonnegligible
probability. Hence, decision makers who are averse to risk would prefer A to B. However, no utility
function can induce this behavior using DEU.

Day 0 Day 1 . . . Day 19 Probability
A $1K $0 . . . $0 1.0
B $1K $1K . . . $1K 0.0475

$0 $0 . . . $0 0.9525

• η as well may be seen as an risk to minimize, or as an objective to maximize.

Even inside the same area sometimes different conventions are used2. In this manuscript
we will keep the maximization convention for both the reward and the objective, in or-
der to avoid confusion, translating the results from literature in the appropriate way
when necessary3.

3.2.1 Utility Functions

One way to take risk into account consists in defining a function named utility that
maps an uncertain outcome to a certainty-equivalent. This approach has a long tra-
dition (Muliere and Parmigiani, 1993), and has been formalized in (Morgenstern and
Von Neumann, 1953). In these works, the utility framework is obtained as a result
of particular axioms, which should guarantee the rationality of the agents (though this
aspect has been criticized, for instance in (Allais, 1990)). A utility function may be
either a function of the reward or a function of the return U , generating the following
risk-averse objectives:

ηDEU := Eπ

[ ∞∑
t=0

U(rt)

]
, (3.2)

ηEUD := U−1Eπ

[
U

( ∞∑
t=0

rt

)]
, (3.3)

where we followed the convention of (Osogami, 2012a), in which objectives in the
form of (3.3) are called Discounted Expected Utility (DEU), while, if they have (3.3)
form, they are called Expected Utility of the Discounted return (EUD). In both cases,
using as a utility function the identity reduces the problem to the risk-neutral case. In
particular, for any utility function, DEUs can be seen as reward transformations of the
risk-neutral MDP, thus, their optimization does not require to adopt ad-hoc approaches.
On contrary, in general, the application of a utility function to the return outputs a new
problem which is not an MDP anymore. As shown in (Osogami, 2012a) and reported in
Table 3.1, using DEU is impossible to capture some risk-averse preferences though. In
fact, considering only the immediate reward, such functions cannot take into account
the utility of the cumulated rewards. The example in Table 3.1 shows that standard
MDPs alone struggle to be a good model for risk-averse contexts.

2The CVaR criterion is emblematic of this issue: in some case maximized, minimized in other ones.
3We notice that the term risk-measure is usually employed in minimization contexts from the finance literature.
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Figure 3.1: A different concavity in the utility function corresponds to a different attitude toward risk.
In a maximization perspective, a (strictly increasing) concave function weights more lower returns,
while the opposite happens with a convex one.

Taking into account the EUD, one can consider as a valid utility any strictly increas-
ing function such that its inverse exists. Considering a Taylor expansion of ηEUD, it can
be shown that (Bäuerle and Rieder, 2013):

ηEUD = U−1Eπ[U(G)] ≈ Eπ[G]− 1

2
lU(G)Var[G] (3.4)

where

lU(G) := −U
′′
(G)

U ′(G)
(3.5)

is the Arrow-Pratt function of absolute risk-aversion. The denominator is always posi-
tive, since U is increasing, while the numerator sign depends on U being either concave
or convex. In a maximization perspective, if U is strictly concave then the agent is risk-
averse, while if U is strictly convex then the agent is risk-seeking4. Figure 3.1 shows
these three kind of attitude towards risk, by means of utility functions with different
concavities. In the risk-averse case ηEUD is also known as the certainty-equivalent.

An equivalent theory has been developed in (Yaari, 1987) and further extended in
(Wang, 1996). Under some different axioms, the policy of a risk-averse agent behaves
as to maximize a distortion risk-measure h, since it distorts the distribution of the return
(Dabney et al., 2018b):

π(s) = arg max
a∈A

∫ ∞
−∞

G
∂

∂G
(h ◦ FG(s,a))(G) dG (3.6)

where h has to be a continuous monotonic function, and FG(s,a) is the cumulative dis-
tribution of the returns starting from state s and action a. The choice between these
two frameworks amounts to choose whether the behavior should be invariant to mix-
ing with random events or to convex combinations of outcomes (Dabney et al., 2018b;
Yaari, 1987).

4The two interpretations should be swapped with a minimization perspective
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3.2. Risk-Averse Objectives

Entropic Risk Measure A typical utility function is the exponential one:

U(G) = −1

λ
exp(−λG). (3.7)

In this case we have lU = λ, which reduces the Taylor approximation in Equation (3.5)
to the Variance penalized criterion. This particular version of the EUD criterion has
received large attention in the control literature (Howard and Matheson, 1972; Bäuerle
and Rieder, 2013; Osogami, 2012a,b; Nass et al., 2019; Marcus et al., 1997; Chung and
Sobel, 1986). Optimizing this utility is equivalent to pursuing the maximization of this
objective:

ηERMβ,θ = − 1

β
log E

τ∼pπθ (·)
[exp(−βG(τ))] , (3.8)

which is known as the Entropic Risk Measure (Föllmer and Schied, 2011). As pointed
out in (Mihatsch and Neuneier, 2002), for infinite horizon tasks with discounted for-
mulation, differently from the risk-neutral case, the optimal policy is non stationary in
general.

Other Utilities and Distortions Even if the exponential utility is the most common one,
many other ones have been developed. For instance, in (Bäuerle and Rieder, 2013) the
power utility function UP (G) = 1

λ
Gλ is suggested, which is risk-averse when λ < 1,

and risk-neutral for λ = 1. The latter is employed also in (Shen et al., 2014) in a
financial RL application, though with a modification of the expectation operator. In
(Moldovan and Abbeel, 2012) the authors optimize an ad-hoc utility, called Chernoff
functional, with favourable mathematical properties, and they show that the obtained
solutions are optimal also under the exponential utility.

For what concerns the distortion formulation, a possible distortion function is the
cumulative probability weighting (CPW):

Uλ(G) :=
Gλ

(Gλ + (1−G)λ)
1
λ

, (3.9)

which has been proposed in cumulative prospect theory (Tversky and Kahneman, 1992).
The work in (Wu and Gonzalez, 1996) found that the parameter value λ = 0.71 is the
close to match human subjects. This choice is neither globally convex nor concave:
for small values of G it is locally concave and for larger values of G it becomes lo-
cally convex. Other possible alternatives consists in a risk-measure proposed in (Wang,
1996)

UW (G)λ := N (N−1(G) + λ),

whereN is the normal distribution, and by the CVaR (see Section 3.2.3), which can be
also interpreted as a distortion measure.

3.2.2 The Mean-Variance Criteria

Another way to deal with risk consists in taking into account both the expected return
Jπ and its variance σπ to evaluate the performance of an agent. This idea traces back
to (Markowitz, 1952), a seminal work for modern porfolio theory. The central insight
of this work consists in recognizing that investors benefit from diversification because
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Chapter 3. Risk-Aversion in Reinforcement Learning

Figure 3.2: On the left the example reported in (Tamar et al., 2012b). On the right, the variance and
expected return values for each possible policy: non-convex regions are present.

it allows them to minimize variance. This kind of perspective, called Mean-Variance
analysis, is still widely adopted by the finance community, thanks to its simplicity and
ease of interpretation. Formally, with the term variance of the return we denote the
following quantity:

σ2
π := E

s0∼µ
at∼πθ(·|st)

st+1∼P(·|st,at)

( ∞∑
t=0

γtR(st, at)− Jπ
)2
 . (3.10)

However, the Mean-Variance trade-off does not match a single risk-averse objective, but
it represents instead a family of optimization criteria. We list here the most common
ones:

• The multi-objective optimization5 of the expected value objective (maximized)
and the variance one (minimized). In this case, one can be either interested in
solving the problem for a specific preference, or in retrieving the Pareto frontier
or an approximation for it.

• One of these constrained optimization problems:

max
π

Jπ s.t. σ2
π ≤ c1,

min
π
σ2
π s.t. Jπ ≥ c2, or

max
π

Jπ s.t. σ2
π ≤ c1 and Jπ ≥ c2, provided a solution exists

5This multi-objective problem cannot be mapped to a Multi-Objective MDP as formalized in Section 2.6.1
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3.2. Risk-Averse Objectives

• The maximization of the penalized objective:

ηπ,λMV := Jπ − λσ2
π. (3.11)

• The maximization of the Sharpe ratio6:

ηπS :=
Jπ
σπ
. (3.12)

These objective are not independent from each other of course, and some of them
are more general than others. For instance, if one had access to the Pareto frontier,
she would be able also to solve all the other problems. Similarly, iteratively solving
for many values of c1 and c2 one the constrained problems, one could also recover
the Pareto frontier with the desired precision, and the same is valid for the problem in
which both constraints are present (Mannor and Tsitsiklis, 2011).

Solving for the penalized objective in Equation (3.11) for many values of the pa-
rameter λ instead does not always allow us to obtain the complete frontier. To see this
consider the MDP shown in Figure 3.2, taken from (Tamar et al., 2012b). It can be no-
ticed that for this problem the Mean-Variance frontier presents concave regions. Thus,
differently from the MORL case (see Section 2.6.1), linear utilities, like the ones used
for the penalized criterion, cannot be employed to recover the frontier in its entirety.
In fact, by varying the parameter λ one can obtain all the points belonging to the con-
vex hull of the frontier, but one cannot recover the un-dominated points belonging to
the concave part of frontier, hence, losing some possibly interesting trade-off policies.
Finally, optimizing the Sharpe ratio, Equation (3.12), does not allow to regulate the
risk-aversion level and returns instead a single policy, which corresponds to a specific
point on the Mean-Variance frontier7.

Policy Evaluation and Improvement. This criterion was early considered also in the MDP
literature, taking to the formulation of a Bellman Expectation Operator for the variance
value function (Sobel, 1982). While the obtained equation is not linear as the classi-
cal one, policy evaluation w.r.t. variance can still be solved efficiently using dynamic
programming 8. In the same work the author also provides the Bellman Expectation
Operators for higher moments value functions. We recall here the relationship between
the variance and the second moment of any random variable X:

σ2 [X] = E
[
X2
]
− E [X]2 . (3.13)

This equation means that the second moment value function Bellman equation, in con-
junction with the standard value function one, can also be used for variance prediction.
This approach has been pursued with temporal difference approaches (Tamar et al.,
2016b; Sherstan et al., 2018).

However, things are more difficult for policy improvement. As noted in the same
work, the variance value function lacks a fundamental property called consistent choice

6We notice here that the objective involves the standard deviation and not the variance as the previous one. In finance, usually
this index is defined subtracting to the numerator some reference risk-free asset return

7This point has a special meaning in portfolio allocation: it is the tangency portfolio, which optimizes the allocation when a
risk-free asset is present.

8The procedure involves the inversion of two matrices instead of one.

35



i
i

“output” — 2022/2/22 — 20:37 — page 36 — #44 i
i

i
i

i
i

Chapter 3. Risk-Aversion in Reinforcement Learning

which is instead possessed by the standard value function and it is necessary to apply
dynamic programming techniques for policy improvement (Denardo, 1967). More re-
cently, it was shown in (Mannor and Tsitsiklis, 2011) that the solution of the mean-
variance constrained problem is indeed NP-hard. This result does not leave much hope
for the discovery of tractable approaches to obtain Mean-Variance global optima, but
does not prevent employing local approaches instead. A stream of risk-averse RL liter-
ature developed actor-critic algorithms for the solution of either the penalized criterion
(Tamar and Mannor, 2013; Prashanth and Ghavamzadeh, 2013, 2014) in Equation 3.11,
or the Sharpe ratio one (Moody and Saffell, 2001) in Equation (3.12).

Mean-Second Moment trade-off To circumvent the difficulties due to the optimization of
the Mean-Variance criterion, one could consider instead the trade-off between the first
and the second moment of the return (Kato and Nakagawa, 2020). It has been proved
in (Baron, 1977) that, under the assumption of an agent is rational, w.r.t von Neumann-
Morgenstern axioms, the two criteria are indeed equivalent. The key assumption is the
following one: if an agent is indifferent between two strategies (it has the same utility
for them), then it must be indifferent also to any lottery (convex combination) between
them. Removing this assumption, the problems are not equivalent anymore, and it may
be shown that a point on the Mean-Second Moment frontier may be dominated in the
Mean-Variance one when the latter is concave.

3.2.3 Coherent Risk-Measures

Measures of risk have been developed from financial mathematics to be used as extra
capital requirements to regulate the risk assumed by market participants. In simpler
terms, a risk-measure can be seen as the necessary amount of cash which is necessary
to avoid a failure, or, in general, an undesirable situation, given some underlying prob-
ability distribution over the possible outcomes. Therefore, having reserved the correct
amount of money to shield against the negative situations may allow to make accettable
any former unaccettable outcome. This notion of acceptable situations has been for-
malized in (Artzner et al., 1999), where a set of axioms to guarantee the rationality of
such measures has been derived. Considering G as the usual return random variable,
we say that a risk-measure η is a coherent risk-measure (CRM) only if it satisfies the
following properties:

A1) Translation Invariance: For all G and all real numbers α, we have η(G + α) =
η(G)− α.

A2) Subadditivity: For all G1 and G2, η(G1 +G2) ≤ η(G1) + η(G2).

A3) Positive homogeneity: For all λ ≥ 0 and all G, η(λG) = λη(G).

A4) Monotonicity: For all G1 and G2, with G1 ≤ G2, we have η(G2) ≤ η(G1).

Such axioms allow any CRM to fullfill some properties, for instance:

• Translation invariance ensures that adding the risk value to G brings the risk to
zero.

• Subadditivity avoids that merging creates extra risk.
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3.2. Risk-Averse Objectives

• Monotonicity tells that an outcome that is always more profitable than another
one, cannot be at the same time riskier.

Moreover, CRMs enjoy a representation theorem (Artzner et al., 1999), which allows
them to be characterized in the following way:

ηπ(G) = min
ξ:ξPπ∈U(Pπ)

E
ξ

[G] , (3.14)

where U(Pπ) is the so-called risk-envelope of the CRM, and we have adopted the maxi-
mization convention, differently from what is usually done in literature. Unfortunately,
some of the most common ways to characterize risk such as the Mean-Variance crite-
rion or the utility formulation (3.3), are not coherent according to this framework. We
will describe instead in what follows some examples of CRMs.

CVaR The Value-at-Risk (VaR) at level α ∈ (0, 1) of G is:

ρπVaR(G;α) := sup{x : Pπ {G ≤ x} ≤ α}. (3.15)

VaR is a popular risk measure, e.g., in finance, which identifies the worst α-quantile of
the return distribution. This measure, however, has the disadvantage of overlooking the
losses suffered beyond the quantile treshold. Moreover, due to its nature, it is unstable
to small variations of the parameter α. To overcome the issues of the VaR risk measure
the Conditional Value-at-Risk (CVaR)9 has been defined in Rockafellar et al. (2000) as:

ηπCVaR(G;α) = min
η∈R
{ρ− 1

α
Eπ
[
(G− ρ)−

]
}, (3.16)

where it can be shown that the former quantity is maximized at ρ = ρπVaR(G;α). When
no probability atoms are present, the previous definition is equivalent to the following
one:

ηπCVaR(G;α) := Eπ [G|G ≤ ρπVaR(G;α)] . (3.17)

This measure has the intuitive meaning of quantifying the losses encountered in the
tail of the distribution. Moreover, the CVaR, differently from VaR, is a CRM (Artzner
et al., 1999), and a distortion risk-measure (Wang, 1996).

Mean-Deviation and Mean-Lower-semideviation It is possible to show that axiom A4 rules
out the mean-variance penalized criterion from the CRMs. Consider two uniform ran-
dom variables G1 and G2, respectively with support [a, b] and [c, d], with a < b < c <
d. G2 is always greater than G1, hence it has a larger mean, but, if b − a < d − c, it
also has a larger variance. Therefore, one can find a risk-aversion factor that violates
the monotonicity assumption. One can consider alternatives to them mean-variance pe-
nalized criterion, by substituting the variance with another measure. Some candidates
are the return deviation σ or the return lower-semideviation σ−, which can be obtained,
respectively, by taking the square root from the variance or the semivariance, defined
as:

σ2
− := E

s0∼µ
at∼πθ(·|st)

st+1∼P(·|st,at)

( ∞∑
t=0

γtR(st, at)− Jπ
)2

−

 .
9CVaR has many names, it is also known as Expected Shortfall, Average Value at Risk, or Conditional Tail Expectation.
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Chapter 3. Risk-Aversion in Reinforcement Learning

Trade-off risk-measures as:

ηπ,λMD := Jπ − λσπ. (3.18)

ηπ,λML := Jπ − λσπ,−. (3.19)

are coherent only with bounded risk-aversion factor values. For ηMD and ηML the
valid intervals are, respectively, [0, 1

2
] and [0, 1]. The lower-semideviation, in particular,

is a downside risk-measure (Danielsson et al., 2006; Dhaene et al., 2004; Spooner and
Savani, 2020), since it accounts only for deviations that contribute unfavourably to risk.

Dynamic Markov CRM The risk measures taken into account so far are also called static,
since they do not consider the temporal structure of the random variable. Dynamic
risk-measures (Iancu et al., 2015) may be defined, by allowing the specification of a
different risk mapping for each time-step t: ηt : G → R. This is particularly useful
when one wants to guarantee the time-consistency of a risk-measure. Following (Iancu
et al., 2015), we define a dynamic risk-measure η as time-consistent when:

∀G1, G2, ηt+1(G1) ≥ ηt+1(G2)⇒ ηt(G1) ≥ ηt(G2). (3.20)

Static and time-inconsistent risk-measures do not fulfill this property, which may result
in irrational behaviors, as pointed out in (Osogami, 2012a; Iancu et al., 2015). The dy-
namic Markov Coherent Risk-Measures, introduced in (Ruszczyński, 2010), are defined
as:

ηT = E
τ∼pπ(·)

[rτ0 + γη(rτ1 + · · ·+ η(rt−1 + γη(rt)))] , (3.21)

where rt indicates the reward, and η is some static risk-measure which is applied stage-
wise. This compositional form allows a recursive estimation of the risk, and time
consistency. Moreover, it can be optimized with dynamic programming, by employ-
ing the risk-sensitive Bellman operator (Ruszczyński, 2010), in contrast to other risk-
measures.

3.2.4 Robustness

An algorithm is called robust when it can perform well even in the presence of small
perturbances in the model. Robust Markov Decision Processes (RMDP) are a worst-
case extension of the MDP setting, in which either the reward (Regan and Boutilier,
2012) or the transition model (Iyengar, 2005) (or both) is ambiguous or uncertain.
While the former case can be solved extending the linear program formulation available
for standard MDPs (Puterman, 2014), the latter one is more difficult to deal with, hence,
most of the robust RL literature focuses on it. The objective takes the following form:

max
π∈Π

min
P∈P

E
τ∼pPπ (·)

[G(τ)], (3.22)

where P = {P : ‖P − P̄‖ ≤ ψ} is the ambiguity set, provided a suitable norm. These
problems are NP-hard to solve in general (Wiesemann et al., 2013), but if one con-
strains nature separately for each state (Le Tallec, 2007) or each action pair (Nilim and
El Ghaoui, 2005a), the problem becomes solvable in polynomial time. These settings
are called, respectively, S-rectangular and SA-rectangular, and they can be optimized
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3.3. Solving Risk-Sensitive RL Tasks

using several value and policy iteration (Iyengar, 2005; Kaufman and Schaefer, 2013)
methods. However, such assumptions are very conservative, hence, some works tried
to relax them, introducing other kind of robustness (Tirinzoni et al., 2018; Mannor
et al., 2012; Goyal and Grand-Clement, 2018; Pinto et al., 2017; Nilim and El Ghaoui,
2005b; Xu and Mannor, 2010; Lim et al., 2013). Moreover, the linear programming
formulation may scale cubically with the number of states. Therefore, finding methods
that better scale with the problem size or that allow for function approximation (Tamar
et al., 2014) is still a challenging area of research.

3.2.5 Choosing the risk model

Given the plethora of available methods for modelling risk-aversion and evaluating
risk, it is natural to ask whether some approaches are better than other ones. We argue
that there is no definitive winner, but instead one should choose the most appropriate
solution for the selected context according to multiple criteria:

• rationality: if one wants to guarantee a behavior which is rational, under some
criterion, then one may choose to implement a utility that respects Von Neumann-
Morgensten axioms, or one can consider a CRM;

• time-consistency: employing static risk-measures does not allow to consider all
the possible risk preferences (Osogami, 2012a), hence, if consistency through dif-
ference time-steps is important, one should resort to apply a dynamic Markov
CRM;

• interpretability: while dynamic CRM enjoy nice mathematical properties, the
risk they represent is difficult to interpret and it entails the necessity of specifying
single period risk mappings for every future time-point. Classical criteria such as
Mean-Variance and ERM have instead a straightforward interpretation.

Finally, one should consider how hard is the chosen risk-averse optimization. In the
next section, the main techniques developed so far for the described objectives will be
described, highlighting the main challenges they pose.

3.3 Solving Risk-Sensitive RL Tasks

In this section we review some approaches which have been derived for optimizing the
risk-averse objectives presented in the previous sections. We classify these techniques
in four categories:

• Risk-Sensitive MDPs: Ad-hoc MDPs are developed to solve the particular prob-
lem, typically under robust constraints.

• Policy Gradient Optimization: Due to the impossibility of deriving effective
Bellman operators for some of these objectives, policy gradient optimization may
be adopted to find local solutions.

• Distributional RL: The distributional RL framework allow to directly model the
return distribution. This may be helpful for solving for risk-averse objectives that
correspond to distortions of such distributions.
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Chapter 3. Risk-Aversion in Reinforcement Learning

• Generalizations to RL framework: The standard RL framework may sound
somehow limited for these complex objective functions. Some works extend-
ing the framework to a more general form also contain risk-averse objectives as
special cases.

3.3.1 Risk-Sensitive MDPs

Here we describe some dynamic programming or value-based approaches applied to
modified MDPs in order to obtain as a result an optimized risk-averse objective. While
enjoying some nice mathematical properties, these approaches typically have a high
computational complexity, which struggles to scale to large instances.

CVaR MDPs The CVaR risk-measure allows at least two possible formulations as a
risk-sensitive MDP. The first one, provided in (Chow et al., 2015), consists in an equiv-
alence of the CVaR problem to a robust MDP (Wiesemann et al., 2013). The robustness
in this case is related to transition perturbation. The authors show that perturbations
are budget-constrained, which is a sufficient condition for the problem to be tractable
(Mannor et al., 2012). Chow et al. (2015) also presented a robust Bellman optimality
equation and optimized it with an approximated value iteration approach involving a
linear interpolation, providing a finite time convergence error bound.

Another approach is instead provided in (Bäuerle and Ott, 2011), where the authors
devise a nested optimization whose inner problem can be stated as an MDP. In the inner
problem, they fix a quantile value and then solve an augmented MDP in which they add
to the state two components: the current cumulated reward, and the current cumulated
discount. The transition model and rewards are also modified, in order to have zero
reward on ordinary transitions and a final reward corresponding to the cumulated sum
to which the estimated α-quantile is subtracted. One has then to solve multiple times
this inner problem to find an optimal value, or, as an alternative, one can fix the quantile
to determine one’s risk-aversion. This approach is described with greater detail in the
more general framework of Chapter 4.

ERM MDPs The Entropic risk measure is one of the most common risk-measures in
control, and many different techniques have been provided for its optimization. Beside
being possible to derive an augmented MDP, as for CVaR, which will be described in
Chapter 4, with this measure two other formulations are available. The most classi-
cal one consists in an MDP with a modified optimal Bellman equation (Howard and
Matheson, 1972):

V ?
β,t(s) = max

a
γtr(s, a)

1

β
log
∑
s′

P (s′|s, a) exp
(
βV ?

β,t+1(s′)
)
, (3.23)

which may be solved with either policy or value iteration (Borkar and Meyn, 2002).
However, as pointed out in (Mihatsch and Neuneier, 2002), this methods presents some
disadvantages:

• for infinite horizon tasks with discounted formulation the optimal policy is non-
stationary in general;
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3.3. Solving Risk-Sensitive RL Tasks

• it is impossible to handle non-deterministic rewards 10;

• it is not possible to derive model-free RL algorithms as in the risk-neutral settings,
starting from the optimality equations.

ERM can also be framed as a robust MDP (Osogami, 2012b) with uncertainty in the
transitions, which is regulated by a Kullback-Leibler divergence bonus.

Markov Coherent Risk-Measure MDP A robust formulation is also available for Markov
Coherent Risk-Measures, by means of the Risk-Sensitive Optimality equation (Ruszczyński,
2010):

V ?
M(s) = max

a
r(s, a) + γ inf

ξ:ξP (·|s,a)∈U(P (·|s,a))

∫
s∈S

ξP (ds′|s, a)VM(s), (3.24)

where U(P (·|s, a)) is the risk-envelope corresponding to the Coherent Risk-Measure
which is iterated. The operator is a contraction and is monotonic, so that both value iter-
ation and policy iteration approaches can be derived. Similar results may also be found
in (Osogami, 2012a) for a similar composite measure call the iterated risk-measure
(IRM), which are then specialized for the use of CVaR as a single step measure.

Other Risk-Sensitive MDPs By applying modifications to the standard objective, risk-
aversion cannot typically be exactly translated to the classical MDP model. This does
not correspond to saying that no kind risk-aversion can be injected in standard MDPs.
It is possible, for instance, to modify the reward signal r in the two following ways:

rλ1 := r − λr2 (3.25)

rλ2 := −exp(−λr) (3.26)

Both examples are valid reward function, which induce some kind of risk-aversion,
respectively, to the second moment of the per step reward and its variance. While
solving these problems does not introduce further complexity, it may be questionable
whether the solution they provide is optimal for any risk measure, hence valuable for the
risk-averse decision maker. This discussion is deferred to Chapter 5 and AppendixB.

3.3.2 Policy Gradient Methods for Risk-Averse Optimization

Policy Gradient Approaches for Mean-Variance The first policy gradient theorem for the
Mean-Variance penalized criterion was developed in (Tamar et al., 2012a), where the
authors considered the variance w.r.t. the value function:

Varπθ(s) := E
at∼πθ(·|st)

st+1∼P(·|st,at)

( ∞∑
t=0

γtR(st, at)− Vπθ(s)

)2 ∣∣∣∣s0 = s

 . (3.27)

They considered a stochastic shortest path problem starting from a fixed state, hence,
in that case their definition coincides with 3.10. In particular they derived the formula

10In this thesis we treated deterministic rewards, but all the concepts can be easily extended to the stochastic case.
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Chapter 3. Risk-Aversion in Reinforcement Learning

for the gradient of the variance11:

∇θVarθ(s0) = Es∼dθ
µ,γ2 (s0,·)

a∼πθ(·|s)
s′∼P (·|s,a)

[
∇θ log πθ(a|s) Wθ(s, a)

]

+ 2γ
∞∑
t=0

E
s∼P (t)

θ (s0,·)

[
γ2tR(s)

∞∑
k=t+1

E
s′∼P (k)

θ (s,·)
a′∼πθ(·|s′)

[
γk∇θ log πθ(a′ | s′)Qθ(s′, a′)

]]
− 2Vθ(s0)∇θJπθ ,

(3.28)
where dθµ,γ2 is the occupancy state distribution using γ2 as discount factor, P (t)

θ is the
probability of being the t-step distribution by following πθ. Deriving an unbiased es-
timator for this formula is problematic though, since the last term involves multipli-
cation of the gradient of the expected return and the value function, which cannot be
estimated with the same samples without introducing bias. The latter is known as the
double sampling issue: in order to obtain an unbiased estimate one has to estimate the
two quantities from independent batches of samples. The alternative consists in us-
ing a biased estimate, which is anyway consistent (converging to the true value in the
limit of infinite samples). This work was then extended from the actor-only scheme to
the actor-critic one in (Tamar and Mannor, 2013), using linear function approximation.
However we notice that, for the general case, the objective optimized by following the
gradient in Equation 3.27 is:

σ2
V := Es∼µ(·)[Varπθ(s)] = Es∼µ(·) [Uπθ(s)]− Es∼µ(·)

[
Vπθ(s)2

]
, (3.29)

which is different from
σ2 = Es∼µ(·) [Uπθ(s)]− J2

πθ

defined in Equation 3.10. In particular, we can see that the difference between the two:

σ2 − σ2
V = Es∼µ(·)

[
Vπθ(s)2

]
− J2

πθ
= Vars∼µ(·)[Vπθ(s)] (3.30)

is the variance of the value function w.r.t. the initial state distribution µ. A simple
trajectory based policy gradient optimizing σ2 can also be derived:

∇θVarθ = Eτ∼pθ(·)
[
∇θ log pθ(τ)(Gγ(τ)− Jθ)2

]
(3.31)

In order to alleviate the problem of variance gradient estimation, two simultaneous
perturbation methods were proposed in (Prashanth and Ghavamzadeh, 2013). More
recently a method based on block-coordinate optimzation which exploits Fenchel du-
ality was developed in (Xie et al., 2018). The approach allows to write the problem
as a nested optimization. The latter algorithm is also generalized from the framework
presented in Chapter 4.

More Policy Gradient Methods A policy gradient theorem for CVaR was derived first in
(Tamar et al., 2015b):

∇θηCV aRα,θ = Eτ∼pθ(·)
[
∇θ log pθ(τ)(Gγ(τ)− να)1Gγ(τ)≥να

]
. (3.32)

11The original formula was for the undiscounted case, for this formula we relied on (Palmisano, 2019)
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3.3. Solving Risk-Sensitive RL Tasks

The previous formula was then generalized from the work in (Tamar et al., 2015a),
which provides a unique formula for the coherent risk-measure policy gradient. A
different approach is pursued in (Chow et al., 2017), where they optimize a CVaR-
constrained problem, using a multi-scale actor-critic algorithm for which they were
able to prove convergence. A policy gradient for ERM was developed in (Nass et al.,
2019):

∇θηERMβ,θ = E
τ∼pπθ (·)

[
∇θ log pθ(τ)

(
− 1

β
exp

(
−β(G(τ)− ηERMβ,θ )

))]
. (3.33)

Sharing a similar formulation w.r.t. the standard policy gradient, all these gradienst
can be estimated from samples. However, since most of them rely on estimating some
quantity related to the current performance (να, ηERMβ,θ ), they typically needs extra sam-
ples to obtain an unbiased estimate. Recently, a natural actor-critic approach has been
developed specifically for problems with a constraint on some downside risk-measures
(Spooner and Savani, 2020), allowing the authors to exploit state-of-the-art techniques
on CMDP (Tessler et al., 2018).

3.3.3 Risk-Sensitive Distributional RL

While distributional approaches to RL have a long history (Jaquette, 1973; Sobel,
1982), the first application to risk-averse RL can be found in (Morimura et al., 2010).
This work proposed a non-parametric approach for approximating the distribution of
returns with particles, which offers also a way to compute risk-measure on the distri-
bution. They then derived a CVaR version of SARSA. More recently the distributional
framework has received renewed attention. In (Bellemare et al., 2017) several theoreti-
cal results are provided for distributional versions of Bellman operators. While the pol-
icy evaluation one is shown to be a contraction (under a specific metric), unfortunately
the optimal operator is not contracting under any metrics. Nevertheless the distribu-
tional approach they propose seems to give empirical advantages in the risk-neutral
case, providing stability in the learning process and obtaining competitive performance
on the Atari benchmark. The main idea consists in estimating a categorical distribution
of probability atoms. Further works on the subject (Dabney et al., 2018c,a) proposed
instead a different approach: whereas the former used N fixed locations for its approx-
imation distribution and adjusts their probabilities, they assigned fixed, uniform proba-
bilities to N adjustable locations. The first of these approaches (Dabney et al., 2018c),
which employs quantile regression, allows to obtain a practical algorithm: QR-DQN.
The second one (Dabney et al., 2018a) employs instead the reparametrization trick: a
neural network is used to learn the mapping between a certain probability and its quan-
tile. In this way, sampling some probability from a uniform distribution and then using
it as input to the mapping is equivalent to sample from the return distribution. Applying
a distortion risk-measure, as CVaR, to the mapping, it is possible to evaluate distorted
expectations. A similar approach is used to learn the critic in (Urpí et al., 2021), where
an actor-critic for the offline setting is derived. To learn the actor, pathwise derivatives
are used, which allows to sample directly from the distorted distribution, leveraging on
the implicit representation.
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Chapter 3. Risk-Aversion in Reinforcement Learning

3.3.4 Beyond Ad-hoc Techniques

Risk-averse solutions may also be provided by more general approaches. An alternative
way to optimize risk-averse objectives is offered from the work in (Zheng et al., 2020).
Here, a meta-gradient framework is used for learning intrinsic reward functions across
multiple lifetimes of experience. The framework is thought of as a way to find the
optimal reward (Singh et al., 2009), i.e., the reward shaping (Ng et al., 1999) allowing
to solve the RL problem in the most effective way possible. The same strategy can
be used also to infer the intrinsic reward inducing the behavior maximizing the desired
risk-averse objective, provided that such a transformation exists. In some cases, the two
meta-objectives coincide: risk-averse rewards may be indeed helpful for the learning
process itself, avoiding catastrophic events (de Lope et al., 2009).

The necessity of extending RL techniques to explicitly deal with risk-aversion might
even suggest that the standard framework is somewhat too restrictive to deal with these
kinds of problems. Several extensions to the usual formulation have been developed
recently, and some of them are also powerful enough to include some risk-averse ob-
jectives as special cases. A first example is represented by the Convex MDP framework
(Zahavy et al., 2021). In this work, the classical RL problem

max
dπµ∈K

∑
s,a

R(s, a)dπµ(s, a) (3.34)

is generalized to the following one:

min
dπµ∈K

f(dπµ(s, a)), (3.35)

where f is a convex function, and K is the set of all state-action occupancy measures
which can be induced by some policy π. Thus, all the risk-averse objectives that cor-
respond to convex functions of the occupancy may be framed in this way, and solved
with the related methods. For the same class of objectives (Zhang et al., 2020a) derived
a variational policy gradient approach, which extends the classical one (Sutton et al.,
2000b), and can be employs, thus, in some risk-averse settings.
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CHAPTER4
Risk-averse Optimization through

State-Augmentation

4.1 Introduction

Several risk criteria have been taken into consideration in the RL literature, as it is has
been illustrated in Chapter 3. We showed that, since these risk criteria possess very dif-
ferent properties, a common approach consists in developing ad-hoc RL algorithms to
optimize each risk measure (or class of risk measures), i.e., algorithms that are highly-
specialized to the chosen objective function. While this enables a full understanding of
the problem at hand, in practice it can be limited for at least two reasons:

1. Given a risk-averse RL algorithm for a specific risk measure, it is often not clear
whether the algorithm can be easily adapted to optimize a different measure;

2. Given any state-of-the-art (risk-neutral) RL algorithm, it is often non-trivial to
adapt the algorithm to optimize some desired risk measure instead of the expected
return.

Intuitively, overcoming these two limitations is highly desirable from a practical view-
point. Ideally, we would like an algorithm that enables optimization of a multitude
of risk measures in an almost transparent manner and which, at the same time, can
leverage recent advances in risk-neutral RL to improve learning efficiency.

In this chapter, we take a step forward in this direction by proposing a single frame-
work to optimize some of the most popular risk measures, including conditional value-
at-risk, entropic risk measure, and mean-variance, by adopting any risk-neutral RL
algorithm. Instead of focusing on deriving algorithms for optimizing each single risk
measure, we transform the underlying Markov decision process (MDP) so that opti-
mizing the chosen risk measure in the original MDP is equivalent to optimizing the
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Chapter 4. Risk-averse Optimization through State-Augmentation

expected return in the transformed one. We achieve this by leveraging previous theo-
retical results on state augmentation (Bäuerle and Ott, 2011; Bäuerle and Rieder, 2013),
which we use to unify the optimization problem for the considered measures. The price
we have to pay for this generality is the addition of one or two extra state variables and
one extra optimization variable to the original problem, which we show can be easily
handled in practice. Overall, our framework enables practitioners to learn risk-averse
policies with minimal additional effort beyond learning risk-neutral ones. We believe
this to be a significant step towards applying risk-sensitive RL algorithms to complex
real-world problems.

The detailed contributions of this chapter are as follows.

i) Using recent results on state augmentation (Bäuerle and Rieder, 2013), we derive
a unified objective for the considered risk measures (Section 4.2). In addition to
reducing the conditional-value-at-risk and the entropic risk measure to an ordinary
MDP, as originally shown by Bäuerle and Rieder (2013), we also show that mean-
variance can be treated analogously.

ii) We propose a very simple meta-algorithm, Risk-averse policy Optimization by
State Augmentation (ROSA), to optimize the unified objective by exploiting any
available risk-neutral RL algorithm (Section 4.3).

iii) We propose extensive empirical results that demonstrate:

a) the benefits of our single meta-algorithm over existing ad-hoc methodologies

b) the scalability of our approach

c) its performance on a real-world trading dataset (Section A.2.3).

4.2 A unified perspective

In these chapter, we will consider a subset of the risk-averse objectives analysed in
Chapter 3. In particular, we will take into account:

• conditional value at risk, denoted as ηCV aR and defined in Equation (3.16), ab-
breviated as CVaR;

• penalized Mean-Variance, denoted as ηMV and defined in Equation (3.11), here
simply called mean-variance and abbreviated as MV;

• utility-based objectives, which involve a function of the return as defined in
Equation (3.3). We will focus specifically on the entropic risk-measure, denoted
as ηERM and defined in Equation (3.8), abbreviated as ERM.

The methods we are going to present are based on the following assumption.

Assumption 2 (Bounded hitting times). We suppose there exists a subset S̄ ⊂ S of
absorbing (or terminal) states, such that, for all s, s′ ∈ S̄ and a ∈ A, p(S̄|s, a) = 1
and c(s, a, s′) = 0. Let Tπ := inf{t ∈ N+ : Sπt ∈ S̄} be the hitting time of an absorbing
state when executing policy π. We need the following assumption. There exists T <∞
such that, for any π ∈ ΠHR, Tπ ≤ T almost surely.
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This assumption is standard, e.g., in the policy gradient literature (Peters and Schaal,
2006; Deisenroth et al., 2013), where the trajectories collected by the agent terminate
almost surely, no matter what policy is executed. Moreover, differently from what
is stated in Definition 2.2.1, we are going to consider here a reward function which
depends also on the next state, and which assumes only non-positive values1:

R : S ×A× S → [−Rmax, 0].

Our first step is to reduce the different risk-averse objectives under a single general
objective that unifies all the mentioned risk measures. Later on, we shall see how
to design a common framework that optimizes it by leveraging any risk-neutral RL
algorithm as a sub-routine.

Definition 4.2.1 (Unified objective). Let η be a risk-averse objective and fη : R×R→
R, gη : R→ R be two functions. The unified optimization problem is:

max
ρ∈R

{
max
π∈ΠHR

Eπ [fη(G, ρ)] + gη(ρ)

}
. (4.1)

The explicit definition of the quantities involved depend on the chosen risk measure
and its parameters, as specified in the following proposition.

Proposition 4.2.2. For any of the risk-averse objective of Section 4.2, an optimal policy
computed by solving for an objective η is also optimal for (4.1) and viceversa, where

• for CVaR at level α, fCVaR(G, ρ) = − 1
α

(G−ρ)− and gCVaR(ρ) = ρ (see Equation
(??));

• for a utility function U , we have no external parameter ρ, fU(G) = U(G), and
g = 0. In particular, for ERM with parameter β, fERM(G) = −e−βG and g = 0;

• for MV with parameter λ, fMV(G, ρ) = (1 + 2ρλ)G− λG2 and gMV(ρ) = −λρ2.
MVo is analogous with the one-step reward instead ofG and the expectation under
the state-action occupancy measure.

Proof. For CVaR at level α, Rockafellar et al. (2000) showed that:

ηπCVaR(G;α) = max
ρ∈R
{ρ− 1

α
Eπ
[
(G− ρ)−

]
}.

Therefore,

max
π∈ΠHR

ηπCVaR(G;α) = max
π∈ΠHR

max
ρ∈R

{
ρ− 1

α
Eπ
[
(G− ρ)−

]}
= max

ρ∈R

{
ρ− max

π∈ΠHR
Eπ
[

1

α
(G− ρ)−

]}
.

In the case of utility functions, the objective is actually equivalent to the one in (4.1)
with no outer variable ρ. For ERM, the result simply follows by noting that the problem

1This assumption is by no means restrictive, since we can always subtract a constant from our reward function to satisfy the
required condition. We notice that variance is not influenced by these translation (it is translation invariant), while the exponential
function might be, hence, the β coefficient must be carefully tuned to avoid numerical problems.
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is equivalent to optimizing the exponential utility, which in fact does not require any
extra variable. For MV with parameter λ, we use the same trick as in (Xie et al., 2018).
Starting from Varπ[G] = Eπ [G2]−Eπ [G]2, we use Legendre-Fenchel duality to reduce
the squared expectation to a standard expectation,

Eπ [G]2 = max
ρ∈R

{
2ρEπ [G]− ρ2

}
.

Thus,

max
π∈ΠHR

ηπMV(G;α) = max
π∈ΠHR

{
Eπ [G]− λ

(
Eπ
[
G2
]
− Eπ [G]2

)}
= max

π∈ΠHR

{
Eπ [G]− λEπ

[
G2
]

+ λmax
ρ∈R

{
2ρEπ [G]− ρ2

}}
= max

ρ∈R

{
max
π∈ΠHR

Eπ
[
(1 + 2ρλ)G− λG2

]
− λρ2

}
.

In words, the unified objective (4.1), together with Proposition 4.2.2, reveals that
computing the optimal risk-averse policy can be reduced to computing a policy mini-
mizing the expected value of some (non-linear) function of the total reward. The price
we have to pay for moving from the risk operator to the expectation one is the introduc-
tion of a single additional optimization variable ρ.

We now discuss how to optimize (4.1) by considering the two variables, π and ρ,
separately. Specifically, in Section 4.2.1, we show that optimizing for π when ρ is fixed
(inner objective) can be reduced to an ordinary MDP and thus solved by any RL algo-
rithm. In Section 4.2.2, we show that the optimal value of ρ given π (outer objective)
can be conveniently found in closed-form for all the considered risk measures. Hence,
a natural approach to solve (4.1) is an alternating optimization method, also known as
block coordinate descent (Wright, 2015). We present such an approach for our policy
optimization framework in Section 4.3.

4.2.1 Inner Objective as an Ordinary MDP

Fix some value ρ ∈ R for the outer variables, the inner problem in (4.1) seeks a policy
π ∈ ΠHR that minimizes Eπ [fη(G, ρ)]. Computing its solution is non-trivial for at least
two reasons. First, when fη is a non-linear function of the total reward, as for our risk
measures, the existence of an optimal Markovian deterministic policy (analogously to
the risk-neutral case) is no longer guaranteed (Puterman, 2014) and we need to look for
history-dependent policies. Second, the optimization depends on the specific choice
of fη, i.e., on the underlying risk measure η. Instead of designing ad-hoc methodolo-
gies, we address these two complications by reducing the inner objective to an ordinary
MDP via state-space augmentation. This will enable the application of any RL algo-
rithm to its optimization. To achieve this, we borrow the state-augmentation proposed
by Bäuerle and Rieder (2013). The key intuition is that making an optimal decision
at each time only requires keeping track of the cumulative discounted reward suffered
so far, instead of the whole sequence of states and actions. Formally, we define the
augmented MDP as follows.
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Definition 4.2.3 (Augmented MDP (Bäuerle and Rieder, 2013)). Let the original MDP
be M = (S,A, P, R, µ, γ). The augmented MDP for optimizing Eπ [fη(G, ρ)] is repre-
sented by M̃ = (S̃,A, p̃, c̃, µ̃, γ̃), where:

• S̃ := S × [−Rmax/(1− γ), 0]× (0, 1];

• for s̃ = (s, v, w), a ∈ A, and s̃′ = (s′, v′, w′), the transition kernel P̃ is such that2

P̃ (s̃′|s̃, a) = P (s′|s, a)δ (γw − w′) δ (v + wc(s, a, s′)− v′);

• the reward function is R̃(s̃, a, s̃′) = fη(v
′, ρ) if s′ ∈ S̄ and s /∈ S̄, zero otherwise;

• the initial state-distribution is µ̃(s̃) = µ(s)δ (v) δ (w − 1)

• and the discount factor is γ̃ = 1.

Intuitively, the state-space is augmented with two scalar variables, while the action-
space remains unchanged. We denote each augmented state by a tuple s̃ = (s, v, w),
where s is the original state of our system, v keeps track of the running cumulative
reward, and w keeps track of the discounting.3 The transition kernel is such that the
first state variable evolves according to the original transition dynamics, while the
remaining two evolve deterministically. If (s̃0, a0, . . . , s̃T ) is a trajectory in the aug-
mented MDP, we have wt+1 = γwt and vt+1 = vt + wtR(st, at, st+1). Since v0 = 0
and w0 = 1, unrolling this dynamics, it is easy to see that wt+1 = γt and vt+1 =∑t

h=0 γ
hR(sh, ah, sh+1), i.e., the two extra state variables have the intended meaning. If

a transition to an absorbing state of the original MDP occurs at time t, R̃(s̃t, at, s̃
′
t+1) =

fη(vt+1, ρ). Since the reward function is zero everywhere except when entering an ab-

sorbing state and γ̃ = 1,
∑T−1

t=0 γ̃
tR̃(S̃t, At, S̃t+1) = fη

(∑T−1
t=0 γ

tR(St, At, St+1), ρ
)

=

fη(G, ρ), that is, the cumulative reward of the augmented trajectories is the same as the
application of fη to the cumulative reward of the original ones. This implies that we can
solve the augmented MDP as an ordinary one, in which we seek a policy π̃ : S̃ → A
that minimizes Eπ̃

[∑T−1
t=0 γ̃

tR̃(S̃t, At, S̃t+1)
]
. Bäuerle and Rieder (2013) showed that,

under mild conditions, an optimal Markov deterministic policy exists for this (aug-
mented) problem. Furthermore, there is always a corresponding non-Markovian policy
that is optimal for the original (non-augmented) problem. Here Markov refers to the
fact that π̃ directly maps augmented states to actions, though these states depend on the
history of the original process. The key result is, thus, that we can solve the inner ob-
jective in (4.1) by first augmenting the state space and then applying any (risk-neutral)
RL algorithm. Clearly, we cannot directly build the augmented MDP as in Bäuerle and
Rieder (2013) since the dynamics are unknown. However, we note that it is simple
to perform this augmentation on given samples, such as trajectories collected by the
chosen RL method. In fact, all we have to do is keep track of the running rewards and
discounting and progressively add them to the original state samples. This procedure is
summarized in Algorithm 1.

2Here δ(x) denotes the Dirac delta function at x.
3Keeping track of the discounting can be avoided, but the augmented MDP would have a non-stationary transition kernel.

Clearly, when γ = 1 this extra state variable can be neglected.
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Algorithm 1 Trajectory-based State Augmentation

Require: Trajectories {τ1, τ2, . . . , τn}
1: where τi = (S0,i, A0,i, S1,i, R1,i . . . , STi,i, RTi,i),
2: function fη : R× R→ R, parameter ρ

Ensure: Augmented trajectories {τ̃1, τ̃2, . . . , τ̃n}
3: for i = 1, 2, . . . , n do
4: for t = 0, 1, . . . , Ti do
5: S̃t,i ← (St,i,

∑t
h=0 γ

hRh,i+1, γ
t)

6: end for
7: R̃Ti,i ← fη(

∑Ti−1
t=0 γtRt,i+1, ρ)

8: τ̃i = (S̃0,i, A0,i, S̃1,i, 0 . . . , S̃Ti,i, R̃Ti,i)
9: end for

4.2.2 Optimizing the Outer Objective

Now that we have a convenient way to solve the inner objective in (4.1) for any fixed
ρ, it only remains to specify how to compute the optimal value of ρ for any fixed
policy. We now see that this is actually simple and can be done in closed-form for
all the risk measures that we consider. Formally, let π ∈ ΠHR be any policy and
ρ?(π) := arg maxρ∈R {Eπ [fη(G, ρ)] + gη(ρ)}. Starting from the definitions of the
functions fη, gη for the various risk measures, we have what follows.

• For CVaR:

ρ?CVaR(π) = arg max
ρ∈R

{
− 1

α
Eπ
[
(G− ρ)−

]
+ ρ

}
.

This was shown by Rockafellar et al. (2000) to be exactly the value-at-risk at level
α, i.e., ρ?CVaR(π) = ηπVaR(G;α).

• For mean-variance, we have:

ρ?MV(π) = arg max
ρ∈R

{
Eπ
[
(1 + 2ρλ)G− λG2

]
− λρ2

}
.

This is a simple concave quadratic function of ρ. Taking its derivative and equating
it to zero, we obtain ρ?MV(π) = Eπ [G], i.e., ρ?MV(π) is the expected total reward
of π.

• Finally, the ERM has no outer parameter and thus it can be optimized by solving
exclusively the inner objective via state-augmentation.

4.3 Policy Optimization

We now present our general approach to risk-averse RL. Our meta-algorithm, called
ROSA (Risk-averse policy Optimization by State Augmentation), is shown in Algo-
rithm 2. ROSA takes as input a risk measure η among those of Section 4.2 and a
risk-neutral RL algorithm A (hence the name meta-algorithm). No requirement on A is
imposed and, in principle, it can be any RL algorithm. We shall elaborate more on the
its choice later on. Before learning starts, ROSA casts η into the unified objective (4.1)
by finding the corresponding functions fη and gη. At each iteration j = 1, . . . , k,
ROSA collects a batch of n trajectories using the current policy πj . Then, it computes

50



i
i

“output” — 2022/2/22 — 20:37 — page 51 — #59 i
i

i
i

i
i

4.3. Policy Optimization

Algorithm 2 Risk-averse policy Optimization by State Augmentation (ROSA)

Require: Risk measure η, risk-neutral RL algorithm A (e.g., PPO, TRPO, etc.), batch size n, number of
iterations k

1: Compute functions fη and gη as in Proposition 4.2.2
2: Initialize policy π1

3: for j = 1, 2, . . . , k do
4: Collect a batch {τi}ni=1of n trajectories using πj
5: Compute ρj ← argmaxρ∈R

1
n

∑n
i=1 fη

(∑Ti−1
t=0 γtRt+1,i, ρ

)
+ gη(ρ)

6: Get augmented trajectories {τ̃i}ni=1 with Alg. 1
7: Feed {τ̃i}ni=1 into A, optimize πj and obtain πj+1

8: end for

the next value of ρj by using the closed-form expression as mentioned in Section 4.2.2.
Since this involves the expected value of f(G; ρj) under πj , an unbiased estimator is
built using the collected trajectories. Finally, ROSA augments the trajectories by us-
ing Algorithm 1 and feeds them into the policy optimization algorithm A. The latter
performs one or more updates to the current policy. The overall procedure is an incre-
mental block coordinate descent method (Wright, 2015), whose convergence has been
proven for general convex (Beck and Tetruashvili, 2013) and non-convex (Tseng, 2001)
settings.

Discussion The possibility to adopt any risk-neutral RL algorithm A to optimize a risk
measure is the key component of ROSA. Such an algorithm can be freely chosen among
those available in the literature. For instance, it can be an on-policy (Schulman et al.,
2015a, 2017) or off-policy (Haarnoja et al., 2018; Munos et al., 2016) policy search
algorithm or even a value-based method (Mnih et al., 2016). In our experiments, we
shall indeed combine ROSA with both on-policy and off-policy methods. Regardless
of the chosen algorithm A, ROSA interacts with the environment in an online on-policy
fashion, collecting, at each step, a batch of trajectories under the current policy and
updating the latter by means of A. This is required to compute the outer variables,
whose update requires the estimation of some statistics of the current policy (e.g., the
expected return). While this is the solution that we consider in this work, we note
that it is not restrictive and ROSA can be generalized to a fully off-policy setting by
employing, e.g., importance sampling (Owen, 2013).

A possible concern in using the proposed approach regards the state augmentation’s
negative impact to the underlying RL problem. While it is true that adding state vari-
ables might increase the sample complexity, we note that this augmentation has been
shown as a sufficient condition for representing optimal Markov policies (Bäuerle and
Ott, 2011; Bäuerle and Rieder, 2013). On the other hand, existing ad-hoc approaches
typically consider only Markov policies in the original state space and, thus, while
solving simpler problems, might not necessarily converge to near-optimal risk-averse
behavior.

Handling non-stationarity We note that, when using alternated incremental updates (in
a block-coordinate descent fashion) as in ROSA, the reward function optimized by
the risk-neutral RL algorithm becomes non-stationary. This is due to the fact that the
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reward at each iteration depends on ρ through f , and the value of ρ is repeatedly up-
dated by the outer optimizer. While this might not be an issue for, e.g., policy gradi-
ent algorithms, whose convergence could still be guaranteed using analyses from the
block-coordinate literature, it could become problematic for certain RL methods (e.g.,
value-based ones). In practice, to avoid any undesirable behavior, it is important to
include the outer variable ρ as part of the state or, more simply, as an input to the policy
and/or value function.

4.4 Experiments

We conducted an empirical analysis of the proposed approach on three domains: two
toy problems (a multi-armed bandit problem and a more complex MDP problem), a
trading environment based on real financial data, and standard robotics benchmarks,
with the last two being contexts where risk aversion plays a fundamental role. The
purpose of our experiments is three-fold:

1. to show that ROSA can be successfully combined with different risk-neutral RL
algorithms;

2. to show that ROSA outperforms existing ad-hoc methodologies;

3. to show that ROSA scales to high-dimensional continuous domains which have
received little to no attention in the risk-averse literature.

We focused on three risk measures: mean-variance, ERM and CVaR, which are rep-
resentative of all the transformations we propose. ERM is indeed a particular case of
utility function, while we did not test the mean-volatility since thorough experiments,
for an algorithm that is conceptually equivalent to ROSA, have been recently provided
by (Zhang et al., 2020b). We compared our algorithm with baselines from the risk-
averse RL literature for each of the chosen risk measures. We employ, respectively, a
policy search approach (Nass et al., 2019) for ERM, a block-coordinate approach (Xie
et al., 2018) for mean-variance, and GCVaR Tamar et al. (2015b) for CVaR. The im-
plementation details, together with additional results, can be found in the appendix.

4.4.1 Multi-armed Bandit

We consider a multi-armed bandit problem with a continuous space of actions. More
precisely, the agent can take any action in the interval [−1, 1]. When taking an action
a ∈ [−1, 1], the agent receives a reward R distributed asN (1−|a|, (1−|a|)2). Clearly,
the optimal risk-neutral policy is to take action a = 0 (which has maximum expected
value equal to 1). However, this action has also the largest variance and is thus risky.
Therefore, depending on the chosen risk measure, the agent needs to trade off between
taking small actions (in absolute value) to maximize the expected return, and taking
large actions to reduce risk. Since the reward is Gaussian, we are able to compute
the optimal trade-off for mean-variance and CVaR in closed form, which allows us to
perfectly evaluate the solutions learned by ROSA.

Results We combine ROSA with four different risk-neutral algorithms: TRPO (Schul-
man et al., 2015a), PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018), and
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Figure 4.1: Results of ROSA optimizing mean-variance when combined with different risk-neutral algo-
rithms compared to the optimal solutions.
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Figure 4.2: Results of ROSA optimizing CVaR when combined with different risk-neutral algorithms
compared to the optimal solutions.

DDPG (Lillicrap et al., 2015). We report the results for mean-variance in Figure 4.1.
More precisely, the three figures show the optimal values of expected return, return vari-
ance, and mean-variance as function of the risk-aversion parameter λ compared with the
solutions learned by ROSA combined with the four base algorithms. Among these, the
right-most plot is clearly the most indicative since it reports the actual objective func-
tion optimized by ROSA. Notably, all the algorithms almost perfectly learn the optimal
mean-variance curve. The fact that expected returns and return variances of the learned
policies are not as close to the optimal curve seems to indicate that mean-variance ob-
jective function is nearly flat in a neighborhood of the optimal points. Moreover, the
slight sub-optimality of the learned risk-neutral solutions (for λ = 0) is probably due
to the fact that online RL algorithms tend to be sensible to return variances (especially
when learning with small batch sizes), thus converging to slightly risk-averse solutions.

The results for CVaR are shown in Figure 4.2 in the same format as those for MV.
Consistently with MV, ROSA learns almost perfectly the optimal CVaR curve when
combined with all algorithms. We report the results for ERM in Figure 4.3. Differ-
ently from before, for ERM we cannot compute the optimal solution in closed-form,
so we simply report the learned pareto frontiers. We can appreciate that ROSA com-
bined with all algorithms achieves very clear pareto frontiers, where solutions with high
expectation/variance correspond to low risk-aversion parameters and viceversa.

4.4.2 Point Reacher

In the second toy problem, the agent controls a point mass that moves along the real
line in order to bring it to a target location in the minimum number of steps. The state
of the system is described by the position of the mass in the interval [−10, 10], while
the agent chooses (continuous) actions in [−2, 2]. If the system is in state s and the
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Figure 4.3: Pareto frontiers for ROSA optimizing ERM when combined with different risk-neutral algo-
rithms.
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Figure 4.4: Comparison between the base risk-neutral RL algorithms with and without ROSA’s state
augmentation in the Point Reacher domain.

agent takes action a, the new state is s′ ∼ N (s + a, a2) and the immediate reward is
r = −0.1|s′|+ a2. The goal is the ball of radius 0.05 around the origin. Episodes have
length at most 10 and terminate whenever the agent reaches a goal state. The initial
state is drawn uniformly in [−5.1,−5] ∪ [5, 5.1].

Results First, we investigate the effects of the state augmentation on the learning pro-
cess of the standard risk-neutral objective function. To this purpose, we run the original
version of our four base algorithms for optimizing the expected return and compare it to
their ROSA counterparts with state augmentation (i.e., with rewards delayed to the end
of the episode and state augmented by the running cumulative return). Figure 4.4 shows
the results. While it is true that the state augmentation slightly slows down the learn-
ing process (especially for the off-policy algorithms), we notice that this performance
degradation is never too severe. Moreover, convergence seems unaffected.

The results of ROSA optimizing the different risk measures are shown in Figure
4.5 for MV, Figure 4.6 for CVaR, and Figure 4.7 for ERM. Since we cannot evaluate
the optimal solutions in closed-form as before, here we plot the mean-variance Pareto
frontier achieved by the learned policies for all risk measures. As expected, all the
algorithms achieve a clear Pareto frontier when optimizing the mean-variance. Good
results are also obtained for the CVaR, while a clear frontier is not achieved in ERM.
The latter result is probably due to the fact that the adopted risk aversion parameters are
all very similar and do not encode much risk aversion. All the algorithms seem to keep
an almost constant expected return but, interestingly, they manage to slightly reduce
variance with higher levels of risk aversion.
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Figure 4.5: Results of ROSA optimizing MV when combined with different risk-neutral algorithms on
the Point Reacher domain.
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Figure 4.6: Results of ROSA optimizing CVaR when combined with different risk-neutral algorithms on
the Point Reacher domain.

4.4.3 Trading Environment

The S&P trading environment simulates a trading scenario in which an agent has to
trade a single asset, whose price follows the daily S&P index values from the ’80s until
2019. In each episode, the agent starts its trajectory from a random day of the S&P
time-series and observes the ordered sequence of historical prices for 49 steps (two
months). Its state is composed of its current portfolio, the price, and the time left until
the end of the episode, plus the 10 previous prices. The action space in this task is
discrete, and the three possible actions are: buy, sell or stay flat. The reward is equal
to Rt = at(pt − pt−1)− f |at − at−1|, where the first term is the profit or loss given by
action at, and the second term represents the transaction costs, where f is set to 7 ·10−5.
See Bisi et al. (2020c) for further details.

Results In Figure 4.8, we report the results obtained in the Trading environment for
all the selected risk measures. For this task, we instantiated ROSA with TRPO. A
mean-variance Pareto frontier is plotted for both our approach and the corresponding
baseline when optimizing mean-variance and ERM.4 The algorithms were trained with
the same budget of 15M samples. It can be noticed that ROSA learns solutions that
dominate those of the baselines. For ERM (Figure 4.8b) the baselines cannot even
obtain a clear frontier, while in Figure 4.8a it is clear that the learning process is still
far from convergence. The improved learning speed for mean-variance and CVaR can
be noticed from Figure 4.8c-d, which show the learning curve for two levels of risk
aversion. Notably, ROSA achieves faster and more stable learning behavior.

4We recall that ERM is an approximation to the mean-variance objective, so it makes sense to plot the same Pareto frontier.
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Figure 4.7: Results of ROSA optimizing ERM when combined with different risk-neutral algorithms on
the Point Reacher domain.
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Figure 4.8: The results obtained on the Trading environment by instantiating ROSA for mean-variance,
ERM, and CVaR in comparison to the considered baselines. ROSA’s optimization was performed
by employing TRPO (Schulman et al., 2015a). Figures a-b show the mean-variance trade-off when
optimizing mean-variance and ERM, respectively. Figures c-d report the learning curves for mean-
variance and CVaR, respectively, with two different values of risk aversion.

4.4.4 Robotic Locomotion

For the robotic setting, two challenging environments from the MuJoCo simulator
(Todorov et al., 2012) were evaluated: Walker and Hopper5. The state of the robot
is composed by its generalized position and velocity, while the controls are torques
applicable to various joints. Both the state and the action spaces are continuous and
high-dimensional. The reward is a linear combination of the following components:

1. a bonus for being alive;

2. a penalization for large action torques;

3. a bonus for moving forward;

4. a bonus for high speed.

Since these environments have deterministic dynamics, it can be difficult to understand
the meaning of a risk-averse optimization. Therefore, we modified the task by intro-
ducing a perturbation to the action chosen by the agent. In particular, we added a white
Gaussian noise to each action, with zero mean and a standard deviation proportional
to the action magnitude. Intuitively, this models the fact that high torques have typi-
cally more unpredictable effects on the resulting system states. These environments,
presenting high-dimensional continuous actions and states, are out of reach for the
aforementioned baselines which performed very poorly in all our experiments. Their

5We employed the refined version of these environments from Pybullet (E. Coumans, 2016). Moreover we set the maximum
length of each episode to 500 instead of 1000.
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Figure 4.9: The figures report the results obtained for the Walker and the Hopper environments on the
first and the second row, respectively. Figures (a-c) and (e-g) display the learning curves obtained by
employing ROSA to optimize, respectively, mean-variance, ERM, and CVaR. For each risk-measure,
two levels of risk-aversion are shown. The inner optimization was performed by employing both
TRPO and PPO for the Walker case, and only TRPO for the Hopper one. Shaded areas represent the
standard deviation between 5 independent runs, while solid lines represent their means. Figures (d)
and (h) show the trade-off between expected return and return variance obtained when optimizing
mean-variance.

results have thus been neglected from our plots to ease readability. The experiments
were run with a fixed budget of 6M and 2M of samples for the Walker and the Hopper
environments, respectively. All the reported results are the average of 5 independent
runs with shaded areas representing plus-minus standard deviation.

Results Figure 4.9 (a-d) shows the results we obtained on the Walker environment,
where we optimized the three risk measures under consideration while instantiating
ROSA with both PPO an TRPO. In particular, we report the learning curves of both
algorithms for two of the risk-aversion coefficients we trained the agents with. It can be
noticed that the learning process is stable and improving for all the objectives and for
both risk-neutral algorithms. This empirically demonstrates that ROSA successfully
optimizes the considered risk measures even in high-dimensional tasks when combined
with state-of-the-art RL approaches. As expected, the most critical risk measure to
be optimized seems to be the CVaR, which is known to pose many estimation issues
(Prashanth and Fu, 2018). In fact, both PPO and TRPO seems to struggle in optimizing
CVaR with the higher level of risk aversion, while they perform well with the lower
level. In Figure 4.9(d), we report the approximated Pareto frontier obtained for the
mean-variance criterion. It can be noticed that, independently from the base algorithm
chosen, ROSA obtains nice trade-offs between expected return and return variance by
varying the risk-aversion coefficient.

In Figure 4.9 (e-h), we reported the results of ROSA optimizing the three risk mea-
sures on the Hopper environment, obtained using TRPO as base risk-neutral algorithm.
Consistently with the Walker environment, ROSA successfully optimizes the differ-
ent objectives with a stable and improving learning process. The mean-variance Pareto
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Chapter 4. Risk-averse Optimization through State-Augmentation

frontier in Figure 4.9 (h), generated from the policies learned with three different values
of λ, is less clear than before since the solution associated with λ = 0.01 is dominated
by the one of λ = 0.001. This is probably due to the fact that the optimization pro-
cess of the former did not reach convergence in 2M steps. However, as desired, both
risk-averse solutions achieve a clear variance reduction with respect to the risk-neutral
counterpart.

4.5 Conclusions

We presented a unified framework for risk-averse RL which captures many of the most
popular risk measures. Our simple meta-algorithm, ROSA, allows to optimize risk-
sensitive policies by using any risk-neutral RL algorithm. We tested our approach on
both a financial and a robotic setting. The empirical results presented reveal that our
method combined with state-of-the-art policy optimization approaches scales to com-
plex problems and outperforms ad-hoc risk-sensitive algorithms, while requiring mini-
mal additional efforts, both in terms of computation and implementation, with respect
to learning risk-neutral policies. A relevant direction for future work is to extend ROSA
to the batch RL setting, which would further increase its applicability. Moreover, we
could investigate whether our framework generalizes to a larger class of risk measures,
such as the coherent ones. Empirically, we noticed that risk-averse agents tend to under-
explore the environment, occasionally converging to poor local optima. As a possible
workaround, it would be interesting to run ROSA starting from some good pre-trained
risk-neutral policy.
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CHAPTER5
Risk-Averse Trust Region Optimization for

Reward-Volatility Reduction

5.1 Introduction

In Chapter 4 we have provided a unified framework that allows the direct application
of risk-neutral methods for the optimization of some of the most important risk-averse
objectives. Nevertheless, all the approaches seen so far take into account only the
minimization of the long-term risk, since they consider only the variability related to
the return. Limiting variations w.r.t. the reward may also be interesting though, since
it captures per-step oscillations, which might be important in high-stakes tasks. For
instance, in financial trading interim results are also fundamental, and keeping a low-
varying intermediate P&L (Profit and Loss) becomes crucial. This chapter formally
defines and analyzes for the first time, to the best of our knowledge, the variance of the
reward at each time step w.r.t. state visitation probabilities. We call this quantity reward
volatility. Intuitively, the return variance measures the variation of cumulated rewards
among trajectories, while reward volatility is concerned with the variation of single-step
rewards among visited states. We derive a Bellman equation for the reward-volatility
that is exploited to obtain a policy gradient theorem for this novel objective. In addi-
tion, we also show that this new measure upper bounds the return variance (albeit for a
normalization term). This is an interesting outcome, indicating that it is possible to use
the analytic results we derived for the reward volatility to keep under control the return
variance. Reward volatility is used to define a new risk-averse performance objective,
called mean-volatility, which is a trade-off between the maximization of the expected
return and the minimization of short-term risk. This trade-off can be customized in
order to meet the specific needs of each individual trader, by tuning the risk aversion
parameter. Optimizing the mean-volatility objective allows to limit the inherent risk
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Chapter 5. Risk-Averse Trust Region Optimization for Reward-Volatility Reduction

due to the stochastic nature of the environment. However, the imperfect knowledge of
the model parameters, and the consequent imprecise optimization process, is another
relevant source of risk, known as model risk. This is especially important when the
optimization is performed on-line, as may happen for an autonomous, adaptive trading
system. To avoid any kind of performance oscillation, the intermediate solutions imple-
mented by the learning algorithm must guarantee continuing improvement. The TRPO
algorithm (Schulman et al., 2015a) provides this kind of guarantees (at least in its ideal
formulation) for the risk-neutral objective, based on the conservative bounds proven in
(Kakade and Langford, 2002). Thanks to the linearity of the corresponding Bellman
equation, we can show that the same bound still holds under the mean-volatility formu-
lation. Hence, we derive the Trust Region Volatility Optimization (TRVO) algorithm, a
TRPO-style algorithm for the new mean-volatility objective.

This chapter is organized as follows: the volatility measure is introduced in Sec-
tion 5.2 and compared to the return variance. The Policy Gradient Theorem for the
mean-volatility objective is provided in Section 5.3. In Section 5.3.1, we introduce an
estimator for the gradient which is based on sample trajectories obtained from direct
interaction with the environment. In Section 5.4, the monotonic improvement guaran-
tees are presented and discussed, and the TRVO algorithm is introduced. Finally, in
Section A.2.3, we test our algorithms on two financial environments, where the agents
must learn to trade on real assets using historical data.

5.2 Risk Measures

For this chapter and the following one, we will refer to the normalized version of the
expected return as:

Jπ := (1− γ) E
s0∼µ

at∼π(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
, (5.1)

which allows us to write it as the expected value of the reward under the occupancy
distribution:

Jπ = E
s∼dµ,π
a∼π(·|s)

[R(s, a)] . (5.2)

We recall here the definition of return variance (see Section 3.10), re-written according
to the new notation:

σ2
π := E

s0∼µ
at∼πθ(·|st)

st+1∼P (·|st,at)

( ∞∑
t=0

γtR(st, at)−
Jπ

1− γ

)2
 . (5.3)

We define the variance of the per-step reward as follows.

Definition 5.2.1 (Reward-Volatility). Let π be some policy, then variance of the reward
w.r.t. the occupancy distribution is defined as:

ν2
π := E

s∼dµ,π
a∼πθ(·|s)

[
(R(s, a)− Jπ)2] . (5.4)
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Reward-volatility can also be written in another form:

ν2
π = (1− γ) E

s0∼µ
at∼πθ(·|st)

st+1∼P (·|st,at)

[ ∞∑
t=0

γt (R(st, at)− Jπ)2

]
. (5.5)

By setting a risk-aversion parameter λ, a novel risk-averse objective can be defined as:

ηπ := Jπ − λν2
π, (5.6)

called mean-volatility hereafter, where λ ≥ 0 allows to trade-off expected return maxi-
mization with risk minimization, in a similar way respect to the Mean-Variance penal-
ized objective (see Section 3.2.2). An important result on the relationship between the
two variance measures is the following:

Lemma 5.2.2. Consider the return variance σ2
π defined in Equation (5.3) and the re-

ward volatility ν2
π defined in Equation (5.4). The following inequality holds:

σ2
π ≤

ν2
π

(1− γ)2
,

Proof. Taking the left hand side (Equation 3.10) and expanding the square we obtain1:

σ2
π = E

s0∼µ
at∼πθ(·|st)

st+1∼P (·|st,at)

( ∞∑
t=0

γtRt

)2
+

J2
π

(1− γ)2
− 2Jπ

(1− γ)
E

s0∼µ
at∼πθ(·|st)

st+1∼P (·|st,at)

[ ∞∑
t=0

γtRt

]

= E
s0∼µ

at∼πθ(·|st)
st+1∼P (·|st,at)

( ∞∑
t=0

γtRt

)2
− J2

π

(1− γ)2
.

Similarly, for the right hand side of the inequality:

ν2
π = E

s∼dµ,π
a∼πθ(·|s)

[(
R(s, a)− Jπ

)2]
= E

s∼dµ,π
a∼πθ(·|s)

[
R(s, a)2

]
+ J2

π − 2Jπ E
s∼dµ,π
a∼πθ(·|s)

[
R(s, a)

]
= E

s∼dµ,π
a∼πθ(·|s)

[
R(s, a)2

]
− J2

π .

Thus, the inequality we want to prove reduces to:

(1− γ)2 E
s0∼µ

at∼πθ(·|st)
st+1∼P (·|st,at)

( ∞∑
t=0

γtRt

)2
 ≤ E

s∼dµ,π
a∼πθ(·|s)

[
R(s, a)2

]
.

1To shorten the notation, Rt is used instead of R(st, at).
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s1 s0 s2

−1

a

−10

b

1+ε/2
γ

a
10+ε
γ

b

b a-90 -90

Figure 5.1: A deterministic MDP. The available actions are a and b, s0 is the initial state and rewards
are reported on the arrows.

Consider the left hand side. By the Cauchy-Schwarz inequality, it reduces to:

(1− γ)2 E
s0∼µ

at∼πθ(·|st)
st+1∼P (·|st,at)

( ∞∑
t=0

γtRt

)2
 ≤ (1− γ)2 E

s0∼µ
at∼πθ(·|st)

st+1∼P (·|st,at)

[( ∞∑
t=0

γt

)( ∞∑
t=0

γtR2
t

)]

= (1− γ) E
s0∼µ

at∼πθ(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=0

γtR2
t

]

= E
s∼dµ,π
a∼πθ(·|s)

[
R(s, a)2

]
.

It is important to notice that the factor (1 − γ)2 comes from the fact that the re-
turn variance is not normalized, unlike the reward volatility (intuitively, volatility mea-
sures risk on a shorter time scale). What is lost in the reward volatility compared to
the return variance are the inter-temporal correlations between the rewards. However,
Lemma 5.2.2 shows that the minimization of the reward volatility yields a low return
variance. The opposite is clearly not true: as counterexample it is possible to think of
the following example from the financial field. Consider a stock price, having the same
value at the beginning and at the end of the investment period, but making complex
movements in-between. A policy which simply holds the stock is going to have zero
variance, but an high reward-volatility.

To better understand the difference between the two types of variance, consider the
deterministic MDP in Figure 5.1. First assume ε = 0. Every optimal policy (thus
avoiding the −90 rewards) yields an expected return Jπ = 0. The reward volatility of
a deterministic policy that repeats the action a is ν2

a = 1/γ while the reward volatility
of repeating the action b is ν2

b = 100/γ. If we were minimizing the reward volatility, we
would prefer the first policy, while we would be indifferent between the two policies
based on the return variance (σ2

π is 0 in both cases). Now let us complicate the example,
setting ε ∈ (0, 1). The returns are now Jb = ε

1+γ
> ε/2

1+γ
= Ja. As a consequence, a

mean-variance objective would always choose action b, since the return variance is
still 0, while the mean-volatility objective may choose the other path, depending on
the value of the risk-aversion parameter λ. This simple example shows how the mean-
variance objective can be insensitive to short-term risk (the−10 reward), even when the
gain in expected return is very small in comparison (ε ' 0). Instead, the mean-volatility
objective correctly captures this kind of trade-off.

62



i
i

“output” — 2022/2/22 — 20:37 — page 63 — #71 i
i

i
i

i
i

5.3. Risk-Averse Policy Gradient

5.3 Risk-Averse Policy Gradient

In this section, we derive a policy gradient theorem for the reward volatility ν2
π and

propose an unbiased gradient estimator. This will allow us to solve the optimization
problem maxθ∈Θ ηπθ via stochastic gradient ascent. We introduce a volatility equiva-
lent of the action-value function Qπ (Equation (2.5)) called action-volatility function,
which is the volatility observed by starting from state s, taking action a, and following
policy π thereafter:

Xπ(s, a) := E
st+1∼P (·|st,at)
at+1∼π(·|st+1)

[ ∞∑
t=0

γt(R(st, at)− Jπ)2|s, a
]
, (5.7)

Like the Q function, this can be written recursively by means of a Bellman equation:

Xπ(s, a) =
(
R(s, a)− Jπ

)2
+ γ E

s′∼P (·|s,a)
a′∼πθ(·|s′)

[
Xπ(s′, a′)

]
. (5.8)

We define also the state-volatility function Wπ as the expected value of Xπ under the
policy πθ, i.e. the equivalent of the V function (Equation 2.4) for volatility. The linear-
ity of this Bellman equation allows an alternative interpretation of the mean-volatility
objective. In fact, by applying a reward transformation

Rλ
π(st, at) = R(st, at)− λ(R(st, at)− Jπ)2, (5.9)

it is possible to formulate the problem as a standard RL problem, whereX andW func-
tions are reduced to Q and V . Nonetheless, Rλ

π is a non-stationary policy-dependent
reward, hence it is not compliant with the usual MDP framework and it is not pos-
sible to apply standard value-based algorithms to it. In general, even policy gradient
approaches cannot be used with this kind of rewards. However, with the obtained Bell-
man equation we can derive a Policy Gradient Theorem (PGT) that holds for both ν2

π

and the transformed reward case, as done in (Sutton et al., 2000b) for the expected
return:

Theorem 5.3.1 (Reward Volatility PGT). Using the definitions of action-volatility and
state-volatility function, the variance term ν2

π can be rewritten as:

ν2
π = (1− γ)

∫
S
µ(s)Wπ(s)ds. (5.10)

Moreover, for a given policy πθ, θ ∈ Θ:

∇ν2
π = E

s∼dµ,π
a∼πθ(·|s)

[
∇ log πθ(a|s)Xπ(s, a)

]
.

Proof. First, we need the following property (see e.g., Lemma 1 in Papini et al. (2019)):

Lemma 5.3.2. Any integrable function f : S → R that can be recursively defined as:

f(s) = g(s) + γ

∫
S
Pπ(s′|s)f(s′) ds′,
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where g : S → R is any integrable function, is equal to:

f(s) =
1

1− γ

∫
S
dπ(s′|s)g(s′) ds′.

From Equation 5.8 and the definition of Wπ, we have2:

Xπ(s, a) =
(
R(s, a)− Jπ

)2
+ γ E

s′∼P (·|s,a)
a′∼πθ(·|s′)

[
Xπ(s′, a′)

]
=
(
R(s, a)− Jπ

)2
+ γ E

s′∼P (·|s,a)

[
Wπ(s′)

]
,

Wπ(s) = E
a∼πθ(·|s)

[(
R(s, a)− Jπ

)2]
+ γ E

s′∼Pπ(·|s)

[
Wπ(s′)

]
=

1

1− γ E
s′∼dπ(·|s)
a∼πθ(·|s′)

[(
R(s′, a)− Jπ

)2
]
,

ν2
π = E

s∼dµ,π
a∼πθ(·|s)

[(
R(s, a)− Jπ

)2
]

= (1− γ) E
s∼µ

[
Wπ(s)

]
.

For the second part, we follow a similar argument as in (Sutton et al., 2000b). We first
consider the gradient of Xπ(s, a) and Wπ(s) ∀s, a ∈ S ×A:

∇Xπ(s, a) = −2
(
R(s, a)− Jπ

)
∇Jπ + γ E

s′∼P

[
∇Wπ(s′)

]
,

∇Wπ(s) = ∇
∫
A
πθ(a|s)Xπ(s, a) da

=

∫
A

[
∇πθ(a|s)Xπ(s, a) + πθ(a|s)∇Xπ(s, a)

]
da

=

∫
A

[
∇πθ(a|s)Xπ(s, a)− 2πθ(a|s)

(
R(s, a)− Jπ

)
∇Jπ

]
da

+ γ

∫
S
pπ(s′|s)∇Wπ(s′) ds′

=
1

1− γ

∫
S
dπ(s′|s)

∫
A

[
∇πθ(a|s′)Xπ(s, a)− 2πθ(a|s)

(
R(s, a)− Jπ

)
∇Jπ

]
da ds′,

2To simplify the notation, the dependency on θ is left implicit.
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where the last equality is from Lemma 5.3.2. Finally:

∇ν2
π = (1− γ)

∫
S
µ(s)∇Wπ(s) ds

=

∫
S
dµ,π(s)

∫
A

[
∇πθ(a|s)Xπ(s, a)− 2πθ(a|s)

(
R(s, a)− Jπ

)
∇Jπ

]
da ds

= E
s′∼dµ,π
a∼πθ(·|s)

[
∇ log πθ(a|s)Xπ(s, a)

]
− 2∇Jπ E

s′∼dµ,π
a∼πθ(·|s)

[
R(s, a)− Jπ

]
= E

s′∼dµ,π
a∼πθ(·|s)

[
∇ log πθ(a|s)Xπ(s, a)

]
.

The term that becomes null in the proof corresponds to the policy-dependent com-
ponent of the reward. Therefore, we also proved that, in this special case, the PGT
still applies after the transformation. With a simple extension it is possible to obtain
the policy gradient theorem for the mean-volatility objective defined in equation (5.6).
The action value and state value functions are obtained by combining the action value
functions of the expected return and of the volatility:

Qλ
π(s, a) := Qπ(s, a)− λXπ(s, a)

V λ
π (s) = Vπ(s)− λWπ(s).

The policy gradient theorem thus states:

∇ηπ = E
s∼dµ,π
a∼πθ(·|s)

[
∇ log πθ(a|s)Qλ

π(s, a)

]
. (5.11)

5.3.1 Estimating the Risk-Averse Policy Gradient

To design a practical actor-only policy gradient algorithm, the action-value function
Qπ needs to be estimated as in (Sutton and Barto, 1998; Peters and Schaal, 2008).
Similarly, we need an estimator for Xπ. In this approximate framework, we consider
to collect N finite trajectories si0, a

i
0, ..., s

i
T−1, a

i
T−1, i = 0, . . . , N − 1 per each policy

update. An unbiased estimator of Jπ can be defined as:

Ĵ =
1− γ

1− γT
1

N

N−1∑
i=0

T−1∑
t=0

γtRi
t, (5.12)

where rewards are denoted asRi
t = R(sit, a

i
t). This can be used to compute an estimator

for the action-volatility function:

Lemma 5.3.3. Let X̂ be the following estimator for the action-volatility function:

X̂ =
1− γ

1− γT
1

N

N−1∑
i=0

T−1∑
t=0

γt
[
(Ri

t − Ĵ1)(Ri
t − Ĵ2)

]
, (5.13)

where Ĵ1 and Ĵ2, defined as in Equation (5.12), are taken from two different sets of
trajectories D1 and D2, and a third set of samples D3 is used for the rewards Ri

t in
Equation (5.13). Then, X̂ is an unbiased estimator of X .
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Algorithm 3 Volatility-Averse Policy Gradient (VOLA-PG)

1: Input: initial policy parameter θ0, batch size N , number of iterations K, learning-rate α.
2: for k = 0, . . . ,K − 1 do
3: Collect 3N trajectories with θk to obtain dataset D3N

4: Split D3N into three independent subsets, D1, D2, D3 of N trajectories each
5: Compute estimates Ĵ1, Ĵ2 using D1, D2 as in Equation (5.12)
6: Estimate gradient ∇̂Nηθk using D3, Ĵ1 and Ĵ2 as in Equation (5.14)
7: Update policy parameters as θk+1 ← θk + α∇̂Nηθk
8: end for

Proof. First of all, we recall that

E
τ
[Ĵ ] = Jπ.

Thus:

E
τ1
E
τ2

E
s′∼dπ

a′∼πθ(·|s′)

[X̂] =
1− γ

1− γT
1

N

N−1∑
i=0

E
τ1
E
τ2

E
s′∼dπ

a′∼πθ(·|s′)

[
T−1∑
t=0

γt(R(sit, a
i
t)− Ĵ1)(R(sit, a

i
t)− Ĵ2)

]

=
1− γ

1− γT
1

N

N−1∑
i=0

E
s′∼dπ

a′∼πθ(·|s′)

T−1∑
t=0

γt
[
E
τ1

(R(sit, a
i
t)− Ĵ1)E

τ2
(R(sit, a

i
t)− Ĵ2)

]

=
1− γ

1− γT
1

N

N−1∑
i=0

T−1∑
t=0

γt E
s′∼dπ

a′∼πθ(·|s′)

[
(R(sit, a

i
t)− Jπ)(R(sit, a

i
t)− Jπ)

]
=

1− γ
1− γT

1

N

N−1∑
i=0

T−1∑
t=0

γt E
s′∼dπ

a′∼πθ(·|s′)

[
(R(s′t, a

′
t)− Jπ)2

]
= Xπ.

Note that, in order to obtain an unbiased estimator forX , a triple sampling procedure
is needed. This may be very restrictive. However, by adopting single sampling instead,
the bias introduced is equivalent to the variance of Ĵ , so the estimator is still consistent.
This result can be used to build a consistent estimator for the policy gradient ∇ηπ, as
an extension of the PGT estimator (Sutton et al., 2000b):

∇̂Nηπ =
1

N

N−1∑
i=0

T−1∑
t=0

γt
( T−1∑

t′=t

γt
′−t[Ri

t′ − λ
1− γ

1− γT (Ri
t′ − Ĵ)2

])
∇ log πθ(ait|sit).

(5.14)
As shown in (Peters and Schaal, 2008), this can be turned into a GPOMDP-like es-
timator (Baxter and Bartlett, 2001) (a refinement of REINFORCE (Williams, 1992)),
for which variance-minimizing baselines can be easily computed. Pseudocode for the
resulting actor-only policy gradient method is reported in Algorithm 3.
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5.4 Trust Region Volatility Optimization

In this section, we go beyond the standard policy gradient theorem and show it is pos-
sible to guarantee a monotonic improvement of the mean-volatility performance mea-
sure (5.6) at each policy update. Safe (in the sense of non-detrimental) updates are of
fundamental importance when learning online on a real system; but also helps speeding
up offline training by dynamically choosing the optimal step size. While the mean-
volatility objective ensures a risk-averse behavior of the policy, the safe update ensures
a risk-averse update of the parameters of the policy. Thus, if we care about the agent’s
performance within the learning process, we must consider the importance of the step
sizes at each update of the parameters. Adapting the approach in (Schulman et al.,
2015a) to our mean-volatility objective, we show it is possible to obtain a learning rate
that guarantees that the performance of the updated policy is bounded with respect to
the previous policy. An alternative analysis, based instead on the work in (Papini et al.,
2019), is provided in Appendix A.2.

The safe update is based on the advantage function, defined as the difference be-
tween the action value and state value function. From the linearity of the new Bellman
equations, we can extend the definitions of advantage Aπ(s, a) = Qπ(s, a) − Vπ(s) to
their λ-versions, to obtain the mean-volatility advantage function:

Aλπ(s, a) = Qλ
π(s, a)− V λ

π (s). (5.15)

Furthermore, with the mean-volatility objective all the theoretical results leading to the
TRPO algorithm hold. In particular, Theorem 5.4.1 is a λ-extension of Lemma 6.1 in
(Kakade and Langford, 2002), with an interesting extra additive term3:

Theorem 5.4.1 (Performance Difference). The performance difference between two
policies π and π̃ is equal to the sum of the expected mean-volatility advantage and a
bonus term, related to the squared expected advantage:

ηπ̃ − ηπ =

∫
S
dµ,π̃(s)

∫
A
π̃(a|s)Aλπ(s, a) da ds+ λ(Jπ̃ − Jπ)2. (5.16)

Proof. 4

ηπ̃ = (1− γ) E
τ |π̃

[∑
t

γt(R(st, at)− λ(R(st, at)− Jπ̃)2)
]

= (1− γ) E
τ |π̃

[
V λ
π (s0)− V λ

π (s0) +
∑
t

γt(R(st, at)− λ(R(st, at)− Jπ̃)2)
]

= ηπ + (1− γ) E
τ |π̃

[∑
t

γt(R(st, at)− λ(R(st, at)− Jπ̃)2 + γVπ(st+1)− Vπ(st))
]

Now, the goal is to obtain the discounted sum of the mean-volatility advantages defined
in Equation (5.15); however, it must be evaluated using policy π instead of Jπ̃. Hence,
we recall the result in (Kakade and Langford, 2002)5:

Jπ̃ = Jπ + (1− γ) E
τ |π̃

[∑
t

γtAπ(st, at)
]

(5.17)

3Different definitions result in different normalization terms.
4For the sake of clarity, we use the notation τ |π to denote the expectation over trajectories: s0 ∼ µ, at ∼ π(·|st), st+1 ∼

P (·|st, at).
5the difference is only in the normalization terms, which are used accordingly to the definitions above.
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Hence, by using Rt to denote R(st, at):

(Rt − Jπ̃)2 =(Rt − Jπ − (1− γ) E
τ |π̃

[∑
t

γtAπ(st, at)
]
)2

=(Rt − Jπ)2 + (1− γ)2 E
τ |π̃

[∑
t

γtAπ(st, at)
]2

− 2(1− γ)(Rt − Jπ) E
τ |π̃

[∑
t

γtAπ(st, at)
]

In this way, it is possible to separate the mean-volatility advantage function from the
standard advantage function, since the performance difference becomes:

ηπ̃ − ηπ =(1− γ) E
τ |π̃

[∑
t

γt(Rt − λ(Rt − Jπ)2 + γV λ
π (st+1)− V λ

π (st))
]

− λ(1− γ)3 E
τ |π̃

[∑
t

γt E
τ |π̃

[
∑
t

γtAπ(st, at)]
2
]

+ 2λ(1− γ)2 E
τ |π̃

[∑
t

γt(Rt − Jπ) E
τ |π̃

[
∑
t

γtAπ(st, at)]
]

=(1− γ) E
τ |π̃

[∑
t

γtAλπ(st, at)]− λ(1− γ)2 E
τ |π̃

[
∑
t

γtAπ(st, at)]
2

+ 2λ(1− γ)2 E
τ |π̃

[
∑
t

γtAπ(st, at)] E
τ |π̃

[
∑
t

γt(Rt − Jπ)]

But, if we consider that

E
τ |π̃

[
∑
t

γt(Rt − Jπ)] = E
τ |π̃

[
∑
t

γtRt]−
Jπ

1− γ

=
Jπ̃ − Jπ
1− γ = E

τ |π̃
[
∑
t

γtAπ(st, at)]

Then, collecting everything together, we obtain

ηπ̃ − ηπ = (1− γ) E
τ |π̃

[∑
t

γtAλπ(st, at)] + λ(1− γ)2 E
τ |π̃

[
∑
t

γtAπ(st, at)]
2

By applying the risk-neutral Performance Difference lemma (5.17) to the last term, the
squared normalization factor cancel out and we obtain the thesis.

Neglecting the last term, the bound becomes the same that could be obtained consid-
ering the transformed rewardRλ

π. In practice, it corresponds to considering the volatility
of the previous policy rather than approximating the next one. This is, in general, the
main issue that arises with the reward transformation: it works well for the on-policy
case, but it cannot be handled with the same ease in the off-policy one. The aforemen-
tioned term adds a gain related to the square of the difference in the expected returns
of the policies; therefore there is always a bonus w.r.t the reward transformation ap-
proach if the expected return of the second policy is either higher or lower than the first
one. Following the approach proposed in (Schulman et al., 2015a), it is then possible
to adopt an approximation Lλπ(π̃) of the surrogate function, which provides monotonic
improvement guarantees by considering the KL divergence between the policies:

68



i
i

“output” — 2022/2/22 — 20:37 — page 69 — #77 i
i

i
i

i
i

5.4. Trust Region Volatility Optimization

Theorem 5.4.2 (Safe Improvement Bound). Consider the following approximation of
ηπ̃, replacing the state-occupancy density of the old policy dµ,π:

Lλπ(π̃) := ηπ +

∫
S
dµ,π(s)

∫
A
π̃(a|s)Aλπ(s, a) da ds; (5.18)

Let

α = Dmax
KL (π, π̃) = max

s
DKL(π(·|s), π̃(·|s))

ελ = max
s
| E
a∼π̃

[
Aλπ(s, a)

]
|, ε = max

s
| E
a∼π̃

[
Aπ(s, a)

]
|

Then, the performance of π̃ can be bounded as follows:6

ηπ̃ ≥ Lλπ(π̃)− 2γελ
1− γα + λ(1− γ)2M2, (5.19)

where
M := max(0, Aπ̃π −

2εγ

1− γα,−A
π̃
π −

γ

1− γαRmax),

Aπ̃π :=

∫
S
dµ,π(s)

∫
A
π̃(a|s)Aπ(s, a) da ds.

Proof. By applying Theorem 1 from (Schulman et al., 2015a) to the Mean-Volatility
version of the Performance Difference Lemma 5.4.1 we obtain

ηπ̃ ≥ Lλπ(π̃)− 2γελ
1− γα + λ(1− γ)2 E

τ |π̃

[∑
t

γtAπ(st, at)

]2

,

In order to further bound the last term, we want to find a quantity M ≥ 0 such that:

M2 ≤ E
τ |π̃

[∑
t

γtAπ(st, at)

]2

.

The square function can be lower bounded by 0, or by the square of a lower bound of
its argument, if the latter is greater than 0. Due to its convexity, the square function
can have a lower bound which is greater than 0 in two cases: when an upper bound of
its argument is lower than 0, or when a lower bound of its argument is larger than 0.
Therefore, we need to compute both:

E
τ |π̃

[∑
t

γtAπ(st, at)

]
≥ Aπ̃π −

2εγ

1− γα

and:

E
τ |π̃

[∑
t

γtAπ(st, at)

]
≤ Aπ̃π +

γ

1− γαRmax.

We then obtain the best lower bound by taking the maximum among the argument lower
bound, the opposite of the argument upper bound and 0, finally taking the square of this
quantity.

6Comparing this bound to the results shown in the original paper, the denominator term is not squared due to return normaliza-
tion.
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Algorithm 4 Trust Region Volatility Optimization (TRVO)

Input: initial policy parameter θ0, batch size N , number of iterations K, discount factor γ.
for k = 0, . . . ,K − 1 do

Collect N trajectories with θk to obtain dataset DN
Compute estimates Ĵ as in Equation (5.12)
Estimate advantage values Aλθk(s, a)
Solve the constrained optimization problem

θk+1 = argmax
θ∈Θ

[
Lλk(θ)−

2εγ

1− γD
max
KL (πθk , πθ)

]
where ε = max

s
max
a
|Aλθk(s, a)|

Lλk(θ) = ηθk + E
s∼dµ,πk
a∼πθ(·|s)

Aλθk(s, a)

end for

Finally, we can devise the first risk-averse trust-region optimization algorithm (to the
best of our knowledge), which is called TRVO (Trust Region Volatility Optimization)
and is outlined in Algorithm 4. The reader should notice that this extension is highly
dependent on the the risk-measure chosen, and could not be easily applied to the other
ones, which lack a linear Bellman equation (Sobel, 1982).

5.5 Experiments

In this section, we show an empirical analysis of the performance of TRVO (Algo-
rithm 4) applied in two financial trading tasks: the first on an equity index, the S&P
500, and the second on spot Foreign Exchange (FX): USD/EUR and USD/JPY .
The first baseline we compare to is a mean-variance policy gradient approach presented
in (Tamar and Mannor, 2013) (indicated as MV-PG), which we adjusted to take into ac-
count discounting. The second one is Direct Reinforcement Learning (DRL) (Moody
and Saffell, 2001). Finally we consider a risk averse transformation of the rewards,
R̃t := (1− exp{−cRt})/c, in the original TRPO algorithm (indicated as TRPO-exp).
It represents a first-order approximation of mean-volatility, but it is sound only for small
values of the risk-aversion coefficient, since negative rewards can generate strong in-
stabilities of the learning process. As shown below, TRVO is capable of obtaining a
complete Pareto frontier on both these environments and it converges sooner than the
baselines.

5.5.1 S&P 500 Trading

This first environment considers the daily prices of the S&P index from the 1980s, until
2019. The possible actions are at ∈ {−1, 0, 1}, where -1 indicates a short, 1 a long,
and 0 a flat position (thus, short selling is possible). We assume that at each time-step
we go long or short of the same unitary amount, thus the profits (and losses) are not re-
invested, which means that the final gain is the sum of all the rewards. The value of the
asset at time t is pt, and the reward is equal to Rt = at(pt− pt−1)− f |at− at−1|, where
the first term is the profit or loss given by the action at, and the second term represents
the transaction costs, where f is the proportionality constant, set to 7 · 10−5. The policy
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Figure 5.2: (a) and (b): expected return, reward volatility, return variance in the S&P 500 environ-
ment with: TRVO, TRPO-exp, MV-PG, DRL; (c) and (d): expected return, mean volatility in the FX
environment in training (c) testing (d). Performance is on 3 months and not normalized.

we used is a neural network with two hidden layers and 64 neurons per hidden layer.
The state consists of the last 10 days of percentage price changes, the previous portfolio
position and the fraction of episode left (50 days long).

Results. The relevant plots for this environment are the first two in Figure 5.2, obtained
on in-sample data. Plot (a) shows the Pareto frontier obtained with the four different
algorithms by changing the risk aversion coefficient in the mean-volatility space, plot
(b) in the mean-variance space. It is evident that the frontier generated by TRVO dom-
inates the naive approach (TRPO-exp). Also, TRPO-exp becomes unstable for high
levels of the risk-aversion parameter c, so it is not possible to find the value for which
the risk aversion is maximal, which is why there are no points in the bottom left. The
same figure includes also the results obtained with MV-PG, trained with the same num-
ber of iterations as TRVO (and TRPO-exp). In the mean-volatility space (Figure 5.2.a),
the frontier generated by TRVO is clearly dominating. Instead, in the mean-variance
space (Figure 5.2.b), the frontiers generated by MV-PG and TRVO are overlapping, but
while the points generated by TRVO span a wide part of the space, those generated by
MV-PG are concentrated in the lower-leftmost part of the graph even though they are
trained with different risk aversions. This is due in part to the fact that MV-PG has not
reached convergence even though it was given the same number of steps as TRVO, and
reflects the faster convergence of TRPO w.r.t. GPOMDP. For DRL it is not possible to
set the risk-aversion, hence it consists in a single point, which is on the Mean-Variance
frontier, but it is instead dominated w.r.t. the Mean-Volatility criterion.

5.5.2 FX Trading

In the second experiment, actions and rewards are defined in the same way as before,
but two different assets are considered: the FX rates USD/EUR and USD/JPY .
The dataset has a much higher frequency (one datapoint per minute), hence also the
agent can act every minute for a total of 1170 steps per episode (a trading day). The
possible actions correspond to the position to keep for each asset, and the fee for each
transaction is f = 10−6. The training has been performed for a total of 5 · 107 steps on
the 2017 dataset, while the testing was applied on 2018.

Results. The results for this environment can be found in the last two plots in Fig-
ure 5.2. We can see that TRPO-exp obtains the same results as TRVO for small risk-
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aversion coefficients, both in training (c) and in testing (d). However, higher coef-
ficients lead to instability in the exponential reward, that is gradually dominated by
TRVO. It is interesting to notice that the settings having small or null risk-aversion
coefficients (top right of the plots) are on the edge of the frontier in training, but are
dominated in testing by more risk-averse policies. In this environment, MV-PG con-
verges to a sub-optimal policy with null expected return, while DRL does not improve.
Hence, they are not shown in the figures.

5.6 Conclusions

We proposed a novel methodology for risk-averse RL, exploiting, for the first time, a
safe improvement bound. This was possible thanks to the definition of a risk measure
called reward volatility that captures the variability of the rewards between steps. Op-
timizing this measure allows to obtain smoother trajectories that avoid shocks, which
is a fundamental feature in a trading setting, and has never been considered by other
risk measures so far. We showed interesting theoretical properties of reward-volatility:
it bounds the variance of the returns and, differently from other risk measures, it has
a linear Bellman equation. A policy gradient theorem for the mean-volatility objec-
tive was derived and, thanks to the aforementioned linearity, we obtained TRVO, a
trust region algorithm that exploits a monotonic improvement bound of our objective.
The proposed algorithm was tested on two financial trading environments where it was
shown to outperform the baselines, obtaining better Pareto frontiers in shorter time.
This work lays the foundation for extensions to both off-policy and online settings. To
conclude, the developed framework is the first to take into account two kinds of safety,
as it is capable of keeping risk under control while maintaining the same training and
convergence properties as state-of-the-art risk-neutral approaches.
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CHAPTER6
Finite Sample Analysis of an Actor-Critic

Algorithm for Mean-Volatility Optimization

6.1 Introduction

The development of novel analysis techniques has allowed the RL literature to pro-
duce a number of interesting results on the finite-sample complexity of many RL al-
gorithms (Lazaric et al., 2012; Farahmand, 2011; Liu et al., 2020). Establishing the
correct sample complexity of state-of-the-art algorithms such as, for instance, the well-
known actor-critic scheme is a hot topic, which is receiving growing attention (Yang
et al., 2018; Wu et al., 2020; Chen et al., 2021; Wang et al., 2019; Kumar et al., 2019;
Xu et al., 2020b). On the other hand, few works have been dedicated to derive the
complexity of risk-averse approaches (Jiang and Powell, 2018; Fei et al., 2020). Penal-
ized risk-averse objectives as Mean-Variance and Mean-Volatility (Tamar et al., 2012a;
Bisi et al., 2020b) need to estimate the expected return to compute the policy gradi-
ent. However, how the consequent estimation error translates in terms of convergence
rate is an issue which has not been investigated yet. How do the various error sources
compound in the gradient estimation? Is it possible to obtain the guarantees of risk-
neutral algorithms in this risk-averse setting? This chapter tries to answer to some of
those questions by means of a finite-sample analysis of a mean-volatility actor-critic
algorithm.

Our contributions are as follows: (i) We propose two alternative methods (the direct
one and the factored one) for the policy evaluation problem for the mean-volatility.
We provide a finite sample bound for a semi-gradient TD(0) approach applied to the
direct case. (ii) The previous contribution is used as input for an analysis on an actor-
critic algorithm for which we bound the sample complexity necessary for reaching a ε-
accurate stationary point. All provided bounds are valid in expectation. (iii) We validate
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our theoretical results by means of an empirical study on a stochastic environment.

6.2 Problem Formulation

6.2.1 Mean-Volatility Policy Evaluation Techniques

If we wish to estimate the transformed value function V λ
π for a given policy π, the most

immediate idea is to transform the rewards using Rλ
π, and then use any risk-neutral

policy evaluation algorithm. We call this approach the direct-method. In practice,
performing the aforementioned reward transformation requires one to first estimate (via
sampling) the (normalized) expected return Jπ of the policy under evaluation. Denote
by Ĵπ our estimate of Jπ, and by R̂λ

π the resulting reward transformation when using Ĵπ
instead of Jπ. One can then see R̂λ

π as an estimator for the true reward transformation
Rλ
π. Clearly, this estimator is biased if Ĵπ is biased. Even if Ĵπ was unbiased, R̂λ

π

would still be biased if we do not use two independently estimated versions of Ĵπ
since it is involved in a squared term. It is then natural to wonder how using such
an approximate reward transformation affects the adopted policy evaluation algorithm.
One may ask whether this kind of algorithm converges, and how distant (according to
some measure) the obtained solution is from the exact one. Answering this question
could enable us to show that the overall algorithm is consistent when Ĵπ is consistent.
This could also enable us to infer the order of the number of samples (used either by
the policy evaluation algorithm or the sampling process for estimating Jπ) needed to
keep the estimation error below some given level ε. An alternative approach, which we
will call the factored-method, relies on the following alternative expression for V λ

π :

V λ
π (s) = (1 + 2λJπ)V π(s)− λMπ(s)− λ

1− γJ
2
π , (6.1)

where we call Mπ : S −→ R the second moment value function1, which is defined as
follows:

Mπ(s) := E at∼π(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)
2

∣∣∣∣s0 = s

]
. (6.2)

Squaring the rewards can be seen as a deterministic (policy-independent) reward trans-
formation. Thus, Mπ can be learned by adapting any algorithm that can be used for
learning V π, and any accuracy guarantees (e.g. finite-time bounds) on the learned es-
timate of V π can be adapted for Mπ; we would just need to consider that the range of
values of the step-reward is different. A natural choice would be to learn both functions
in parallel using the same algorithm and the same data. The factored method involves
estimating V π, Mπ, and Jπ, and then plugging them in (6.1) to obtain an estimate of
V λ
π . Note that this approach bears some resemblance to the approach adopted in (Tamar

et al., 2016a) for estimating the variance of the reward to go. However, the approach in
our case is simpler. This is mainly because the three quantities to be estimated (namely
V π,Mπ, and Jπ) can be learned separately using standard methods, and only combined
at the end via (6.1).

1It is the second moment of the step reward R(s′, a′) (where s′ ∼ dπ(·|s) and a′ ∼ π(·|s′)), not of the return when starting
from s.
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6.2.2 Monte-Carlo Estimation of the Expected Return

No matter which policy evaluation method one chooses to use, the estimation of the
expected return Jπ is a crucial step. We will adopt a simple Monte-Carlo procedure
for estimating Ĵπ (see Algorithm 5). In this procedure, we simulate L trajectories each
truncated at a fixed horizon of TJ steps, and then average the (normalized) truncated
returns from these trajectories. That is, if Gi :=

∑TJ−1
t=0 γtR(si,t, ai,t) denotes the trun-

cated return from trajectory i, then Ĵπ is given by:

Ĵπ :=
1

L

L−1∑
i=0

(1− γ)Gi.

Note that Ĵπ is not necessarily an unbiased estimate of Jπ since we are truncating the
returns. This bias, however, can be arbitrarily reduced by making the trajectories long
enough. Also, we will use only a single estimate of Jπ in our algorithms, which can
introduce bias due to the involvement of Jπ in squared terms in both policy evaluation
methods. These issues will be taken into account in our analysis.

Algorithm 5 Monte-Carlo-J

1: Input: π, γ, L, TJ
2: Initialize: G0, . . . , GL−1 = 0
3: for i = 0, . . . , L− 1 do
4: s0 ∼ µ0(·)
5: for t = 0, . . . , TJ − 1 do
6: at ∼ π(st), st+1 ∼ P (·|st, at)
7: Gi = Gi + γtR(st, at)
8: end for
9: end for

10: Ĵ = 1
L

∑L−1
i=0 (1− γ)Gi

11: Output: Ĵ

6.2.3 The Critic Algorithm

We will extend the analysis in (Xu et al., 2020b) conducted over the actor-critic algo-
rithm in the risk-neutral setting to our mean-volatility problem. We start by describing
our extension of the critic. In (Xu et al., 2020b), the critic is a temporal difference algo-
rithm that uses linear function approximation. More specifically, they use a mini-batch
version of linear TD(0) in which a mini-batch of samples is used to performs the up-
dates instead of just a single sample. Their motivation for adopting mini-batch updates
is that the iterates can be driven arbitrarily close, in expectation, to the TD fixed point
by increasing the mini-batch size while using a fixed step-size. Using this approach,
they were able prove a better sample complexity than that provided in other works in
the literature (e.g. (Bhandari et al., 2018)).

If we are to use the direct method, our aim will be to use that algorithm to learn
V λ
π by transforming the rewards using R̂λ

π (which depends on Ĵπ). If we are to use the
factored method instead, we can learn V π by directly using the algorithm, and learn
Mπ in the same manner except that we square the rewards. For all three functions,
we will consider a linear approximation scheme where candidate functions belong to
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the function space {fω : ω ∈ Rdω and fω(.) = ωᵀφ(.)}, where ϕi : S −→ R, i =
1, . . . , dω. are basis functions defined over the states, and φ(.) := (ϕ1(.), . . . , ϕdω(.))ᵀ

is the corresponding feature mapping.
Algorithm 6 is a generalization of Algorithm 2 in (Xu et al., 2020b)2, where the

difference is that we get to choose the reward function fR to be used in the algorithm.
This could be:

• fR(s, a) = R(s, a), if we are learning V π.

• fR(s, a) = R2(s, a), if we are learning Mπ.

• fR(s, a) = R(s, a) − λ(R(s, a) − Ĵπ)2, if we are learning V λ
π using the direct

method.3

Note that in the last case, fR is a function of Ĵπ and λ, which subsequently become
parameters of the algorithm. As for the rest of the parameters, Tc is the number of
iterations, M is the mini-batch size, and β is the step-size.

Algorithm 6 Mini-batch TD

1: Input: sini, θ, φ(·), γ, β, Tc,M, fR
2: Initialize: ω0

3: Set s−1,M = sini
4: for k = 0, . . . , Tc − 1 do
5: sk,0 = sk−1,M .
6: for j = 0, . . . ,M − 1 do
7: ak,j ∼ πθ(sk,j), sk,j+1 ∼ P (.|sk,j , ak,j)
8: R̃k,j = fR(sk,j , ak,j)

9: δk,j = R̃k,j + γφ(sk,j+1)
ᵀωk − φ(sk,j)ᵀωk

10: end for
11: ωk+1 = ωk + β 1

M

∑M−1
j=0 δk,jφ(sk,j)

12: end for
13: Output: ωTc , sk,M

6.2.4 The Actor Algorithm

In (Xu et al., 2020b), they adopt an advantage actor critic (A2C) approach, where they
also use mini-batches to perform the stochastic gradient ascent updates. This means
that the policy updates take the following from:

θt+1 = θt + α
1

B

B−1∑
i=0

δt,i∇θ log πθt(at,i|st,i), (6.3)

where B is the mini-batch size, α is the step-size, δt,i = R(st,i, at,i) + γV̂t(st,i+1) −
V̂t(st,i) is the temporal difference (TD) error at the ith step, and V̂t is the critic learned at
iteration t. Note that δt,i is, in effect, an estimate of the advantage function at (st,i, at,i).

2Note that, unlike in (Xu et al., 2020b), we use ω for the critic’s parameters and the more common choice of θ for the policy’s
parameters.

3We refer to this version of the algorithm as direct mini-batch TD.
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6.2. Problem Formulation

When using parameterized policies, the gradient of ηθ with respect to θ has been
derived in Theorem 5.11. Interestingly, this gradient has the same form as the risk-
neutral policy gradient (Sutton et al., 2000a), but here we have the transformed action-
value function instead of the normal one. Also note that as V λ

π is a function of only the
states (and not the actions), it satisfies Ea∼πθ(·|s)

[
V λ
π (s)∇θ log πθ(a|s)

]
= 0, and hence

can be used as a baseline in the mean-volatility gradient in the same way that baselines
are used in the risk-neutral setting (Sutton et al., 2000a). In other words,

∇θηθ = Es∼dµ0,πθ
(·)

a∼πθ(·|s)

[
Aλπθ(s, a)∇θ log πθ(a|s)

]
, (6.4)

where Aλπ(s, a) := Qλ
π(s, a) − V λ

π (s) is the transformed advantage function. Thanks
to this policy gradient expression for the mean-volatility, adapting this approach to our
case would just involve using the (estimated) transformed reward and the (estimated)
transformed value function in place of their risk-neutral counterparts in the TD-error.
To collect the samples of the mini-batch, the agent interacts with a slightly modified
MDP characterized by the following transition kernel:

P̃ (·|s, a) = γP (·|s, a) + (1− γ)µ0(·),

where P is the transition kernel of the original MDP. That is, at each step, the next
state is sampled according to the original kernel with probability γ, while we draw
the next state from the initial state distribution (i.e. restart) with probability 1 − γ.
This sampling process causes the encountered states to be distributed, at steady-state,
according to the discounted state distribution (Thomas, 2014). While this is indeed
the desired distribution of states (see (6.4)), a side effect is that the next state (st+1)
utilized in the TD-error expression is now sampled from P̃ (·|st, at), whereas it should
be sampled from P (·|st, at). This introduces a subtle bias in the algorithm, which is
not accounted for in the analysis of (Xu et al., 2020b). To remedy this, we employ a
slightly altered sampling process. At any time step t, consider two different random
variables for the next state, namely, st+1 and s′t+1, with different distributions. The
latter is distributed according to the standard kernel (i.e., s′t+1 ∼ P (·|st, at)), while
st+1 is sampled from the following variant of the modified kernel4 P̃ (·|st, at, s′t+1) :=
γδs′t+1

(·) + (1− γ)µ0(·). That is, with probability γ, st+1 is the same as s′t+1, and with
probability 1 − γ, st+1 is drawn from the initial state distribution. In any case, s′t+1 is
the one we use as the next state in the TD-error, whereas st+1 is the state from which we
resume sampling the rest of the actor mini-batch5. With the proposed modification, the
analysis of (Xu et al., 2020b) remains largely applicable, we just need to account for the
extra performed sampling when we consider the sample complexity of the algorithm.

Algorithm 7 demonstrates our proposed adaptation of the mini-batch actor-critic
algorithm to the mean-volatility setting. In the algorithm description, we used that
(for any state-action pair) ψθ(s, a) := ∇ log πθ(a|s), which is referred to as the score
function of policy πθ. Note that the algorithm leaves the choice of the critic procedure
open. In particular, if we want to use the direct method, then we can call the mini-batch
TD algorithm with fR(s, a) = R(s, a) − λ(R(s, a) − Ĵt)

2. If we name the learned
4Here, δ is the Dirac delta function.
5Note that the proposed sampling process does not require a generative model, it only requires that we can halt the trajectory at

any time and restart from the initial state distribution.
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parameter vector ωt, then we can set V̂ λ
t (s) := φ(s)ᵀωt,∀s ∈ S . If we want to use the

factored method, we can call the mini-batch TD algorithm with fR(s, a) = R(s, a) and
fR(s, a) = R2(s, a) for learning V̂t and M̂t respectively6. If we then denote by ωvt and
ωmt the learned parameter vectors for V̂t and M̂t respectively, we can set (∀s ∈ S):

V̂ λ
t (s) = (1 + 2λĴt)φ(s)ᵀωvt − λφ(s)ᵀωmt −

λ

1− γ Ĵ
2
t .

Note that the algorithm takes L and TJ as parameters, which denote the number of

Algorithm 7 Mini-batch Mean-Volatility Actor-Critic (Mini-batch MVAC)

1: Input: Policy Class πθ, φ(·), µ0(·), λ, γ, L, TJ , T , B, α.
2: Initialize: θ0, s−1,B ∼ µ0(·)
3: for t = 0, . . . , T − 1 do
4: sini = st−1,B

5: Estimate J:
6: Ĵt = Monte-Carlo-J(πθt , γ, L, TJ).
7: Estimate the Critic V̂ λt (utilizing Ĵt, sini).
8: Set st,0 as last state from the critic sampling.
9: Actor mini-batch sampling:

10: for i = 0, . . . , B − 1 do
11: at,i ∼ πθ(st,i)
12: s′t,i+1 ∼ P (·|st,i, at,i)
13: st,i+1 ∼ P̃ (·|st,i, at,i, s′t,i+1)

14: R̃t,i = R(st,i, at,i)− λ(R(st,i, at,i)− Ĵt)2
15: δt,i = R̃t,i + γV λt (s

′
t,i+1)− V λt (st,i)

16: end for
17: Actor update:
18: θt+1 = θt + α 1

B

∑B−1
i=0 δt,i ψθt(st,i, at,i)

19: end for
20: Output: θT̂ with T̂ chosen uniformly from {1, . . . , T}.

trajectories and the number steps per trajectory used in the Monte-Carlo estimation of
the expected return, which we have described before.

6.2.5 General Assumptions

Before describing our results, we highlight the main required technical assumptions.

Assumption 3. ∀(s, a) ∈ S × A:

(i) |R(s, a)| ≤ Rmax.

(ii) πθ(a|s) is differentiable w.r.t. θ.

(iii) ∃ Cψ > 0 : ∀θ ‖ψθ(s, a)‖2 ≤ Cψ.

(iv) ∃ Lψ > 0 : ∀θ1, θ2 ‖ψθ1(s, a)− ψθ2(s, a)‖2 ≤ Lψ‖θ1 − θ2‖2.

(v) ∃ Cπ > 0 : ∀θ1, θ2 ‖πθ1(.|s)− πθ2(.|s)‖TV ≤ Cπ‖θ1 − θ2‖2,

where, for a probability density function q(.), ‖q(.)‖TV := 1
2

∫
s
|q(ds)|.

6In practice, one would use the same sample path for learning both functions.
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6.3. Main Results

Assumptions 3.iii and 3.iv assert that, for any policy in our class of policies, the
score function is bounded and smooth, while assumption 3.v asserts that the chosen
class of policies is smooth in the described sense. Note that by Assumption 3.i and the
definition of Jπ, ∀(s, a) ∈ S × A and λ ≥ 0, we have that∣∣R(s, a)− λ(R(s, a)− Jπ)2

∣∣ ≤ Rλ,max,

where Rλ,max := Rmax + 4λR2
max. We also make the following assumption on the basis

functions and the feature mapping that we use to learn V λ
π .

Assumption 4. ∃ Cφ > 0 : ∀s ∈ S ‖φ(s)‖2 ≤ Cφ. Furthermore, the basis functions
ϕi(·), i = 1, ..., dω are mutually linearly independent.

The following assumption serves to simplify the expressions of the bounds.

Assumption 5. W.L.O.G.

(i) Cψ = 1.
(ii) Cφ = 1.

The following is an assumption on the regularity of the MDP.

Assumption 6 (Uniform Ergodicity, Adapted from (Xu et al., 2020b)). For any θ ∈
Rdθ , consider the MDP with policy πθ and the transition kernel P (·|s, a) or P̃ (·|s, a) =
γP (·|s, a) + (1− γ)ξ(·), where ξ(·) can be µ0 or P (·|ŝ, â) for any (ŝ, â) ∈ S ×A. Let
µπθ be the stationary state distribution of the MDP when acting with policy πθ. There
exists constants κ > 0 and ρ ∈ (0, 1) such that:

sup
s∈S
‖P(st ∈ ·|s0 = s)− µπθ(·)‖TV ≤ κρt,∀t ≥ 0.

Assumption 7. For any triple (si,t, ai,t, si,t+1) ∈ S × A × S and any Ĵ estimate
bounded, in absolute value, by Rmax, there exists real constants CA and Cb such that
‖Ai,t‖F ≤ CA and ‖bi,t(Ĵ)‖2 ≤ Cb, where ‖·‖F is the Frobenius norm7 of a matrix.

6.3 Main Results

In this section, we present the the main finite sample analysis results. We will first
consider the analysis of the direct mini-batch TD algorithm for learning the transformed
value function, and then we will consider the full mean-volatility actor-critic procedure,
where the critic is learned using direct mini-batch TD.

6.3.1 Direct Mini-Batch TD Analysis

In the direct method, if Ĵ (and subsequently, the estimated transformed reward func-
tion) is fixed, we can invoke the results from (Tsitsiklis and Van Roy, 1997) about the
convergence of TD learning with linear function approximation. In particular, if we de-
fine8 b(Ĵ) := Eµθ

[
φ(st)R

λ(st, at, Ĵ)
]
, and A := Eµθ [φ(st)(γφ(st+1)− φ(st))

ᵀ], then

7For an m× n matrix X , its Frobenius norm (Golub and Van Loan, 1996) is defined as ‖X‖F :=
√∑m

i=1

∑n
j=1|aij |2 =√∑min{m,n}

i=1 σ2
i (A), where σi(A) are the singular value of A.

8Here, µθ is the stationary distribution of policy πθ .
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the algorithm converges to a point ω∗
Ĵ

such that Aω∗
Ĵ

+ b(Ĵ) = 0. However, our goal is
to describe the convergence rate, in expectation, of the critic to ω∗J , where J is the true
expected return of the policy under evaluation, not to ω∗

Ĵ
. Moreover, Ĵ is not fixed; it is

a random variable whose properties depend on the number of trajectories L (and their
length TJ ) used to estimate it. The main idea of the analysis is thus to bound how far
we expect ω∗

Ĵ
to be from ω∗J in terms of L and TJ . Before presenting the bound, we

state the following result9, which is an adaptation of a similar statement in (Xu et al.,
2020b). There exists a positive constant χA such that, for any ω ∈ Rdω and any value
of our (bounded) estimate Ĵ , we have that

〈(ω − ω∗
Ĵ
), A(ω − ω∗

Ĵ
)〉 ≤ −χA

2

∥∥ω − ω∗
Ĵ

∥∥2

2
.

Theorem 6.3.1 (Critic’s Bound). Suppose Assumptions 3, 4 and 6 hold, and suppose
we are given a policy πθ (with normalized expected return J) and risk parameter λ.
Suppose that a Monte-Carlo estimate Ĵ is obtained for πθ as described before, and
then Algorithm 6 is run for Tc steps using fR(s, a) = R(s, a)− λ(R(s, a)− Ĵ)2. Then,
for β ≤ min

{
O(χA),O(χ−1

A )
}

, we have that

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤

4‖ω0 − ω∗J‖2
2(1−O(χAβ))Tc +O

(
χ−1
A + β

χAM

)
+

2

σ̄2

[
1 + 2(1−O(χAβ))Tc

]
O
(
λ2

(
γ2TJ +

1

L

))
,

where ωĴTc is the parameter vector obtained after Tc iterations of the algorithm while
using Ĵ to perform the reward transformation, σ̄ is the smallest singular value of the
matrix A, and the expectation is over both the Monte-Carlo estimation of Ĵ and the
TD algorithm. Furthermore, for a sufficiently small ε > 0, to achieve an ε-accurate
solution, that is,

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ ε,

the sample complexity of the algorithm is

TcM + LTJ = O
(
ε−1log

(
ε−1
))
.

The proof of this theorem can be found in Appendix A.3.3. The first two terms
of the bound are (up to constants) the risk-neutral bound of (Xu et al., 2020b). The
third term primarily quantifies the inaccuracy of Ĵ , and decays by increasing L and TJ .
Interestingly, the obtained sample complexity is the same as the risk-neutral version in
(Xu et al., 2020b). In fact, only the third term depends on λ, and upon setting it to
zero, the risk-neutral bound is recovered. Although a higher degree of risk-aversion
(i.e., greater λ) has a negative impact on the bound, it does not affect the order of the
required number of samples. It is important to note that the conducted analysis requires
that the transformed value function and the expected return are estimated using different
data.

9This can be seen as a consequence of Lemmas 1 and 3 in (Bhandari et al., 2018).
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6.3. Main Results

6.3.2 Mean-Volatility Actor-Critic Analysis

Since η(θ)10 is, in general, a non-concave function of θ, we do not expect that we reach
a global maximum using a gradient ascent algorithm. Instead, we strive to reach a
stationary point of η(θ), and the goal of the analysis is thus to bound E

[
‖∇η(θT̂ )‖2

2

]
in terms of the number of used samples. Crucial to the analysis of the actor is for the
gradient of η(θ) to be Lipschitz continuous. That is, for any θ1, θ2 ∈ Rdθ , there exists a
real constant Lη ≥ 0 such that

‖∇η(θ1)−∇η(θ2)‖2 ≤ Lη‖θ1 − θ2‖2.

The proof of this statement can be found in Appendix A.3.10. Since the actor relies
on the critic for the estimation of the gradient, the convergence of the actor naturally
relies on the accuracy of the critic. However, the analysis of the last section was only
concerned with how far the critic was from the TD fixed point. We will thus need an
additional notion to describe the approximation error incurred due to not only using a
linear function, but also for using TD learning, which, in general, leads to a fixed point
different from the best approximation in our space of candidate function (Tsitsiklis and
Van Roy, 1997). Thus, we define the following quantity to be used in the actor’s bound:

ξappr := max
θ∈Rdθ

Es∼dµ0,πθ
(·)
[∣∣V λ

πθ
(s)− φ(s)ᵀω∗Jθ

∣∣2].
Theorem 6.3.2 (Actor’s Bound). Suppose Assumptions 3, 4 and 6 hold, and suppose
we run Algorithm 7 for T iterations with the critic learned as described in Theorem
6.3.1, then if α = 1

8Lη
, we have:

E
[
‖∇η(θT̂ )‖2

2

]
≤

T−1∑
t=0

E
[
‖ω∗Jt − ωt‖2

2

]
O
(

1

T

)
+O

(
1

B

)
+O(ξappr) +O

(
Lη
T

)
+O

(
λ2

(
γ2TJ +

1

L

))
,

where ωt is the parameter vector of the learned critic at the tth iteration, and ω∗Jt is the
TD fixed point for the true transformed value function of policy πθt . Furthermore, for
a sufficiently small ε > 0, to achieve an ε-accurate stationary point, that is,

E
[
‖∇η(θT̂ )‖2

2

]
≤ ε+O(ξappr),

the total sample complexity is:

T ((2− γ)B +MTc + LTJ) = O
(
ε−2 log

(
ε−1
))
.

The proof of this theorem can be found in Appendix A.3.4. The bound in Theorem
6.3.2 is made up of five terms. The first is proportional to the average (across iterations)
of how far we expect the critic to be from the TD fixed point of the true transformed

10η(θ) := ηθ .
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value function. This is precisely the quantity bounded in Theorem 6.3.1. The second
term is related to the error due to the variance of the mini-batch estimates of the gradi-
ent, and it decays by increasing the mini-batch size. The third term is the approximation
error discussed before. The fourth one is an error term that decays as the number of
actor iterations increases. The last term, much like the third term in Theorem 6.3.2,
represents the error due to the inaccuracy of Ĵ , and it decays by increasing L and TJ .
Compared to the bound in (Xu et al., 2020b), our bound assumes a similar form (albeit
some of the quantities are naturally defined differently in our setting), with the excep-
tion of the last term. Although estimating the expected return requires extra sampling,
the theorem asserts that the sample complexity is still not worsened compared to the
risk neutral case.

6.4 Experiments

In this section we empirically validate our algorithms by means of an experimental
analysis on an environment called Point Reacher.

The Point Reacher Environment The agent controls a point mass that moves along the
real line in order to bring it to a target location in the minimum number of steps. The
state of the system is described by the position of the mass in the interval [−10, 10],
while the agent chooses (continuous) actions in [−2, 2]. If the system is in state s and
the agent takes action a, the new state is s′ ∼ N (s+a, a2) and the immediate reward is
r = −0.1|s′|+ a2. The goal is the ball of radius 0.05 around the origin. Episodes have
length at most 10 and terminate whenever the agent reaches a goal state. The initial
state is drawn uniformly in [−5.1,−5] ∪ [5, 5.1].

Results We tested the performance of Algorithm 7 in this environment, where the used
critic is again direct mini-batch TD. We considered Gaussian policies, where the mean
and standard deviation are linear functions of the state. The features we used for the
states are Gaussian radial basis functions. The critic also used these same features.
Figure 6.1 show the performance of Algorithm 7 applied to the Point-Reacher environ-
ment. The rightmost plot shows the approximated Pareto frontier w.r.t. the expected
return and the reward-volatility. Different points have been obtained by selecting dif-
ferent values of the risk-aversion parameter λ. It can be noticed that the algorithm can
obtain different trade-offs between the two criteria, as desired. Curves in the central and
the leftmost plots show smooth return and volatility curves, without signs of instability.

6.5 Related Works

The mean-volatility objective has been first introduced in (Bisi et al., 2020b), where it
was optimized through a trust-region approach, but without providing any finite sample
analysis results. The technique has been extended in (Zhang et al., 2021), where the op-
timization of the same objective was pursued by means of a framework, which allows to
decompose the problem into a series of standard MDPs. The authors were able to show
the asymptotic convergence of the method to a local optimum (stationary point), but
they did not provide any convergence rate. Convergence to a local optimum is typically
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6.6. Conclusions

Figure 6.1: This figures reports the performance of the mini-batch MVAC algorithm in the Point-Reacher
environment. The first two plots show the progress of the expected return and the reward volatility as
the number of samples increases for three values of λ. The last plot shows the approximated Pareto
frontier using six values of λ chosen uniformly between 0 and 1.2.

the best that one can hope for even for risk-neutral policy optimization approaches,
unless the problem presents particular favourable features (Agarwal et al., 2021). For
what concerns the risk-neutral side, several finite sample analyses have been recently
developed for the actor-critic approach (Yang et al., 2018; Wu et al., 2020; Chen et al.,
2021; Wang et al., 2019; Kumar et al., 2019; Xu et al., 2020b). In this work, we fol-
low the approach suggested in (Xu et al., 2020b) to analyse the mean-volatility case,
evaluating to which extent our risk-averse extension impacts the risk-neutral conver-
gence rate. This analysis is interesting because, differently from (Chen et al., 2021) for
instance, it allows to considers the continuous action case. This is important because
enabling the access to continuous actions without losing the advantages of TD-learning
is one of the main advantages of actor-critic schemes.

As it is the case for (Zhang et al., 2021), many risk-averse policy gradient approaches
offer asymptotic convergence guarantees (Tamar et al., 2012a, 2015a; Chow et al.,
2017), but they do not provide finite sample analyses. There are only few works focus-
ing on this kind of analysis on algorithms optimizing risk-averse objective. The work
in (Jiang and Powell, 2018) optimizes a dynamic coherent risk-measure that involves
as static conditional risk-measure either CVaR or VaR, by means of an approximated
dynamic programming approach, similar in spirit to Q-learning. The authors provide
the convergence rate in terms of the expected deviation from the optimal Q-function.
Recently, in (Fei et al., 2020), the authors analysed the model-free optimization of the
Entropic Risk-Measure, through two different value-based algorithms. They prove a
sub-linear regret bound which can be used to derive the finite-sample complexity of
the approaches. While being interesting methods, we remark that these works are not
directly comparable to our analysis, since they involve value-based approaches and dif-
ferent objectives.

6.6 Conclusions

The goal of this chapter was to shed light on the impact of risk-aversion on the sam-
ple complexity of RL algorithms. We analysed the mean-volatility case, focusing, in
particular, on an actor-critic algorithm. We developed two different methods for mean
volatility policy evaluation: the factored method and the direct method. Firstly, we pro-
vided a finite-sample bound for the critic algorithm, which applied the direct method to
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a mini-batch TD algorithm. Secondly, we extended the analysis to the actor procedure,
deriving the sample-complexity of the whole algorithm. Our results show that while
increasing risk-aversion negatively affects the error bounds, the sample complexity of
the algorithms remains the same as that of their risk-neutral counterparts. Finally, we
tested the proposed algorithms on a stochastic environment to assess its soundness. We
showed that the algorithm is effective in obtaining different trade-offs between the ex-
pected return and the reward-volatility according to the desired level of risk-aversion.
A challenging future research direction could be analysing the case in which a sin-
gle batch of samples is used for each iteration, in order to discover the impact of the
resulting bias.
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CHAPTER7
Conclusion

In this dissertation we developed novel approaches to deal with the risk-averse rein-
forcement learning setting. Our goal was to make a step forward the use of RL meth-
ods in real-world contexts, by allowing to optimize risk-averse objectives with standard
techniques. We contributed to this ambition through the development of algorithms,
the definition of a novel risk-measure and by conducting theoretical and experimental
analyses. In what follows, we will review the main contributions of the dissertation,
discussing their main limitations and some possible future works.

Risk-Averse Optimization via Risk-Neutral Optimization

In Chapter 4 we presented a unified framework for risk-averse reinforcement learn-
ing, capturing several of the most popular risk measures: the conditional value at
risk (CVaR) (Rockafellar and Uryasev, 2002), the Mean-Variance penalized criterion
(Tamar et al., 2012b), and the whole family of concave utility functions, which includes
also the entropic risk-measure (Howard and Matheson, 1972). Leveraging on previous
works (Bäuerle and Rieder, 2011, 2013; Xie et al., 2018), we mapped each of the afore-
mentioned risk-averse objectives to a nested optimization, which gives as a final result a
valid solution for the original problem. We showed that the inner problem is equivalent
to a standard MDP with an augmented state space, and can be solved with the usual
tools. The outer problem consists, instead, in a closed form optimization which can be
easily carried on for each of the risk-measures. By properly defining two characteristic
functional for each of the risk-averse objectives, it is possible to unify the optimization
of this set of measures under the same framework.

We developed a simple meta-algorithm, called ROSA (Risk-averse Optimization
via State Augmentation), which allows to transform the trajectories obtained in the
original problem to effective samples for the transformed task. The optimization is
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carried on in a block coordinate fashion, alternating the optimization of the inner and
the outer problem. Since the inner problem is an MDP, it can be optimized with any
RL algorithm.

We conducted an extensive experimental campaign in order to validate the sound-
ness of our method. For each of the analysed risk-measures we instantiated ROSA
with different state-of-the-art algorithms. This procedure has been repeated for each
of the chosen environments, allowing in every case to correctly optimize the target
objective. We considered both toy problems, which allowed us to analyse a wider spec-
trum of base risk-neutral algorithms, and complex domains as robotic locomotion and
simulated trading, which allowed us instead to test the limits of the approach. Empiri-
cal results revealed that our method combined with state-of-the-art policy optimization
scales to complex domains and outperforms ad-hoc risk-sensitive algorithms, while re-
quiring minimal additional efforts, both in terms of computation and implementation,
w.r.t. learning risk-neutral policies.

Limitations and Future Directions One limitation of the state-augmentation presented in
Section 4.2.1 is that it requires to have access to trajectories. This is due to the fact that
we need to propagate the cumulative cost and discounting through time. However, in
the offline case, this is not always possible, since data may be available only in the form
of tuples, as it happens for Fitted Q-Iteration (FQI Ernst et al., 2005a). An important
future direction consists, then, in extending the proposed approach to the offline RL
setting, which would further increase its applicability.

The presented unified framework can be applied only to a fixed set of risk-measures.
It is still unclear whether the same formulation can be extended to a wider group of
them. Investigating the possibility of applying the same result to other risk-averse ob-
jective can be another possible future direction. In particular, it would be interesting
to understand the reason why for some risk-measures this conversion can be done, and
why for other one this seems not possible. Furthermore, the decomposition of an MDP
with a non-conventional objective into a nested optimization, where the inner problem
is a standard MDP, is a recurrent pattern for optimizing MDP with a modified objective
(Zhang et al., 2021; Zahavy et al., 2021; Zhang et al., 2020a). This probably hides a
more general formulation, which would be interesting to investigate.

From the empirical side, the extensive work that we did allowed to notice one com-
plication with risk-averse agents. When learning from scratch, risk-averse agents tend
to under-explore the environment, occasionally converging to poor local optima. How-
ever, when the risk-aversion degree is small, but not null, we also experienced an im-
proved convergence, which surprisingly resulted in better expected return than the risk-
neutral case. This suggests that risk-aversion play an important role in the learning
process, hence, varying the risk-aversion during training may be beneficial for either
risk-neutral or risk-averse tasks. Thus, it would be interesting to deepen this relation-
ship under the lens of curriculum learning (Bengio et al., 2009).
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Risk-Averse Trust Region Optimization for Reward-Volatility Reduction

In Chapter 5 we proposed a novel methodology for risk-averse reinforcement learning,
exploiting, for the first time in a risk-averse setting, a safe improvement bound. This
was possible thanks to the definition of a novel risk measure called reward volatility
that accounts for the variability of the rewards between steps. Minimizing this risk-
measure allows to obtain smoother trajectories that avoid shocks, which is a funda-
mental feature in a trading setting, never considered before. This measure consider a
different target random variable, the per-step reward, which is distributed according to
the state-action occupancy distribution. We showed interesting theoretical properties
of reward-volatility. This measure allows to upper bound the variance of the return,
thus, minimizing the former we also constraint the latter, making the reward volatility
a proxy for variance minimization. Differently from other risk measures, we showed
that it possible to derive for it a linear Bellman equation. Thanks to this property, it was
possible to obtain a policy gradient theorem for the mean-volatility trade-off objective,
and to extend some monotonic improvement bounds available in the risk-neutral case to
the risk-averse one. Exploiting the safe bound, we obtained TRVO, a practical TRPO-
like algorithm, which, thanks to a dynamic tuning of the step-size, allows to obtain an
empirically fast learning speed. The proposed algorithm was tested on two financial
trading environments where it was shown to outperform the baselines, obtaining better
Pareto frontiers in shorter time.

Limitations and Future Directions The main limitation of this work, which does not im-
pact the proposed approach but could prevent the application of other techniques, is the
presence of a policy-dependent transformed reward. A first-step to better understand
the role of this component has been done in (Zhang et al., 2021). In this work, the au-
thors showed that, decomposing the mean-volatility objective with a Fenchel duality, it
is possible to reduce the original problem to a nested optimization. The inner problem
is an MDP which features the aforementioned reward, which is not policy dependent
anymore, since computed from a fixed expected return. The outer problem instead can
be solved in closed form, and it simply amounts at computing the expected return of the
policy given as output from the inner MDP. This work allows to apply any RL algorithm
to the inner optimization problem, thus, addressing the issue of off-policy optimization.
This algorithm is called Mean-Variance Policy Iteration (MVPI). The authors presented
a monotonic improvement bound for their approach and they showed convergence to
local optima. MVPI include as a special case our approach, TRVO, by instantiating
TRPO for the solution of the inner problem.

An interesting research direction would consists in bounding the error found by
MVPI solution. Unfortunately, as for the mean-variance penalized objective, mean-
volatility in inherently a non-concave objective w.r.t. the expected return. This means
that the initial value of the expected return will determine the attraction basin for the
optimization, making difficult any attempt to constraint the distance with the mean-
volatility optimal value. It would be interesting, however, to study which regularity
conditions are needed to develop efficient algorithms, capable to approach the optimal
solution with the desired precision.

This work studied for the first- time a novel class of risk-measures, based on the
per-step reward instead of the return. While only the variance of this random variable
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Chapter 7. Conclusion

was deeply analysed, here called reward-volatility, it would make sense to understand
the meaning of applying other traditional risk-measure to this setting. In particular,
it would be important to understand whether such reward-based risk-measure have any
relationship with their return-based counterparts, and if they can be optimized in a more
efficient way.

Finite Sample Analysis of Mean-Volatility Actor-Critic for Risk-Averse Re-
inforcement Learning

In Chapter 6 we tried to better understand the impact of risk-aversion on RL algorithms
sample-complexity. For this purpose, we developed a finite-sample analysis of an actor-
critic approach applied to the novel risk trade-off we defined in the previous chapter.
We developed two different methods for the policy evaluation of the mean-volatility
objective. The direct method features the use of the policy-dependent transformed
reward, that has to be computed by estimating the expected return, and it can then
be plugged to standard policy evaluation approaches. The factored method, instead,
allows to estimate the the same quantity by computing two value function, the standard
one and the one corresponding to the reward second moment: by composing the two
functions one can obtain the mean-volatility value. We analysed the sample-complexity
of estimating a critic using the direct method, employing a mini-batch TD approach
with linear function approximation. To do that, we extended the analysis presented in
(Xu et al., 2020b). We then completed the analysis with the study of the actor part,
deriving a finite-sample bound for reaching an ε-accurate stationary point of the mean-
volatility policy gradient. It was possible to notice that the batch size is influenced by
the risk-aversion degree of the agent: the higher is λ the coefficient, the higher is the
number of samples required to obtain a solution with some fixed precision. However,
the results we obtained showed that the sample-complexity order is the same of the
risk-neutral case, thus, allowing us to conclude that the negative impact on the batch
size due to the introduction of risk-aversion is limited.

Limitations and Future Directions The main limitation of this work consists in assuming
the use of separate batches of samples to estimate the value function and the expected
return, which is needed to compute the transformed reward. While our analysis showed
the limited impact that this approach has on the overall sample complexity, it is still an
annoying aspect. Moreover, empirical experiments shows that using a single batch for
computing both quantities allows for a faster convergence, suggesting that the effect of
the bias may be not severe.

Extending the analysis to take explicitly into account this bias is one of the most
interesting, while complex, future research directions. A possible workaround solution
to the issue could consists in employing the expected return of the previous policy
in place of the current one, in order to break the correlation between samples. This
approach would clearly introduce a bias, but it is guaranteed to converge, being an
instance of MVPI ((Zhang et al., 2021)), where an actor-critic approach in used to
solve the inner optimization, which is protracted for just one iteration.

Actor-critic algorithms allows to deal with continuous action-spaces without re-
nouncing to the advantages of temporal difference learning. This is particularly im-
portant for real-world tasks, in which finite action spaces are often just the product
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of physical quantities discretization. What is also fundamental in real-world applica-
tions is to limit the interaction with the environment, which can be an expensive and
time-consuming activity. Off-policy methods are, thus, the main candidate for real-
life applications, since they can also exploits samples gathered by other policies (Ernst
et al., 2005a; Watkins and Dayan, 1992; Mnih et al., 2015). A prospective work could
consist in extending our analysis to the off-policy case (Chen et al., 2021), to obtain a
batch actor-critic architecture in the style of (Melo and Lopes, 2008). Studying how the
effect of being off-policy compounds with the risk-aversion one in an actor-critic algo-
rithm (Urpí et al., 2021), is definitely a challenging but important direction for future
research.

Final Remarks

Risk-averse reinforcement learning poses several questions and challenges. Further-
more, its deep connection with real-world problems makes this setting one of the most
interesting lines of work for reinforcement learning research. In this dissertation we
provided methods for a more efficient optimization of some risk-averse objectives, and
we offered insights on the risk-averse learning process by means of theoretical analy-
ses and experimental evaluations. The journey to make reinforcement learning a mature
technology for real life applications is still at the beginning, and we just took a few more
steps on this long path, but we hope that our effort could be inspiring for further and
even better developments.
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APPENDIXA
Additional Results and Proofs

In this appendix, we report additional results and proofs we have omitted in the main
text of the dissertation.

A.1 Additional Results of Chapter 4

A.1.1 Additional Results

The goal of this subsection is to complement the results on the toy environments ex-
posed in A.2.3 with the respective learning curves. All the results reported in the re-
maining are the average of 20 independent runs. Plots with shaded error bars report
plus/minus the standard deviation. Figure A.1 and A.2 report the learning curves, re-
spectively, for the Multi-armed bandit and the Point Reacher environments for all risk
measures and base algorithms. Here we notice that MV seems the simplest risk measure
to optimize as all algorithms converge quickly quickly with a stable learning behavior.
On the other hand, ERM seems the most difficult and, due to its exponentiated nature,
makes some algorithms (especially the off-policy ones) more unstable. Nonetheless,
all curves converge to good solutions as we have already seen in the previous plots.
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Figure A.1: Learning curves for ROSA optimizing MV, CVaR, and ERM when combined with TRPO,
PPO, SAC, and DDPG.

A.1.2 State augmentation from batch data

One limitation of the state-augmentation derived in subsection 4.2.1 is that it requires
data in the form of trajectories in order to be computed from samples. This is due to
the fact that we need to propagate the cumulative cost and discounting through time.
In some real-world scenarios, we may have only access to batch data in the form of
transition tuples {(Si, Ai, S ′i, Ri)}ni=1, where Si, Ai are collected under some arbitrary
distribution, S ′i ∼ P (·|Si, Ai), and Ri = R(Si, Ai, S

′
i). Furthermore, no further inter-

action with the environment is allowed. Typical RL approaches for this setting include
batch value-based algorithms, such as Fitted Q-Iteration (FQI Ernst et al., 2005a). Un-
fortunately, in this case our state augmentation cannot be exactly performed from sam-
ples as in Algorithm 1. Although we left the extension to batch data as a challenging
direction for future work, here we provide some intuition on how this augmentation
could be performed.

Consider the augmented MDP of Definition 4.2.3 for a fixed ρ ∈ R. Using the

94



i
i

“output” — 2022/2/22 — 20:37 — page 95 — #103 i
i

i
i

i
i

A.1. Additional Results of Chapter 4

0 0.5 1 1.5 2

·105

−15

−10

−5

Samples

M
ea
n
-V

a
ri
an

ce

TRPO

0.5
1.5
1.0
2.0
0.0

0 0.5 1 1.5 2

·105

−10

−8

−6

−4

−2

Samples

C
V
aR

TRPO

0.6
0.4
0.2
0.8

0 0.5 1 1.5 2 2.5 3

·105

−10

−8

−6

−4

−2

Samples

E
R
M

TRPO

0.4
0.2
0.3
0.1

0 0.5 1 1.5 2

·105

−15

−10

−5

Samples

M
ea
n
-V

a
ri
an

ce

PPO

2.0
1.5
0.5
0.0
1.0

0 0.5 1 1.5 2

·105

−10

−8

−6

−4

−2

Samples

C
V
aR

PPO

0.2
0.8
0.6
0.4

0 0.5 1 1.5 2 2.5 3

·105

−10

−8

−6

−4

−2

Samples

E
R
M

PPO

0.3
0.4
0.1
0.2

0 0.5 1 1.5 2

·104

−15

−10

−5

Samples

M
ea
n
-V

ar
ia
n
ce

SAC

0
2.0
0.5
1.5
1.0

0 0.5 1 1.5 2

·104

−10

−8

−6

−4

−2

Samples

C
V
aR

SAC

0.4
0.8
0.6
0.2

0 0.5 1 1.5 2

·104

−10

−8

−6

−4

−2

Samples

E
R
M

SAC

0.1
0.2
0.4
0.3

Figure A.2: Learning curves for ROSA optimizing MV, CVaR, and ERM when combined with different
risk neutral algorithms on the Point Reacher domain.

results of (Bäuerle and Rieder, 2013), we have the following recursion for computing
the optimal Q function in the augmented MDP. Starting from

Q̃0(s, v, w, a) = f(v, ρ),

we have that, for k ≥ 0,

Q̃k+1(s, v, w, a) =

∫
S

max
a′∈A

Qk(s
′, wR(s, a, s′) + v, γw, a′)P (ds′|s, a).

In order to approximate this from samples as in FQI, we samples of transitions in the
augmented MDP. Fortunately, the only unknown components are the dynamics of s
through the original transition model P and the single-step cost, for which we have
access to samples. The dynamics of v and w, on the other hand, are known and de-
terministic. Therefore, a (probably naive) solution is augment the observed states with
random values for v, w and compute their transition exactly given the observed cost.
As a concrete example, take a transition tuple (si, ai, s

′
i, R

′
i) that we intend to aug-

ment. First, we randomly generate vi ∈ [−Rmax/(1 − γ), 0] and wi ∈ (0, 1]. Then,
we compute v′i = wiRi + vi and w′i = γwi. Finally, we set the augmented sample to
((si, vi, wi), ai, (s

′
i, v
′
i, w

′
i), 0). We can then run FQI to approximate the optimal value

function by using the iterates reported above.
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A.1.3 Reproducibility Details

Here we provide the configurations and hyperparameters that we adopted for all the
considered algorithms in our experiments. We implemented ROSA on top of Stable
Baselines (Raffin et al., 2019). For each algorithm and domain, we used the hyperpa-
rameters suggested in the library or slight variations of them.

Multi-armed Bandit

TRPO We used the default MLP policy of Stable Baselines. The main parameters are:
γ: 0.999, generalized advantage estimation factor: 0.95, maximum KL: 0.01, batch
size: 200, entropy coefficient: 0.

PPO We used the default MLP policy of Stable Baselines. The main parameters are:
γ: 0.999, clip range: 0.2, generalized advantage estimation factor: 0.95, learning rate:
0.003, batch size: 200, entropy coefficient: 0, number of mini-batches: 1.

SAC We used the custom SAC policy from Stable Baselines. The main parameters are:
γ: 0.999, learning rate: 0.001, batch size: 50, buffer size: 1000, entropy coefficient:
automatically learned, number of gradient steps: 5. Every 500 time steps, we collected
50 samples under the current policy to update the outer variables.

DDPG We used the default MLP policy of Stable Baselines. The main parameters are:
γ: 0.999, batch size: 50, memory limit: 30000, number of rollouts per iteration: 10,
number of training steps per iteration: 5, noise type: Ornstein-Uhlenbeck with 0.1 std.
Every 500 time steps, we collected 50 samples under the current policy to update the
outer variables.

Point Reacher

TRPO We used the default MLP policy of Stable Baselines. The main parameters are:
γ: 0.999, generalized advantage estimation factor: 0.95, maximum KL: 0.01, batch
size: 2048, entropy coefficient: 0.

PPO We used the default MLP policy of Stable Baselines. The main parameters are:
γ: 0.999, clip range: 0.2, generalized advantage estimation factor: 0.95, learning rate:
0.005, batch size: 2048, entropy coefficient: 0, number of mini-batches: 1.

SAC We used the custom SAC policy from Stable Baselines. The main parameters are:
γ: 0.999, learning rate: 0.001, batch size: 100, buffer size: 20000, entropy coefficient:
automatically learned, number of gradient steps: 5. Every 500 time steps, we collected
50 episodes (i.e., 500 additional steps) under the current policy to update the outer
variables.

Trading

For this environment we used a Boltzmann policy on top of a neural-network archi-
tecture composed of 2 layers with 64 hidden neurons each. We used the following
parameters for TRPO: γ: 1, generalized advantage estimation factor: 1, maximum
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KL: 0.001, batch size: 700, entropy coefficient: 0, conjugate-gradient iterations: 10,
conjugate-gradient damping: 0.01, value-function step size: 0.0003, value-function up-
date iterations: 3. The episodes in this setting have a fixed length of 49 steps. The total
number of iterations was 400.

The risk-aversion coefficients used for the two risk measures are λ ∈ {1, 5, 10,
20, 25, 30} for mean-variance and β ∈ {−0.1,−2,−3,−3.5,−4,−5} for ERM.

Walker and Hopper

We used a Gaussian policy on top of a neural-network architecture composed of 2 layers
with 64 hidden neurons each. We used the following parameters for TRPO: γ: 0.999,
generalized advantage estimation factor: 0.95, maximum KL: 0.01, batch size: 2048,
entropy coefficient: 0. The episodes in this setting have a maximum length of 500. For
PPO instead, the main parameters were: γ: 0.999, generalized advantage estimation
factor: 0.95, batch size: 4096, minibatches: 32 and a learning rate starting from 0.0002
and decreasing with a linear schedule.
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A.2 Additional Results of Chapter 5

A.2.1 Safe Volatility Optimization

In this section, we provide a more rigorous alternative to TRVO. To do so, we sim-
ply adapt the Safe Policy Gradient approach from (Papini et al., 2019) to our mean-
volatility objective and find safe, adaptive values for the step size α and the batch size
N in Algorithm 3. We restrict our analysis to smoothing policies:

Definition A.2.1 (Smoothing policies). Let ΠΘ = {πθ | θ ∈ Θ ⊆ Rm} be a class of
twice-differentiable parametric policies. We call it smoothing if the parameter space
Θ is convex and there exists a set of non-negative constants (ψ;κ; ξ) such that, for
each state and in expectation over actions, the Euclidean norm of the score function, its
square Euclidean norm and the spectral norm of the observed information are upper-
bounded, i.e., ∀s ∈ S:

E
a

[
‖∇ log πθ(a|s)‖

]
≤ ψ; E

a

[
‖∇ log πθ(a|s)‖2

]
≤ κ; E

a

[
‖∇∇> log πθ(a|s)‖

]
≤ ξ.

Smoothing policies include Gaussians with fixed variance and Softmax policies (Pa-
pini et al., 2019). For smoothing policies, the performance improvement yielded by a
generic parameter update is lower bounded by:

Theorem A.2.2. Let ΠΘ be a smoothing policy class, θ ∈ Θ and θ′ = θ + ∆θ. For
any ∆θ ∈ Rm:

ηθ′ − ηθ ≥ 〈∆θ,∇ηθ〉 −
L

2
‖∆θ‖2, (A.1)

where:

L =
c

(1− γ)2

(
2γψ2

1− γ + κ+ ξ

)
+

2R2
maxψ

2

(1− γ)3
.

To prove this result, we need some additional Lemmas. The challenging part is
bounding the spectral norm of the Hessian Matrix of η. First, we derive a compact
expression for the Hessian of ν:

Lemma A.2.3. Given a twice-differentiable parametric policy πθ, the policy Hessian
is:

Hν2
π =

1

1− γ E
s∼dµ,π

a∼πθ(·|s′)

[(
∇ log πθ(a|s)∇> log πθ(a|s) +H log πθ(a|s)

)
Xπ(s, a)

+∇ log πθ(a|s)∇>Xπ(s, a) +∇Xπ(s, a)∇> log πθ(a|s)
]

+
2

1− γ∇J∇
>J.

Proof. First note that:

H(πθXπ) = XπHπθ +∇πθ∇>Xπ +∇Xπ∇>πθ + πθHXπ.
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Then1:

HWπ(s) = H
∫
A
πθ(a|s)Xπ(s, a)da

=

∫
A

[
Xπ(s, a)Hπθ(a|s) +∇πθ(a|s)∇>Xπ(s, a)

+∇Xπ(s, a)∇>πθ(a|s) + π(a|s)HXπ(s, a)

]
da

=

∫
A

[
XHπθ +∇πθ∇>X +∇X∇>πθ + πθH

(
(R− Jπ)2

)]
da

+ γ

∫
S
P (s′|s)Wπ(s′)ds′.

Since:

H
(

(R(s, a)− Jπ)2

)
= 2
(
R(s, a)− Jπ

)
H[R(s, a)− Jπ] + 2∇Jπ∇>Jπ

= −2HJπ
(
R(s, a)− Jπ

)
+ 2∇Jπ∇>Jπ,

then, using Lemma 5.3.2 and the log-trick:

HWπ(s) =
1

1− γ E
s′∼dπ(·|s)

[ ∫
A

[XHπθ +∇πθ∇>X +∇X∇>πθ − 2πθHJπ
(
R− Jπ

)
]da
]

+ 2∇Jπ∇>Jπ
∫
S
d(s′|s)

∫
A
πθ(a|s′) da ds′

=
1

1− γ E
s′∼dπ(·|s)
a∼πθ(·|s′)

[
(∇ log πθ∇> log πθ+H log πθ)X +∇ log πθ∇>X +∇X∇> log πθ

]
− 2

1− γHJπ E
s∼dπ(·|s)
a∼πθ(·|s′)

[
R− Jπ

]
+

2

1− γ∇Jπ∇
>Jπ,

Hν2
π = E

s∼µ

[
HWπ(s)

]
=

1

1− γ E
s∼dµ,π
a∼πθ

[
(∇ log πθ∇> log πθ +H log πθ)X +∇ log πθ∇>X +∇X∇> log πθ

]
− 2

1− γHJπ E
s∼dµ,π(·|s)
a∼πθ(·|s′)

[
R− Jπ

]
+

2

1− γ∇Jπ∇
>Jπ.

The second term is null, from the definition (5.12) of Jπ:

E
s∼dµ,π

a∼πθ(·|s′)

[
R(s, a)− Jπ

]
= 0.

1For the sake of brevity, the dependence on s, a is often omitted.
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It is now possible to use the results proven in (Papini et al., 2019) for the Hessian of
Jπ:

HJπ =
1

1− γ E
s∼dµ,π

a∼πθ(·|s′)

[(
∇ log πθ(a|s)∇> log πθ(a|s) +H log πθ(a|s)

)
Qπ(s, a)

+∇ log πθ(a|s)∇>Qπ(s, a) +∇Qπ(s, a)∇> log πθ(a|s)
]
.

Putting everything together, the following holds:

Hηπ =
1

1− γ E
s∼dµ,π

a∼πθ(·|s′)

[(
∇ log πθ(a|s)∇> log πθ(a|s) +H log πθ(a|s)

)[
Qπ(s, a)− λXπ(s, a)

]
+∇ log πθ(a|s)∇>

[
Qπ(s, a)− λXπ(s, a)

]
+∇

[
Qπ(s, a)− λXπ(s, a)

]
∇> log πθ(a|s)

]
+

2

1− γ∇Jπ∇
>Jπ.

(A.2)
This expression allows to upper bound the spectral norm of the Hessian:

Lemma A.2.4. Given a (ψ;κ; ξ)-smoothing policy πθ, the spectral norm of the policy
Hessian can be upper-bounded as follows:

‖Hηπ‖ ≤
c

(1− γ)2

(
2γψ2

1− γ + κ+ ξ

)
+

2R2
maxψ

2

(1− γ)3
,

where

c := sup
s∈S,a∈S

|R(s, a)− λ(R(s, a)− Jπ)2|

= max

{
min

{
1

4λ
+ Jπ;Rmax + 4λR2

max

}
;±
[
Rmax − λ(Rmax − Jπ)2

]}
.

Proof. First we note that:

|Qπ(s, a)− λXπ(s, a)| = 1

1− γ E
s′∼dπ(·|s)
a′∼πθ(·|s′)

[
|R(s, a)− λ(R(s, a)− Jπ)2|

]
≤ c

1− γ ∀s ∈ S, a ∈ A.

Then, using the same argument as in Lemma 6 from (Papini et al., 2019), the following
upper bounds hold:

‖∇Jπ‖ ≤
Rmaxψ

1− γ ,

‖∇(Qπ − λXπ)‖ ≤ γ

(1− γ)2
cψ.
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Finally, applying triangle and Jensen inequalities on Equation A.2:

‖Hηπ‖ ≤ E
s∼dµ,π

a∼πθ(·|s′)

[
‖∇ log πθ∇>(Qπ − λXπ)‖

]
+ E

s∼dµ,π
a∼πθ(·|s′)

[
‖∇(Qπ − λXπ)∇> log πθ‖

]
+ E

s∼dµ,π
a∼πθ(·|s′)

[
‖∇ log πθ∇> log πθ(Qπ − λXπ)‖

]
+ E

s∼dµ,π
a∼πθ(·|s′)

[
‖∇∇> log πθ(Qπ − λXπ)‖

]
+

2

1− γ ‖∇Jπ‖
2.

The application of the previous bounds and the smoothing assumption give the thesis.

We can now see that Theorem A.2.2 is just an adaptation of Theorem 9 from (Papini
et al., 2019) to the mean-volatility objective η, using the Hessian-norm bound from
Lemma A.2.4.

In the case of stochastic gradient-ascent updates, as the ones employed in Algo-
rithm 3, this result can be directly used to derive optimal, safe meta-parameters for
Algorithm 3:

Corollary A.2.5. Let ΠΘ be a smoothing policy class, θ ∈ Θ and δ ∈ (0, 1). Given a
δ-confidence bound on the gradient estimation error, i.e., an εδ > 0 such that:

P
(
‖∇̂Nηθ −∇ηθ‖ ≤

εδ√
N

)
≥ 1− δ ∀θ ∈ ΘN ≥ 1, (A.3)

the guaranteed performance improvement of the stochastic gradient-ascent update θk+1 =

θk + α∇̂Nηθk is maximized by step size α∗ = 1
2L

and batch size N∗ =

⌈
4ε2δ

‖∇̂Nηθk‖2

⌉
.

Moreover, with probability at least 1 − δ, the following non-negative performance im-
provement is guaranteed:

ηθk+1
− ηθk ≥

‖∇̂Nηθk‖2

8L
.

Again, this is just an adaptation of Corollary 14 from (Papini et al., 2019) to the
mean-volatility objective η, using the Hessian-norm bound from Lemma A.2.4.

Under a Gaussianity assumption on∇ηθ, which is reasonable for a sufficiently large
batch size N , the error bound εδ can be derived from an F-distribution ellipsoidal con-
fidence region:

Theorem A.2.6. Let ∇̂Nηθ the mean of N independent samples drawn from ∇ηθ ∼
Nm(µ,Σ). Then:

P(‖∇̂Nηθ −∇ηθ‖ ≤ εδ) ≥ 1− δ,
where

εδ ≤
√

Nm

N −m‖S‖F1−δ(m;n−m),
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N is the batch size, m is the dimension of the parameters space Θ, F1−δ(a; b) is the δ
quantile of a F-distribution with a and b degrees of freedom, and ‖S‖ is spectral norm
of the sample variance matrix S generated by the gradient samples.

Proof. We recall Corollary 5.3 and Theorem 5.9 in (Härdle and Simar, 2012), adopt-
ing the same notation2. Let x1, . . . ,xN ∼ Nm(µ,Σ). The sample mean and sample
variance are defined as:

x =
1

N

N∑
i=1

xi,

S =
1

N

N∑
i=1

(xi − x)(xi − x)T .

Then:

(x− µ)>S−1(x− µ) ∼ 1

N − 1
T 2(m;N − 1) =

m

N −mF (m;N −m),

where T 2(a; b) and F (a; b) are respectively the Hotelling’s T 2 and F distribution with
a and b degrees of freedom.
Consequently, the following standard result provides a confidence region for µ:

Proposition A.2.7. For all δ ∈ (0, 1), P(µ ∈ E) ≥ 1− δ, where E is the following set:

E =

{
x ∈ Rm : (x− x)>S−1(x− x) <

m

N −mF1−δ(m;N −m)

}
,

and F1−δ(a; b) is the (1 − δ)-quantile of the F-distribution with a and b degrees of
freedom.

Hence, the estimation error µ−x is contained, with probability at least 1− δ, in the
following set:

E0 =

{
x ∈ Rm : x>S−1x <

m

N −mF1−δ(m;N −m)

}
,

which is bounded by the following ellipsoid:

E =
{
x ∈ Rm : x>Ax = 1

}
,

where A =
(
mF1−δ(m;N−m)

N−m S
)−1

. As a consequence, the euclidean norm of the estima-
tion error is upper bounded by the largest semiaxis of the ellipsoid:

ζδ := ‖µ− x‖ ≤ max
i∈{1,...,m}

{ci},

where c1, . . . , cm are the semiaxes of E . The semiaxes can be derived from the matrix
A using the following equalities:

eigi(A) =
1

c2
i

for i = 1, . . . ,m,

2This means that we will use x to refer to∇ηθ and xi for its i-th estimation.
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where eigi(A) denotes the i-th eigenvalue of A (the order does not matter). Thus, we
can bound the estimation error norm as:

ε ≤ 1√
mini∈{1,...,m}{eigi(A)}

.

Finally, we can just compute the largest eigenvalue of S:

min
i∈{1,...,m}

{eigi(A)} = min
i∈{1,...,m}

{
eigi

((
mF1−δ(m;N −m)

N −m S

)−1
)}

=
N −m

mF1−δ(m;N −m)
max

i∈{1,...,m}
{eigi (S)} ,

Leading to:

ζδ ≤
√

m

N −mF1−δ(m;N −m)‖S‖,

with probability at least 1 − δ, where ‖S‖ denotes the spectral norm of the sample
variance matrix S (equal to the largest eigenvalue since S is positive semi-definite).
Equation A.3 is verified by defining

εδ :=
√
Nζδ.

A.2.2 Exponential Utility applied on the reward

In this section we show that the exponential utility applied on the reward approximates
the mean-volatility objective.
We consider the following measures:

Jπ = (1− γ) E
τ |π

[∑
t

γtRt

]
Mπ = (1− γ) E

τ |π

[∑
t

γtR2
t

]
ν2
π = (1− γ) E

τ |π

[∑
t

(Rt − Jπ)2
]
,

where Rt = R(St, At) is the reward obtained at time t.
Let’s take into account now the exponential utility applied on the reward, and its second-
order Taylor expansion:

U(R) = e−cR = 1− cR +
c2

2
R2 + o(c3)
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Hence, if we sum all the discounted utilities of the rewards and take the expected value,
we obtain:

E
τ |π

[∑
t

γte−cRt
]

= E
τ |π

[∑
t

γt(1− cRt +
c2

2
R2
t ) + o(c3)

]
=

1

1− γ − c Eτ |π
[∑

t

γtRt] +
c2

2
E
τ |π

[∑
t

γtR2
t

]
+ o(c3)

=
1

1− γ −
c

1− γJπ +
c2

2(1− γ)
Mπ + o(c3)

Again, consider the Taylor expansion applied to the logarithm:

log(α + x) ≈ log(α) +
x

α
− x2

2α2

As a consequence the following loose approximation holds:

log(E
τ |π

[∑
t

γte−cRt
]
) = − log (1− γ)− cJπ +

c2

2
Mπ

− (1− γ)2

2
[(− cJπ

1− γ +
c2

2(1− γ)
Mπ)2] + o(c3)

≈ − log(1− γ)− cJπ +
c2

2
(Mπ − J2

π)

Consequently:

max
π
−1

c
log(E

τ |π
[
∑
t

γtecRt ]) ≈ max
π

Jπ −
c

2
[Mπ − J2

π ]

Finally, following the definition of ν2
π, we can obtain the first-order approximation.

ν2
π = (1− γ) E

τ |π
[
∑
t

γt(Rt − Jπ)2]

= (1− γ) E
τ |π

[
∑
t

γt(R2
t + J2

π − 2RtJπ)] = Mπ − J2
π

A.2.3 Experiments

In this section, we show an empirical analysis of the performance of the VOLA-PG
(Algorithm 3) and its safe version in a simplified portfolio management task taken
from (Tamar et al., 2012a). We compare these results with a mean-variance policy
gradient presented in the same article, which we adjusted to take into account the dis-
counting. We first evaluate the performance of our algorithm in terms of average return
during the learning phase (Figure A.3). We then compare the solutions obtained with
the two algorithms, visualizing them in the mean-volatility and the mean-variance ob-
jective spaces (Figure A.4). Finally, we compare the behavior of Algorithm 3 and its
safe version (Figure A.5).
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Figure A.3: Performance of VOLA-PG for three different values of λ (without safety constraints). From
left to right we can see the expected return Jπ , the reward-volatility ν2

π and the overall performance
ηπ at each update of the policy during training (the shaded areas are 95% confidence intervals).

Setting Our portfolio domain is composed of two assets: liquid and non-liquid. The
liquid asset has a fixed interest rate rl, while the non-liquid asset has a stochastic interest
rate that switches between two values, rlownl and rhighnl , with probability pswitch. If the
non-liquid asset does not default (a default can happen with probability prisk), it is
sold when it reaches maturity after a fixed period of N time steps. At t = 0, the
portfolio is composed only of the liquid asset. At every time step, the investor can
choose to buy an amount of non-liquid assets (with a maximum of M assets), each
one with a fixed cost α. Let us denote the state at time t as x(t) ∈ RN+2, where x1

is the allocation in the liquid asset, x2, . . . , xN+1 ∈ [0, 1] are the allocations in the
non-liquid assets (with time to maturity respectively equal to 1, . . . , N time-steps), and
xN+2(t) = rnl(t) − Et′<t[rnl(t′)]. When the non-liquid asset is sold, the gain is added
to the liquid asset. The reward at time t is computed (unlike (Tamar et al., 2012a)) as
the liquid P&L, i.e., the difference between the liquid assets at time t and t − 1. The
task parameters we used are specified below:

T = 50; rl = 1.001; N = 4;
rhighnl = 2; rlownl = 1.1; M = 10;
prisk = 0.05; pswitch = 0.1; α = 0.2

M
.

There are M + 1 possible actions, and the policy we used is a neural network with two
hidden layers and 10 neuron per hidden layer.

Results Figure A.3 shows three different training plots, with different values of λ. We
can see that, as λ grows, the algorithm moves from the maximization of the expected
return to the minimization of the reward volatility. Specifically, λ = 0 maximizes Jπ,
λ = 100 minimizes the variance, and the intermediate values of λ show the possible
trade-offs between the two.

Figure A.4 shows how the optimal solutions of the two algorithms trade off between
the maximization of the expected return and the minimization of one of the two forms
of variability when changing the risk aversion parameter λ. The plot on the right shows
that the mean-variance frontier obtained by Algorithm 3 almost coincides with the fron-
tier obtained using the algorithm proposed in (Tamar et al., 2012a). This means that,
at least in this domain, the return variance is equally reduced by optimizing either the
mean-volatility or the mean-variance objectives. Instead, from the plot on the left, we
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Figure A.4: Analysis of the approximated Pareto frontier obtained by varying λ from low (top-right) to
high (bottom-right) values. The circles are obtained using VOLA-PG, the crosses are obtained using
the algorithm proposed in (Tamar et al., 2012a).
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Figure A.5: Comparison of the (unnormalized) objective improvement for each episode between the safe
and the standard VOLA-PG algorithm (λ = 60).

can notice that the reward-volatility is better optimized with VOLA-PG. These results
are consistent with Lemma 5.2.2.

In Figure A.5 we can see that the safe variant of VOLA-PG shows monotonic im-
provement, but a slow convergence. The non-safe version, despite the initially faster
learning, shows policy oscillations. It is easy to understand why in a real-world envi-
ronment the learning plot obtained with the safe algorithm is preferable.
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A.3 Additional Results of Chapter 6

A.3.1 Auxiliary Lemmas

Lemma A.3.1. Suppose A is an n× n invertible matrix, then∥∥A−1
∥∥

2
=

1

mini σi
,

where, for a matrix, ‖·‖2 denotes its spectral norm, and σi is the ith singular value of A.

Proof. (The following proof is due to (Grant, 2014).) By Theorem 4.3 in (Dahleh et al.,
2004), we have that

min
i
σi = inf

x 6=0

‖Ax‖2

‖x‖2

.

And since A is invertible, mini σi > 0. We then have that

1

mini σi
= sup

x 6=0

‖x‖2

‖Ax‖2

= sup
A−1y 6=0

‖A−1y‖2

‖y‖2

= sup
y 6=0

‖A−1y‖2

‖y‖2

= ‖A−1‖2,

where we have made the substitution Ax = y and utilized the fact that A−1y = 0 iff
y = 0 since A is invertible.

Lemma A.3.2. With ζi denoting the ith central moment of G0:TJ−1, we have

i. ζ2 ≤ R2
max.

ii. |ζ3| ≤ 4
√

3
9
R3
max ≤ R3

max.

iii. ζ4 ≤ 4
3
R4
max ≤ 2R4

max.

Proof. For a random variable X upper-bounded by M and lower bounded by m, with
µi denoting its ith central moment, we have by Popoviciu’s inequality that

µ2 ≤
(M −m)2

4
.

Thus, we have that

ζ2 ≤
(2Rmax)

2

4
= R2

max,

since we can take M = Rmax and m = −Rmax, proving the first item. For the second
item we have from Theorem (2.3) in (Sharma et al., 2015) that

|µ3| ≤
(M −m)3

6
√

3
.
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Which means that in our case we shall have that

|ζ3| ≤
(2Rmax)

3

6
√

3
=

8R3
max

6
√

3
=

4
√

3

9
R3
max ≤ R3

max.

Finally, for the third item, Theorem (2.1) in (Sharma et al., 2015) states that

µ4 ≤
(M −m)4

12
.

And for us,

ζ4 ≤
(2Rmax)

4

12
≤ 4

3
R4
max ≤ 2R4

max.

Lemma A.3.3. The following holds when Ĵ is learned using Algorithm 5:

|J − E[Ĵ ]| ≤ γTJRmax.

Proof. Since Ĵ is a sample average of instances of G0:TJ−1, its expected value is the
same as that of G0:TJ−1, which is G0:TJ−1. Moreover, we remarked earlier that J =
G0:TJ−1 +GTJ :∞, this then means that

|J − E[Ĵ ]| = |J −G0:TJ−1| = |GTJ :∞| ≤ γTJRmax,

which concludes the proof.

Lemma A.3.4. With Ĵ learned using Algorithm 5, we have that

|J2 − E[Ĵ2]| ≤ R2
max

(
2γTJ +

1

L

)
.

Proof. Recall that for a random variable X, Var(X) = E[X2] − E[X]2. Which means
that E[Ĵ2] = E[Ĵ ]2 + Var(Ĵ). Consequently,

|J2 − E[Ĵ2]| = |J2 − E[Ĵ ]2 + Var(Ĵ)|
(1)
=

∣∣∣∣J2 − E[Ĵ ]2 +
ζ2

L

∣∣∣∣
≤ |J2 − E[Ĵ ]2|+ ζ2

L
(2)

≤ |J2 − E[Ĵ ]2|+ R2
max

L
,

where (1) holds since Ĵ is an empirical mean of L instances of G0:TJ−1, and thus
Var(Ĵ) =

Var(G0:TJ−1)

L
= ζ2

L
. The step labelled (2) then follows by Lemma A.3.2.i.

To proceed, remember that E[Ĵ ] = G0:TJ−1, and that J = G0:TJ−1 + GTJ :∞. This
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means that

|J2 − E[Ĵ2]| ≤
∣∣∣(G0:TJ−1 +GTJ :∞)2 −G2

0:TJ−1

∣∣∣+
R2
max

L

=
∣∣GTJ :∞(2G0:TJ−1 +GTJ :∞)

∣∣+
R2
max

L

≤
∣∣GTJ :∞

∣∣(2∣∣G0:TJ−1

∣∣+
∣∣GTJ :∞

∣∣) +
R2
max

L

≤ γTJRmax

(
2(1− γTJ )Rmax + γTJRmax

)
+
R2
max

L

= γTJ (2− γTJ )R2
max +

R2
max

L

≤ 2γTJR2
max +

R2
max

L

= R2
max

(
2γTJ +

1

L

)
,

where we used in the second inequality the fact that |G0:TJ−1| ≤ (1 − γTJ )Rmax and
that |GTJ :∞| ≤ γTJRmax.

Lemma A.3.5. For a generic random variable X with mean E[X] and sample mean
X̂ = 1

N

∑N
i=1Xi, where X1 . . . XN are i.i.d. copies of X , we have that

Var[X̂2] = 4E[X]2
µ2

N
+

2µ2
2 + 4µ3E[X]

N2
+
µ4 − 3µ2

2

N3
,

where µi is X ′s ith central moment defined as: µi = E[(X − E[X])i].

Proof.

Var[X̂2] = E[X̂4]− E[X̂2]2

= E[X̂4]− (E[X]2 + Var[X̂])2

= E[X̂4]− E[X]4 − 2E[X]2Var[X̂]− Var[X̂]
2

= E[X̂4]− E[X]4 − 2E[X]2
Var[X]

N
− Var[X]2

N2

= E[X̂4]− E[X]4 − 2E[X]2
µ2

N
− µ2

2

N2

From (Angelova, 2012), we have:

E[X̂4] = E[X]4 + 6E[X]2
µ2

N
+

3µ2
2 + 4µ3E[X]

N2
+
µ4 − 3µ2

2

N3
.

The result follows by plugging this back in the previous equation.

Lemma A.3.6. Consider d real valued vectors a1, . . . , ad ∈ Rn, we have that:

(i) ∀i, j ∈ {1, . . . , d} : |〈ai, bj〉| ≤ 1
2

(
‖ai‖2

2 + ‖bi‖2
2

)
.

(ii)
∥∥∥∑d

i=1 ai

∥∥∥2

2
≤ d

∑d
i=1 ‖ai‖

2
2
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Proof. For any i, j we have:

‖ai + aj‖2
2 = ‖ai‖2

2+‖aj‖2
2+2〈ai, aj〉 ≥ 0, and ‖ai − aj‖2

2 = ‖ai‖2
2+‖aj‖2

2−2〈ai, aj〉 ≥ 0,

hence, trivially:

−1

2
‖ai‖2

2 −
1

2
‖aj‖2

2 ≤ 〈ai, aj〉, and
1

2
‖ai‖2

2 +
1

2
‖aj‖2

2 ≥ 〈ai, aj〉,

which proves (i).
By repeatedly applying (i) to the cross-terms of

∥∥∥∑d
i=1 ai

∥∥∥2

2
, we obtain:∥∥∥∥∥

d∑
i=1

ai

∥∥∥∥∥
2

2

=
d∑
i=1

‖ai‖2
2+2

d∑
i>j

〈ai, aj〉 ≤
d∑
i=1

‖ai‖2
2+

d∑
i>j

(
‖ai‖2

2 + ‖aj‖2
2

)
= d

d∑
i=1

‖ai‖2
2,

since each index is counted d− 1 times in the summation.

Lemma A.3.7. Suppose Assumptions 3 and 6 hold, then ∀ θ1, θ2 ∈ Rdθ , we have

‖dI,θ1(., .)− dI,θ2(., .)‖TV ≤ Cd‖θ1 − θ2‖2,

where Cd := Cπ

(
1 + dlogρκ−1e+ 1

1−ρ

)
, and dI,θ(s, a) := dI,θ(s)π(a|s), where dI,θ(·)

is the (normalized) discounted state distribution when using policy πθ and starting from
I(·), which is an initialization distribution over the states; it can be taken as µ0(.) (the
initial state distribution) or P (.|s′, a′) for any fixed state-action pair (s′, a′).

Proof. See Lemma 3 in (Xu et al., 2020b).

Lemma A.3.8. Suppose Assumptions 3 and 6 hold, then ∀ θ1, θ2 ∈ Rdθ , we have

|Jθ1 − Jθ2| ≤ LJ‖θ1 − θ2‖2,

where LJ := 2Rmax(Cd + Cπ).

Proof.

|Jθ1 − Jθ2|

=

∣∣∣∣(1− γ)

∫
s

(Vθ1(s)− Vθ2(s))µ(ds)

∣∣∣∣
≤ (1− γ)

∫
s

|Vθ1(s)− Vθ2(s)|µ(ds)

≤ (1− γ)

∫
s

∣∣∣∣∫
a

Qθ1(a, s)πθ1(da|s)−
∫
a

Qθ2(a, s)πθ2(da|s)
∣∣∣∣µ(ds)

≤ (1− γ)

∫
s

∣∣∣∣∫
a

Qθ1(a, s)πθ1(da|s)±
∫
a

Qθ2(a, s)πθ1(da|s)−
∫
a

Qθ2(a, s)πθ2(da|s)
∣∣∣∣µ(ds)

≤ (1− γ)

∫
s

∫
a

|(Qθ1(a, s)−Qθ2(a, s))|πθ1(da|s)µ(ds)

+ (1− γ)

∫
s

∫
a

|Qθ2(a, s)| |πθ1(da|s)− πθ2(da|s)|µ(ds)
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By Lemma 4 in (Xu et al., 2020b), |Qθ1(s, a)−Qθ2(s, a)| ≤ 2RmaxCd
1−γ ‖θ1−θ2‖2 ∀(s, a) ∈

S × A. Using this, and assumption 3.v, we have that

|Jθ1 − Jθ2|

≤ 2RmaxCd‖θ1 − θ2‖2 +Rmax

∫
s

∫
a

|πθ1(da|s)− πθ2(da|s)|µ(ds)

≤ 2RmaxCd‖θ1 − θ2‖2 + 2RmaxCπ‖θ1 − θ2‖2

= 2Rmax(Cd + Cπ)‖θ1 − θ2‖2

Lemma A.3.9. Suppose Assumptions 3 and 6 hold, then ∀ θ1, θ2 ∈ Rdθ and ∀ (s, a) ∈
S × A, we have

∣∣Qλ
θ1

(s, a)−Qλ
θ2

(s, a)
∣∣ ≤ LQλ‖θ1 − θ2‖2,

where LQλ :=
2CdRλ,max+4λLJRmax

1−γ = 2CdRmax+8λR2
max(2Cd+Cπ)

1−γ , and λ ≥ 0.

Proof. By definition,

Qλ
θ (s, a) =

1

1− γ E
s′∼dθ(·|s,a)
a′∼πθ(·|s′)

[
Rλ
θ (s, a)

]
=

1

1− γ

∫
s′

∫
a′
Rλ
θ (s′, a′)dθ(ds

′|s, a)πθ(da
′|s′)

=
1

1− γ

∫
(s′,a′)

Rλ
θ (s′, a′)dθ(ds

′, da′|s, a),

where dθ(s′, a′|s, a) := dθ(s
′|s, a)πθ(a

′|s′), and dθ(·|s, a) is the (normalized) discounted
state distribution when using policy πθ after taking action a in state s. We then have
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that

(1− γ)
∣∣Qλ

θ1
(s, a)−Qλ

θ2
(s, a)

∣∣
=

∣∣∣∣∫
(s′,a′)

[
Rλ
θ1

(s′, a′)dθ1(ds′, da′|s, a)−Rλ
θ2

(s′, a′)dθ2(ds′, da′|s, a)
]∣∣∣∣

=

∣∣∣∣∫
(s′,a′)

[
Rλ
θ1

(s′, a′)dθ1(ds′, da′|s, a)±Rλ
θ1

(s′, a′)dθ2(ds′, da′|s, a)−Rλ
θ2

(s′, a′)dθ2(ds′, da′|s, a)
]∣∣∣∣

=

∣∣∣∣∫
(s′,a′)

Rλ
θ1

(s′, a′)(dθ1(ds′, da′|s, a)− dθ2(ds′, da′|s, a))

∣∣∣∣
+

∣∣∣∣∫
(s′,a′)

(Rλ
θ1

(s′, a′)−Rλ
θ2

(s′, a′))dθ2(ds′, da′|s, a)

∣∣∣∣
≤
∫

(s′,a′)

∣∣Rλ
θ1

(s′, a′)
∣∣ |dθ1(ds′, da′|s, a)− dθ2(ds′, da′|s, a)|

+

∫
(s′,a′)

∣∣Rλ
θ1

(s′, a′)−Rλ
θ2

(s′, a′)
∣∣ dθ2(ds′, da′|s, a)

≤ Rλ,max

∫
(s′,a′)

|dθ1(ds′, da′|s, a)− dθ2(ds′, da′|s, a)|

+

∫
(s′,a′)

∣∣2λR(s′, a′)(Jθ1 − Jθ2)− λ(J2
θ1
− J2

θ2
)
∣∣ dθ2(ds′, da′|s, a)

≤ 2CdRλ,max‖θ1 − θ2‖2

+

∫
(s′,a′)

|2λR(s′, a′)(Jθ1 − Jθ2)− λ(Jθ1 + Jθ2)(Jθ1 − Jθ2)| dθ2(ds′, da′|s, a)

≤ 2CdRλ,max‖θ1 − θ2‖2

+

∫
(s′,a′)

|λ(2R(s′, a′)− (Jθ1 + Jθ2))| |Jθ1 − Jθ2| dθ2(ds′, da′|s, a)

≤ 2CdRλ,max‖θ1 − θ2‖2 + 4λRmax|Jθ1 − Jθ2 |
≤ 2CdRλ,max‖θ1 − θ2‖2 + 4λLJRmax‖θ1 − θ2‖2

= (2CdRλ,max + 4λLJRmax) ‖θ1 − θ2‖2

= (2CdRmax + 8λR2
max(2Cd + Cπ)) ‖θ1 − θ2‖2.

Lemma A.3.10. Suppose Assumptions 3 and 6 hold, then ∀ θ1, θ2, we have

‖∇ηθ1 −∇ηθ2‖2 ≤ Lη‖θ1 − θ2‖2,

where Lη :=
2Rλ,maxCψCd

1−γ + CψLQλ +
Rλ,maxLψ

1−γ , and λ ≥ 0.

112



i
i

“output” — 2022/2/22 — 20:37 — page 113 — #121 i
i

i
i

i
i

A.3. Additional Results of Chapter 6

Proof.

‖∇ηθ1 −∇ηθ2‖2

=

∥∥∥∥∫
(s,a)

[
ψθ1(s, a)Qλ

θ1
(s, a)dµ,θ1(ds, da)− ψθ2(s, a)Qλ

θ2
(s, a)dµ,θ2(ds, da)

]∥∥∥∥
2

≤
∫

(s,a)

∥∥Qλ
θ1

(s, a)ψθ1(s, a)
∥∥

2
|dµ,θ1(ds, da)− dµ,θ2(ds, da)|

+

∫
(s,a)

∣∣Qλ
θ1

(s, a)−Qλ
θ2

(s, a)
∣∣‖ψθ1(s, a)‖2 dµ,θ2(ds, da)

+

∫
(s,a)

∣∣Qλ
θ2

(s, a)
∣∣‖ψθ1(s, a)− ψθ2(s, a)‖2 dµ,θ2(ds, da)

≤ 2Rλ,maxCψCd
1− γ ‖θ1 − θ2‖2 + CψLQλ‖θ1 − θ2‖2 +

Rλ,maxLψ
1− γ ‖θ1 − θ2‖2

=

(
2Rλ,maxCψCd

1− γ + CψLQλ +
Rλ,maxLψ

1− γ

)
‖θ1 − θ2‖2,

where the last inequality follows from Assumption 3, Lemma A.3.7, and Lemma A.3.9.

A.3.2 Analyzing the Monte-Carlo Estimation of the Expected Return

Proposition A.3.11. Suppose, for a given policy, an estimate Ĵ is obtained using Algo-
rithm 5, and that Assumption 3.i holds, then we have

E
[(
J − Ĵ

)2
]
≤ γ2TJR2

max +
R2

max

L
.

Proof. We begin with a bias-variance decomposition:

E
[(
J − Ĵ

)2
]

= E
[(
J − E[Ĵ ] + E[Ĵ ]− Ĵ

)2
]

= E
[
(J − E[Ĵ ])2

]
+ E

[(
E[Ĵ ]− Ĵ

)2
]

=
(
J − E[Ĵ ]

)2

+ V ar(Ĵ),

where the second equality holds since 2
(
J − E[Ĵ ]

)
E
[(

E[Ĵ ]− Ĵ
)]

= 0. For the bias
term, we know from Lemma A.3.3 that∣∣∣J − E[Ĵ ]

∣∣∣ ≤ γTJRmax.

Thus,
(
J − E[Ĵ ]

)2

≤ γ2TJR2
max. As for the variance, since Ĵ is a sample mean of

G0, ..., GL−1, then V ar(Ĵ) = ζ2
L
. Combining both terms and applying Lemma A.3.2,

we get

E
[(
J − Ĵ

)2
]
≤ γ2TJR2

max +
ζ2

L
≤ γ2TJR2

max +
R2

max

L
.
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Proposition A.3.12. Suppose, for a given policy, an estimate Ĵ is obtained using Algo-
rithm 5, and that Assumption 3.i holds, then we have

E
[(
J2 − Ĵ2

)2
]
≤ 4R4

maxγ
2TJ + 4R2

max

ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3

≤ 4R4
maxγ

2TJ +R4
max

(
4

L
+

7

L2
+

5

L3

)
.

Proof. We, again, start with a bias-variance decomposition:

E
[(
J2 − Ĵ2

)2
]

= E
[(
J2 − E

[
Ĵ2
]

+ E
[
Ĵ2
]
− Ĵ2

)2
]

= E
[(
J2 − E

[
Ĵ2
])2
]

+ E
[(

E
[
Ĵ2
]
− Ĵ2

)2
]

=
(
J2 − E

[
Ĵ2
])2

+ V ar(Ĵ2).

For the bias term, similar to what we did in Lemma A.3.4, we have that∣∣∣J2 − E[Ĵ2]
∣∣∣ =

∣∣∣∣J2 − E[Ĵ ]2 − ζ2

L

∣∣∣∣
≤
∣∣∣J2 − E[Ĵ ]2

∣∣∣+
ζ2

L

=
∣∣∣(G0:TJ−1 +GTJ :∞)2 −G2

0:TJ−1

∣∣∣+
ζ2

L

=
∣∣GTJ :∞(2G0:TJ−1 +GTJ :∞)

∣∣+
ζ2

L

≤ γTJRmax

(
2(1− γTJ )Rmax + γTJRmax

)
+
ζ2

L

= γTJ (2− γTJ )R2
max +

ζ2

L

≤ 2γTJR2
max +

ζ2

L
.

Thus,

(
J2 − E

[
Ĵ2
])2

≤
(

2γTJR2
max +

ζ2

L

)2

= 4γ2TJR4
max + 4γTJR2

max

ζ2

L
+
ζ2

2

L2
.

For the variance, we apply Lemma A.3.5:

V ar(Ĵ2) = 4G
2

0:TJ−1

ζ2

L
+

2ζ2
2 + 4ζ3G0:TJ−1

L2
+
ζ4 − 3ζ2

2

L3
.
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Putting everything together, we have

E
[(
J2 − Ĵ2

)2
]

≤ 4γ2TJR4
max + 4γTJR2

max

ζ2

L
+
ζ2

2

L2

+ 4G
2

0:TJ−1

ζ2

L
+

2ζ2
2 + 4ζ3G0:TJ−1

L2
+
ζ4 − 3ζ2

2

L3

≤ 4γ2TJR4
max + 4(G

2

0:TJ−1 + γTJR2
max)

ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3

≤ 4γ2TJR4
max + 4R2

max((1− γTJ )2 + γTJ )
ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3

= 4γ2TJR4
max + 4R2

max(1 + γ2TJ − γTJ )
ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3

≤ 4γ2TJR4
max + 4R2

max

ζ2

L
+

3ζ2
2 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ2

2

L3
.

Furthermore, we can apply Lemma A.3.2 and get

E
[(
J2 − Ĵ2

)2
]
≤ 4γ2TJR4

max +
4R4

max

L
+

3R4
max + 4R4

max

L2
+

2R4
max + 3R4

max

L3

= 4γ2TJR4
max +

(
4

L
+

7

L2
+

5

L3

)
R4

max.

A.3.3 Critic’s Analysis

Theorem A.3.13 (Critic’s Bound). Suppose Assumptions 3 to 7 hold, and suppose
we are given a policy πθ (with normalized expected return J) and risk parameter
λ. Suppose that a Monte-Carlo estimate Ĵ is obtained for πθ using Algorithm 5,
and then plugged into the Algorithm 6 which is run for Tc steps. Then, for M ≥(

2
λA

+ 2β
)

192C2
A[1+(κ−1)ρ]

(1−ρ)λA
and β ≤ min

{
λA

8C2
A
, 4
λA

}
, we have that

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4‖ω0 − ω∗J‖2

2

(
1− λA

8
β

)Tc
+

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+
2

σ̄2

[
1 + 2

(
1− λA

8
β

)Tc]
ξJ ,

where ωĴTc is the parameter vector obtained after Tc iterations of the algorithm while
using Ĵ to perform the reward transformation, ξJ := 2λ2R4

max

(
8γ2TJ + 8

L
+ 7

L2 + 5
L3

)
,

σ̄ is the smallest singular value of the matrix A, and the expectation is over both the
Monte-Carlo estimation of Ĵ and the TD algorithm.
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Proof. We begin by adding and subtracting ω∗
Ĵ
, which is the TD fixed point when using

Ĵ . Note that, at this point, ω∗
Ĵ

is a random variable due to its dependence on Ĵ .

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
= E

[∥∥∥ωĴTc − ω∗Ĵ + ω∗
Ĵ
− ω∗J

∥∥∥2

2

]
≤ 2E

[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

]
+ 2E

[∥∥ω∗
Ĵ
− ω∗J

∥∥2

2

]
. (A.4)

where the inequality follows from Lemma A.3.6.ii. Focusing on the first term, we have

E
[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

]
= E

[
E
[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

∣∣∣∣Ĵ]]. (A.5)

For the inner expectation, as remarked before, we can apply the risk-neutral bound
from theorem 4 in (Xu et al., 2020b). Namely for M ≥

(
2
λA

+ 2β
)

192C2
A[1+(κ−1)ρ]

(1−ρ)λA
and

β ≤ min
{

λA
8C2

A
, 4
λA

}
, we have

E
[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

∣∣∣∣Ĵ]
≤
(

1− λA
8
β

)Tc∥∥ω0 − ω∗Ĵ
∥∥2

2
+

(
2

λA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM
.

Note that ‖ω0 − ω∗Ĵ‖
2
2 is only part that depends on Ĵ in the previous bound. Plugging

back in (A.5), we get that

E
[∥∥∥ωĴTc − ω∗Ĵ∥∥∥2

2

]
≤
(

1− λA
8
β

)Tc
E
[∥∥ω0 − ω∗Ĵ

∥∥2

2

]
+

(
2

λA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

≤
(

1− λA
8
β

)Tc
E
[∥∥ω0 − ω∗J + ω∗J − ω∗Ĵ

∥∥2

2

]
+

(
2

λA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

≤ 2

(
1− λA

8
β

)Tc
‖ω0 − ω∗J‖2

2 +

(
2

λA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+ 2

(
1− λA

8
β

)Tc
E
[∥∥ω∗

Ĵ
− ω∗J

∥∥2

2

]
,

where the last inequality again follows from Lemma A.3.6.ii. Plugging back in (A.4),
we get that

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4

(
1− λA

8
β

)Tc
‖ω0 − ω∗J‖2

2 +

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+

[
2 + 4

(
1− λA

8
β

)Tc]
E
[∥∥ω∗

Ĵ
− ω∗J

∥∥2

2

]
.

(A.6)
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Thus, we only need to bound E
[∥∥∥ω∗

Ĵ
− ω∗J

∥∥∥2

2

]
. We proceed as follows:

E
[∥∥ω∗

Ĵ
− ω∗J

∥∥2

2

]
= E

[∥∥∥A−1b(J)− A−1b(Ĵ)
∥∥∥2

2

]
= E

[∥∥∥A−1
(
b(J)− b(Ĵ)

)∥∥∥2

2

]
≤ 1

σ̄2
E
[∥∥∥b(J)− b(Ĵ)

∥∥∥2

2

]
, (A.7)

where σ̄ is the smallest singular value of A, and the last inequality holds since, as
demonstrated before, for anm×nmatrixX and a vector y ∈ Rn, ‖Xy‖2

2 ≤ ‖X‖
2
2‖y‖

2
2,

where ‖X‖2 is the spectral norm of X . Furthermore, we used that, by Lemma A.3.1,
‖A−1‖2 = 1

σ̄
. Moving on, recall that µθ is the stationary distribution of the MDP when

using policy πθ. We then have that

E
[∥∥∥b(J)− b(Ĵ)

∥∥∥]2

2

= E
[∥∥∥Eµθ[φ(st)R

λ(st, at, J)
]
− Eµθ

[
φ(st)R

λ(st, at, Ĵ)
]∥∥∥2

2

]
= E

[∥∥∥Eµθ[φ(st)
(
Rλ(st, at, J)−Rλ(st, at, Ĵ)

)]∥∥∥2

2

]
= E

[∥∥∥Eµθ[φ(st)
(

2λR(st, at)
(
J − Ĵ

)
+ λ
(
Ĵ2 − J2

))]∥∥∥2

2

]
= E

[∥∥∥2λ
(
J − Ĵ

)
Eµθ [φ(st)R(st, at)] + λ

(
Ĵ2 − J2

)
Eµθ [φ(st)]

∥∥∥2

2

]
≤ E

[
2
∥∥∥2λ

(
J − Ĵ

)
Eµθ [φ(st)R(st, at)]

∥∥∥2

2
+ 2
∥∥∥λ(Ĵ2 − J2

)
Eµθ [φ(st)]

∥∥∥2

2

]
= 8λ2E

[(
J − Ĵ

)2

‖Eµθ [φ(st)R(st, at)]‖2
2

]
+ 2λ2E

[(
Ĵ2 − J2

)2

‖Eµθ [φ(st)]‖2
2

]
≤ 8λ2R2

maxE
[(
J − Ĵ

)2
]

+ 2λ2E
[(
Ĵ2 − J2

)2
]
, (A.8)

where the first inequality follows from Lemma A.3.6, and the last inequality follows
(keeping in mind Assumptions 3.i, 4, and 5) since

‖Eµθ [φ(st)R(st, at)]‖2
2 ≤ Eµθ

[
‖φ(st)R(st, at)‖2

2

]
≤ R2

max,

and

‖Eµθ [φ(st)]‖2
2 ≤ Eµθ

[
‖φ(st)‖2

2

]
≤ 1.

Now, we can plug the results of Propositions A.3.11 and A.3.12 in inequality (A.8) to
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get

E
[∥∥∥b(J)− b(Ĵ)

∥∥∥]2

2
≤ 8λ2R2

maxE
[(
J − Ĵ

)2
]

+ 2λ2E
[(
Ĵ2 − J2

)2
]

≤ 8λ2R2
max

(
γ2TJR2

max +
R2

max

L

)
+ 2λ2

(
4γ2TJR4

max +

(
4

L
+

7

L2
+

5

L3

)
R4

max

)
= 8λ2γ2TJR4

max +
8λ2

L
R4

max

+ 8λ2γ2TJR4
max + 2λ2

(
4

L
+

7

L2
+

5

L3

)
R4

max

= 16λ2γ2TJR4
max + 2λ2

(
8

L
+

7

L2
+

5

L3

)
R4

max.

Plugging back in (A.7), we get

E
[∥∥ω∗

Ĵ
− ω∗J

∥∥2

2

]
≤ 2λ2

σ̄2

(
8γ2TJR4

max +

(
8

L
+

7

L2
+

5

L3

)
R4

max

)
=
ξJ
σ̄2
,

where ξJ := 2λ2R4
max

(
8γ2TJ + 8

L
+ 7

L2 + 5
L3

)
. We can now plug back the last result

into (A.6) to get

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4‖ω0 − ω∗J‖2

2

(
1− λA

8
β

)Tc
+

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+
2

σ̄2

[
1 + 2

(
1− λA

8
β

)Tc]
ξJ .

Corollary A.3.14 (Critic’s Complexity). Suppose we are again in the same setting
of Theorem A.3.13, and suppose the assumptions mentioned therein hold. Then, for

a sufficiently small ε > 0, if β ≤ min
{

λA
8C2

A
, 4
λA

}
, TJ ≥

log

(
192λ2R4

max
εσ̄2

)
2(1−γ)

, and L ≥
576λ2R4

max

εσ̄2 , Tc ≥
8 log

(
24
ε ‖ω0−ω∗J‖2

2

)
λAβ

, M ≥
(

2
λA

+ 2β
)

2304(C2
AC

2
ω+C2

b )[1+(κ−1)ρ]

(1−ρ)λAε
, then

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ ε,

and the total sample complexity is

TcM + LTJ = O
(
ε−1 log

(
ε−1
))
.
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Proof. By expanding and rearranging the bound in Theorem A.3.13, we have that

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4‖ω0 − ω∗J‖2

2

(
1− λA

8
β

)Tc
+

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+
32λ2R4

max

σ̄2
γ2TJ

+
4λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)
+

64λ2R4
max

σ̄2
γ2TJ

(
1− λA

8
β

)Tc
+

8λ2R4
max

σ̄2

(
8

L
+

7

L2
+

5

L3

)(
1− λA

8
β

)Tc
.

Note that
(
1− λA

8
β
)Tc ≤ e−

λA
8
βTc . This holds since (1− x) ≤ e−x, and if x ≤ 1, then

(1 − x)r ≤ e−rx for r ≥ 0. The claim then follows since β < 8
λA

and Tc ≥ 0. By a
similar argument, γ2TJ = (1− (1− γ))2TJ ≤ e−2(1−γ)TJ . Plugging back these bounds,
we get

E
[∥∥∥ωĴTc − ω∗J∥∥∥2

2

]
≤ 4‖ω0 − ω∗J‖2

2 e
−λA

8
βTc

+

(
2

λA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAM

+
32λ2R4

max

σ̄2
e−2(1−γ)TJ

+
4λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)
+

64λ2R4
max

σ̄2
e−2(1−γ)TJ e−

λA
8
βTc

+
8λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)
e−

λA
8
βTc .

To bound the whole expression by ε, we can bound each of the six terms by ε
6
. This can

be achieved for each term if

Term 1

Tc ≥
8 log

(
24
ε
‖ω0 − ω∗J‖2

2

)
λAβ

Term 2
M ≥

(
2

λA
+ 2β

)
2304(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)λAε

Term 3

TJ ≥
log
(

192λ2R4
max

εσ̄2

)
2(1− γ)
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Term 4

L ≥ max

{
576λ2R4

max

εσ̄2
,

√
504λ2R4

max

εσ̄2
,

3

√
360λ2R4

max

εσ̄2

}

Term 5

Tc ≥
8 log

(√
6√
ε

)
λAβ

, TJ ≥
log
(

64
√

6λ2R4
max√

εσ̄2

)
2(1− γ)

Term 6

Tc ≥
8log

(√
6√
ε

)
λAβ

, L ≥ max

192
√

6λ2R4
max√

εσ̄2
,

√
168
√

6λ2R4
max√

εσ̄2
,

3

√
120
√

6λ2R4
max√

εσ̄2


Note that there are multiple conditions on some parameters. However, if ε is sufficiently

small, it is enough that Tc ≥
8 log

(
24
ε ‖ω0−ω∗J‖2

2

)
λAβ

,M ≥
(

2
λA

+ 2β
)

2304(C2
AC

2
ω+C2

b )[1+(κ−1)ρ]

(1−ρ)λAε
,

TJ ≥
log

(
192λ2R4

max
εσ̄2

)
2(1−γ)

, and L ≥ 576λ2R4
max

εσ̄2 . Thus, the sample complexity is given by

TcM + LTJ = O
(

1

ε
log

(
1

ε

))
+O

(
1

ε
log

(
1

ε

))
= O

(
1

ε
log

(
1

ε

))
.
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A.3.4 Actor’s Analysis

We first define the following quantities, which will help us in the analysis:

• the TD-error3 δω(s, a, s′) = Rλ(s, a, J) + γφ(s′)>ω−φ(s)>ω which employs the
exact expected return J ;

• the approximated TD-error δ̂ω(s, a, s′) = Rλ(s, a, Ĵ)+γφ(s′)>ω−φ(s)>ω which
employs, instead, the the Monte-Carlo current estimate of the expected return Ĵ ;

• vt(ω, θ) = 1
B

∑B−1
i=0 δω(st,i, at,i, s

′
t,i+1)ψθt(st,i, at,i), which would have been the

estimated gradient at time t (using a critic with parameters ω) if we had access to
the true Jθ;

• v̂t(ω, θ) = 1
B

∑B−1
i=0 δ̂ω(st,i, at,i, s

′
t,i+1)ψθt(st,i, at,i), which is the estimated gradi-

ent at time t (using a critic with parameters ω) based on Ĵ ;

• Aω(s, a) = Es′∼P (·|s,a)[δω(s, a, s′)], which is the expected value of the TD-error
δω at a given state-action pair when the next state is sampled from the transition
kernel of the original MDP;

• g(ω, θ) = Es∼dµ0,πθ
(·)

a∼πθ(·|s)
[Aω(s, a)ψθ(s, a)], which is the expectation of the estimated

gradient when using a critic with parameter vector ω.

Next, we prove two propositions, which will be combined to bound the expectation on
the gradient norm.

Proposition A.3.15. Suppose Assumptions 3 to 7 hold, then:(α
2
− 2Lηα

2
)
‖∇η(θt)‖2

2 ≤ η(θt+1)− η(θt) +
(α

2
+ 2Lηα

2
)
‖v̂t(ωt, θt)−∇η(θt)‖2

2.

Proof. By applying the Mean-Value Theorem, for some 0 ≤ ∆ ≤ 1 there is some
θ̃ = ∆θt + (1−∆)θt+1 such that:

η(θt+1) = η(θt) + (θt+1 − θt)>∇η(θ̃) = η(θt) + (θt+1 − θt)>∇η(θ̃)± (θt+1 − θt)>∇η(θt)

= η(θt) + (θt+1 − θt)>
(
∇η(θ̃)−∇η(θt)

)
+ (θt+1 − θt)>∇η(θt).

By using Cauchy-Schwarz we also have:

(θt+1 − θt)>
(
∇η(θ̃)−∇η(θt)

)
≥ −‖θt+1 − θt‖2‖∇η(θ̃)−∇η(θt)‖2

≥ −Lη‖θt+1 − θt‖2‖θ̃ − θt‖2

≥ −Lη‖θt+1 − θt‖2
2

where we also used that the gradient of η is Lipschitz (Lemma A.3.10).

3Note that the δω(s, a, s′) and δ̂ω(s, a, s′) do depend on the current policy since they depend on its expected return, or an
estimate of it. However, we do not explicitly express this dependence as to not burden the notation since it is usually clear from
the context.
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We exploit this relationship in the previous equation, together with the definition of
the policy parameters update:

η(θt+1) ≥ η(θt)− Lη‖θt+1 − θt‖2
2 + (θt+1 − θt)>∇η(θt)

= η(θt)− α2Lη‖v̂t(ωt, θt)‖2
2 + αv̂t(ωt, θt)

>∇η(θt)

= η(θt)− α2Lη‖v̂t(ωt, θt)±∇η(θt)‖2
2 + α〈v̂t(ωt, θt)±∇η(θt),∇η(θt)〉

(1)

≥ η(θt)− 2α2Lη‖∇η(θt)‖2
2 − 2α2Lη‖v̂t(ωt, θt)−∇η(θt)‖2

2+

+ α‖∇η(θt)‖2
2 + α〈v̂t(ωt, θt)−∇η(θt),∇η(θt)〉

(2)

≥ η(θt)− 2α2Lη‖∇η(θt)‖2
2 − 2α2Lη‖v̂t(ωt, θt)−∇η(θt)‖2

2+

+ α‖∇η(θt)‖2
2 −

α

2
‖v̂t(ωt, θt)−∇η(θt)‖2

2 −
α

2
‖∇η(θt)‖2

2,

where in the last two steps we used, respectively, Lemma A.3.6.ii and Lemma A.3.6.i
in (1) and (2). By re-ordering terms we obtain the desired result.

The last term in the bound of the last proposition represents how far the estimated
gradient is from the true one. Mirroring (Xu et al., 2020b), the next proposition bounds
the expected value of this quantity.

Proposition A.3.16. Suppose Assumptions 3 to 7 hold, and let Ft be the filtration on
the samples up to iteration t:

E
[
‖v̂t(ωt, θt)−∇η(θt)‖2

2|Ft
]
≤24(Rλ,max + 2Cω)2[1 + (k − 1)ρ]

B(1− ρ)

+ 48λ2R2
maxE

[
|J − Ĵ |2|Ft

]
+ 12λ2E

[
|Ĵ2 − J2|2|Ft

]
+ 24‖ω∗Jt − ωt‖2

2 + 12 ξappr,

where Jt is short for Jπθt , and ω∗Jt is the TD fixed point for the transformed value
function of policy πθt .

Proof. Consider ‖v̂t(ωt, θt)−∇η(θt)‖2
2, we can decompose it in the following way

(followed by an application of Lemma A.3.6.ii):

‖v̂t(ωt, θt)−∇η(θt)‖2
2

=
∥∥v̂t(ωt, θt)± vt(ω∗Jt , θt)± g(ω∗Jt , θt)−∇η(θt)

∥∥2

2

≤ 3
∥∥v̂t(ωt, θt)− vt(ω∗Jt , θt)∥∥2

2︸ ︷︷ ︸
(a)

+3
∥∥vt(ω∗Jt , θt)− g(ω∗Jt , θt)

∥∥2

2
+ 3

∥∥g(ω∗Jt , θt)−∇η(θt)
∥∥2

2︸ ︷︷ ︸
(b)

.

(A.9)
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We now focus on (a):∥∥v̂t(ωt, θt)− vt(ω∗Jt , θt)∥∥2

2

=

∥∥∥∥∥ 1

B

B−1∑
i=0

ψθt(st,i, at,i)
[
δ̂ωt(st,i, at,i, s

′
t,i+1)− δω∗Jt (st,i, at,i, s

′
t,i+1)

]∥∥∥∥∥
2

2

≤ 1

B

B−1∑
i=0

‖ψθt(st,i, at,i)‖2
2︸ ︷︷ ︸

≤Cψ=1

∣∣∣δ̂ωt(st,i, at,i, s′t,i+1)− δω∗Jt (st,i, at,i, s
′
t,i+1)

∣∣∣2

≤ 1

B

B−1∑
i=0

∣∣∣∣Rλ(st,i, at,i, Ĵ)−Rλ(st,i, at,i, J) + γ
(
φ(s′t,i+1)>ωt − φ(s′t,i+1)>ω∗Jt

)
+

+
(
φ(st,i)

>ω∗Jt − φ(st,i)
>ωt
) ∣∣∣∣2

(1)

≤ 1

B

B−1∑
i=0

2
∣∣∣Rλ(st,i, at,i, Ĵ)−Rλ(st,i, at,i, J)

∣∣∣2 + 2
∣∣(γφ(s′t,i+1)− φ(st,i))

>(ωt − ω∗Jt)
∣∣2

(2)

≤ 1

B

B−1∑
i=0

2
∣∣∣Rλ(st,i, at,i, Ĵ)−Rλ(st,i, at,i, J)

∣∣∣2 + 8
∥∥ω∗Jt − ωt∥∥2

2

(3)
=

1

B

B−1∑
i=0

2λ2
∣∣∣2R(st,i, at,i)(J − Ĵ) + Ĵ2 − J2

∣∣∣2 + 8
∥∥ω∗Jt − ωt∥∥2

2

(4)

≤16λ2R2
max|J − Ĵ |2 + 4λ2|Ĵ2 − J2|2 + 8‖ω∗Jt − ωt‖2

2.

where (1) is an application of Lemma A.3.6.ii, (2) is due to Cauchy-Schwarz, Lemma
A.3.6.ii, and Assumption 5.ii, (3) to definition of Rλ, and in (4) Lemma A.3.6.ii is
applied again.

We can then exploit results from Theorem 5 in Xu et al. (2020b), to bound (b) as:∥∥g(ω∗Jt , θt)−∇η(θt)
∥∥2

2
≤ 4ξappr.

Substituting back to inequality (A.9) and taking the expectation w.r.t. the filtration Ft,
we get:

E
[
‖v̂t(ωt, θt)−∇η(θt)‖2

2|Ft
]
≤ 3E

[
‖vt(ω∗, θt)− g(ω∗, θt)‖2

2|Ft
]

+ 48λ2R2
maxE

[
|J − Ĵ |2|Ft

]
+ 12λ2E

[
|Ĵ2 − J2|2|Ft

]
+ 24‖ω∗Jt − ωt‖2

2 + 12 ξappr.

To bound the conditional expectation on the RHS, we follow again the proof in Xu et al.
(2020b) to have:

E
[
‖vt(ω∗, θt)− g(ω∗, θt)‖2

2|Ft
]
≤ 8(Rλ,max + 2Cω)2(1 + (k − 1)ρ)

B(1− ρ)
. (A.10)
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Theorem A.3.17 (Actor’s Bound). Suppose Assumptions 3 to 7 hold and let α = 1
8Lη

,
then we have:

E
[
‖∇η(θT̂ )‖2

2

]
≤ 64LηRλ,max

T
+ ξdistr + 18ξJ + 72

∑T−1
t=0 E[‖ω∗Jt − ωt‖2

2]

T
+ 36ξappr,

where

ξdistr :=
72(Rλ,max + 2Cω)2(1 + (k − 1)ρ)

B(1− ρ)
.

Proof. Taking the conditioned expectation on the result of Proposition A.3.15 and plug-
ging what we obtained with Proposition A.3.16 we obtain the following:(α

2
− 2Lηα

2
)
E
[
‖∇η(θt)‖2

2|Ft
]

≤ E [η(θt+1)| Ft]]− η(θt) +
(α

2
+ 2Lηα

2
)[24(Rλ,max + 2Cω)2[1 + (k − 1)ρ]

B(1− ρ)
+

+ 48λ2R2
maxE

[
|J − Ĵ |2|Ft

]
+ 12λ2E

[
|Ĵ2 − J2|2|Ft

]
+ 24‖ω∗Jt − ωt‖2

2 + 12 ξappr

]
≤ E [η(θt+1)| Ft]]− η(θt) +

(α
2

+ 2Lηα
2
)[24(Rλ,max + 2Cω)2(1 + (k − 1)ρ)

B(1− ρ)
+

+ 48λ2R2
max

(
γ2TJR2

max +
R2

max

L

)
+ 12λ2

(
4γ2TJR4

max +

(
4

L
+

7

L2
+

5

L3

)
R4

max

)
+

+ 24‖ω∗Jt − ωt‖2
2 + 12 ξappr

]
,

We let α = 1
8Lη

and we multiply both sides by 32Lη to get:

E
[
‖∇η(θt)‖2

2|Ft
]
≤ 32Lη (E [η(θt+1)|Ft]]− η(θt)) + ξdistr + 18ξJ

+ 72‖ω∗Jt − ωt‖2
2 + 36ξappr,

with

ξdistr :=
72(Rλ,max + 2Cω)2(1 + (k − 1)ρ)

B(1− ρ)
,

which bounds the variance of the mini-batch estimate of the gradient if the critic was at
the TD fixed point, while ξJ , the error arising from the expected return estimation, has
been already defined in Theorem A.3.13.

We take the expectation w.r.t. Ft to both sides to yield:

E
[
‖∇η(θt)‖2

2

]
≤ 32Lη(E [η(θt+1)]− E [η(θt)]) + ξdistr + 18ξJ

+ 72E[‖ω∗Jt − ωt‖2
2] + 36ξappr.

Taking the summation of the last result over t = 0, . . . , T − 1 and dividing both
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sides by T gives:

E
[
‖∇η(θT̂ )‖2

2

]
=

1

T

T−1∑
t=0

E
[
‖∇η(θt)‖2

2

]
≤ 32Lη

E [η(θT )]− η(θ0)

T
+ ξdistr + 18ξJ

+ 72

∑T−1
t=0 E[‖ω∗Jt − ωt‖2

2]

T
+ 36ξappr

≤ 64LηRλ,max

T
+ ξdistr + 18ξJ + 72

∑T−1
t=0 E[‖ω∗Jt − ωt‖2

2]

T
+ 36ξappr.

Corollary A.3.18 (Actor’s Complexity). Suppose we are in the same setting of The-
orem A.3.17, and assume that the parameters used in the critic are conditioned as to
make E

[∥∥ωt − ω∗Jt∥∥2

2

]
≤ ε

360
for all t = 0, . . . , T − 1. Then, if additionally

• T ≥ 320Lη(Rmax+4λR2
max)

ε
,

• B ≥ 360((Rmax+4λR2
max)+2Cω)2(1+(k−1)ρ)
(1−ρ)ε

,

• TJ ≥
log

(
1440λ2R4

max
ε

)
2(1−γ)

,

• L ≥ 3600λ2R4
max

ε
,

we have that
E
[
‖∇η(ωT̂ )‖2

2

]
≤ ε+O(ξappr),

with the total sample complexity given by:

T ((2− γ)B +MTc + LTJ) = O
(
ε−2 log

(
ε−1
))
.

Proof. In order to compute the different contributions to sample complexity, we will
split the error bound obtained in Theorem A.3.17 in its components. We then bound
the components in the following way:

• 64Lη(Rmax+4λR2
max)

T
≤ ε1,

• 72(Rmax+4λR2
max+2Cω)2(1+(k−1)ρ)
B(1−ρ)

≤ ε2,

• 288λ2R4
maxγ

2TJ ≤ 288λ2R4
maxe

−2(1−γ)TJ ≤ ε3,

• 36λ2R4
max(

8
L

+ 7
L2 + 5

L3 )
L>1

≤ 36λ2R4
max(

20
L

) ≤ ε4,

• 72
∑T−1
t=0 E[‖ω∗Jt−ωt‖

2
2]

T
≤ ε5,
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Appendix A. Additional Results and Proofs

where we have split 18ξJ in two parts, and we have ignored the approximation error
ξappr, which cannot be reduced with more samples. We set, then, each εi to ε

5
. Rear-

ranging terms in each inequality, we obtain then, by the conditions on the parameters
indicated in the statement4, the desired error. In order to obtain it, the following sample
complexity is needed:

T ((2− γ)B +MTc + LTJ) = O
(

1

ε

(
1

ε
+

1

ε
log

(
1

ε

)
+

1

ε
log

(
1

ε

)))
= O

(
ε−2 log

(
ε−1
))

where the (2 − γ) extra factor is due to the actor sampling process, which needs to
sample twice at each restart, which can happen at each step with probability 1− γ.

4And the conditions adapted from Corollary A.3.14 needed to make E[‖ωt − ω∗Jt‖
2
2] ≤ ε

360
(instead of just ε) for all t =

0, . . . , T − 1.
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APPENDIXB
Mean-Volatility and Multi-Objective Reinforcement

Learning

In this appendix, we show some preliminary results about the connections between the
Mean-Volatility trade-off and Multi-Objective Reinforcement Learning.

B.1 A Multi-Objective Perspective

In Chapters 5 and 6, we focused on the penalized version of the Mean-Volatility trade-
off, however, as for the return variance (see Section 3.2.2), many other related optimal-
ity criteria can be defined. We now formally define the Pareto-optimality criterion for
Mean-Volatility.

Definition B.1.1 (Mean-Volatility Pareto Front). We say that a policy π Pareto-dominates
w.r.t. the Mean-Volatility trade-off another policy π′, if its value is at least as high w.r.t.
one of the two objectives, and strictly higher w.r.t. the other one:

π �MV π
′ ⇔ (ν2

π < ν2
π′ ∧ Jπ ≥ Jπ′) ∨ (ν2

π ≤ ν2
π′ ∧ Jπ > Jπ′).

We, accordingly, define the Pareto front w.r.t. these criteria as the set of policies which
are not Pareto-dominated:

PFMV (ΠSR) :=
{
π : π ∈ ΠSR ∧ @(π′ ∈ ΠSR), π′ �MV π

}
.

It is possible to draw some connections between the Mean-Volatility problem and
another multi-objective problem with involves the maximization of the expected return
and the minimization of the reward second moment. Recalling the second moment
value function M(s), defined in Equation (6.2), we overload the notation by defining
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Appendix B. Mean-Volatility and Multi-Objective Reinforcement Learning

the objective:

Mπ :=

∫
S
Mπ(s)dπµ(ds). (B.1)

Considering the trade-off between the risk-neutral expected return and the latter risk-
measure, we define the Mean-Second-Moment Pareto front as follows.

Definition B.1.2 (Mean-Second-Moment Pareto Front). We say that a policy π Pareto-
dominates w.r.t. the Mean-Second-Moment trade-off another policy π′, if its value is at
least as high w.r.t. one of the two objectives, and strictly higher w.r.t. the other one:

π �MS π
′ ⇔ (Mπ < Mπ′ ∧ Jπ ≥ Jπ′) ∨ (Mπ ≤Mπ′ ∧ Jπ > Jπ′).

We, accordingly, define the Pareto front w.r.t. these criteria as the set of policies which
are not Pareto-dominated:

PFMS(ΠSR) :=
{
π : π ∈ ΠSR ∧ @(π′ ∈ ΠSR), π′ �MS π

}
.

Differently from the Mean-Volatility case, this trade-off can be described by a MOMDP
(See Section 2.6.1). The MOMDP MMS inherits all its components from M, a part
from the reward vector that is constituted by the original reward and its square: r =
[r, r2]. Policies which are Pareto-optimal for MMS are indeed also contained in the
pareto front PFMS(Π̄), while the converse is not necessary true, as it is the case for
standard MDP risk-neutral objectives (see Section 2.2.3). It is possible then to extend
the result of Proposition 2.6.7, establishing the equivalence between the PFMS(ΠSR)
and the convex hull of theCCS(ΠSD), to the MS Pareto front, if we allow for stochastic
policies, contained in ΠSR.

We now need to assume rewards to be non-negative, in order to prove the next
result. This assumption is justified by the translation invariance property of the reward-
volatility, and by the linearity of the expected return. In practice, adding a positive
constant to the reward, increases the expected return by exactly that amount and does
not impact on the reward-volatility.

Proposition B.1.3. Let the reward function R to be non-negative, then we have:

PFMV ⊆ PFMS.

Proof. We prove the claim by contradiction. Consider the thesis as false, thus, it must
exists a policy π in PFMV , which is Pareto-dominated w.r.t. the Mean-Second-Moment
trade-off:

∃π, (π ∈ PFMV ∧ ∃π̄ �MS π).

We will now distinguish three cases: Jπ̄ < Jπ, Jπ̄ = Jπ, and Jπ̄ > Jπ. If Jπ̄ < Jπ,
then π̄ is dominated. Consider now Jπ̄ = Jπ, then, since π ∈ PFMV , we need to have
ν2
π̄ ≥ ν2

π, but this means that

Mπ̄ = ν2
π̄ + J2

π̄ ≥ ν2
π + J2

π = Mπ,

thus, π cannot be dominated by π̄ in PFMV . Consider now Jπ̄ > Jπ, in this case
we need ν2

π̄ > ν2
π to hold, given that π ∈ PFMV . Since we have assumed rewards
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to be non negative, we also have J2
π̄ > J2

π . Therefore, using once more the variance
decomposition we have:

Mπ̄ = ν2
π̄ + J2

π̄ > ν2
π + J2

π = Mπ,

thus, π is not dominated by π̄. Consequently, the thesis is proven, since its negation
always brings to a contradiction.

This proposition states that all the Pareto-optimal policies for the Mean-Volatility
trade-off are also optimal for the Mean-Second-Moment one. However, solving the
latter problem is easier than the former one, since it is a MOMDP. Unfortunately, the
converse relationship is not true, hence, some policies in PFMS can be dominated in
PFMV .

B.2 The Penalized Criterion as a Sequence of Mean-Second-Moment
MDPs

In this section we analyse a recent work that focuses on the penalized criterion for
Mean-Volatility, and we derive some original theoretical results based on their con-
structions.

B.2.1 Mean-Variance Policy Iteration

In (Zhang et al., 2021), the authors noticed that, applying the the Fenchel duality, the
penalized mean-volatility objective can be reformulated as:

ηπλ = Jπ − λν2
π

(a)
= Jπ − λ E

s∼dπµ(·)
a∼π(·|s)

[
R(s, a)2

]
+ λJ2

π

= Jπ − λ E
s∼dπµ(·)
a∼π(·|s)

[
R(s, a)2

]
+ λmax

y
2J(π)y − y2

= E
s∼dπµ(·)
a∼π(·|s)

[R(s, a)]− λ E
s∼dπµ(·)
a∼π(·|s)

[
R(s, a)2

]
+ λmax

y
E

s∼dπµ(·)
a∼π(·|s)

[2R(s, a)] y − y2,

where (a) derive from the well-known variance decomposition. They, hence, stated the
follow equivalence between optimization problems:

max
π

ηλπ = max
π,y

E
s∼dπµ(·)
a∼π(·|s)

[r(s, a)]− λ E
s∼dπµ(·)
a∼π(·|s)

[
r(s, a)2

]
+ λ E

s∼dπµ(·)
a∼π(·|s)

[2r(s, a)] y − λy2,

(B.2)
and optimized it using a block-coordinate approach, iteratively maximizing one of the
two variables, as shown in Algorithm 8. Once y is fixed, the optimization over π
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Algorithm 8 Mean-Variance Policy Iteration from (Zhang et al., 2021)

for k = 1, . . . do
Step 1: yk+1 := (1− γ)Jπk
Step 2:

πk := argmax
π

∑
s,a

dπ(s, a)

(
(1 + 2λyk+1)r(s, a)− λr2(s, a)

)
− λy2

k+1

end for

becomes equivalent to:

max
π

E
s∼dπµ(·)
a∼π(·|s)

[R(s, a)]− λ E
s∼dπµ(·)
a∼π(·|s)

[
R(s, a)2

]
+ λ E

s∼dπµ(·)
a∼π(·|s)

[2R(s, a)] y (B.3)

= E
s∼dπµ(·)
a∼π(·|s)

[
R(s, a)− λR(s, a)2 + 2λR(s, a)y

]
, (B.4)

where we dropped the−λy2 term, since it is a constant, hence, it has no influence in the
optimization process. This problem is equivalent to a modified MDP with a transformed
reward.

Rν(s, a) = R(s, a)− λR(s, a)2 + 2λR(s, a)y (B.5)

On the other hand, maximizing over y consists in an evaluation step by construction:
the Fenchel duality tells us that the best value for this variable is, indeed, the current
expected return itself. This is, indeed, what happens also when optimizing the Mean-
Variance objective under the ROSA framework (see Chapter 4). This means that the
reward optimized in the inner problem is indeed the same policy-based reward that we
obtained in Chapter 5. The MVPI framework, thanks to its block-coordinate approach,
allows to drop the dependence on the policy by solving a sequence of MDPs. In par-
ticular, these MDPs are all linear scalarizations of the MOMDPMMS defined above.

B.2.2 Markovian Deterministic Policies Are Sufficient for Optimality

Exploiting the same Fenchel duality used in MVPI, it is possible to derive a important
result about the class of policies that are sufficient to solve the the penalized Mean-
Volatility criterion.

Proposition B.2.1. Given a risk-aversion coefficient λ > 0, and an MDPM, consider
a pair (J?, ν

2
?), such that J? − λν2

? = η? = maxπ η
λ
π . A policy π? attains Jπ? = J? and

ν2
π? = ν2

? if and only if it is also a J-optimal policy for the transfomed MDP M̃ with
reward function R̃(s, a) := (1 + 2λJ?)R(s, a)− λR(s, a)2.

Proof. We will start proving (⇒), i.e., a policy π? attaining Jπ? = J? and ν2
π? = ν2

? is
also J-optimal for the aforementioned MDP.
We recall that, due to the variance decomposition (see (3.13)):

ηπλ = Jπ − λν2
π = Jπ − λMπ + λJ2

π ,
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hence, we will define also M? = ν2
? +J2

? . Since π? is an ηλ-optimal policy by construc-
tion, we have:

∀π, Jπ? − λMπ? + λJ2
π? ≥ Jπ − λMπ + λJ2

π

(∗)
= Jπ − λMπ + λ

(
max
y

2yJπ − y2

)
= max

y
(1 + 2λy)Jπ − λMπ − λy2 ≥ (1 + 2λJπ?)Jπ − λMπ − λJ2

π? ,

where in (∗) we used the Fenchel dual of the square function: x2 = maxy yx − y2.
Since we have:

Jπ? − λMπ? + λJ2
π? ± λJ2

π? = (1 + 2λJπ?)Jπ? − λMπ? − λJ2
π? ,

we can affirm:

∀π, (1 + 2λJπ?)Jπ? − λMπ? − λJ2
π? ≥ (1 + 2λJπ?)Jπ − λMπ − λJ2

π?

(1 + 2λJπ?)Jπ? − λMπ? ≥ (1 + 2λJπ?)Jπ − λMπ,

which proves the first part.
We focus on the the second part (⇐), i.e., any optimal policy π̃ in the transformed MDP
attains Jπ̃ = J? and ν2

π̃ = ν2
? . We will prove the claim by contradiction. Let’s define:

J̃π := Eπ

[∑
t

γtR̃(st, at)

]
= (1 + 2λJ?)Jπ − λMπ,

and assume that the thesis is false, hence, there exists π̃ ∈ arg maxπ J̃π, such that either
Jπ̃ 6= J? or ν2

π̃ 6= ν2
? . Since both π̃ and π? are optimal w.r.t. J̃ , we have:

(1 + 2λJ?)Jπ̃ − λMπ̃ = (1 + 2λJ?)J? − λM?,

thus, we can write Mπ̃ as:

Mπ̃ =
(1 + 2λJ?)(Jπ̃ − J?) + λM?

λ
. (B.6)

This allows us also to compute:

ηλπ̃ = Jπ̃ − λMπ̃ + λJ2
π̃ = Jπ̃ − (1 + 2λJ?)(Jπ̃ − J?)− λM? + λJ2

π̃

= −2λJ?Jπ̃ + J? + 2λJ2
? − λM? + λJ2

π̃ = ηλ? + λJ2
? − 2λJ?Jπ̃ + λJ2

π̃

= ηλ? + λ(Jπ̃ − J?)2.

Since λ > 0, if Jπ̃ 6= J?, we have ηλπ̃ > ηλ? , which is not possible, since ηλ? is optimal.
However, taking Jπ̃ = J?, and substituting it in Equation (B.6) entails also Mπ̃ = M?,
and so ν2

π̃ = ν2
? , which brings to a contradiction.

Corollary B.2.2. Markovian stationary deterministic policies are sufficient to solve the
penalized mean-volatility objective ηλ.

Proof. Thanks to the result of Proposition B.2.1, we known that for any optimal com-
bination J? and ν2

? we can build an MDP with a transformed reward R̃(s, a) := (1 +
2λJ?)R(s, a) − λR(s, a)2, such that any optimal policy for that MDP is also optimal
for ηλ. Since for any MDP a Markovian stationary deterministic optimal policy exists,
the same holds for ηλ.
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B.2.3 Considerations on the Optimal Policies Obtained with MVPI

Unfortunately, optimizing the penalized criterion with MVPI we cannot hope to reach
a global optimal solution, even if we resort to planning for solving the inner problem.
This is due to the following fact: in general the Mean-Volatility objective Jπ − λMπ +
λJ2

π is non-concave w.r.t. the expected return Jπ. Therefore, we can only expect MVPI
to converge to a local optimum, as such as TRVO.

As noted by Zhang et al. (2021), TRVO can be though as an instance of MVPI where
only a single optimization step is carried on at each inner iteration by means of TRPO.
The exact version of the latter algorithm for the finite actions case has been shown
in (Neu and Pike-Burke, 2020) to be equivalent to the MDP-E algorithm (Even-Dar
et al., 2009) in a stationary reward case. The MDP-E algorithm has been developed
for an adversarial setting called Online MDP, in which the reward is allowed to change
(adversarially) at each iteration. We can then interpret TRVO as an instance of MDP-
E applied to a particular setting in which rewards are chosen according to a precise
schedule. Since this hypothesis is less strong than the adversarial one, we inherits its
theoretical guarantees in terms of regret. We have that MDP-E enjoys the following
regret bound w.r.t. the best single policy:

max
π̄

E
µ

[Vπ̄]− E
µ

[VMDP-E] ≤ O
(
T−

1
2

)
. (B.7)

By choosing ε as the maximum error that we what to achieve, it is straightforward to
translate this regret bound to a finite-sample complexity of O(ε−2) to obtain a policy
which is ε-optimal w.r.t. some local optimum. While this is an interesting result, we
remark that it is limited to the exact case, in which the transition model is known,
together with the past rewards. Extending these kind of guarantees in the sample-based
case is an interesting direction for future research.
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