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Abstract

In the context of the functional data analysis (FDA), there are some methods that
allow to decompose the original functions into warping functions and alignment
functions, the first accounting for the phase variability, instead the second taking
into account the variability of amplitude.
The alignment step was however considered as a preprocessing step that allowed
to focus on the amplitude variability. However, it was later understood that phase
variability allows to obtain very important information.
The goal of our work is therefore to show that phase variability must actually be
considered and in particular that if we make some geostatistics analysis, it is better
to decouple the original functions into warping functions and aligned functions,
study them separately and in a second moment to re-couple the results obtained.
First we explained what phase and amplitude variability are.
We then discuss how to carry out geostatistical analyses to functions belonging to
the space L2 and to those belonging to Hilbert spaces.
We then show how to apply these analyses to the warping and alignment functions.
In particular as regards the analyses on the warping functions, we study their
derivatives which are embedded in the Bayes spaces.
Finally we investigate an application in the seismological field, thus showing that
the error made in the analyses on the original functions is on average greater than
the error made by doing the separate analyses of phase and amplitude variability.
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Sintesi

Nell’ambito dell’analisi su dati funzionali (FDA) sono stati sviluppati metodi che
permettono di decomporre le funzioni originali in funzioni di decomposizione, che
tengono conto della variabilitá di fase, e in funzioni di allineamento, che invece
tengono conto della variabilitá di ampiezza.
Lo step di allineamento peró veniva inizialmente considerato come uno step di
preelaborazione che permetteva di concentrarsi sulla variabilitá di ampiezza. Suc-
cessivamente si é capito che la variabilitá di fase permette di ottenere informazioni
molto importanti.
L’obiettivo quindi del nostro lavoro é mostrare che effettivamente la variabilitá di
fase deve essere considerata ed in particolare che, se si vogliono attuare analisi geo-
statistiche, é meglio disaccoppiare le funzioni originali in funzioni di deformazione
e funzioni allineate, studiarle separatamente e in un secondo momento riaccoppiare
i risultati ottenuti.
Come prima cosa quindi abbiamo spiegato cosa sono variabilitá di fase ed ampiezza.
Abbiamo poi discusso come attuare analisi geostatistiche a funzioni che apparten-
gono allo spazio L2 e a quelle che appartengono agli spazi di Hilbert .
Poi abbiamo mostrato come poter applicare queste analisi alle funzioni di defor-
mazione e a quelle di allineamento. In particolare per quanto riguarda le analisi
sulle funzioni di deformazione, abbiamo studiato le loro derivate che sono incor-
porate negli spazi di Bayes.
Infine abbiamo indagato un’applicazione nell’ambito sismologico, mostrando cośı
che l’errore commesso nelle analisi sulle funzioni originali é in media maggiore
rispetto all’errore commesso facendo le analisi separate.
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Chapter 1

Introduction

Functional data analysis is the branch of statistics which studies methods for
infinite-dimensional data such as curve, images or surfaces. For this reason func-
tional data analysis deals with data represented by functions x1, ..., xN .
Warping approaches (see, e.g., Marron, Ramsay, Sangalli, Srivastava, 2015, and
references therein) consinsts in decomposing the observed function xi into warping
functions γi, that account for the phase variation in xi, and aligned functions wi,
that account for the amplitude variation in the data. In particular we can obtain
the observed function through the concatenation:

xi(t) = (wi ○ γi)(t) = wi(γi(t)), t ∈ τ = [a, b].

Thanks to the warping functions it is possible to compute the alignment, in fact
the result is that the main features of wi are aligned, this reduces the variation
and makes it easier to find common structures.
Throughout this thesis, the warping and the aligned functions shall here assumed
to be known, so we know the decomposition of xi into wi and γi. Therefore,
to make these analyses, one should have to choose first an appropriate warping
algorithm for the data. For a discussion on possible warping approaches, see, for
example, Marron et al. (2015).
Usually, the warping functions are considered to transform the original functions
in the aligned ones and this step is consider a part of preprocessing that allow
to focus on the amplitude variability only. Instead, sometimes phase variation is
an integral and foundamental part of the data that carries important information
(Kneip Ramsay, 2008; Sangalli, Secchi, Vantini, Vitelli, 2010). It is thus worth to
be incorporated into the analyses to obtain more information into the mechanisms
generating the data. In this work we shall assume the latter viewpoint, motivated
by a seismological application in which the seismic waves arrive not only with
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10 CHAPTER 1. INTRODUCTION

different intensity but also with different time delays depending on their type and
the geographical relation between the hypocentre and each seismometer.
In order to apply geostatistical methods to functional data, we have to consider
separately the aligned and the warping functions.
In particular, for what concerning the aligned functions, since they are in L2, we see
the geostatistical methods that we can apply which have already been extensively
studied.
Instead, for what concerning the warping functions, due to the complex geometric
structure of their space, we shall transform them to the space of square-integrable
functions, L2(τ) through the centred log-ratio (clr) transformation, which relates
to the Bayes space of densities (see, e.g., Egozcue, D-Barrero, Pawlowsky-Glahn,
2006; Hron, Menafoglio, Templ, Hruzová, Filzmoser, 2016).
Next, we compute separate geostatistical analyses for the transformed warping
functions and the aligned functions and also for the original functions on data from
a seismological computer experiment yielding spatially referenced high-resolution
time series of ground velocity measurements. In particular we apply variogram
and kriging methods to our data in order to make predictions on test locations.
In this context, the joint analysis of amplitude and phase variation is of particular
interest as both contain relevant information on the propagation of seismic waves.
This work proceeds as follows: in Section 2 we see how to model the amplitude
and phase variability. In Section 3 we see geostatistical methods for the functions
belonging to L2 and to Hilbert spaces, while in Section 4 we see how to apply
these geostatistical analyses to aligned and warping functions. In particular for
what concerning the latter functions we decide to analyze their derivative γ′ and
to apply the Bayes approach, using the center log-ratio transformation to map the
warping function from their complex space Γ(τ) to the known space L2. At the
end in the Section 6 we see an application in seismological framework.



Chapter 2

Modeling phase and amplitude in
functional data analysis

Functional data analysis (FDA) is a part of statistics that studies infinite-dimensional
data, such as curves, surfaces and images.
Recently there has been an important development of tools for functional data
analysis (FDA), this is because the functional observations in the scientific frame-
work are increasing more and more. However, it is not easy to manage this type
of data for many reasons, for example because of their infinite dimensional nature
or due to the presence of observation noise and for many other reasons.
The most interesting phenomenon in FDA is the presence of lateral deformations
in curves, this deformation is different from variability in height or amplitude and
is called phase variation.
Therefore, given a dataset of functional observations X1, ...,Xn defined on a do-
main τ ⊂ R, Xi ∶ τ → R, we can see two different types of variability: a phase
variation and an amplitude variation (Menafoglio [2020]).
The phase variability represents the horizontal variability of the data, the possible
misalignment of the functional observations and the amplitude variation repre-
sents the vertical variability, it affects the range of values Xi(t) taken by the data
(Menafoglio [2020]).
The alignment problem consists on finding a set of warping function γi, i = 1, ..., n
that allow to transform the original functional data in a set of aligned functions

wi = Xi(γi(t)) (2.1)

which are characterized by amplitude variability only.
The alignment phase is often considered as a preprocessing phase. This allows
to eliminate the phase variability and therefore to focus only on the amplitude
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12 CHAPTER 2. MODELING PHASE AND AMPLITUDE IN FDA

variability. Later it was understood that phase variability, instead, contained
significant information of the process and consequently that it was an important
part of the study.
The discovery of the importance of the phase variability for the data analyses
has led to an increase of the studies of the analyses of datasets forms by warping
functions γ1, ..., γn and of the analysis of multivariate datasets (γ1,w1), ..., (γn,wn),
constructed considering jointly the phase and amplitude components. (Menafoglio
[2020])
There are a lot of methods that allow to decouple these two sources of variability,
but in this thesis we consider as given the variability in phase and amplitude and we
concentrate on the geostatistical analyses on the warping and aligned functions.
For what concerning the analysis on the variability of amplitude, geostatistical
methods in L2 are used. There are a lot of studies of these methods like Giraldo
et al. (2011) or Delicado et al. (2009).
Instead, the studies on the warping functions have not been so thorough.
Therefore, in order to analyze these functions we have followed the approach of
Happ et al. [2019], namely to analyze warping functions by considering their
derivatives

δi =
dγi
dt
.

Where δi is a positive function, bound to unite integration, if the codomain of γ is
I = [0,1]. However if δi is rescaled by a constant c, this just implies a rescaling of
the interval I to I ′ = [0, c] without any conceptual difference on the interpretation
of the warping.
The functions δ1, ..., δn can not be considered as functions in L2 because the geom-
etry of this space is not appropriate. Happ et al. [2019] propose to model δ1, ..., δn
as generalized distributions and to embed them in a Bayes space which instead of
L2 is designed to preserve and represent the features of these data.
The analyses of the variability, that takes into account the theory of Bayes spaces
and the theory of functional alignment, have a lot of applications. For example we
consider a dataset of misaligned seismic records (as in Happ et al. [2019] ). In or-
der to predict the reaction of buildings and infrastructures to shaking events (such
as earthquakes), it is necessary to study the misalignment between the measure-
ments, because this provides informations on the local effects of the propagation
of seismic waves due to the geomorphology of the study area.

2.1 Amplitude-Phase Separation

As we have said we consider warping and aligned function as given.
However there are a lot of methods to implement the amplitude-phase separation.
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In order to do this, Guo et al. [2020] give the following proposal following the
framework of Srivastava et al. [2011], Srivastava Klassen [2016].
They consider the following space of functional data objects

F = {χ ∶ τ → R∣χ is absolutey continuous}
The group of warping functions representing phase is Γ(τ) = {γ ∶ τ → τ ∶ γ is a
diffeomorphism, γ(a) = a, γ(b) = b} with τ = [a, b].
For any χ ∈ F , γ ∈ Γ, the warping of f by γ is given by the following composition:
χ ○ γ.
The settings used by Guo et al. [2020] is the same of Menafoglio et al. [2013].
We assume a square-integrable functional random field {χs ∶ s ∈ D} on a spatial
domain D ⊂ R2. Associated with χs is its square-root slope transformed version
{qs ∶ s ∈D} such that s↦ qs ∈ Q.
The amplitude of a function χ is the equivalence class [χ] = {χ ○ γ∣γ ∈ Γ} ⊂ F ,
known as its orbit under the action of Γ. The amplitude space then is the quotient
F/Γ = {[χ]∣χ ∈ F}.
In order to separate amplitude and phase, we need a metric on the amplitude space
F/Γ. One can be defined through a metric d on F that is invariant to simultaneous
warpings: ∀γ ∈ Γ, d(χ1, χ2) = d(χ1 ○ γ,χ2 ○ γ).
To reduce the Fisher-Rao metric (Srivastava et al. [2011]) on F to the standard
metric L2 on the transformed space, the idea is to use the square-root slope trans-
formation.
The transformation maps

f → Q(f) = q = sgn(χ′)∣χ′∣1/2 (2.2)

(χ′ is the time derivative of χ).
Under Q, the Fisher-Rao metric on F is mapped to the standard L2 metric on
Q and thus it is possible to do the analyses of the square-root slope transformed
functional observations using standard Hilbert space machinery.
Warping of χ ∈ F by γ induces the warping action (q, γ) = (q ○ γ)γ′1/2 on Q with
corresponding amplitude [q] ∶= {(q, γ)∣γ ∈ Γ} and amplitude space Q/Γ = {[q]∣q ∈
Q}. Amplitude and phase separation through registration or alignment of χ2 to
χ1 is formulated as the determination of the relative phase obtained by solving

γ∗ = arg min
γ∈Γ

∣∣q1 − (q2, γ)∣∣, (2.3)

where q1, q2 are the square-root transformed χ1, χ2.
So observed functional data χsi ∈ D (i = 1, ..., n) are transformed through the
square-root slope transform to obtain qsi and the model is explained using qsi .
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Chapter 3

Geostatistics

In order to analyze the amplitude and phase variabilities, we have to study the
aligned and warping functions.
In this section we recall the geostatistical analyses in L2 and for the Hilbert spaces
that are useful to be able to study the aligned and warping functions.
In particular first we recall the basic notions of geostatistics and then its extension
to functional data.
The main purpose of geostatistics is making inference on the distribution of a
random fields using a finite number of observations in some fixed locations of the
domain. Whenever data are spatially distributed, there is the need to develop
some analyses able to take advantage of the spatial dependence among data for
modelling and prediction purposes.

3.1 Univariate approach to the geostatistical anal-

ysis

Univariate geostatistics focuses on the statistical characterization of real-valued
random fields. These are collections of real random variables Zs, which are com-
monly modelled as

Zs =ms + δs, s ∈D

where the mean function ms is called drift and describes the large scale variability
and the stochastic residual δs resumes the small scale variability and is character-
ized by a structure of spatial dependence.
For any given set of locations s1, ..., sn, the distributional properties of the ran-
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dom vector Z = (Zs1 , ..., Zsn)′ are defined via its joint distribution function, called
finite-dimensional law:

Fs1,...,sn(z1, ..., zn) = P(Zs1 ≤ z1, ..., Zsn ≤ zn), z1, ..., zn ∈ R.

Definition 3.1.1. Process {Z(s), s ∈ D} is said second-order stationary if the
following condition hold:

• E(Zsi , Zsj) =m, for all s ∈D;

• Cov(Zsi , Zsj) = E[(Zsi −m)(Zsj −m)] = C(h), for all si, sj ∈D,h = si − sj
Function C is said covariogram.

Definition 3.1.2. Process {Z(s), s ∈D} is said intrinsically stationary if

• E(zsi , Zsj) =m, for all s ∈D;

• Var(Zsi , Zsj) = E[(Zsi −Zsj)2] = 2γ(h), for all si, sj ∈D,h = si − sj
Function γ is said semivariogram and 2γ variogram.

The semivariogram is related to the covariogram via the identity

γ(h) = C(0) −C(h), h ∈ Rd.

The variogram modeling plays a key role in the geostatistical analysis of spatially
dependent data.
A valid semivariogram 2γ(⋅) is symmetric and null at the origin. However, it may
present a discontinuity at the origin, associated to a non-zero limit as h approaches
0:

lim
h→0

γ(h) = τ 2 ≠ 0 = γ(0)

n this case, τ 2 is called nugget.
A further relevant property of a valid semivariogram is the sill. This is defined as:

τ 2 + σ2 = lim
h→0

γ(h)

where τ 2 is the nugget effect and σ2 is said partial sill.
We also define the range R of a valid semivariogram as the value where it reaches
the sill

γ(R) = τ 2 + σ2.

The semivariogram range quantifies the range of influence of the process: for
distances greater than the range, two elements of the process are uncorrelated.
The variogram range can be infinite if the sill does not exist (indication of non-
stationarity) or if the sill is reached asymptotically.
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Figure 3.1: Variogram model.

To guarantee that the properties of a valid variogram are fulfilled, a number of
parametric valid model are commonly employed, the most common are:

• Pure nugget (valid in Rd, d ≥ 1):

γ(h) = { τ 2 h > 0
0 h = 0

• Exponential model (valid in Rd, d ≥ 1):

γ(h) = { σ2(1 − e−h/a) h > 0
0 h = 0

• Spherical model (valid in Rd, d = 1,2,3):

γ(h) = {
0 h = 0

σ2[3
2
h
a − 1

2(ha)3] 0 < h < a
σ2 h ≥ a

with a, σ ∈ R. The model parameter are alrady interpretable: a is the range
and σ2 the sill.

• Gaussian model:

γ(h) = σ2(1 − exp(−αh
2

a2
)) + τ 2.
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The variogram model which is chosen to describe the spatial variability should
reflect the smoothness that one may expect from the field realization.
Given a dataset Zs1 , ..., Zsn , under the stationarity assumption, the sample semi-
variogram is computed as

ˆγ(h) = 1

2∣N(h)∣ ∑
(i,j)∈∣N(h)∣

[Zsi −Zsj]2

where N(h) = {(i, j) ∶ ∣∣si − sj ∣∣ = h} and ∣N(h)∣ is its cardinality.

Then given a set of locations s1, ..., sn in D and the observations of process Zs, s ∈D
at these locations, Zs1 , ..., Zsn , one is often interested in predicting an unobserved
element Zs0 at s0. A possible approach for the prediction problem is Kriging. The
idea behind this method is to create a statistical model for the phenomenon starting
from the available data, first by identifying the covariance structure and then,
through a linear combination of the data, by making the spatial prediction. We
can distinguish different kriging: Simple Kriging (SK), Ordinary Kriging (OK) and
Universal Kriging (UK). Simple and Ordinary Kriging are used in the stationary
setting, SK in case the mean is known and OK in case the mean is unknown over
the domain D. Instead, in the non-stationary context, Universal Kriging can be
applied.

3.2 Geostatistics for functional data analysis

In this period, because of the need to analyze infinite-dimensional data, such as
curves, surfaces and images, functional data analysis (FDA) was deepened. When-
ever functional data are spatially dependent, it is important to develop the tech-
niques of regression and estimation, but other topics also need to be studied. In
particular, an essential argument is the spatial prediction.
Given a distributional dataset χs1 , ..., χsn observed over n sampling locations s1, ..., sn
there are two key goals of geostatistics, namely estimate the dependence among
observations at different locations and perform prediction.
To achieve these two goals, in compositional geostatistics, one have first to model a
set of variograms and cross-variograms and then one have to define linear unbiased
predictors from the data (i.e., compositional (co)kriging, see Tolosana-Delgado et
al. [2019]).
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3.2.1 Geostatistics for L2

In this section we concentrate on functions in L2 and we follow Giraldo et al.
(2011).
Suppose to have a random process {χs, s ∈D ⊆ Rd} whose element χs is a function
for any s ∈D. These functional data belong to

L2(τ) = {f ∶ τ → R, s.t.∫
τ
f(t)2dt <∞}.

Following Giraldo et al. (2011), we assume that the random process is weakly
stationary and that the covariance functions and variograms are isotropic.
Our goal is to predict χs0 at a location s0 that we have not observed. In particular,
for the nature of our problem, we want to predict a function.
In multivariable geostatistics, the best linear unbiased predictor (BLUP) for χs0
is defined as

χ̂s0 =
n

∑
i=1

λiχsi λ1, ..., λn ∈ R (3.2)

where the λs are the weights and give the influence of the curves around the
position that we want to predict, the curves closer to this point will have greater
influence than others more distant. The BLUP is find minimizing (Giraldo et al.
[2011])

σ2
s0 =

p

∑
j=1

Var(Ẑs0(j) −Zs0(j)) (3.3)

where p is the variables on the location s0 that is not observed and Z(s) =
∫τ χs(t)dt.
Minimize this quantity means minimize the trace of the mean-squared prediction
error matrix.
Moreover, in order to find the BLUP, the weights in the kriging predictor of χs0
must be the solution of the following optimization problem:

min
λ1,...,λn

∫
τ

Var(χ̂s0(t) − χs0(t))dt s.t.
n

∑
i=1

λi = 1 (3.4)

where the constraint is for the unbiasedness.
Remembering that γt(h) = Ct(0) − Ct(h), the optimal weights can be formulated
as the solution of the following linear system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫τ γt(∣∣s1 − s1∣∣)dt . . . ∫τ γt(∣∣s1 − sn∣∣)dt 1
⋮ ⋱ ⋮ ⋮

∫τ γt(∣∣sn − s1∣∣)dt . . . ∫τ γt(∣∣sn − sn∣∣)dt 1
1 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

⋮
λn
−µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫τ γt(∣∣s0 − s1∣∣)dt
⋮

∫τ γt(∣∣s0 − sn∣∣)dt
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The function γ(h) = ∫τ γt(h)dt is called trace-variogram and the prediction trace-
variance of the functional ordinary kriging is

σ2
s0 = ∫

τ
Var(χ̂s0(t) − χs0(t))dt =

n

∑
i=1

λi∫
τ
γt(∣∣si − s0∣∣)dt − µ =

n

∑
i=1

λiγ(∣∣si − s0∣∣) − µ.

(3.5)

We can also estimate the trace-variogram as

γ̂(h) = 1

2∣N(h)∣ ∑
(i,j)∈N(h)

∫ (χsi(t) − χsj(t))2dt (3.6)

where N(h) = {(si, sj) ∶ ∣∣si−sj ∣∣ = h} and ∣N(h)∣ is the number of distinct elements
of ∣N(h)∣.

3.2.2 Geostatistics for Hilbert spaces

This method that we have seen can be apply only to functions belonging to L2

and not allow to treat functional data belonging to a general Hilbert spaces. Here,
following Menafoglio et al. [2013,2014] we give a theoretical framework for uni-
versal kriging prediction for every separable Hilbert space, not just L2. Suppose
that the dataset χs1 , ..., χsn is the collection of n observations of a random field
{χs, s ∈D ⊆ Rd} relative to n locations s1, ..., sn.
The main operative assumption is the square integrability (Menafoglio et al. [2013,
2014])

• Each element χs, s ∈D of the random field {χs, s ∈D ⊆ Rd} belongs to L2.

The first-order properties of the field are described by the mean of {χs, s ∈ D} ,
which is defined, in the Fréchet sense,

ms = arg min
x∈H

∣∣χs ⊖ x∣∣2H , s ∈D (3.7)

where the operation ⊖ is defined as f ⊖ g = f ⊕ [(−1)⊙ g] for f,g in H.

We want to define a measure of spatial dependence for {χs, s ∈D} so we introduce
an extension of the classical variogram that is the trace-variogram

2γ(∣∣s1 − s2∣∣d) = E[∣∣χs1 ⊖ χs2 ∣∣2H], (3.8)

for s1, s2 in D and where ∣∣s1 − s2∣∣d is the distance between s1 and s2.
The trace-variogram that we have defined then gives a global notion of spatial
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dependence, which is characterized by similar properties as its scalar counter-
part (e.g., positivity, conditional negative semi-definiteness, see [Menafoglio et al.,
2013]).
A stationary field is characterized by a trace-variogram that stabilizes around an
asymptote for diverging distances, while the distance at which the trace-variogram
reaches the sill is defined as the range of influence of the data. Alternatively, one
may define a trace-covariogram as

C(∣∣s1 − s2∣∣d) = E[< χs1 −ms1 , χs2 −ms2 >H], (3.9)

that is similar to the classical covariogram. The trace-covariogram describes, in
a global sense, the covariation between couples of objects of the field, and so it
measures the second-order spatial dependence of the process. Intuitively, the more
the distance between the positions increases, the more the spatial dependence be-
tween the associated objects decreases until it vanishes and therefore the absolute
value of the corresponding trace covariogram decreases towards zero.
They are called ’trace-variogram’ and ’trace-covariogram’ because there is a rela-
tion between the semivariogram and the global covariance with their operatorial
counterparts, they represent the trace of the corresponding operator (Menafoglio
et al. [2013, 2014]).

Proposition 3.2.1. For every couple of location si, sj in D, C(si, sj) is the trace
of the corresponding cross-covariance operator Csi,sj :

C(si, sj) =
∞
∑
k=1

< Csi,sjek, ek >

where {ek, k ∈ N} is any orthonormal basis of H. In particular:

∣C(si, sj)∣ ≤
∞
∑
k=1

∣λ(si,sj)k ∣,

being λ
(si,sj)
k , k = 1,2, ..., the singular valued of the cross-variance of the operator

Csi,sj .

The expression of the trace-covariogram induces naturally the following definition:

Definition 3.2.1. The (global) variance of the process {χs, s ∈ D ⊆ Rd} is the
function σ2 ∶D → [0,+∞] ∶

σ2(s) = E[∣∣χs −ms∣∣2], s ∈D (3.10)

These functions preserve the same properties as their finite-dimensional analogue.
For what concerning the stationarity and isotropy we now see some definition:



22 CHAPTER 3. GEOSTATISTICS

Definition 3.2.2. A process {χs, s ∈D ⊆ Rd} is said to be (globally) second order
stationary if the following conditions hold:

• E[χs] =m,∀s ∈D ⊆ Rd,

• Cov(χsi , χsj) = E[< χsi −msi , χsj −msj >] = C(h), for all si, sj ∈D,h = si − sj
Definition 3.2.3. A process {χs, s ∈ D ⊆ Rd} is said to be (globally) intrinsically
stationary if the following hold:

• E(χsi) =m, for all s ∈D ⊆ Rd;

• Var(χsi , χsj) = E[∣∣χsi − χsj ∣∣2] = 2γ(h), for all si, sj ∈D,h = si − sj
Definition 3.2.4. A second order stationary process {χs, s ∈ D ⊆ Rd} is said to
be isotropic if

Cov(χsi , χsj) = C(∣∣h∣∣),∀si, sj ∈D ⊆ Rd, h = si − sj (3.11)

where ∣∣ ⋅ ∣∣ is a norm on D.

We can also compute the sample semi-variogram as

2γ̂(h) = 1

∣N(h)∣ ∑
(i,j)∈N(h)

∣∣χsi ⊖ χsj ∣∣2H (3.12)

where N(h) is the set of pairs of data approximately separated by a distance h
and ∣N(h)∣ is its cardinality.
Once we have estimated the trace-variogram we want to make prediction. Suppose
we have an unobservent element χs0 in the location s0, here we use the kriging
predictor in H.

3.2.2.1 Universal Kriging predictor for functional data

Kriging is a geostatistical technique that allows to perform linear spatial prediction
from a set of spatially distributed data. In order to stimate a kriging predictor,
we follow the proposal of Menafoglio et al. [2013,2014]. Suppose we have a non-
stationary random process {χs, s ∈D ⊆ Rd} whose elements are representable as:

χs =ms + δs
where ms is called drift and describes the non-constant spatial mean variation and
we suppose that the residual δs is zero-mean, second-order stationary and isotropic
random field:



3.2. GEOSTATISTICS FOR FUNCTIONAL DATA ANALYSIS 23

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E[χs] =ms, s ∈D ⊆ Rd

E[δs] = 0, s ∈D ⊆ Rd

(δsi , δsj) = E[< δsi , δsj >] = C(∣∣h∣∣), ∀si, sj ∈D ⊆ Rd, h = si − sj.

Assume then a linear model for ms as in Menafoglio et al. [2013,2014]:

ms(t) =
L

∑
l=0

al(t)fl(s), s ∈D, t ∈ τ, (3.13)

where f0(s) = 1 for all s ∈ D,fl(⋅), l = 1, ..., L, are known functions of the spatial
variable s ∈ D and al(⋅) ∈ H, l = 0, ..., L, are functional coefficients independent
from the spatial location and H is the feature space the objects χs belongs to.
The coefficient al quantifies the effect of a unit variation of the spatial regressor
fl(s), when the others are fixed, on the mean value process, l = 1, ..., L, instead the
coefficient a0 represents a functional intercept, in the sense that it corresponds to
the (functional) mean value of the response when all the regressors fl(s), l = 1, ..., L,
are null.
Given n observation χsi , ..., χsn sampled from {χs, s ∈ D}, we want to formulate
the Universal Kriging predictor of the variable χs0 located in s0 ∈ D, which is the
best linear unbiased predictor (BLUP):

χ∗s0 =
n

∑
i=1

λ∗i χsi , (3.14)

where λ∗1, ..., λ
∗
n ∈ R are the weight that minimize the global variance of the pre-

diction error under the unbiased constraint:

(λ∗1, ..., λ∗n) = arg min
λ1,...,λn∈R,

χλs0=∑
n
i=1 λiχsi

Var(χλs0 − χs0) s.t. E[χsλ0] =ms0

Here, the variance to be minimized and the unbiased constrained are both well
defined, this because the linear predictor χλs0 belongs to the same space H as the
variables χs1 , ..., χsn , because H is closed with respect to linear combinations of
its elements. From the unbiasedness constraint, the following set of restrictions on
the weights can be easily derived:

n

∑
i=1

λifl(si) = fl(s0), ∀l = 0, ..., L. (3.15)

Including this equation in the minimization problem and using the Lagrange mul-
tipliers µ0, ..., µL, the problem becomes minimizing the following quantity:

Var(χλs0 − (χs0) + 2
L

∑
l=0

µl(
n

∑
i=1

λifl(si) − fl(s0))
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and it can be reduced as:

Φ =
n

∑
i=1

n

∑
j=1

λiλjC(si, sj) +C(0) − 2
n

∑
i=1

λiC(si, s0) + 2
L

∑
l=0

µl(
n

∑
i=1

λifl(si) − fl(s0))

Σ = C(hi,j) ∈ Rnxn is the covariance matrix of the observations, namely it is a
measure of dependence defined through the trace-covariogram. If this matrix is
positive definite and Fs = (fl(si)) ∈ Rn×(L+1), that is the design matrix of model,
is full rank, the functional Φ admits a unique global minimum that can be found
solving the following linear system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(0) . . . C(h1,n) 1 f1(s1) . . . fL(s1)
⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

C(hn,1) . . . C(0) 1 f1(sn) . . . fL(sn)
1 . . . 1 0 0 . . . 0

f1(s1) . . . f1(sn) 0 0 . . . 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

fL(s1) . . . fL(sn) 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

⋮
λn
µ0

µ1

⋮
µL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(h0,1)
⋮

C(h0,n)
1

f1(s0)
⋮

fL(s0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where C(hi,j) denotes the trace-covariogram function of the residual process {δs, s ∈
D} evaluated in hi,j = ∣∣si − sj ∣∣.
We can also associate to the pointwise prediction χ∗s0 in s0 a measure of its global
variability through the Universal Kriging variance:

σ2
UK(s0) = C(0) −

n

∑
i=1

λiC(hi,0) −
L

∑
l=0

µlfl(s0)

=
n

∑
i=1

λiγ(hi,0) +
L

∑
l=0

µlfl(s0), s0 ∈D,f0(s) = 1,∀s ∈D.

We have seen that to estimate C(h) one possible identity is

C(h) = C(0) − γ(h)
that relates the trace-covariogram with the trace-variogram.
If the mean function ms is spatially constant, estimation of the trace-covariogram
can be then obtained by fitting a parametric valid model (e.g., spherical, Matérn,
exponential) to the empirical trace-semivariogram

2γ̂(h) = 1

∣N(h)∣ ∑
(i,j)∈N(h)

∣∣χsi ⊖ χsj ∣∣2H (3.16)

where N(h) is the set of pairs of data approximately separated by a distance h
and ∣N(h)∣ is its cardinality.
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When the mean functions ms is not spatially constant, this estimator cannot be
directly used to provide a meaningful estimate of the trace-covariogram, but should

be applied to the (estimated) residuals δs = χs
L

∑
l=0

fl(s) ⋅ âl instead.

In fact, also in the classical setting, a good estimate of the drift is then crucial for
the statistical analysis.
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Chapter 4

Geostatistical analysis of
functional data with phase and
amplitude variability

The problem to apply the geostatistical analyses on spatial functional data is that
it uses methods with the variogram in L2, this implies that the function must be
assumed to be perfectly aligned otherwise the phase variation will be treated as
noise. In reality, however, it is very difficult to have aligned functions, in fact the
functions are often out of phase, namely there is a temporal misalignment of the
geometric characteristics of the functions, such as maximum and minimum. The
negative effects of disregarding phase variation are well described in (Marron et
al., 2015; Srivastava et al., 2011).
So since there is often the phase variation in the observed functions, if one wants
to get a better prediction of the functions in locations that have not been observed,
the idea is to decompose the variability into phase and amplitude variabilities and
then to do separated analyses.
In this thesis, the aligned and warping function are given. Therefore we concentrate
on computing the analyses of the two types of functions and at the end propose
the linear unbiased estimators for spatial prediction of amplitude and phase (and
combine them to form the final prediction).
The aligned functions wi and the warping functions γi have different nature and
consequently have to be treated in a different way.
As we have already seen, the aligned functions are functions that belong to L2,
therefore to analyze them we apply the geostatistical analyses for L2 functions
that we have recalled in Section 3.
Instead for what concerning the warping functions we have to apply a different
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approach.
We follow Happ et al. (2018) and we analyze the warping functions γi considering
their derivatives γ′i. These derivatives can be seen as probability density functions
(PDFs) and cannot be simply considered as square-integrable functions, because
the geometry of the L2 space is not the right one to treat them.
Therefore, in order to analyze these types of data, we have decided to use the
Bayes space geometry that is perfectly design to represent and to preserve the
features of this data.
For this reason we now explain the Bayes approach to analyze the warping func-
tions and then, since these spaces have the geometry of the Hilbert spaces, we
will apply the geostatistical analyses for the Hilbert spaces that we have seen in
chapter 3.

4.1 Bayes spaces

We have seen that the study of the warping function is not so easy.
Indeed, in order to analyze them, we have to map the functions into different
space, this because the space of the warping functions

Γ(τ) = {γ ∶ τ → τ ∶ γ is a diffeomorphism, γ(a) = a, γ(b) = b}

has a complex, non-Euclidean geometric structure (Lee Jung, 2016; Srivastava
Klassen, 2016). In particular we want to transform the warping function to L2.
The idea is to follow Happ et al. [2018] and to find a map Ψ ∶ Γ(τ) → L2(τ)
which allow to transform functions to square-integrable functions, then we compute
geostatistical analyses in the well-studied space L2(τ) and at the end, through the
inverse map Ψ−1 ∶ L2(τ)→ Γ(τ), we transform the results back.
In particular: Ψ ∶ Γ(τ)→ L2(τ) with Ψ = ψ○D where D is the differential operator
that maps a warping function γ to its density γ′ and ψ depends on the type of the
transformation.
The map ψ transports the functions from the space of density functions to L2 and
depends on the transformation that we choose.

4.1.1 Centred log-ratio transformation

Therefore, to do our analysis on the warping functions, we have decided to use the
Bayes space following Happ et al.[2018] and Menafoglio [2020].
These spaces are functional spaces, whose elements are probability density func-
tions (PDFs) over a compact support τ (as representative of σ-positive measures).
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The Bayes spaces are constructed on the fact that the PDFs can also be inter-
preted as vector with infinitesimal parts, namely as functional compositional data.
We decide to use these spaces because the warping functions can also be interpreted
as generalized cumulative distribution functions of continuous random variables
X ∶ Ω → τ in the sense that γ(a) = a, γ(b) = b and γ is monotonically increasing.
Taking the first derivative γ′ yields a unique (scaled) probability density function
on τ .
Bayes spaces were originally introduced in Egozcue et al. [2006] and later ex-
tended in van den Boogaart et al. [2010, 2014]; they provide a mathematical and
geometrical framework for performing continuous and discrete distributional data
analysis.
We focus on a particular Bayes space, the Bayes Hilbert space

B2(τ) = {f > 0s.t.∫
τ
[lnf(t)]2dt <∞}, (4.1)

this is the space of positive functions defined on τ with square-integrable loga-
rithm.
The analysis of PDF data should follow some key principles (Menafoglio [2020]).
The principle according to which PDFs should be scale invariants gives us the
definition of the equivalence relation underlying Bayes spaces, namely given two
functions f, g ∈ B2(τ), they are equivalent in the Bayes space if they are propor-
tional (f = αg) through a positive constant α.
A natural representative for each class is given by the function integrating to
η = b−a, which we interpret as the derivative of a warping function. For f, g ∈ B2(τ)
and α ∈ R, operation on B2(τ) are defined as:

(f ⊕ g)(t) = η f(t)g(t)
∫τ f(s)g(s)ds

(α⊙ f)(t) = η f(t)α

∫τ f(s)αds

< f, g >B=
1

2η ∫τ ∫τ log(
f(x)
f(y))log(

g(x)
g(y))dydx.

Usually the origin of a Bayes space is the reference measure set to define the space
itself, in our case it coincides with the neutral element of the perturbation and in
particular it is the uniform density 1/η (Menafoglio [2020]).
In the light of Bayes theorem, these operations give us interesting notions. In
particular the first operation show us how the perturbation is represented as a
sum of information, namely to the information in g are added the information in
f and viceversa. Similarly, regarding the second operation, it can be seen that the



30 CHAPTER 4. DATA WITH PHASE AND AMPLITUDE VARIABILITY

information in f is inflated by α, which is a constant value (Menafoglio [2020]).
Moreover the inner product induce the following norm:

∣∣f ∣∣B = [ 1

2η ∫τ ∫τ(log
f(t)
f(s))

2dtds]1/2, f, g ∈ B2. (4.2)

Each element of B2(τ) can be mapped to L2(τ). To do that we use the log-ratio
transformations, among these the one by far most used is the centred log-ratio
transformation (clr), which is defined, for f ∈ B2(τ), as

ΨB(f)(t) = log(f(t)) −
1

η ∫τ log(f(x))dx Ψ−1
B (f)(t) = η ⋅ exp(f(t))

∫τ exp(f(s))ds

The centred log-ratio transformation is an isometric isomorphism with respect to
the norm induced < ⋅, ⋅ >B between the space B2 and the space L2, in particular
ΨB allow to map into the subspace UB(τ) = {v ∈ L2(τ) ∶ ∫τ v(s)ds = 0}.
Therefore, the operations and inner products in B2 are preserved under the clr-
transformation:

ΨB(f ⊕ g) = ΨB(f) +ΨB(g), ΨB(α⊙ f) = α ⋅ΨB(f)

< f, g >B=< ΨB(f),ΨB(g) >
with the standard operations (+, ⋅,< ⋅, ⋅ >2) on L2(τ).
Therefore, the Hilbert space geometry of the space (B2,+, ⋅,< ⋅, ⋅ >2) with the clr-
transformation properties allow to formulate the methods of geostatistical analyses
equivalently in the Bayes space.
The advantage of this approach is that the geometry of these spaces takes into
account the features of the data, which is not possible working in L2(τ) .

4.1.2 Other transformations

Always following Happ et al. (2018) we can see other transformations that one can
used instead of the clr. In particular we can see the square-root velocity transfor-
mation, the log-Hazard transformation and log-quantile density transformation.

4.1.2.1 Square-root velocity transformation

Even this transformation is useful to transform the warping functions to L2(τ).
In particular to do that we need to fine the map Ψ, that consists into 2 different
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steps.
In the first step, the warping functions are mapped to the positive orthant of the
(scaled) unit sphere in L2(τ): S∞+ (τ) = {s ∈ L2(τ) ∶ ∣∣s∣∣22 = η, s ≥ 0}, where η is the
length of the interval τ .
This is realized by the square-root velocity function:

SRV F ∶ γ ↦
√
γ′ (4.3)

where γ′ denotes the first derivative of γ.
The second step is done via mapping

ˆψS,µ ∶ S∞+ (τ)→ Tµ(τ), q ↦
θ

η1/2 sin(θ)(q − cos(θ)µ), θ = cos−1(< q, µ >2

η
) (4.4)

where µ ∈ S∞+ (τ) and Tµ(τ) = {v ∈ L2(τ) ∶< v, µ >2= 0}.
The back transformation to Γ(τ) is again in two steps. First to map v to the
sphere S∞(τ) = {s ∈ L2(τ) ∶ ∣∣s∣∣22 = η} apply

ˆψS,µ ∶ Tµ(τ)→ S∞+ (τ), v ↦ cos(∣∣v∣∣2)µ + η1/2 sin(∣∣v∣∣2)
v

∣∣v∣∣2
(4.5)

Then, the results are mapped back to the space of warping functions via

SRVF−1 ∶ S∞(τ) → Γ(τ) with SRV F −1(s)(t) = a + ∫
t

0 s(u)2du The total mapping
from Γ(τ) to L2(τ) is given by:

Ψ = ˆψS,µ ○ SRV F with the inverse Ψ−1 = SRV F −1 ○ ˆψS,µ However the square-root
velocity transformation has two defects.

First ˆψS,µ and ˆψ−1
S,µ are undefined for the rather interesting points µ ∈ S∞+ (τ) and

v0 = 0 ∈ Tµ(τ), which implies ∣∣v0∣∣2 = 0. Theoretically, thanks to L’Hopital’s rule
they can be easily be completed, but in practice, for functions close to µ and v0,
often occur computational instabilities (Happ et al.[2018]). At the same time, the
projection from the positive orthant of the sphere S∞+ (τ) to the tangent space
Tµ(τ) is a local approximation that works best close to µ. This shows that the
choice of µ is important and requires the data to be neither too close nor too far
from µ (Happ et al.[2018]).

The second defects is that the mappings ˆψS,µ and ˆψ−1
S,µ are not inverse to each other

as

dom( ˆψS,µ) = S∞+ (τ) ⊂ S∞(τ) = im( ˆψ−1
S,µ) im( ˆψS,µ) ⊂ Tµ(τ) = dom( ˆψ−1

S,µ). (4.6)

Whenever one uses the projected SRVFs vi for statistical analysis in the tangent
space Tµ(τ) whose results are not guaranteed to stay within im( ˆψS,µ), there is a
risk of obtaining atypical results on the level of the SRVFs and of the warping
functions (Happ et al. 2018).
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4.1.2.2 Log-Hazard transformation and log-quantile density transfor-
mation

Petersen and Muller (2016) present other two alternative transformations that can
be extended to warping functions by applying them to the derivatives of the latter.
The log-hazard transformation is

ψH(f) = log( f

1 − F ) (4.7)

where F is the warping function scaled to [0,1] and f is the associated density. The
transformation is implemented only on [a, b − δη], namely on a subinterval with
a threshold parameter δ because of the hazard functions are known to diverge at
the right endpoint of τ . Instead, for what concerning the back transformation,
uniform weight is assigned to t ∈ (b − δη, b].
The second transformation is the log-quantile density transformation

ψQ(f) = −log(f(Q)) (4.8)

where Q is the inverse (quantile) function associated with F.
Petersen and Muller advise to use the second one.
The log-hazard transformation ψH can be highly influenced by the threshold pa-
rameter δ, while the log-quantile density transformation ψQ requires numerical
inversion of the warping functions γ, which may also lead to instabilities. Happ
et al. [2018] try to use both the transformations and note that, in all the analyzes
cases, the log-hazard transformation was the best contradicting the recommenda-
tion given by Petersen and Muller (2016).

4.2 Another approach

Cuncurrently with the writing of the thesis, Guo et al (2020) study a different
approach.
Their idea is to do the same procedure that we have done but with two differences.
The first one is that they don’t consider the warping and aligned functions as given
functions, they have separated them through the square-root slope transformation.
The second difference is that they don’t use the Bayesian approach to study the
warping function but the SRVF transformation that we have introduced before.
In particular they find two random fields, one related to the amplitude phase
{ws, s ∈ D} and one related to the warping {ψy = γ′1/2, y ∈ D′} and they find two
trace-variogram related to them and consequently two predictions through the
kriging technique.
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Application

Now we apply what we have seen in the previous section. In particular, we apply
geostatistical analyses to a subset of data from a seismological in silico experiment
based on the Mw 6.7 1994 Northridge earthquake, a blind thrust event that was
felt over 200.000 km2.
The induced ground shaking caused 60 victims, more than 7.000 wounded, 40.000
damaged buildings and $44 billion in economic losses.
On a fault dipping southward at about 35’ below the San Fernando Valley in the
Los Angeles metropolitan area (Hauksson, Jones, Hutton, 1995) was located the
hypocentre at about 19 km depth.
Irregular distributions are shown from the patterns of damage that occurred during
the Northridge event. Generally, the region closest to the earthquake (so closest
to the hypocentre) was shaken most severely. However, there were also isolated
pockets of damage at distant locations.
In computational seismology there has always been the challenge of estimating re-
alistic ground movements for the topography of complex surfaces. However, this is
not easy because the local site responses to seismicity are influenced by topography
and this influence, despite having a major impact in the propagation of seismic
waves and in the movement of the ground during earthquakes, is very complex to
consider to predict the seismic risk. This seismic risk is based on equations that
describe the forecasts of ground movement (Boore, 1973; Bouchon, 1973).
For the data analysed here, physics-based earthquake scenarios were modelled
using three-dimensional unstructured meshes constructed from geological con-
straints such as high-resolution topography data and the Southern California
Earthquake Center Community Fault Model combined with a one-dimensional
subsurface structure (Happ et al. [2019]).
It is used SeisSol, an open-source package that simulate the earthquakes. It couples
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three-dimensional seismic wave propagation to the simulation of dynamic rupture
propagation across earthquake fault zones, (Heinecke et al., 2014; Pelties, Gabriel,
Ampuero, 2014; Uphoff et al., 2017, Happ et al. [2019]). SeisSol has performed
multiple simulations varying the initial fault stress and strength conditions.
Through a dense network of virtual seismometers distributed across Southern Cal-
ifornia were registered time series of absolute ground velocity.
Bauer, Scheipl, Kchenhoff, and Gabriel (2018) have described more in details this
data and have done an analyses on the full dataset of original, unregistered data.
On this dataset Happ et al. [2019] has already done the multivariate PCA, instead
we want to use this dataset in order to make some predictions through geostatistics
analysis.
For our application we decide to focus on locations that are at most 40km away
from the hypocenter from two simulations and therefore on average they show
more significant movements of ground velocity.
This constraint has reduced the sites to a total of 1,558 observation units, each of
which is recorded at 2 Hz over 30 s for a total of 61 timepoints.
Happ et al. [2019] presmoothed the ground velocity curves using a Tweedie dis-
tribution with log-link for the response and 40 cubic regression splines with the
penalized second derivative using the R-package mgcv (Wood, Pya, Sen, 2016) to
model the evolution over time before registration.
These data are available as additional material of Happ et al. [2018].
The goal of our analysis is to show that from the kriging on the original data (not
aligned) we obtained a worse prediction than the prediction obtained from the
analysis of the functions decoupled in aligned and warping.
First we have uniformly sampled from these data 500 units and we have divided
them into training (350 points) and test (150 points) sets.
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Figure 5.1: 500 points we have selcted.
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The idea is to do our analyses on the training set and then to compute the pre-
diction error we make on the test set. In particular we do the same procedure for
the original, aligned and warping function. We will see that the prediction error
obtained from the analyses on the original data is bigger than the error committed
decoupling the functions in aligned and warping and doing separate analyses.
In 5.2 we can see the smoothed curves χs representing log(1 + Vi(t)) for ground
velocity V at locations si and time t, the warping functions γs and the aligned func-
tions χas after SRVF-based warping (Tucker, 2014). The results of the warping and
aligned are the inputs of our analysis.

χas = χs(γs) χs = γ−1
s (χas)
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Figure 5.2: Earthquake dataset representing 500 observations of simulated ground
velocity over time.

Therefore, our dataset is composed by the following columns: longitude, latitude,
distance from the hypocentre (transformed in km), ground velocity, aligned func-
tion and warping function.
From the 5.2 it is evident that while the original data are characterized by both
variabilities, the aligned function only has the amplitude variability without any
horizontal component.
We start by performing exploratory data analysis.
From the following figure, we see that effectively the hypocentre and the ground
velocity have a negative correlation, indeed the further a location is from the
hypocentre, the slower the velocity and viceversa.
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Figure 5.3: Correlation between the mean of the functions and the hypocentre
distance.

In order to be able to visualize the figure (5.3) we have computed the mean of
original, aligned and warping functions in time and then the correlation between
these means and the distance from the hypocentre measure.
We have also clustered the three functions, for this purpose we have computed
Euclidean distances between the production profiles and then we have applied
simple kmeans clustering.
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Figure 5.4: Clustering of original, aligned and warping functions.

We have also visualized the statistical data depth, that is a nonparametric tool
applicable to multivariate datasets in an attempt to generalize quantiles to complex
data. The depth measures how deep (or central) is a datum respect to a population.
We have visualized this parameter not only for the functions but also for their
derivatives.
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Figure 5.5: Depth measures for the original, aligned and warping functions and
their derivatives.
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This depth function also displays (see figure 5.5) the curves (in terms of its depth
on a gray scale), the median curve (red line) and the mean of (1 − α)% deepest
curves (blue line).
Following the analysis of Happ et al. (2018) we have computed the multivariate
functional principal component analysis
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Figure 5.6: First two principal component of multivariate functional principal
component analysis.

We have seen that, as Happ et al. (2018) say, for the first principal component the
main component is the amplitude variability that means that for positive scores
the ground movement is bigger than for the negative scores instead for the second
principal component the main component is the phase variability that shows that
for positive scores the peaks occur earlier than in the mean function instead for
the negative scores they occur later than the mean function.
After this exploratory analyses, we started to do our geostatistical analyses.
In particular, first of all we have transformed the functions in the following way:

• The warping functions γi, through the center log-ratio transformation ΨB.

• The aligned functions and the original functions respectively in log(χas + 1)
and log(χs + 1), this in order to keep the positivity constrain.

After that we have started to do our analysis using the package of R called ’fdag-
stat’ ([12]). We have search the best trace-variogram model for all the functions
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using the training set.
In order to do this, we have seen how the variance of the statistical variable (or,
better, the semivariance) evolved as a function of the distance from the measure-
ment points through a plot and thanks to this plot we have fixed the value of
nugget, range and sill.
For the original ground velocity we have chosen a spherical model with nugget
equal to 0.2, sill 35 and range 2, for what concerning the aligned function we have
chosen a spherical model with nugget equal to 0.4, sill 30 and range 1.5 and for
the warping function we have choosen an exponential model with nugget equal to
0.45, sill 30 and range 1.5.
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Warping
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Figure 5.7: Variograms of original ground velocity, aligned functions and warping
functions respectively.

After that our goal is to make prediction, in particular we have used the trace-
variogram model found before and the Universal Kriging on the test set to compare
the results with the real values of the functions for the original, aligned and warping
functions.
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Figure 5.8: Kriging of original ground velocity.
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Figure 5.9: Kriging of aligned functions, of warping functions transformed through
the clr transformation and of the warping function transformed back through the
clr inverse transformation respectively.
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So we did three separate analyses and we have obtained three different predictions
χ∗s0 , χ

a,∗
s0 , γ

∗
s0 .

We after have transformed back the result of the prediction of the warping function
through the inverse map, namely the center log-ratio inverse transformation.
Then we want to couple what was obtained from warping functions and from
aligned functions and subsequently compare this result with the analysis made on
the original data. In particular we rewrite the predictions in the following way:

χ∗s0 = χ
a,∗
s0 (γ∗s0)
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Figure 5.10: Left: prediction of ground velocity by coupling aligned and warp-
ing functions, Middle: prediction of ground velocity by original function, Right:
ground velocity of the test set.

We compute the two errors in L2(τ) and to do it we use the integral of the square
of the difference

d2(χ∗s0 , χs0) = ∫τ(χ∗s0 − χs0)2,
d2(χa,∗s0 , χs0(γs)) = ∫τ(χ

a,∗
s0 − χs0(γs))2.

After that we compute the boxplot of these two errors to see if the analysis on the
decouple data is the best one or not and we obtain the following figure
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Figure 5.12: Map of the two types of errors.
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Statistiche Errore originale Errore ricostruito
mean 0.423 0.361
median 0.304 0.282
minimum 0.043 0.070
maximum 3.373 2.501
sum 64.086 54.131
standard deviation 0.421 0.294

We can see from 5.11 that the boxplot of the coupled prediction errors is lower
then the boxplot of the original one. This mean that we have proved that it is
better the analysis on the data decoupled in warping and aligned function instead
of a single analysis on the observed function.
Also from 5.12 we can see this result.
This result confirm that considering the data and making the geostatistical analy-
ses on the original functions means not consider the phase variability. Instead this
variability is significant, in fact contains important information about the process.
Therefore, decoupling the functions in aligned and warping we take into account
both variabilities and we make a better analyses.
But we did this analysis on a single division of the training and test sets, we want
to control that on average for all the choices of the two sets the result is the same.
Therefore we have done 100 different choices of the 2 sets and 100 different analy-
sis, for all of them we have saved the two errors and at the end we have computed
the boxplot once again
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Figure 5.13: Prediction errors of the two analysis for 100 different choices of train-
ing and test sets.



46 CHAPTER 5. APPLICATION

This result therefore confirms what we have concluded before by making a single
analysis, even on average the predicted error relating to the original functions is
higher than the one relating to the functions decoupled in algned and warping
functions and separately studied.



Chapter 6

Conclusion

The seismological experiment presented in section 5 is a perfect example of data
where both amplitude and phase variabilities are of interest.
Let’s summarize what we have done: to do our analysis on this dataset we have
first decoupled the original functions into alignment and warping functions to take
into account the overall variability, therefore both that of phase and amplitude.
We have used the clr transformation shown in Section 3 for the warping functions,
to preserve the nature of the data. We have made the geostatistical analyses on
the functional data illustrated in Section 3 for the aligned functions and warping
functions, using the analyses for functions in L2 and for functions belonging to
Bayes spaces, respectively. We have therefore obtained two prediction estimates
using the kriging methods. Next we have coupled the results of the analyses on
the warping and alignment functions. We have compared this result with the one
obtained through geostatistical analysis made on the original data by comparing
the forecast errors of both procedures.
We have performed these steps 100 times and we have seen that on average the
error we made on the prediction using the original data is greater than the one we
made through the decoupling process.
The conclusion is not only that phase variability is actually important, that it
contains useful data information and therefore decoupling should not only be a
preprocessing phase, but we have also concluded that to study and to do geosta-
tistical analyses on functional data, the best thing to do is to decouple this data,
study the warping and alignment functions separately, and only later couple the
results. In this way, in fact, we are able to study the warping functions through
the Bayes approach, preserving the intrinsic features of the data.
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Appendices

For our study, we have used some functions from Happ et al. (2018). In particular
app-smooth.R, app-warp-MFPCA.R and app-seismology.R.

############## app_smooth.R #############

Parallelize smoothing

plan(multicore(workers = 30))

seissol = readRDS("../data/data_northridge.rds")

# Preprocess

data = seissol$Bodenbewegung %>%

mutate(id = seissol$Seismogram:seissol$Simulation) %>%

gather(key = "time", value = "y", -id) %>%

mutate(time = as.numeric(str_extract(time, "[0-9\\.]+$")),

y = zapsmall(y)) %>%

nest(-id, .key = "boden")

smooth_one = function(d, k = 40, bs = "cr", m = 2, family = tw(),

optimizer = c("outer","newton"), sp = NULL,

return = c("fitted.values", "sp"), offset=NULL) {

m = gam(y ~ s(time, k = k, bs = bs, m = m), offset = offset,

family = family, optimizer = optimizer, sp = sp, data = d)

return(m[return])

}

# Smooth ground velocity using smooth_one function

# future map allow you to run the map in parallel

plan(sequential)

groundVel_tw_smooth =

future_map(data$boden,

~ cbind(.x, fit = smooth_one(.x, sp = 2.7)[["fitted.values"]]))

53
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# Add id

data_groundVel_tw_smooth = groundVel_tw_smooth %>%

imap(~cbind(id = .y, .x[, c(1,3)])) %>% #drop original data, add id

bind_rows %>%

spread(key = time, value = fit)

# Add smoothed data to data frame

seissol$groundVel_tw_smooth = data_groundVel_tw_smooth[,-1]

# Save data frame

saveRDS(seissol, "../data/seissol_tweedie_smooth.rds")

############## app_warp_MFPCA.R #############

### Calculate SRVF warping & MFPCA ###

### Log-transform smoothed velocities

groundVel_smooth <- funData(argvals = x,

X = as.matrix(log1p(seissol$groundVel_tw_smooth[ind, ])))

### Calculate SRVF warping

SRVFwarp <- fdasrvf::time_warping(f = t(groundVel_smooth@X), time =

groundVel_smooth@argvals[[1]],

lambda = 0,# controls elasticity

method = "mean", # Karcher mean

showplot = FALSE,

smooth_data = FALSE, #no box filter

MaxItr = 500) # maximum number of iterations

# extract warping results in form of funData objects

h <- funData(groundVel_smooth@argvals,

min(groundVel_smooth@argvals[[1]]) +

t(SRVFwarp$gam) * diff(range(groundVel_smooth@argvals)))

gamma <- invert.warps(h) # invert, for our notation

aligned <- funData(groundVel_smooth@argvals, t(SRVFwarp$fn))

### Calculate MFPCA

# Create multiFunData object

m <- multiFunData(clr.warp(gamma), aligned)

# univariate FPCA (use as given basis for faster calculation)
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pca <- list(MFPCA::PACE(m[[1]]),

nonSmoothFPCA(m[[2]]))

uniEx <- list(list(type = "given", functions = pca[[1]]$functions,

scores = pca[[1]]$scores),

list(type = "given", functions = pca[[2]]$functions,

scores = pca[[2]]$scores))

# subtract univariate means

mu <- multiFunData(pca[[1]]$mu, pca[[2]]$mu)

m <- m - mu

# Optimize weight of warping element

findWeight <- function(C, M){

if(options()$verbose)

cat("C: ", C, "\n")

PCAm <- MFPCA::MFPCA(m, M = M,

uniExpansions = uniEx,

weights = c(C,1), fit = TRUE)

# reconstruction

xHat <- warp.funData(mu[[2]] + PCAm$fit[[2]],

clrInv.warp(mu[[1]] + sqrt(C)*PCAm$fit[[1]]),

smooth = FALSE) # really smooth?

mean(norm(xHat - groundVel_smooth))

}

bestApprox <- optimize(findWeight, interval = c(0,10), M = 10)

# save all

save(seissol, groundVel_smooth, SRVFwarp, h,

aligned, gamma, mu, m, bestApprox,

file = "../data/SRVF_seis_tw_smooth_rawPCA.Rdata")

############## app_seismology.R. #############

### Application to Seismology Data (Northridge Earthquake Simulations) ###

### load required packages / utility functions

library(tidyfun) # for preprocessing

library(tidyverse) # for preprocessing
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library(furrr) # for preprocessing

library(mgcv) # for preprocessing

library(funData) # for funData representation

library(MFPCA) # for MFPCA calculation

library(ggplot2) # for plotting

source("utils.R") # for warping utilities

### Preprocessing

if(file.exists("../data/seissol_tweedie_smooth.rds"))

{

seissol <- readRDS("../data/seissol_tweedie_smooth.rds")

} else {

source("app_smooth.R")

}

# select only those functions that are close to the epicenter (< 40 km)

ind <- which(seissol$hypo.dist < 40000)

# raw data

x <- seq(0, 30, by=.5)

raw <- funData(argvals = x, X = as.matrix(log1p(seissol$Bodenbewegung[ind, ])))

### Calculate SRVF warping & MFPCA

if(file.exists("../data/SRVF_seis_tw_smooth_rawPCA.Rdata"))

{

load("../data/SRVF_seis_tw_smooth_rawPCA.Rdata")

} else {

source("app_warp_MFPCA.R")

}

### Final analysis and plotting

source("app_plot.R")

After that we have implemented the following code:

#### MODIFICO DATASET DIVIDENDO IN FUNZIONI ORIGINALI, ALLINEATE E WARPING ####

seissol2 <- seissol[which(seissol$hypo.dist < 40000),]

seissol2[[8]] <- aligned@X

seissol2[[9]] <- h@X
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seissol2 <- seissol2[,-6]

seissol2$groundVel_tw_smooth <- groundVel_smooth@X

colnames(seissol2) <- c("Simulation","Seismogram","lon","lat","hypo.dist",

"groundVel_smooth","Aligned","Warping")

# campiono 500 punti

p <- rep(1/1558,1558)

v <- sample(seissol2$hypo.dist, 500, replace = FALSE, prob = p)

k <- 1

ind2 <- rep(0,100)

for (j in 1:500){

ind2[k] <- which(seissol2$hypo.dist==v[j])[1]

ind2[k+1] <- which(seissol2$hypo.dist==v[j])[2]

k <- k+2

}

data_finale <- seissol2[ind2,]

# scrivo latitudine, longitudine e distanza dall’ipocentro in km anzichetri

data_finale[,3] <- data_finale[,3]/1000

data_finale[,4] <- data_finale[,4]/1000

data_finale[,5] <- data_finale[,5]/1000

data_finale <- data_finale[which(data_finale$Simulation==102),]

groundVel <- funData(argvals = x, X = as.matrix((data_finale$groundVel_smooth)))

aligned <- funData(argvals = x, X = as.matrix((data_finale$Aligned)))

warping <- funData(argvals = x, X = as.matrix((data_finale$Warping)))

m <- rep(0,500)

m_a <- rep(0,500)

m_w <- rep(0,500)

for ( i in 1:500){

m[i] <- mean(data_finale[,6][i,])

m_a[i] <- mean(data_finale[,7][i,])

m_w[i] <- mean(data_finale[,8][i,])

}

par(mfrow=c(1,3))

plot(data_finale[,5],m,col="blue", pch=19, xlab="Distance from Hypocentre",

ylab="Ground Velocity",lwd=2)

plot(data_finale[,5],m_a,col="green", pch=19, xlab="Distance from Hypocentre",
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ylab="Aligned functions",lwd=2)

plot(data_finale[,5],m_w,col="yellow", pch=19, xlab="Distance from Hypocentre",

ylab="Warping functions",lwd=2)

par(mfrow=c(1,2))

GV <- fdata(data_finale[,6], argvals = x)

dGV <- fdata.deriv(GV)

depth.mode(GV,draw=TRUE)

depth.modep(list(GV=GV,dGV=dGV),draw=T)

A <- fdata(data_finale[,7], argvals = x)

dA <- fdata.deriv(A)

depth.mode(A,draw=TRUE)

depth.modep(list(A=A,dA=dA),draw=T)

W <- fdata(data_finale[,8], argvals = x)

dW <- fdata.deriv(W)

depth.mode(W,draw=TRUE)

depth.modep(list(W=W,dW=dW),draw=T)

# cluster funzioni originali

D <- dist((data_finale$groundVel_smooth), ’euclidean’)

Clustering <- kmeans(D, 2) # two clusters

mds <- cmdscale(D, eig=TRUE)

prVar <- round(100*mds$eig/sum(mds$eig),2)

par(mfrow=c(1,2))

plot(mds$points, main="Low dimensional Distance plot",

xlab=paste(prVar[1],"% Variance"),

ylab=paste(prVar[2],"% Variance"))

points(mds$points[Clustering$cluster==1, ], col="maroon2", pch=19)

points(mds$points[Clustering$cluster==2, ], col="darkblue", pch=19)

colours = rep("maroon2", length(Clustering$cluster))

colours[Clustering$cluster==2] <- "darkblue"

matplot(t(data_finale$groundVel_smooth), type="l", lty=1, col=colours,

xlab="timepoints", ylab="Original data")

# cluster funzioni allineate

D_aligned <- dist((data_finale$Aligned), ’euclidean’)

Clustering_aligned <- kmeans(D_aligned, 2) # two clusters

mds_aligned <- cmdscale(D_aligned, eig=TRUE)

prVar_aligned <- round(100*mds_aligned$eig/sum(mds_aligned$eig),2)

par(mfrow=c(1,2))
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plot(mds_aligned$points, main="Low dimensional Distance plot",

xlab=paste(prVar[1],"% Variance"),

ylab=paste(prVar[2],"% Variance"))

points(mds_aligned$points[Clustering_aligned$cluster==1, ],col="maroon2", pch=19)

points(mds_aligned$points[Clustering_aligned$cluster==2, ],col="darkblue", pch=19)

colours = rep("maroon2", length(Clustering_aligned$cluster))

colours[Clustering_aligned$cluster==2] <- "darkblue"

matplot(t(data_finale$Aligned), type="l", lty=1, col=colours,

xlab="timepoints", ylab="Aligned function")

# cluster funzioni di deformazione

warping_transformed <- clr.warp(warping)

D_warping <- dist((warping_transformed@X), ’euclidean’)

Clustering_warping <- kmeans(D_warping, 2) # two clusters

mds_warping <- cmdscale(D_warping, eig=TRUE)

prVar_warping <- round(100*mds_warping$eig/sum(mds_warping$eig),2)

par(mfrow=c(1,2))

plot(mds_warping$points, main="Low dimensional Distance plot",

xlab=paste(prVar[1],"% Variance"),

ylab=paste(prVar[2],"% Variance"))

points(mds_warping$points[Clustering_warping$cluster==1, ],col="maroon2", pch=19)

points(mds_warping$points[Clustering_warping$cluster==2, ],col="darkblue", pch=19)

colours = rep("maroon2", length(Clustering_warping$cluster))

colours[Clustering_warping$cluster==2] <- "darkblue"

matplot(t(data_finale$Warping), type="l", lty=1, col=colours,

xlab="timepoints", ylab="Warping function")

#### ANALISI GEOSTATISTICHE SULLE FUNZIONI ORIGINALI

train <- sample(nrow(data_finale), floor(0.7*nrow(data_finale)), replace=FALSE)

ones <- matrix(nrow = 350, ncol = 61)

for (i in 1:350)

ones[i,] <- rep(1,61)

fun <- data.frame(Ground_Vel= t((log(data_finale[train,6]+ones))))

r <- rnorm(350, mean=0, sd=1)

g <- fstat(NULL, vName = "Ground Velocity",

Coordinates = data_finale[train,3:4]+r*0.01,

Functions = fun, scalar = FALSE)
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g <- estimateDrift("~.", g, Intercept = TRUE)

g <- fvariogram("~lon+lat", g, Nlags = 100, LagMax = 50, ArgStep = 0.6,

comments=FALSE)

g <- fitVariograms(g, vgm(2, "Sph", 40, 0.2),fitRanges = TRUE, forceNugget = TRUE)

g <- addCovariance(g, type = ’omni’)

g$model$omni$‘Ground Velocity‘$psill <- g$model$omni$‘Ground Velocity‘$psill/

sum(g$model$omni$‘Ground Velocity‘$psill)

g <- addCovariance(g)

g <- estimateDrift("~.", g, .type = "GLS", Intercept = TRUE)

g <- fvariogram("~lon+lat", g, Nlags=100, LagMax = 40, ArgStep = 0.6,

useResidual = TRUE, comments=FALSE)

g <- fitVariograms(g, vgm(2, "Sph", 35, 0.2),fitRanges = TRUE, forceNugget = TRUE)

plotVariogram(g)

########## PREDICTION ##########

forecasts <- predictFstat(g, .newCoordinates = data_finale[-train,3:4]+r,

.what = "Ground Velocity", .type = "UK")

ones_2 <- matrix(nrow = 150,ncol = 61)

for (i in 1:150)

ones_2[i,] <- rep(1,61)

nuove <- matrix(nrow = 61, ncol = 150)

for (i in 1:61) {

for (j in 1:150){

if(forecasts$Forecast[i,j] < 0)

nuove[i,j] <- 0

else

nuove[i,j] <- exp(forecasts$Forecast[i,j]) - 1

}

}

par(mfrow=c(1,1))

matplot(nuove, type = "l",lty=1, col="darkblue", xlab="Timepoints",

ylab="Ground Velocity")

matplot(t((data_finale[-train,6])), type="l",col="maroon2",add = TRUE)

legend("topleft", c("True", "Forecasted"), col=c("maroon2","darkblue"),

lty=1, lwd=1)
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#### ANALISI GEOSTATISTICHE SULLE FUNZIONI ALLINEATE

fun_aligned <- data.frame(Aligned= t(log((data_finale[train,7]+ones))))

r <- rnorm(350, mean=0, sd=1)

g_aligned <- fstat(NULL, vName = "Aligned",

Coordinates = data_finale[train,3:4]+r*0.01,

Functions = fun_aligned, scalar = FALSE)

# Drift Estimation

g_aligned <- estimateDrift("~lon+lat", g_aligned, Intercept = TRUE)

# Trace Variogram Estimation

g_aligned <- fvariogram("~lon+lat", g_aligned, Nlags = 100,

LagMax = 40, ArgStep = 1.3,

comments=FALSE)

plotVariogram(g_aligned)

# non so se i Mat, Sph o Exp

g_aligned <- fitVariograms(g_aligned, vgm(2.5, "Sph", 40, 0.3),

fitRanges = TRUE, forceNugget = TRUE)

g_aligned <- addCovariance(g_aligned, type = ’omni’)

g_aligned$model$omni$Aligned$psill <- g_aligned$model$omni$Aligned$psill/ sum(g_aligned$model$omni$Aligned$psill)

g_aligned <- addCovariance(g_aligned)

g_aligned <- estimateDrift("~.", g_aligned, .type = "GLS", Intercept = TRUE)

g_aligned <- fvariogram("~lon+lat", g_aligned, Nlags=100, LagMax = 40, ArgStep = 1.3,

useResidual = TRUE, comments=FALSE)

g_aligned <- fitVariograms(g_aligned, vgm(1.5, "Sph", 30, 0.4), fitRanges = TRUE,

forceNugget = TRUE)

plotVariogram(g_aligned)

########## PREDICTION ##########

forecasts_aligned <- predictFstat(g_aligned,

.newCoordinates = data_finale[-train,3:4]+r,

.what = "Aligned", .type = "UK")

par(mfrow=c(1,1))

matplot(exp(forecasts_aligned$Forecast)-1, type = "l",lty=1, col="darkblue",

xlab="Timepoints", ylab="Aligned")

matplot(t(((data_finale[-train,7]))), type="l",col="maroon2",add=TRUE)

legend(’topleft’, c("True", "Forecasted"), col=c("maroon2","darkblue"),

lty=1, lwd=1)

#### ANALISI GEOSTATISTICHE SULLE FUNZIONI DI DEFORMAZIONE
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# trasformo le funzioni con clr

warping_transformed <- clr.warp(warping)

fun_warping <- data.frame(Warping= t((warping_transformed@X[train,])))

r <- rnorm(350, mean=0, sd=1)

g_warping <- fstat(NULL, vName = "Warping",

Coordinates = data_finale[train,3:4]+r*0.01,

Functions = fun_warping, scalar = FALSE)

# Drift Estimation

g_warping <- estimateDrift("~lon+lat", g_warping, Intercept = TRUE)

# Trace Variogram Estimation

g_warping <- fvariogram("~lon+lat", g_warping, Nlags = 100, LagMax = 40, ArgStep = 0.1,

comments=FALSE)

plotVariogram(g_warping)

# non so se i Mat, Sph o Exp

g_warping <- fitVariograms(g_warping, vgm(1.5, "Exp",30, 0.5),fitRanges = TRUE,

forceNugget = TRUE)

plotVariogram(g_warping)

g_warping <- addCovariance(g_warping, type = ’omni’)

g_warping$model$omni$Warping$psill <- g_warping$model$omni$Warping$psill/

sum(g_warping$model$omni$Warping$psill)

g_warping <- addCovariance(g_warping)

g_warping <- estimateDrift("~.", g_warping, .type = "GLS", Intercept = TRUE)

g_warping <- fvariogram("~lon+lat", g_warping, Nlags = 100, LagMax = 40, ArgStep = 0.1,

useResidual = TRUE, comments=FALSE)

g_warping <- fitVariograms(g_warping, vgm(1.5, "Exp",30, 0.4), fitSills = TRUE,

fitRanges = TRUE, forceNugget = TRUE)

plotVariogram(g_warping)

########## PREDICTION ##########

forecasts_warping <- predictFstat(g_warping,

.newCoordinates = data_finale[-train,3:4]+r*0.01,

.what = "Warping", .type = "UK")

matplot(forecasts_warping$Forecast, type = "l",lty=1, col="darkblue",

xlab="Timepoints", ylab="Warping")

matplot(t(warping_transformed@X[-train,]), type="l",col="maroon2",add=TRUE)

legend(’bottomright’, c("True", "Forecasted"), col=c("maroon2","darkblue"),

lty=1, lwd=1)

l <- funData(argvals = x, X=t(forecasts_warping$Forecast))

l2 <- funData(argvals = x, X=(warping_transformed@X[-train,]))
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matplot(t(clrInv.warp(l)@X), type = "l",lty=1, col="darkblue",

xlab="Timepoints", ylab="Warping")

matplot(t(clrInv.warp(l2)@X), type="l",col="maroon2",add=TRUE)

legend(’bottomright’, c("True", "Forecasted"), col=c("maroon2","darkblue"),

lty=1, lwd=1)

forecast_warping_fundata <- funData(argvals = x,

X=t(forecasts_warping$Forecast))

forecasts_warping_trasformed <- clrInv.warp(forecast_warping_fundata)

par(mfrow=c(1,3))

matplot(exp(t(ricostruite@X))-1,type = "l",lty=1, col="darkblue",

xlab="Timepoints", ylab="Prediction by decoupled functions",ylim=c(0,2.5))

matplot(nuove, type = "l",lty=1, col="darkgreen",

xlab="Timepoints", ylab="Prediction by original functions",ylim=c(0,2.5))

matplot(t((data_finale[-train,6])), type="l",col="maroon2",

xlab="Timepoints", ylab="Ground Velocity",ylim=c(0,2.5))

or <- funData(argvals = x, X=t(forecasts$Forecast))

warp <- warp.funData(or, forecasts_warping_trasformed , smooth = FALSE)

se_ricostruito <- (t(warpate@X)-forecasts_aligned$Forecast)^2

par(mfrow=c(1,2))

matplot(se,type = "l",lty=1, col="maroon2",

xlab="Timepoints", ylab="Errore originale",ylim=c(0,0.8))

matplot(se_ricostruito_2, type = "l",lty=1, col="darkblue",

xlab="Timepoints", ylab="Errore ricostruito",ylim=c(0,0.8))

err_originale <- funData(argvals = x, X=t(se))

err_ricostruito <- funData(argvals = x, X=t(se_ricostruito_2))

e_or <- integrate(err_originale)

e_ric <- integrate(err_ricostruito)

par(mfrow=c(1,1))

boxplot(e_or, e_ric, names=c("Errori originali","Errori ricostruiti"), col=c("maroon2","darkblue"))

d <- data.frame(e_or,e_ric)

b <- SpatialPointsDataFrame(data_finale[-train,c(3,4)],d)

par(mfrow=c(1,2))
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bubble(b, "e_or", col=c("#00ff0088", "#00ff0088"), main = "Errore originale")

bubble(b, "e_ric", col=c("#00ff0088", "#00ff0088"), main = "Errore ricostruito")

Then we have applied this procedure 100 times, changing the test and training set.
The functions for the clr transformation that we have used derives from another
file from Happ et al.(2018):

######## utils.R ########

### SRVF transformation approach ###

#’ SRVF transformation of warping functions

#’

#’ Calculates the SRVF transformation of a set of warping functions

#’ \eqn{\gamma}{gamma}: \deqn{\sqrt{\gamma’},}{sqrt(gamma’),} where

#’ \eqn{\gamma’}{gamma’} denotes the first derivative of

#’ \eqn{\gamma}{gamma}.

#’

#’ @param gamma A \code{funData} object containing the warping functions.

#’

#’ @return The SRVF transformation of all functions in \code{gamma}, again

#’ as a \code{funData} object.

srvf <- function(gamma)

{

return(sqrt(diff.funData(gamma)))

}

#’ Tangent space transformation of SRVFs

#’

#’ This function calculates shooting vectors for SRVFs with respect to a

#’ given mean function.

#’

#’ @param srvf A \code{funData} object containing the SRVFs.

#’ @param mu A \code{funData} object containing the mean function for the

#’ tangent space. Defaults to the constant function, which is associated

#’ with identity warping.

#’

#’ @return A \code{funData} object containing the shooting vectors.

tangent <- function(srvf, mu = funData(argvals(srvf),

matrix(rep(1, nObsPoints(srvf)), nrow = 1)))

{

if(nObs(mu) != 1)
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stop("The mean function mu must contain a single function.")

eta <- norm(mu, squared = TRUE)

tmp <- scalarProduct(srvf, mu) / eta

# tmp is guaranteed to lie between 0 and 1, all deviations have numerical reasons

tmp[tmp < 0] <- 0

tmp[tmp >= 1] <- 1 - sqrt(.Machine$double.eps)

# angles

theta <- acos(tmp)

v <- srvf * 0 # initialize return object

for(i in 1:nObs(srvf))

v@X[i,] <- theta[i]/(sqrt(eta) * sin(theta[i]))* srvf@X[i,] - cos(theta[i]) * mu@X[1,]

return(v)

}

#’ Tangent space transformation for warping functions

#’

#’ Combine SRVF transformation with projection on a tangent space for

#’ warping functions.

#’

#’ @param gamma A \code{funData} object containing the warping functions.

#’ @param mu A \code{funData} object containing the mean function for the

#’ tangent space in the warping space. Defaults to identity warping.

#’

#’ @return A \code{funData} object containing the shooting vectors.

tangent.warp <- function(gamma, mu = funData(argvals(gamma),

matrix(argvals(gamma)[[1]], nrow = 1)))

{

return(tangent(srvf(gamma) , srvf(mu)))

}

#’ Map tangent space vectors to SRVFs

#’

#’ This function maps shooting vectors in a tangent space to their SRVFs.

#’
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#’ @param v A \code{funData} object containing the shooting vectors.

#’ @param mu A \code{funData} object containing the mean function for the

#’ tangent space. Defaults to the constant function, which is associated

#’ with identity warping.

#’

#’ @return A \code{funData} object containing the srvfs.

tangentInv <- function(v, mu = funData(argvals(v), matrix(rep(1, nObsPoints(v)), nrow = 1)))

{

if(nObs(mu) != 1)

stop("The mean function mu must contain a single function.")

eta <- norm(mu)

srvf <- v*0 # initialize result object

nv <- norm(v, squared = FALSE)

for(i in 1:nObs(v))

srvf@X[i,] <- sqrt(eta) * sin(nv[i])/nv[i]*v@X[i,] + cos(nv[i]) * mu@X[1,]

return(srvf)

}

#’ Inverse SRVF transformation to warping functions

#’

#’ Calculates the inverse SRVF transformation of a set of SRVFs.

#’

#’ @param srvf A \code{funData} object containing the SRVFs.

#’

#’ @return The inverse SRVF transformation of all functions in \code{srvf}, again

#’ as a \code{funData} object.

srvfInv <- function(srvf){

return(cumInt.funData(srvf^2))

}

#’ Inverse tangent space transformation for warping functions

#’

#’ Combine projection from a tangent space to SRVF and inverse SRVF

#’ transformation to warping functions.

#’

#’ @param v A \code{funData} object containing the functions in tangent space.
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#’ @param mu A \code{funData} object containing the mean function for the

#’ tangent space in the warping space. Defaults to identity warping.

#’

#’ @return A \code{funData} object containing the warping functions.

tangentInv.warp <- function(v, mu = funData(argvals(v), matrix(argvals(v)[[1]], nrow = 1)))

{

return(srvfInv(tangentInv(v , srvf(mu))))

}

### clr transformation approach ###

#’ Centred log-ratio transform for warping functions

#’

#’ @section Warning: The function does not check if the argument

# is really a warping function!

#’

#’ @param f A funData object that represents a warping function.

#’

#’ @result A funData object, which is the cenred log-ratio transform (CLR)

#applied to the derivative of f.

clr.warp <- function(f)

{

clr(diff.funData(f))

}

#’ Centred log-ratio transform

#’

#’ Centred-log ratio transform for functional data objects.

#The domain needs not necessarily be [0,1].

#’

#’ @section Warning: it is not checked if g is positive and integrable!

#’

#’ @param g A funData object

#’

#’ @return The CLR of g

clr <- function(g)

{

if(any(g@X < 0, na.rm = TRUE))
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{

warning("Negative values found, set to NA")

g@X[g@X < 0] <- NA

intG <- integrate(as.irregFunData(log(g))) # do integration on irregFunData object

}

else

{

intG <- integrate(log(g))

}

return(log(g) - 1/diff(range(g@argvals[[1]])) * intG)

}

#’ Inverse centred log-ratio transform

#’

#’ @param g A funData object

#’

#’ @return A funData object, that corresponds to the inverse CLR of g.

clrInv <- function(g)

{

# map from L^2 to B^2 (densities)

return(exp(g)/integrate(exp(g)))

}

#’ Inverse CLR for warping functions

#’

#’ The function calculates an inverse CLR for a funData object g (which gives

#’ a density) and integrates it to a warping function. In particular, if the

#’ density maps from [a,b], the resulting warping function h has h(a) = a and

#’ h(b) = b.

#’

#’ @param g A funData object

#’

#’ @return A funData object corresponding to the associated warping function.

clrInv.warp <- function(g)

{

h <- clrInv(g)

# integrate densities to obtain warping functions

# warping functions h fulfill h(a) = a, h(b) = b

return(min(h@argvals[[1]]) + diff(range(h@argvals[[1]])) * cumInt.funData(h))
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}

### Petersen and Mueller (2016) transformations ###

#’ Log-hazard-transformation

#’

#’ Log-hazard-transformation for density functions as defined in Petersen

#’ & Mueller (2016), including differentiation of warping functions.

#’

#’ @param g A \code{funData} object containing the warping functions.

#’ @param delta Cutoff for calculating the hazard function.

#’ Defaults to \code{0.05}.

#’

#’ @return A \code{funData} object containing the transformed functions.

LH.warp <- function(g, delta = 0.05)

{

# extract argvals

argvals <- g@argvals[[1]]

# renormalize to cdf, mapping to [0,1]:

gN <- (g - min(argvals)) / diff(range(argvals))

# calculate density

f <- diff.funData(gN)

gN@X[, argvals > max(argvals) - delta * diff(range(argvals))] <- NA

# trafo

v <- log(f / (1 - gN))

return(v)

}

#’ Inverse Log-hazard-transformation

#’

#’ Inverse log-hazard-transformation for density functions as defined in Petersen

#’ & Mueller (2016), including differentiation of warping functions.

#’

#’ @param v A \code{funData} object containing the functions in L2.
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#’ @param delta Cutoff for calculating the hazard function.

#’ Defaults to \code{0.05}.

#’

#’ @return A \code{funData} object containing the warping functions.

LHInv.warp <- function(v, delta = 0.05)

{

argvals <- v@argvals[[1]]

thresh <- max(argvals) - delta * diff(range(argvals))

v1 <- extractObs(v, argvals = argvals[argvals < thresh])

# density level

f1 <- exp(v1 - cumInt.funData(exp(v1)))

f2 <- 1/delta * exp(-1*integrate(exp(v1)))

f <- funData(argvals = argvals, cbind(f1@X, t(sapply(f2, rep,

each = length(which(argvals >= thresh))))))

# warping level

g <- min(argvals) + cumInt.funData(f) * diff(range(argvals))

return(g)

}

#’ Log-quantile-transformation

#’

#’ Log-quantile-transformation for density functions as defined in

#’ Petersen & Mueller (2016), including differentiation of warping

#’ functions.

#’

#’ @param g A \code{funData} object containing the warping functions.

#’

#’ @return A \code{funData} object containing the transformed functions.

LQ.warp <- function(g)

{

# quantile function

Q = invert.funData(g)

# renormalize to cdf, mapping to [0,1]:

gN <- (g - min(g@argvals[[1]])) / diff(range(g@argvals))
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# calculate density

f <- diff.funData(gN)

# trafo

v <- -1 * log(warp.funData(f, Q, smooth = TRUE))

return(v)

}

#’ Inverse Log-quantile-transformation

#’

#’ Inverse log-quantile-transformation for density functions as defined in

#’ Petersen & Mueller (2016), including retransformation to warping

#’ functions.

#’

#’ @param v A \code{funData} object containing the functions in L2.

#’

#’ @return A \code{funData} object containing the warping functions.

LQInv.warp <- function(v)

{

# Quantile function

Q <- cumInt.funData(exp(v)) / integrate(exp(v))

# Warpign function is the inverse of Q, appropriately scaled

g <- min(v@argvals[[1]]) + invert.funData(Q) * diff(range(v@argvals))

return(g)

}

### Others ###

#’ Discrete differentiation for funData objects

#’

#’ For the inner points (2:(nObsPoints - 1)), central differentiation is

#’ used, which borrows information from the preceding (i-1) as well as the

#’ following (i+1) value for calculating the gradient. For the boundary

#’ values (1, nObsPoints(f)) only one neighbouring value is used: Forward
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#’ differentiation for the left bound, backward differentiation for the right

#’ bound.

#’

#’ @param f A funData object. Must have a one-dimensional domain,

#otherwise an error is thrown.

#’

#’ @return Another funData object, which corresponds to the derivative of f.

diff.funData <- function(f)

{

if(dimSupp(f) > 1)

stop("Implementation is only for one-dimensional domains.")

nP <- nObsPoints(f)

x <- argvals(f)[[1]]

g <- array(NA, dim = dim(f@X)) # initialize g matrix for differentiation

# left bound: forward differentiation

g[,1] <- (f@X[,2] - f@X[,1]) / truncX(x[2] - x[1])

# right bound: backward differentiation

g[,nP] <- (f@X[,nP] - f@X[,nP - 1]) / truncX(x[nP] - x[nP - 1])

# all other points: central differentiation

g[,2:(nP-1)] <- (f@X[,3:nP] - f@X[,1:(nP-2)]) / truncX(x[3:nP] - x[1:(nP-2)])

return(funData(x, g))

}

#’ Cumulative integration of funData objects

#’

#’ Calculate the integral over a funData object from zero to all points in

#’ the observation grid. For numerical stability, the calculation is made

#’ backward for lower values and forward for higher values. This avoids

#’ integrating over only a few points.

#’

#’ @param h A funData object. Must have a one-dimensional domain, otherwise

#’ an error is thrown.

#’

#’ @return A funData object, containing the integrated values for each
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#’ observation point.

cumInt.funData <- function(h)

{

if(dimSupp(h) > 1)

stop("Implementation is only for one-dimensional domains.")

x <- argvals(h)[[1]]

intH <- integrate(h)

# split integration into two parts to guarantee stability at the boundaries

n <- max(which(x < median(x)))

cumInt <- lapply(1:nObsPoints(h), function(ind){

if(ind <= n)

intH - integrate(extractObs(h, argvals = x[ind:nObsPoints(h)]))

else

integrate(extractObs(h, argvals = x[1:ind]))

})

# cbind & list can handle all numbers of observations (incl. 1)

return(funData(h@argvals, do.call("cbind", cumInt)))

}

#’ Inverse of funData

#’

#’ This function returns the inverse of a funData object

#’ representing a set of functions on a common grid. The result is again a funData

#’ object. The method is based on the smooth.spline function in R (stats)

#’

#’ @param f The functions to be inverted, passed as a funData object

#’ @param ... Options to be passed to smooth.spline

invert.funData <- function(f,...)

{

argvals <- f@argvals[[1]]

return(funData(argvals = argvals,

X = t(apply(f@X, 1, function(z){mgcv::predict.gam(mgcv::gam(argvals ~ s(z)),

newdata = data.frame(z = argvals))}))))

}
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#’ Inverse of warping function

#’

#’ This function returns the inverse of a funData object representing a

#’ set of warping functions on a common grid. The result is again a

#’ funData object and respects the monotonicity of the input functions.

#’ The method is based on the splinefun function in R (stats)

#’

#’ @param f The functions to be inverted, passed as a funData object

#’ @param ... Options to be passed to splinefun

invert.warps <- function(f,...)

{

argvals <- f@argvals[[1]]

return(funData(argvals = argvals,

X = t(apply(f@X, 1, function(z){

splinefun(x = z, y = argvals, method = "monoH.FC")(argvals)

}))))

}

#’ Discrete warping

#’

#’ The calculate the warping of a funData object represented by a funData

#object containing warping functions.

#’

#’ @section Warning: The function does not check if all elements of w

#are correct warping functions.

#’

#’ @param f The funData object to be warped

#’ @param w The funData object containing the warping functions.

#’ @param smooth Logical, should the warped functions be smoothed (via gam?)

#’

#’ @return A funData object containing the warped functions.

warp.funData <- function(f, w, smooth = FALSE)

{

# check if functions have the same domain

if(! all.equal(range(argvals(f)), range(argvals(w))))

stop("f and w need to have the same domain!")



REFERENCES 75

res <- matrix(NA, nrow = nObs(f), ncol = length(w@argvals[[1]]))

# for all functions in f

for(i in 1:nObs(f))

{

allDiff <- outer(w@X[i,], f@argvals[[1]], function(x,y){abs(x-y)})

p <- f@X[i,apply(allDiff, 1, which.min)] # choose nearest x- value

if(smooth)

{

xi <- argvals(w)[[1]]

GAM <- mgcv::gam(p ~ s(xi, bs = "ps"))

p <- predict(GAM)

}

res[i,] <- p

}

return(funData(w@argvals,res))

}
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