
Executive Summary of the Thesis

Kabis: a platform for event-based communication with configurable
trade-off between trust guarantees and performance

Laurea Magistrale in Computer Science Engineering - Ingegneria Informatica

Author: Matteo Secco

Advisor: Prof. Alessandro Margara

Academic year: 2022-2023

1. Introduction
Event-based interaction has been advocated as
the right communication pattern in modern mi-
croservices architectures [7]. In event-based in-
teraction, processes execution depends on events
that happened into the system.
To propagate state changes across services,
event sourcing [3] has gained popularity as a
data storage model that logs the whole history
of events that led to the current system state.

These logs become the persistent memory of the
evolution of the system, and the state of each
system component at a given point in time can
be always derived from the logs, by re-executing
the events it stores. As a result, event sourcing
has become a common pattern in service-based
cloud applications, supported by cloud providers
such as Microsoft Azure [5], Amazon AWS [1],
and Google Cloud [4]. Event-sourcing architec-
tures have the benefit of allowing client processes
to only read from the log when they are compu-

1



Executive summary Matteo Secco

tationally able of handling a new event.
Technologies addressing such failures exist, but
their use is limited due to their high perfor-
mance cost. Another desired property is non-
repudiation, which is the impossibility for the
process that notified an event to dispute its au-
thorship and any responsibility derived from the
notification itself.
In this scenario Kabis was developed, an event-
sourcing system which can work in presence of
malicious processes. Kabis can be configured
to provide two different levels of guarantees at
runtime, and allows parties to validate the cor-
rectness of the execution asynchronously, thus
achieving the non-repudiation property..

2. System model
Kabis is designed to mimic the architecture of
Apache Kafka, while optionally exploiting BFT-
SMaRt to provide stronger functional guaran-
tees in exchange of a performance overhead, of-
fering to clients the possibility to modify the de-
sired behavior at run-time.
The level of guarantees obtained for an event
consumption depends on the combined configu-
ration of both the producer and the consumer of
the event.

Unvalidable Validable

Don’t validate Basic Basic

Validate Not delivered Extended

Table 1: Class of guarantees by producer’s and
consumer’s behavior

Basic guarantees are the very same of Kafka:
• FIFO order on partition level.
• Total order on a partition level.
• Crash fault tolerance.

Extended guarantees include all of the basic
guarantees, plus the following:
• Byzantine fault tolerance.
• Non-repudiation.

3. Kabis event service
Kabis inherits Kafka’s architecture of parti-
tioned, persisted, replicated topics. Client pro-
cesses are divided into two kinds: KabisConsumer

that consume events from the topics, and
KabisProducer to publish events on them.
KabisConsumers and KabisProducers are strongly
decoupled. Kabis is a multi-consumer and multi-
producer system.

3.1. KabisProducer API
KabisProducer API has been intentionally de-
signed as a subset of the Kafka Producer API.
Kafka Producer API can be clustered as follows:
1. Transaction management, to make reads

and writes transactional.
2. Metadata gathering, to retrieve information

about the system.
3. Sending methods, to publish events.
4. Disposing methods, for termination.

KabisProducer API handles all the trans-
action management internally, while the other
clusters could in principle be implemented. The
correspondence between Kafka and Kabis imple-
mented methods is shown in table 2.

Kafka Kabis

1

initTransactions()
beginTransactions()

sendOffsetsToTransaction(∗)1
commitTransaction()
abortTransaction()

2 partitionsFor(String topic)
metrics()

3
send(ProducerRecord) push(KabisRecord)

send(ProducerRecord,Callback)
flush() flush()

4 close() close()
close(Duration) close(Duration)

1 For space and readability, not implemented methods’ ar-
guments have been replaced by the ∗ symbol. This also
allowed to collapse overloaded methods.

Table 2: Producer API of Kafka and Kabis

3.2. KabisConsumer API
As for the KabisProducer API, the KabisConsumer

API consists of a subset of Kafka Consumer API:
1. Metadata gathering.
2. Topic navigation, to move the reading po-

sition on the topic.
3. Execution suspension, for pausing the

Consumer.
4. Offset commit, crucial for error recovery.
5. Rebalance, for exceptional usage.
6. Subscription management, to subscribe to

topics.
7. Poll, to fetch new data.

2



Executive summary Matteo Secco

8. Disposing methods.

KabisConsumer API only expose methods
from clusters 6, 7 and 8. Clusters 1, 3, 5 could
easily be added to the system, while the other
clusters have been left out by design.

Kafka Kabis

1

assignment()
subscription()
committed(∗)1
metrics()

partitionsFor(∗)1
listTopics(∗)1
paused()

offsetsForTimes(∗)1
beginningOffsets(∗)1

endOffsets(∗)1
groupMetadata()

2

seek(∗)1
seekToBeginning(∗)1

seekToEnd(∗)1
position(∗)1

3
pause(∗)1
resume(∗)1
wakeup()

4 commitSync(∗)1
commitAsync(∗)1

5 enforceRebalance()

6

subscribe(Collection<String>) subscribe(Collection<String>)
subscribe(∗)1

assign(Collection)
unsubscribe() unsubscribe()

7 poll(Duration) pull(Duration)

8 close() close()
close(Duration) close(Duration)

1 For space and readability, not implemented methods’ arguments
have been replaced by the ∗ symbol. This also allowed to collapse
overloaded methods.

Table 3: Consumer API of Kafka and Kabis

4. System design and imple-
mentation

Kabis is designed as two independent communi-
cation channels. The storage channel is used for
data communication, while the validation chan-
nel can be used for message ordering. It con-
tains Secure identifiers (SID), obtained through
digital signature. This allows to keep the band-
width on the validation channel constrained to
a constant value.

Storage
channel

Validation
channel

KabisProducer KabisConsumer

Mandatory push
Optional push
Mandatory pull
Optional pull

Figure 1: Kabis components.

4.1. Storage implementation and de-
ployment

To be able to resist to FC crash failures or FB

byzantine failures, the storage channel is devel-
oped as FB+1 subsystems called Kafka replicas,
each consisting of FC + 1 Zookeeper instances
and FC +1 Kafka brokers. Events are published
wrapped in a MessageWrapper<V> object, which en-
riches the original event representation with an
identifier of the event publisher.
To ensure maximum fairness, each Kafka replica
should be evenly distributed among the parties.

B1

Z1

B2

Z2

Party 1

B1

Z1

B2

Z2

Party 2

Z2

B2

Z1

B1

Party 4

Z2

B2

Z1

B1

Party 3

Zr Zookeeper node in kafka replica r

Br Broker node in kafka replica r

Internal kafka connection

Figure 2: Storage channel distributed among 4
parties, tolerant to at most 1 byzantine failure
or 3 crash failures.

4.2. Validation implementation and
deployment

The validation channel is a custom implemen-
tation of the BFT-SMaRt system deployed with
3FB+1 service replicas to tolerate FB byzantine
failures.
Data is sent through this channel as a
SecureIdentifier (SID) object, encoding the
event topic and partition, an identifier of the
event producer, and the digital signature of the

3



Executive summary Matteo Secco

key,value,topic and partition of the correspond-
ing MessageWrapper sent through the storage chan-
nel.
Each party using the system will own exactly
one service replica and a service proxy for each
client process the party owns.

Client

Client Service replica

Party 1

Client Client

Service replica Client

Party 2

Service replica

Client

Party 3

Service replica Client

Client

Party 4

Bft internal connection
Bft client connection

Client Producer or consumer

Figure 3: Validation component distributed
among 4 parties, tolerant to at most 1 byzan-
tine failure or 3 crash failures.

5. Network protocols
The two main operations of Kabis APIs are the
void push(KabisRecord) used to publish events,
and Iterable<KabisRecord> pull(Duration) to re-
ceive event notifications.

5.1. Push protocol
This section will focus on the case of pushing a
validable event. Unvalidable events are also in-
troduced, but not discussed in detail since the al-
gorithm it’s almost identical to a standard Kafka
usage.
When receiving the record, the KabisProducer

first pushes computes the partition and the sig-
nature and creates the MessageWrapper and the SID

, that are sent respectively to the storage channel
and to the validation channel in parallel.

Unvalidable events are published by sending
the MessageWrapper only through the first Kafka
replica.

5.2. Pull protocol
KabisConsumers consume events with the Iterable

<KabisRecord> pull(Duration) primitive. This in-
volves two sub-processes:

KafkaPollingThread is a cache of Kafka
events, indexed for Kafka replica and by pairs
of TopicPartitions and KabisProducers, which au-
tomatically and periodically pulls each Kafka
replica. For each replica the cache tracks the
(presumably) failed KabisProducers.
By defining isFull(replica) as a predicate which
is true for Kafka replica r if, and only if, for
each pair of KabisProducer p and TopicPartition

t, either p never sent any event on t or the
queue identified by the tuple < r, t, p > contains
at least one event. Then the pseudo-code for an
iteration of the KafkaPollingThread is:

Algorithm 1 KafkaPollingThread main loop
1: K ← set of kafka replicas
2: for all k ∈ K do
3: if !isFull(k) then
4: C ← getKafkaConsumer(K)
5: R← pull(C)
6: for all r ∈ R do
7: F ← getFailedProducers(k)
8: p← getKabisProducer(r)
9: if p /∈ F then

10: tp← getTopicPartition(r)
11: q ← getQueueFor(k, tp, p)
12: v ← getV alue(r)
13: push(q, r)
14: end if
15: end for
16: end if
17: end for

Validator The Validator’s responsibility is to
map a list of SIDs from the validation channel to
events on the storage channel identified by each
SID. This is achieved by the List<KabisRecord

> validate(List<SID>) procedure, which pseudo-
code is the following:

4



Executive summary Matteo Secco

Algorithm 2 validate procedure
1: S ← list of signatures passed as argument
2: K ← set of kafka replicas
3: R← ∅
4: for all s ∈ S do
5: p← getKabisProducer(s)
6: tp← getTopicPartition(s)
7: for all k ∈ K do
8: F ← set of failed producers for kafka

replica k
9: if p /∈ F then

10: result← null
11: queue← getQueueFor(k, tp, p)
12: if result 6= null then
13: wrapper ← poll(queue)
14: if signatureV erify(sv) then
15: result← w
16: else
17: F ← F ∪ {p}
18: end if
19: else
20: pop(queue)
21: end if
22: r ← buildKabisRecord(wrapper)
23: R← R ∪ {r}
24: end if
25: end for
26: end for

Given an SID, if its sender was not previously
marked as failed, then the first event in that
cache is expected to match the SID. Two cases
are possible:
• The event matches the SID The correct

event is found. Pop the not yet inspected
queues and return the found event.
• The SID does not match Either the

sender has failed, or the Kafka replica has.
Try with the next cache.

To execute a pull, the KabisConsumer first pulls
from the validation channel, getting the new
SIDs since the last pull.
As soon as a non-empty SID list is received, this
is passed to the Validator, which will map each
SID to an appropriate KabisRecord.
The result of this mapping is finally returned.

6. Performance evaluation
Kabis performance has been empirically evalu-
ated on a setup consisting of 1 KabisConsumer and
3 KabisProducers. The event service was deployed

to be resistant to FB = 1 byzantine failures or
FC = 3 crash failures.
Since the experiments were carried out on a sin-
gle machine, the outcome may be affected by the
limited resources and by the absence of network
latency.
For each presented combination of event pay-
load and number of validated topics, the setup
has been tested by measuring the execution time
required to transmit 50000 events from each pro-
ducer to the single consumer, averaging the re-
sults of multiple experiments.
Analysis of each of the systems under contin-
uous load shown that the amount of time and
requests needed to reach a stable state was min-
imal, allowing to take direct measurements of
the throughput.
The graphs in figures 4 and 5 summarize the evo-
lution of Kabis consumer and producer through-
put with increasing message payload, compared
to those of Kafka ans BFT-SMaRt.

0 512 1,024 1,536 2,048
102

103

104

payload [B]

th
ro
ug

hp
ut

[K
op
s/
s]

Kafka

Kabis-0

Kabis-2

Kabis-5

Kabis-7

Kabis-10

BFT-SMaRt

Figure 4: Kabis consumer throughput per pay-
load

The consumer’s performance is very close to
Kafka’s when no validation has been performed.
Moreover, when all the topics are validated
Kabis’ performance is independent from the
event payload, allowing it to eventually outper-
forming BFT-SMaRt.

5



Executive summary Matteo Secco

0 512 1,024 1,536 2,048

102

103

104

payload [B]
th
ro
ug

hp
ut

[K
op
s/
s]

Kafka

Kabis-0

Kabis-2

Kabis-5

Kabis-7

Kabis-10

BFT-SMaRt

Figure 5: Kabis producer throughput per pay-
load

The producer throughput exhibits the same be-
havior as the consumer’s. The most notable dif-
ference is that whenever some topics are vali-
dated, the throughput is strongly independent
from the payload, suggesting that the producer’s
throughput is more strictly bounded by that of
the underlying validation channel than the con-
sumer’s.

7. Conclusions
Existing technologies for event-based architec-
tures can’t work in byzantine environments.
Even if the user could be able to achieve non-
repudiation at the application level, proper
byzantine fault tolerance requires the underly-
ing communication protocol to be adjusted.
Kabis has been developed to correctly operate
in a byzantine, permissioned environment: offer-
ing an API similar to that of Apache Kafka, it
can be configured to enrich specific topics with
byzantine fault tolerance and non-repudiation,
allowing each user to tune the trade-off between
performance and received guarantees.
Kabis correctness in presence of byzantine fail-
ures has been proven, and experimental evalua-
tion shown the improvement of Kabis over exist-
ing byzantine fault tolerant systems, the smaller
correlation between its throughput and the pay-
load of events transmitted through it, and its
ability to reach performance close to Kafka when
it is configured to provide the same level of guar-
antees.

8. Acknowledgments
First I’d like to thank Professor Alessandro Mar-
gara, not only for the guidance he gave me as my
advisor, but for being the person who mostly
inspired me into joining the Computer Science
faculty. Also, I would like to thank Professor
Guido Salvaneschi because of his help as my co-
advisor. Leon Chemnitz have my gratitude as
well for his support in the thesis conceptualiza-
tion and development.
I would also like to thank Maren Eikerling,
Maria Luisa Lorusso, Francesco Vona and Pro-
fessor Franca Garzotto for our collaboration and
the publication of my first research paper.
I’m grateful to all my friends, the ones of a life-
time and the once I made in the last years, for
the beautiful time together and the support they
gave me along my journey.
Finally my gratitude goes to my family: my
parents Sandro and Cinzia and my brother
Luca, which love and support allowed me to get
through all this work with peace and happiness.
Thank you all for your support and inspiration.

References
[1] Amazon AWS. Event Sourcing, 2020.

[2] K Mani Chandy. Event-driven applications:
Costs, benefits and design approaches. Gart-
ner Application Integration and Web Ser-
vices Summit, 2006, 2006.

[3] Martin Fowler. Event sourcing, 2005.

[4] Google. Deploying event-sourced systems
with cloud spanner, 2020.

[5] Microsoft. Command and query responsibil-
ity segregation (cqrs) pattern, 2020.

[6] Joao Sousa and Alysson Bessani. From
byzantine consensus to bft state machine
replication: A latency-optimal transforma-
tion. In 2012 Ninth European Dependable
Computing Conference, pages 37–48. IEEE,
2012.

[7] Ben Stopford. Designing Event-Driven Sys-
tems: Concepts and Patterns for Streaming
Services with Apache Kafka. O’Reilly Media,
1st edition, 2018.

6


	Introduction
	System model
	Kabis event service
	KabisProducer API
	KabisConsumer API

	System design and implementation
	Storage implementation and deployment
	Validation implementation and deployment

	Network protocols
	Push protocol
	Pull protocol

	Performance evaluation
	Conclusions
	Acknowledgments

