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1. Introduction
Controlling the properties of materials is a cen-
tral theme in our societies since the beginning
of human history [1]. Nowadays, thanks to
all of the advances in science and technologies,
we are able to modify the fundamental prop-
erties of materials to their very core, for in-
stance by creating nanostructures that can con-
fine electrons [2, 3] or by inducing new behav-
iors, such as changing the ground state proper-
ties [4] or enabling a superconductive phase [5],
when the material is strongly perturbed. One
way to control such properties is using the in-
teraction between light and matter [6–8]. The
phenomena arising from the coupling between
them have been studied for a long time, start-
ing from the first laws on the static description
of the electric and magnetic field, then through
the Maxwell’s equations, the semi-classical, and
finally the modern full quantum light-matter in-
teraction theories. For the light to modify the
properties of materials, the coupling must be
in the so-called strong regime. It only became
possible to reach such a regime in the last cen-
tury, firstly thanks to the laser, and in more re-
cent times thanks to the optical cavities, which
can confine light in a small region in space.

This allows to achieve strong coupling by us-
ing a low-intensity field or just by exploiting the
quantum fluctuations of light, therefore opening
many possibilities for controlling materials even
at equilibrium [4, 7, 9]. All these exciting pos-
sibilities are made possible by the strong light-
matter coupling, which mixes the electronic and
photonic states, to generate the so-called polari-
tons [10, 11]. However, while molecules and fi-
nite systems have been deeply studied in the
strong light-matter coupling regime, much less
has been done for crystals/solids. Such sys-
tems are characterized by a greater physical and
computational complexity with respect to finite
ones. In this work, a tool for computing the po-
laritonic states arising from materials in optical
cavities is presented. We use a quantum descrip-
tion of both the matter (using Slater determi-
nants built from the single-particle states calcu-
lated using Density Functional Theory) and of
the cavity field (using Fock states). After defin-
ing and solving the QED Hamiltonian on that
basis, we use the obtained polaritonic states to
compute response functions in the framework of
linear response theory.
This executive summary uses the same structure
as the thesis manuscript, with the exception that
here the implementation of software is only men-
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tioned. As a consequence, section 2 contains
a theoretical overview of QED, starting from
the quantization of the electromagnetic field and
the description of electrons in condensed matter.
Section 3 deals with the methods and approx-
imations used in this work, as well as a brief
mention of the implementation. Finally, section
4 contains the main results of the thesis. The
software is released under the TDDFT code Oc-
topus [12], with the name of QED Solver.

2. Theoretical background
To study the strong light-matter coupling
regime, one needs to treat both the electromag-
netic field and the matter with a full quantum
description using the Quantum Electrodynamics
(QED) theory in the non-relativistic approxima-
tion.
One should start by describing the two main
ingredients (the radiation field and the behav-
ior of electrons in matter) in a quantum way.
For the former, one can follow Dirac’s Canoni-
cal Quantization Protocol [13], which states that
one should first write the Hamiltonian of the
field in terms of classical conjugated variables,
then substitute them with the quantum oper-
ator and finally impose the commutation rela-
tions. By following this recipe, it is possible to
write the expression of the Hamiltonian of the
electromagnetic field as

Ĥ =
∑
k

∑
λ=1,2

ωk

(
â†k,λâk,λ +

1

2

)
(1)

where â†k,λ, âk,λ are the creation and annihila-
tion operators for the mode k and the polariza-
tion λ. If we assume that the light is linearly
polarized, then the vector potential reads

A (r, t) =
∑
k

∑
λ=1,2

ek,λAk[
âk,λe

i(k·r−ωkt) + â†k,λe
−i(k·r−ωkt)

] (2)

where Ak = 1
2ϵ0V ωk

, from which it is possible
to retrieve the expression for the electronic and
magnetic field [14].
As for electrons in solids, one has to deal with a
many-body problem. In principle, one can write
the full quantum Hamiltonian of the system by
considering all the kinetic energies of both elec-
trons and nuclei, as well as the Coulomb interac-

tion between every couple of particles. The com-
plexity of this problem is very high, but thanks
to the Density Functional Theory (DFT) [15] it
is possible to link the energy of the ground state
to the electronic density. Such theory comes
from the Hohenberg-Kohn theorems (1964) [16]
and it is exact. The way in which it is imple-
mented is to build a system of independent par-
ticles whose ground state density is the same of
the one of the interacting many-body system.
Then, since the ground state energy is a uni-
versal functional of the density, having the den-
sity of the system of independent particles al-
lows computing the ground state energy. Such
a system is described by the set of the Kohn-
Sham equations (one for each particle), which
in atomic units read:[

−∇2

2
+ Vn (r) + VH (r) + Vxc (r)

]
ϕi (r)

= ϵiϕi (r)

(3)

where Vn (r) is the potential generated by the
nuclei, VH (r) is the Hartree potential and
Vxc (r) is the exchange-correlation potential.
However, to this day an analytical expression for
the latter is not known. As a consequence, the
way in which these equations are implemented
is usually by using a self-consistent cycle for
the ground state density, so that it is possible
to compute the energy and the single-particle
states. Finally, one can retrieve the solution to
the many-body problem by building Slater de-
terminants from these single-particle states.
Once both the electromagnetic field and the
matter are quantized, it is possible to study their
interaction. To do that, one has to start from
equation (3) and perform the canonical momen-
tum substitution p̂ → p̂− Â for every parti-
cle. After some algebra, and also introducing
the single-mode approximation for the electro-
magnetic field, one obtains:

ĤQED =

Nel∑
i=1

(
p̂i

2

2
+ V̂tot(ri)

)

+ω

(
1

2
+ â†â

)
+

NelÂ
2

2
−

Nel∑
i=1

p̂i · Â

(4)

where Nel represents the total number of elec-
trons in each unit cell. It is easy to see that the
first term corresponds to a sum of single parti-
cles Hamiltonians. The second term corresponds
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to the Hamiltonian of the radiation field and the
last two terms are the ones that effectively cou-
ple the electrons with the field. The states that
arise from the solution of such Hamiltonian are
called polaritonic states, from the quasi-particle
(the polariton) that is associated with the prop-
agation of light in matter.

3. Methods
The software developed in this thesis work aims
to apply equation (4) to study strongly coupled
light-matter systems. As mentioned in the intro-
duction, its solution is expected to be a mix of
electronic and photonic states, called dressed or
polaritonic states. As a consequence, the start-
ing point is to define the basis of the Hamil-
tonian from the uncoupled electronic and pho-
tonic states (because each of those diagonalizes
a part of the uncoupled Hamiltonian). In partic-
ular, we describe the matter part by using Slater
determinants built on top of the single-particle
Kohn-Sham states, and the radiation part us-
ing Fock states. For the former, we will have
one Slater determinant representing the ground
state and many others representing all possible
transitions from the valence band to the con-
duction band: {el} : {|ΨGS⟩ , |Ψex,1⟩ ... |Ψex,n⟩}.
We assume that the transitions can only be ver-
tical and that the Slater determinants are singly-
excited. As a consequence, |Ψex,1⟩ means that
we are considering a transition from a certain
state of the valence band to a certain state of the
conduction band at a given k point. As for the
photonic part, since we use the For states, the
basis will be {|n⟩} = {|0⟩ , |1⟩ , ..., |n⟩}. For the
electromagnetic field we only consider the mode
at k = 0, which justifies the vertical transitions.
Finally, the basis for representing equation (4)
will be the tensor product of the electron and
photon part:

Figure 1: Block structure of the QED matrix.

{|ΨGS⟩ , {|Ψex⟩}} ⊗ {|n⟩} (5)

and the generic matrix element of the Hamilto-
nian will be

⟨n| ⟨Ψi| ĤQED |Ψj⟩ |m⟩ (6)

By applying all the aforementioned assumptions
and by using the language of the second quanti-
zation, it is possible to rewrite equation (4) in:

ĤQED =
∑
i,k

ϵKS
i,k ĉ†i,k ĉi,k + ω

(
1

2
+ â†â

)

+
NelA

2
0

2

(
â†

2
+ â2 + 2â†â+ 1

)
−A0

∑
i ̸=j,k

⟨ϕi,k| p̂ · e |ϕj,k⟩ ĉ†i,k ĉj,k
(
â† + â

) (7)

where ϕ are the single-particle Kohn-Sham
states coming from DFT. If one computes all the
matrix elements of equation (6), then it is pos-
sible to give a matrix representation of equation
(7). Such a matrix has a penta-diagonal block
structure as in figure 1, which means that only
the highlighted blocks have non-zero elements.
Moreover, it is possible to show that the red and
blue blocks are diagonal, which means that they
only have non-zero elements on their main diag-
onal, while the green blocks (which correspond
to the bilinear coupling) have non-zero elements
mainly on the first row and column. The dimen-
sion of the matrix is given by the expression

DIM = (1 + V Bstates ∗ CBstates ∗ kpoints)
∗ (Nph + 1)

(8)

where V Bstates, CBstates are the number of
states in the valence band and conduction band,
kpoints the number of k points used in the cal-
culation, and Nph the number of Fock states in-
cluded.
From equation (8) it can be understood that the
dimension of the matrix is quite large, especially
for systems for which a high number of k points
are required. An example is Graphene, for which
one needs to sample the Brillouin zone around
the Dirac cones with a dense grid. This can push
the dimension of the QED Matrix well above
100000 × 100000. To deal with such computa-
tional complexity, the software is highly paral-
lelized, which means that the storage of the ma-
trix as well as the computation is distributed

3



Executive summary Francesco Troisi

among a large number of CPUs. Each of them
manages a small part of the matrix, and then
they communicate to make sure that they are all
aware of the others (otherwise the parallelization
leads to erroneous results). The code developed
in this thesis work is written in Fortran 90 and
is designed to run on computer clusters, in the
framework of HPC (High Performance Comput-
ing).

Figure 2: Linear optical response of Benzene for
two values of the coupling parameter A0

4. Results
The software developed in this work was used to
study three different systems, in particular the
Benzene molecule (as a finite system), the LiH
chain (as a 1D system) and Graphene (2D sys-
tem). In this executive summary we only briefly
discuss the results of the linear optical response.
To do that, firstly we compute the polaritonic
states by diagonalizing the QED matrix, then
we apply a probe field to study the behavior
of the system. To investigate the effect of the
probing field with we implemented the following
response function [9, 17]:

χ (Ω, ω) =
1

n

∑
I>1

∣∣∣⟨ΨI | P̂ · eprobe |Ψ0⟩
∣∣∣2

ω − (Epol,I (Ω)− Epol,0 (Ω)) + iη

where ΨI are the polaritonic states, ω is the en-
ergy if the probe beam, Epol,I (Ω) are the po-
lariton eigenvalues for a given cavity resonance
energy Ω and η is an artificial broadening.
Let us consider the Benzene molecule. By ap-
plying the formula above one gets the behavior
in figure 2, where on the x axis there is the cav-
ity energy Ω and on the y axis the probe en-
ergy ω. For the value of A0 = 0 one gets the
absorption spectrum of Benzene, because that
case corresponds to not having the cavity. In-
deed, the HOMO-LUMO transition of Benzene
is at 5.11eV . However, if one compares this re-
sult with the literature [18, 19], the transition
should happen at 6.9eV . This difference can be
explained by the fact that in the present work
the dynamic response was disregarded, while
that was accounted for in both reference papers
(which were using a time-dependent approach).
In such a framework, they included the varia-
tion of the exchange-correlation potential that
happens after the optical response, which gives
the difference in the transition energy. When
we switch on the cavity A0 = 0.06, one can see
that the linear response lines are split into two
branches, which is proof of the appearance of
the polariton. The split corresponds to the Rabi
splitting. In the thesis we show that the split in-
creases linearly with A0, as one would expect.
Let us now consider the LiH chain, which con-
stitutes a good introduction to periodic systems.
Its Brillouin zone was sampled with 81 k points,
and three conduction band states were observed.
In the thesis work we show that the transitions
from the valence band to the first two conduc-
tion bands (which are degenerate) are forbidden.
When the cavity is switched on (top panel of
figure 3) the band corresponding to transitions
from the valence band to the third conduction
band is split due to the appearance of the po-
lariton. It is interesting to note that in this case
we do have a band, as transitions are possible
from any point of the valence band. As a con-
sequence, apart from seeing a line we also see a
shadowed region. In the panel below in figure 3,
we consider the linear response for different val-
ues of A0 at the cavity energy of Ω = 24.46eV .
It can be seen that by increasing the coupling
strength A0, the Rabi splitting between the up-
per polariton and the lower polariton (which are
the two peaks) increases linearly.
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Finally, we used the software to study the be-
havior of Graphene. This material is much more
complicated than the previous systems because
a fine sampling of the Brillouin zone is needed
to correctly describe the Dirac cones.

Figure 3: Linear optical response of LiH chain.
On the panel above the contour plot for A0 =
0.04, on the one below the response for various
values of A0 for Ω = 24.46eV (red line in the
panel above).

This makes the calculations very heavy, to the
point that it was not possible to generate a
contour plot for χ. In the thesis we show
that our software can reproduce the response
of Graphene without the cavity and that there
is an indication that a gap in the band struc-
ture is opened when chiral light is used. How-
ever, one also observes other features which are
complicated to explain. As a consequence, un-
derstanding what happens in Graphene is to be
considered a future development of this thesis
work.

5. Conclusions
In this executive summary we introduced a new
software for studying materials in the framework
of cavity QED. We started by briefly describing
the theoretical background, firstly by quantiz-
ing the electromagnetic field and by describing
how it is possible to solve the electronic prob-
lem in condensed matter systems. Then we in-
troduced QED by stating the Hamiltonian de-
scribing the full light-matter system, and finally
we introduced the concept of polariton. Subse-
quently, we described how we solved the QED
Hamiltonian, firstly by stating which approxi-
mations were used, then by defining the basis
onto which to project Hamiltonian and finally
by briefly describing the structure of the matrix
representation. Moreover, we briefly introduced
some computational challenges of the develop-
ment of the software. We stress that the struc-
ture of this summary is the same as the thesis
manuscript. Finally, we discussed the main re-
sults of the thesis, by showing the results for the
Rabi splitting from both the LiH chain and the
Benzene molecule.
In conclusion, in this thesis work we developed
a software that allows studying any material in
a QED cavity, starting only from the Kohn-
Sham states (which can be easily computed us-
ing DFT). This is relevant because the flexibil-
ity of the code allows approaching systems span-
ning from molecular to bulk in an efficient and
controllable way for any light-matter coupling
regime. Moreover, since the code was paral-
lelized and it was written with a programming
language highly optimized for numeric compu-
tation, the complexity of the systems that we
will be able to study in the future will increase
significantly as scientists will be able to make
use of this code in the computer clusters of their
institutes.
Finally, the future developments of this project
are twofold. On one hand, it will be interesting
to use the software to study more complex sys-
tems such as Weyl semi-metals. For those, the
number of k points required to correctly sample
the Weyl points is very high due to the extra
dimension (the material is 3D), which will re-
quire a big computational effort. The hope is to
control the position of such points and affect the
topological chiral currents associated with them.
On the other hand, the development of the soft-
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ware will continue to include new features, such
as the correlation between electrons and the pos-
sibility of computing the ground-state electronic
density from the polaritonic states and exploit-
ing it to develop DFT functional with built-in
light-matter correlation.
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