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Abstract

The thriving field of drug repurposing presents a unique opportunity to address the chal-
lenges of prolonged timelines and high costs associated with traditional drug discovery.
This study introduces a novel approach that employs Long Short-Term Memory (LSTM)
autoencoders for drug repurposing, focusing on drug-target interaction (DTI) predic-
tions. Our methodology leverages the sequential learning capabilities of LSTM networks
to analyze and interpret complex patterns in biochemical data, specifically targeting the
interactions between drugs and their potential protein targets. The autoencoder archi-
tecture is adept at capturing essential features in high-dimensional drug and target data,
facilitating more accurate predictions of DTI. We applied this framework to a comprehen-
sive dataset of known drug-target interactions, using it to predict new interactions that
suggest repurposing opportunities for existing drugs. The results demonstrate promising
accuracy and specificity in identifying potential new uses for established drugs, highlight-
ing the effectiveness of Deep Learning methods such as LSTM autoencoders in uncovering
complex relationships within pharmacological data. This approach not only provides a
powerful tool for drug repurposing but also offers insights into the mechanisms of drug
action, potentially accelerating the identification of therapeutic applications for existing
drugs and contributing to personalized medicine. This study paves the way for advanced
computational strategies in drug discovery, underscoring the potential of machine learning
models in revolutionizing pharmaceutical research.

Keywords: drug repurposing, drug-target interaction, deep learning, lstm, autoencoder,
protein, ligand





Abstract in lingua italiana

Il fiorente campo del riposizionamento dei farmaci presenta un’opportunità unica per af-
frontare le sfide dei tempi prolungati e dei costi elevati associati alla scoperta di farmaci
tradizionali. Questo studio introduce un approccio innovativo che impiega gli autoencoder
LSTM (Long Short-Term Memory) per il riposizionamento dei farmaci, concentrandosi
sulla previsione dell’interazione farmaco-target (DTI). La nostra metodologia sfrutta le
capacità delle reti LSTM di apprendere sequenze per analizzare e interpretare modelli
complessi nei dati biochimici, con particolare attenzione alle interazioni tra i farmaci e
i loro potenziali bersagli proteici. L’architettura dell’autoencoder è in grado di ridurre
la dimensionalità e catturare le caratteristiche essenziali nei dati ad alta dimensional-
ità di farmaci e target, facilitando previsioni più accurate di DTI. Abbiamo applicato
questo framework a un set di dati completo di interazioni farmaco-target note, utilizzan-
dolo per prevedere nuove interazioni che suggeriscono opportunità di riposizionamento
per i farmaci esistenti. I risultati dimostrano un’accuratezza e una specificità promettenti
nell’identificazione di potenziali nuovi usi per i farmaci esistenti, evidenziando l’efficacia
delle tecniche di apprendimento profondo, come gli autoencoder LSTM, nello scoprire re-
lazioni complesse all’interno dei dati farmacologici. Questo approccio non solo fornisce un
potente strumento per il riposizionamento dei farmaci, ma offre anche approfondimenti
sui meccanismi di azione dei farmaci, accelerando potenzialmente l’identificazione di ap-
plicazioni terapeutiche per i farmaci esistenti e contribuendo alla medicina personalizzata.
Questo studio apre la strada a strategie computazionali avanzate nella scoperta di far-
maci, sottolineando il potenziale dei modelli di apprendimento profondo nel rivoluzionare
la ricerca farmaceutica.

Parole chiave: riposizionamento dei farmaci, interazione farmaco-target, deep learning,
lstm, autoencoder, protein, ligand
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1| Introduction

Drug repurposing is an approach to discovering new uses for drugs that have already been
approved for other indications. Instead of developing entirely new drugs, scientists and
researchers are exploring the potential of drugs that have already been approved for one
use to treat other diseases or conditions. This approach is gaining momentum due to
several advantages, such as the ability to expedite the drug development process, reduced
risk of toxicity, and lower costs. Figure 1.1 shows the comparison between the traditional
way of drug discovery versus drug repurposing in a conventional way. It can be seen that
even without using the edge given by AI to drug repurposing, it is a method that is much
faster than classical methods.

Figure 1.1: Traditional way of drug discovery versus drug repurposing using conventional
methods [13]

One critical aspect of drug repurposing is understanding drug-target interactions, which
refer to the relationship between a drug molecule and its intended target in the body.
The target can be a protein, an enzyme, or a specific cell type involved in a disease
or condition. When a drug molecule interacts with its target, it triggers a biochemical
response that can either inhibit or activate the target, leading to a therapeutic effect.

Thus, a thorough understanding of drug-target interactions is essential for successful drug
repurposing. It helps researchers identify new indications for existing drugs and predict
potential side effects. With the aid of advanced technologies such as artificial intelligence
and machine learning, scientists can analyze vast amounts of data to uncover novel drug-
target interactions and accelerate drug development.

The use of artificial intelligence (AI) in drug repurposing and drug target interaction has
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revolutionized the drug development process. AI algorithms can analyze vast amounts of
biological and chemical data to predict new therapeutic uses for existing drugs, identify
potential drug targets, and optimize drug design. One of the significant advantages of
AI in drug repurposing is its ability to accelerate the identification of drug candidates
for clinical trials. Traditionally, drug discovery and development involve a lengthy and
costly process of trial and error, with researchers testing thousands of molecules to find
a potential candidate. However, with AI, researchers can use predictive models to screen
large databases of molecules and identify those with the highest likelihood of success,
saving time and resources. Furthermore, AI can help researchers understand the complex
interactions between drugs and their targets. By analyzing large datasets of biological and
chemical information, AI algorithms can identify potential off-target effects and predict
the safety and efficacy of a drug in different patient populations. Overall, the use of AI
in drug repurposing and drug target interaction has the potential to transform the drug
development process by increasing the speed and efficiency of drug discovery, reducing
costs, and improving patient outcomes.

Deep learning, a subset of machine learning methods, is increasingly used in this field to
analyze complex biological data and predict potential new uses for drugs.

In recent studies, researchers have utilized deep learning methods with inputs such as
protein sequences, which are chains of amino acids that constitute proteins, and SMILES,
a notation that encodes the structure of molecules in a string format. These data forms
are crucial because they contain the information necessary to understand the drug’s action
at the molecular level.

For instance, in the context of COVID-19, various approaches have been adopted using
SMILES strings and protein sequences to repurpose drugs to treat the disease. The meth-
ods often involve creating molecular graphs with nodes and edges that represent atoms
and chemical bonds, respectively. This allows for a detailed analysis of the molecular
interactions involved in drug-target binding.

DeepPurpose [10] is an example of a deep learning toolkit designed specifically for drug-
target interaction (DTI) prediction. It utilizes encoding-based methods to process the
information contained in drug molecules and protein sequences. The toolkit can facilitate
the identification of potential binding affinities between drugs and biological targets, which
is essential for repurposing efforts.

Another innovative model, known as DeepLPI [21], predicts protein–ligand interactions
using the raw 1D sequences of proteins and ligands. Such models are beneficial because
they can handle the simple formats of the data without the need for pre-processing or
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feature extraction, which can often be a complex and error-prone process.

Moreover, deep learning-based drug repurposing studies have been shown to provide pow-
erful tools for future research, particularly in the case of diseases that are not well under-
stood. By extracting physical and chemical features from protein sequences and ligands,
these methods help in elucidating the mechanisms of drug action and potential off-target
effects.

Compared to traditional methods, deep learning approaches are advantageous because
they depend on raw data, like the SMILES representations of ligands for drugs and protein
sequences for targets. These methods can automatically extract molecular features by
designing efficient algorithms, which potentially simplify and accelerate the repurposing
process.

In summary, deep learning is transforming drug repurposing by efficiently analyzing pro-
tein sequences and ligands to uncover novel drug applications. This approach has the
potential to significantly reduce the time and cost associated with drug development by
repurposing existing drugs for new therapeutic uses.

In this thesis the focus is correctly classifying the pairs of protein sequences that consist
of different amino acids and ligands, methods that have been used for this purpose will
be explained in the following chapters. The aim of classification in drug repurposing is to
categorize existing drugs based on their potential to be effective in treating new or different
medical conditions than those for which they were originally developed. The primary goal
is to predict novel interactions between protein sequences and ligands. This can lead to
quicker and more cost-effective development compared to creating new drugs from scratch,
as these drugs have already passed several safety and regulatory hurdles. By classifying
drugs based on their action mechanisms, researchers can better understand how these
drugs interact with biological systems. This can reveal new insights into the underlying
mechanisms of diseases and potentially identify new treatment pathways. Repurposing
may also aim to enhance the efficacy of a drug or reduce its side effects in treating a
particular condition. Drugs that were not very effective or had adverse effects for their
original purpose might be more suitable for other conditions. Some other use cases of drug
repurposing with Machine Learning will be given here. Classification in drug repurposing
can contribute to personalized medicine by matching specific drugs to the individual
patient’s profile. This includes genetic makeup, disease characteristics, and response to
previous treatments, aiming to maximize efficacy and minimize adverse effects.

Drug repurposing can also be used for cost-effective healthcare solutions, it can reduce
the time and cost associated with drug development, providing more affordable healthcare
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solutions. This is particularly important for rare or neglected diseases, where new drug
development might be economically unfeasible.

Another topic to consider is combating drug resistance. In the case of infectious diseases
or cancer, drug repurposing can help in finding alternative treatments when resistance to
standard treatments develops.
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2| Literature Review

2.1. History of Drug Repurposing

The history of drug repurposing, also known as drug repositioning, is a fascinating as-
pect of pharmaceutical development. This process involves finding new medical uses for
existing drugs, a concept that has been around for several decades.

Historically, some of the most successful drug repurposing efforts were based on serendipity
or retrospective clinical experience. Two notable examples are thalidomide and sildenafil
citrate. The story of thalidomide is particularly striking. Initially synthesized in 1952
and marketed as a sedative and antiemetic for morning sickness, it was withdrawn due
to its teratogenic effects, causing severe birth defects. However, it was later repurposed
for the treatment of leprosy and multiple myeloma, illustrating its dramatic journey from
disaster to a WHO-listed essential medicine [17].

Modern drug repurposing approaches now leverage an increasing wealth of drug- and
disease-related data, computational hypothesis generation, and high-throughput screening
methods, reflecting a shift from serendipitous discoveries to more systematic and data-
driven strategies [17].

Early Instances and the concept of drug repurposing date back to the mid-20th century,
although it wasn’t formalized as a distinct strategy at the time. Drugs were often found
to have multiple effects, some of which were initially considered side effects but later
recognized as potential therapeutic benefits for other conditions.

In the traditional drug discovery pipeline, the path from concept to approved therapy
is long, costly, and uncertain. Drug repurposing offers an alternative, allowing for the
reduction of time and costs associated with pharmaceutical research. This is achieved by
identifying new uses for drugs that are already approved or under investigation. In recent
decades, there have been many successful examples of drug repurposing across various
pathologies, showcasing its potential to accelerate the pace of discovery [4].

Historically, many successful drug repurposing ventures were based on serendipity or ret-
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rospective clinical experience. Thalidomide and sildenafil citrate are two prominent ex-
amples of such unintentional discoveries. Thalidomide, initially a sedative and antiemetic,
was later repurposed for treating leprosy and multiple myeloma after its withdrawal due
to teratogenic effects. Sildenafil, developed for angina pectoris(heart pain due to coronary
heart disease), was repurposed as Viagra after its unexpected effect on erectile dysfunction
was discovered during trials [17].

Drug repurposing is an essential component of pharmaceutical research, marked by both
serendipitous discoveries and systematic approaches. Over the last three decades, the
pharmaceutical industry has faced a growing productivity gap, with high drug attrition
rates, escalating development costs, and increased time to bring new chemical entities
(NCEs) to market. These challenges have underscored the need for innovative strategies
like drug repurposing [17].

With the rise of systematic approaches in the late 20th and early 21st centuries, the
approach to drug repurposing became more systematic and deliberate [1]. The realization
that developing new drugs was becoming increasingly costly and time-consuming led
pharmaceutical companies and researchers to actively search for new uses of existing
drugs.

Another factor in the advancement of drug repurposing was technological advancements.
The advent of high-throughput screening, bioinformatics, and computational biology in
the 21st century has significantly advanced the field of drug repurposing. These technolo-
gies allow for the systematic and rapid testing of large libraries of existing drugs against
a wide array of targets and diseases.

Impact of Genomics and Personalized Medicine: The rise of genomics and personalized
medicine has further fueled drug repurposing [15]. Understanding the genetic basis of
diseases has enabled researchers to identify potential new uses for drugs based on their
molecular mechanisms of action.

Today, the field of drug repurposing is characterized by a diverse range of techniques and
targets. From machine learning-driven frameworks for kinase inhibitor repositioning to the
use of natural products against viral infections, the methodologies are as varied as they are
inventive. This diversity reflects the integration of multidisciplinary sciences, combining
computational techniques, pharmacological insights, and molecular biology. Currently,
drug repurposing is an integral part of pharmaceutical research and development. It
is seen as a cost-effective, time-saving strategy that can complement traditional drug
discovery processes. The use of AI and machine learning has further enhanced the ability
to identify repurposing opportunities.
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Artificial intelligence (AI) and machine learning have become crucial in drug repurpos-
ing. These advanced computational methods enable researchers to analyze vast amounts
of data, uncover hidden patterns, and generate insights that would be challenging to
achieve through traditional means. For instance, the KUALA framework automates the
identification of kinase active ligands and prioritizes multi-target scores for repurposable
molecules [5]. KUALA paper presents a novel approach for repositioning kinase inhibitors
using a machine learning framework. The researchers developed the Kinase drUgs mA-
chine Learning framework (KUALA) to automatically identify kinase active ligands and
provide a multi-target priority score to suggest the best repurposable molecules.

Scientists have addressed diverse therapeutic needs through drug repurposing, exploring
treatments for conditions like COVID-19, Alzheimer’s disease, and infectious diseases. For
instance, leveraging single-cell RNA sequencing data from brain tissues of Alzheimer’s
disease patients, researchers constructed a multi-cellular disease molecular network to
identify 54 candidate drugs for potential therapy. Moreover, innovative approaches are
being developed to tackle antibiotic resistance, reflecting a broader shift in thinking where
drug repurposing is viewed as a holistic strategy to respond to global health concerns.

COVID-19 Pandemic: The COVID-19 pandemic brought renewed attention to drug re-
purposing, as the urgent need for effective treatments led to the repurposing of existing
drugs, such as remdesivir, originally developed for Ebola, and dexamethasone, a steroid,
for treating severe cases of COVID-19.

However, the path to successful drug repurposing is not without challenges. Issues of
selectivity, toxicity, and the balance between binding site similarity and target numbers
are complex considerations. Despite these challenges, there’s a long history of off-label
use of pharmaceutical products in the clinic for indications other than the primary or
listed case, which continues to be an avenue for development.

In summary, the history of drug repurposing is a testament to the field’s evolution from
serendipitous discoveries to a systematic, data-driven approach, underpinned by tech-
nological advancements and a multidisciplinary perspective. This evolution reflects the
ongoing need for innovative, cost-effective strategies in pharmaceutical research and de-
velopment.

2.2. Studies Using Machine Learning

In this part, previous studies that use different Machine Learning techniques for Drug
Repurposing will be investigated.
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The paper titled "A Novel Deep Neural Network Technique for Drug–Target Interaction",
presents a novel method for predicting drug-target interactions (DTIs) using deep learning
[20]. The key contributions of this research are two-fold:

Molecule and Protein Sequence to Image Transformation (MPS2IT-DTI): This technique
involves transforming molecule and protein sequences into image-based representations.
The authors developed a new method to encode these sequences onto images, which is
a departure from traditional natural language processing (NLP) based techniques. This
method does not require an embedding layer, unlike other models.

Convolutional Neural Network (CNN)-Based Architecture: The transformed images are
then processed using a dual-CNN architecture, which is designed to predict the interac-
tions between molecules (drugs) and proteins (targets). The CNNs process the images
and output predictions of their drug-target interaction.

The study demonstrated the viability of MPS2IT-DTI through training results using the
Davis and KIBA datasets [20]. Compared to other state-of-the-art approaches, this model
promises competitive performance in terms of both accuracy and complexity. Specifically,
with the Davis dataset, the model achieved a concordance index of 0.876 and a mean
squared error (MSE) of 0.276. For the KIBA dataset, the concordance index was 0.836
and MSE was 0.226.

The advantage of MPS2IT-DTI is highlighted in representing molecule and protein se-
quences as images rather than treating them as text-based sequences. This novel approach
offers a promising alternative to existing NLP-based techniques in drug-target interaction
prediction.

The authors proposed a unique representation for both molecules and proteins, which
was a key part of their drug-target interaction prediction model, named MPS2IT-DTI
(Molecule and Protein Sequence to Image Transformation - Drug-Target Interaction)[20].

Molecule Representation SMILES Representation: The process starts with the SMILES
(Simplified Molecular Input Line Entry System) representation of the molecule. K-mer
Counting: The SMILES string is then processed to define a set of all possible k-mers
(subsequences of k characters). Counting Vector: A counting vector is created, listing the
occurrences of each possible k-mer in the SMILES sequence. Normalization: The counting
vector is normalized, resulting in values between 0 and 1. Image Transformation: The
normalized vector is reshaped into a 2D matrix, creating an image-like representation of
the molecule. Protein Representation Amino Acid Sequence: It starts with the sequence of
amino acids that make up the protein. K-mer Counting: Similar to molecules, the process
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involves defining all possible k-mers from the amino acid sequence. Counting Vector:
A counting vector for the k-mers in the protein sequence is generated. Normalization:
This vector is normalized to have values between 0 and 1. Image Transformation: The
normalized vector is then converted into a 2D matrix, forming an image representation of
the protein. It has been claimed that this innovative approach of representing molecules
and proteins as images, rather than as text sequences, allows for the application of image
processing techniques, specifically convolutional neural networks (CNNs), in the drug-
target interaction prediction process. This method is distinct from traditional natural
language processing techniques used in other models and does not require an embedding
layer.

Another approach in this topic is "DeepDTA: deep drug–target binding affinity predic-
tion", which focuses on developing a deep learning-based model to predict drug-target
interaction (DTI) binding affinities using only the sequence information of targets (pro-
teins) and drugs (compounds) [16]. The key aspects of this study are:

Deep Learning Approach: The model, named DeepDTA, employs Convolutional Neural
Networks (CNNs) to process the 1D representations of proteins and drugs derived from
their sequences. This approach is distinct from traditional methods that use either 3D
structures of protein-ligand complexes or 2D features of compounds. The model was
compared against two baseline methodologies, KronRLS and SimBoost, using metrics
like Concordance Index (CI) and Mean Squared Error (MSE).

Results from the paper: DeepDTA demonstrated effective performance in drug-target
binding affinity prediction. It outperformed the baseline methods in the KIBA dataset,
achieving better CI scores and lower MSE values. It is claimed that the results suggested
CNNs could capture more information from the SMILES (drug) representations than
traditional methods.

The paper highlights the potential of using deep learning to process raw sequence data of
drugs and proteins for predicting DTI affinities. The authors suggest that their method-
ology could be extended to predict the affinity of known compounds/targets to novel
targets/drugs and for the affinity prediction of novel drug-target pairs.

The primary contribution of this study is the demonstration of a novel deep learning-based
model that successfully predicts drug-target affinities using only the sequence informa-
tion of proteins and drugs, offering a promising alternative to traditional feature-based
methods.

SMILES Sequences Representation: The SMILES sequences of compounds were encoded
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using a set of 64 unique labels (letters) identified from approximately 2 million SMILES
sequences gathered from Pubchem. Each label (letter) in a SMILES sequence was repre-
sented by a corresponding integer (e.g., ’C’: 1, ’H’: 2, ’N’: 3, etc.). The maximum length
for SMILES sequences was set at 85 characters for the Davis dataset and 100 charac-
ters for the KIBA dataset. Sequences longer than the maximum length were truncated,
while shorter sequences were padded with zeros to maintain a consistent length. Protein
Sequences Representation: Protein sequences were encoded in this paper using label en-
coding based on 25 unique categories (letters) extracted from 550,000 protein sequences
from UniProt. The maximum length for protein sequences was determined as 1200 char-
acters for the Davis dataset and 1000 characters for the KIBA dataset. Similar to SMILES
sequences, longer protein sequences were truncated and shorter ones were zero-padded to
achieve the fixed lengths.

Another study reviews the machine learning approaches in drug-target interaction. This
article underscores the significance of DTIs in the selection of potential drugs and in
providing insights into drug mechanisms and side effects. The review concentrates on
machine learning methods that integrate chemical and genomic spaces, categorizing them
into supervised and semi-supervised methods [7]. It points out that while machine learn-
ing shows promise in DTI prediction, there’s substantial scope for improvement. The
paper suggests focusing on ensemble approaches, semi-supervised learning, and new re-
gression methods that consider binding affinities and dose-dependence for more accurate
predictions. The paper concludes by acknowledging the need for further research in these
areas, especially given the rapid growth of data from high-throughput biotechnology.

Another study presents a deep learning approach, DeepMHADTA, capable of predicting
the binding affinity between proteins and drugs. This method was evaluated using two es-
tablished benchmark datasets, Davis and KIBA, commonly used for protein-drug binding
affinity prediction [6]. The DeepMHADTA model combines both sequence and structural
information of proteins and drugs to extract relevant features.

Key components of the model include:

• Drug Representation: Drugs are represented using SMILES descriptors, converted
into vectors using integer/label encoding, and molecular fingerprints, capturing the
structural features of drugs.

• Protein Representation: Proteins are represented using n-gram methods and pre-
trained word2vec models to extract sequence information, and Spider3 is employed
to predict protein secondary structure.
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• Feature Extraction: The method utilizes a multi-head self-attention mechanism to
identify and focus on important features, and employs a residual network for feature
extraction layers. The extracted features of proteins and drugs are concatenated and
fed into a fully connected layer for regression prediction of binding affinity.

The study highlights several advantages of the DeepMHADTA approach:

• Multi-Head Self-Attention Mechanism: Effectively focuses on important features.

• Word2Vec for Protein Sequence Features: Provides an efficient semantic represen-
tation compared to traditional encoding methods.

• Comprehensive Feature Extraction: Incorporates not only the sequence information
but also the spatial structure of proteins and drugs.

Another study about Drug Repurposing provides a method called "CSatDTA". This was
said to be a method for "Prediction of Drug–Target Binding Affinity Using Convolu-
tion Model with Self-Attention".It introduces the CSatDTA model, a novel approach for
predicting drug-target interaction (DTI) affinity [8]. The key methods employed in this
model are as follows:

Combining Convolutional Neural Networks (CNNs) with Self-Attention:

The model is designed to enhance traditional convolutional networks by integrating a
self-attention mechanism. Self-attention is used to overcome the limitations of CNNs,
particularly their inability to capture long-distance interactions between atoms in molec-
ular structures. Attention Mechanism:

The attention mechanism in the model focuses on both spatial and feature subspaces,
using a multi-head attention (MHA) mechanism. This allows the model to assign im-
portance to different parts of the input [8]. The relative self-attention is extended to 2D
inputs, systematically improving its representational capacity. Architecture Details:

The CSatDTA model consists of convolutional layers, max-pooling layers, and fully con-
nected (FC) dense layers. The convolutional layers are designed to extract local depen-
dencies, with the size and number of filters in these layers directly impacting the type
of characteristics extracted from the input data. The model includes two self-attention-
augmented convolutional blocks, each comprising five convolution layers and one attention
layer. Key parameters in the model include the depth of keys, depth of values, and the
number of heads in MHA. Learning Representations from Sequences:

The model aims to learn representations from the sequences of proteins and SMILES
strings, which encode molecular structures. The approach is motivated by the similarity
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of target sequences and drug structures to natural language texts, where understanding
atomic, structural, and contextual information is crucial. Dynamic Modification and
Design Evaluation:

The method allows for dynamic modification of the proportion of attentional channels.
This flexibility enables the evaluation of a range of designs from fully convolutional to
attentional models. This innovative approach combines the strengths of CNNs in local
feature extraction with the global contextual awareness provided by self-attention mech-
anisms, enhancing the prediction accuracy of drug-target binding affinities.

In another study about drug repurposing SPVec model was introduced. "SPVec: A
Word2vec-Inspired Feature Representation Method for Drug-Target Interaction Predic-
tion" SPVec is a feature representation method for predicting drug-target interactions
(DTIs) [22]. The paper addresses the challenge of accurately identifying DTIs, a cru-
cial step in drug discovery. Traditional methods for DTI prediction are labor-intensive
and require significant human expertise. To overcome these limitations, the authors pro-
pose SPVec, inspired by Word2vec, an unsupervised representation learning method [22].
SPVec is designed to automatically represent raw data like SMILES strings (for drugs) and
protein sequences into continuous, information-rich, and lower-dimensional vectors. This
method aims to avoid the sparsity and bit collisions of manually extracted features. The
SPVec method combines two models: SMILES2Vec for drug compounds and ProtVec for
target proteins. These models are trained using a revised Skip-gram model with negative
sampling.

The SPVec method was evaluated using the BindingDB database and external valida-
tion with the DrugBank database. The performance of SPVec was compared against
traditional feature representation methods like MACCS fingerprints and amino acid com-
position (AAC), using machine learning classifiers such as Gradient Boosting Decision
Tree (GBDT), Random Forest (RF), and Deep Neural Network (DNN). Results and Sig-
nificance:

SPVec shows good performance compared to traditional feature representation methods
in DTI prediction. The method is also robust when tested on independent test sets and
demonstrated potential in discovering reliable DTIs, which could be beneficial for drug
re-profiling. The paper highlights the advantages of SPVec in terms of automatic learning
and lower dimensionality, which could significantly speed up training and reduce memory
requirements.

SPVec, by combining SMILES2Vec and ProtVec, effectively transforms SMILES strings
and protein sequences into useful vectors for machine learning models. The proposed mod-
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els achieved better performance than traditional methods, suggesting SPVec’s potential
utility in DTI prediction and drug discovery.
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Three different datasets have been used throughout this thesis. The main one and first
dataset used is BindingDB. BindingDB is an open, internet-accessible repository con-
taining recorded binding affinities, primarily emphasizing interactions between proteins
regarded as potential drug targets and small, drug-like compounds [3].

The data in BindingDB originates from various measurement techniques, including en-
zyme inhibition, kinetics, isothermal titration calorimetry, NMR, radioligand assays, and
competition assays. The database includes information extracted from scientific liter-
ature, patents, selected PubChem confirmatory BioAssays, and ChEMBL entries that
provide well-defined protein targets.

It’s a dynamic database with ongoing curation, including the addition of recently iden-
tified targets and ligands, as evidenced by the inclusion of new data on influenza virus
hemagglutinin and human N6-adenosine-methyltransferase non-catalytic subunit. More-
over, BindingDB ensures the availability of their archived data for reference and research
continuity.

In response to emergent needs, such as the COVID-19 pandemic, BindingDB has acceler-
ated the collection of related data, providing researchers with critical information to aid
in the discovery of treatments for the coronavirus.

The database is also comprehensive in curating data from US Patents, with a vast collec-
tion of binding measurements, compounds, and target proteins. Additionally, BindingDB
fills gaps left by other databases by curating a range of scientific journals, providing a
broad spectrum of data not available elsewhere [3].

This wealth of information is used to facilitate the identification of potential drug-target
interactions, which is essential for drug repurposing efforts and for advancing the field of
pharmacology.

In addition to BindingDb, two datasets for protein sequences were used. These databases
were used for pretraining purposes in the Autoencoder models, as will come up in the
methods chapter.
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3.1. Statistics About Data

In this section, some statistics about the 3 datasets that have been used throughout this
thesis will be shared. To add to the introductory information about the main dataset
BindingDb, after necessary preprocessing operations in total, there were 84840 drug-
protein pairs. 24435 of them being labeled as 1 according to relevant labeling operation
as explained meaning a match between drug and protein. As mentioned before in the
context of protein and drug interaction, a "match" typically refers to the compatibility or
affinity between a drug molecule and a specific protein target. This match or interaction
is crucial for the drug to carry out its intended function within the body. Since it is not
possible to calculate a definite match in this context high affinity is taken as a match. The
number of pairs that do not match is 60405. As it can be seen from this data, number of
zeros is larger than number of ones. This imbalanced data problem will be investigated
again.

BindingDB is a significant resource for research in drug discovery and pharmacology,
particularly for drug-target interactions. It contains data for over 1.2 million compounds
and 9.2K targets, with a substantial portion curated by BindingDB’s own curators. The
database not only supports research but also education and practice in related fields [3].

The other two datasets include protein sequences and they have been used for pretraining
purposes. Those will be mentioned as "HomosapiensDb" and "AllProDb". Homosapi-
ensDb includes 20,598 protein sequences and AllProDb includes 79,006 protein sequences
in total.

3.2. Affinity and Kd Value In Data

In this section, some background information related to the context of Drug Repurposing
will be given so that the next parts will be easier to comprehend. Currently best option
to use for labeling is the affinity of drug and target interaction. Here affinity refers to
both the proportion and the strength with which a drug attaches to its receptors at a
given concentration. Irving Langmuir Kenakin first developed a mathematical model
to describe this concept in 2004 [12]. Affinity, which is inversely related to the drug’s
potency, is a key determinant of potency. This is represented by 1/Kd, where Kd is the
dissociation constant. Essentially, affinity measures how strongly a ligand binds to its
receptor. A higher Kd value indicates weaker binding and thus lower affinity, whereas a
lower Kd suggests stronger binding.

Potency, on the other hand, is defined as the quantity of a drug needed to achieve a
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specific level of effect. It is usually expressed as the median effective concentration or
dose, represented by EC50/ED50/Kd [12].

Efficacy, or intrinsic activity, is the capacity of a drug to trigger a pharmacological or phys-
iological response when it interacts with a receptor. Efficacy relies on how efficiently the
receptor activates cellular responses and the number of drug-receptor complexes formed.
This describes the relationship between the response and the occupancy of the receptor
by the drug.

3.3. Data Labeling

In BindingDb labeling operations had to be done since they are needed for the classifi-
cation task. In the original database, only some measurements about matching proteins
and drugs exist but there is no label such as 1 or 0. In order to do this some options are
considered and in the end Kd value is chosen for the labeling operation.

Kd value is called the dissociation constant which is a commonly utilized parameter to
elucidate the degree of attachment between a ligand and its receptor. Essentially, Kd
serves as a quantification of binding affinity, signifying how strongly a ligand attaches to
a receptor. The interaction between a ligand and receptor can be symbolized as L + R
LR, and the Kd value is computed as

Kd =
([L][R])

[LR]
(3.1)

In the context of ligand-receptor complexes, Kd denotes the ligand concentration at which
50% of the receptors are bound to ligands. A lower Kd value indicates a tighter bond
between the ligand and the receptor, reflecting a higher level of affinity between them.
Kd value is useful to understand the affinity between proteins and drugs but since they
are continuous values in the nanometer level, it can’t be used directly as a label for
classification.

Instead another value needed to be calculated for this. As it has been suggested in previous
studies [9] pKd value was used for this purpose. Which is the result of the transformation
the Kd value into log space as

pKd = − log10
(Kd

1e9

)
(3.2)

Labeling operation is done using this pKd value. 7 was chosen as the threshold value.
Inputs with pKd value greater than or equal to 7 are labeled as 1 and others as 0. 1
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meaning that there is a match between protein and drug.

3.4. Additional Data For Pretraining

In future chapters, some models including pretraining will be introduced. In order to
achieve this 2 more datasets, including protein sequences were used. These two datasets,
referred to as "HomosapiensDb" and "AllProDb," were employed for pretraining various
models, which will be detailed subsequently. In addition to the sequences found in Bind-
ingDb, these datasets encompass a broader range of protein sequences. The number of
proteins in each dataset can be seen in Table 3.1.

BindingDb HomosapiensDb AllProDb

Total Proteins 84,840 20,598 79,0068

Unique Proteins 2,483 20,528 75,948

Table 3.1: Number of Proteins in Datasets

3.5. Imbalanced Dataset Problem

In drug repurposing datasets, there are often many more negative instances (where a
drug does not work for a specific condition) than positive ones (where it does). Models
trained on such data can become biased towards predicting the majority class, leading
to a high rate of false negatives (missed opportunities for repurposing). In BindingDb
similar problem were faced since the number of matching pairs were significantly lower
than the number of not matching pairs. The exact numbers can be seen in Table 3.2.

Negative Pairs Positive Pairs

BindingDb 60,405 24,435

Table 3.2: Number of Proteins in Datasets

Around 29% of our data was actually positive. A number of methods were used to
challenge this problem. Some of them were in the data preparation phase and the rest were
implemented during the evaluation phase. In the data preparation sampling techniques
were tested as suggested in different studies [14]. After experiments with both under-
sampling and over-sampling, it was seen that over-sampling leads to better results. Hence
over sampling was chosen as the better solution to this problem.
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Relying solely on accuracy as an evaluation metric can be deceptive when analyzing
imbalanced datasets. A model might achieve high accuracy by accurately predicting the
more prevalent class (majority), yet it might struggle to identify the less frequent and more
crucial category (successful repurposings), rendering its overall performance less reliable.
To fight this issue different metrics other than accuracy were implemented. These include
precision, recall, f1 score, AUC and Matthews correlation. Some of these metrics are
particularly beneficial in imbalanced datasets such as f1 score and Matthews correlation.
More explanations about these metrics will be given in future chapters.
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4.1. Drug Representation

Since in the BindingDb dataset proteins and drugs are represented in different ways.
For ligands representation, a method called SMILES is used. SMILES, which stands for
Simplified Molecular Input Line Entry System, is a widely used notation for representing
chemical structures, including those of drug molecules. It is a textual representation that
encodes the structural information of a molecule in a concise and human-readable format.
In a SMILES notation, atoms and bonds are represented using specific characters and
symbols.

SMILES notation allows chemists and researchers to easily communicate and store chem-
ical structures in a compact and standardized format. It is commonly used in cheminfor-
matics, drug discovery, and computational chemistry for tasks such as database storage,
structure searching, and predictive modeling of molecular properties. As an example
molecule structure of aspirin can be examined in Figure 4.1.

Figure 4.1: Molecule Structure of Aspirin
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When it is shown in SMILES notation it becomes:

CC(= O)OC1 = CC = CC = C1C(= O)O (4.1)

As previously noted this representation consists of characters and symbols. What is
needed for a Machine Learning model is a number. So a transformation of this repre-
sentation was needed. For this transformation labeling each character or symbol with a
number is chosen. For example ’C’ corresponds to 4 and ’O’ to 15. After this normaliza-
tion is applied to these values. For the normalization, Min-Max scaling is chosen to scale
values in a range between 1 and 0. Without normalization, the coefficients of features
with larger scales might have not provided meaningful insights into their actual impact on
the model’s output. In order to test this both possibilities were used in experiments and
improvements were seen after the normalization operation. In order to decide the proper
length of the SMILES vectors, related statistics were used. The length distribution of
drugs can be seen in Figure 4.1.

Figure 4.2: Drugs Length Distribution
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4.2. Protein Representation

From a chemical standpoint, a protein can be essentially described as a linear chain made
up of the 20 major amino acids, and its chemical makeup is primarily determined by the
sequence in which these amino acids are arranged. The length of protein sequences can
vary significantly, ranging from tens to thousands of amino acids, with the most common
length likely being in the hundreds. The immense diversity in protein functions arises from
the vast number of possible combinations of amino acid sequences. For instance, there
are approximately 10260 potential proteins that are 200 amino acids in length. To put this
in perspective, it’s worth noting that the estimated number of atoms in the observable
universe is around 1080. Clearly, only an exceedingly small fraction of all conceivable
proteins can exist at any given time or may have ever existed throughout the history of
life on Earth. As an example amino acid sequence of hemoglobin can be given as:

• VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRF FESFGDLST-
PDAVMGNPKVKAHGKKVLGAFSDGLAHLDNL KGTFALSELHCDKLHVDPEN-
FRLLGNVLVCV LAHHFGK EFTPPVQAAYQKVVAGVANALAHKYH

And the 3D shape of its representation is given in figure 4.3.

Figure 4.3: 3D structure of hemoglobin

In the databases used in this thesis protein sequences were given in a way to show each
amino acid with one letter. Again a similar approach was chosen to convert this represen-
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tation into a numerical one. Numbers were given to each amino acid and later these were
scaled in a range between 0 and 1 using Min-Max scaling. After further research on this,
a Word2Vec approach was chosen for protein sequences. For each amino acid, a vector
with 3 lengths was calculated. For example, one vector for the amino acid alanine (short
version ’A’) was calculated as [0.6454009 , 0.4708575 , 0.37278453]. The distribution of
lengths of protein sequences is given in Figure 4.2. This data was used to decide the
length of the protein vector.

Figure 4.4: Proteins Length Distribution

Proteins length was chosen between 100 and 300 depending on the model. These values
were chosen according to the given statistics here and with the experiments made.

4.3. Model Selection

Incorporating the use of cross-validation into the model selection process for the drug
repurposing task adds an essential layer of rigor and reliability to the evaluation of the
machine learning models. Here a revised outline of the selection process will be given that
is used during this thesis.

Objective-oriented model exploration was used throughout. The primary goal remained to
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identify effective drug repurposing opportunities. This requires models capable of accurate
predictions regarding drug-target interactions. The selection of various model architec-
tures like LSTM, LSTM Autoencoders, and Autoencoders is indicative of an exploratory
approach tailored to meet this objective.

Diverse architectures and configurations were used during this study. The inclusion of
different models, such as LSTM with and without attention mechanisms and various Au-
toencoder configurations, suggests a comprehensive approach to evaluating how different
architectures perform in the context of drug repurposing.

Cross-Validation for Robust Evaluation: The use of cross-validation, a model validation
technique for assessing how the results of a statistical analysis will generalize to an in-
dependent data set, is critical. It involves partitioning the data into subsets, training
the model on some subsets (training set) and testing it on others (validation set). This
approach helps in understanding the model’s performance across different data samples,
reducing the risk of overfitting, and ensuring that the performance metrics are reliable and
consistent across various scenarios. The cross-validation method used will be explained
later.

Balancing Different Performance Aspects: The focus on a diverse range of performance
metrics, evaluated through cross-validation, indicates an effort to select models that are
not just accurate but also reliable and generalizable. This is crucial in drug repurposing
where the cost of false predictions can be significant. For this reason, many different
performance metrics were used.

Also in this model selection process, baseline models were selected, since including simpler
models or baselines such as a Random Predictor helps in setting a comparative standard
and appreciating the value added by more complex models.

In summary, the integration of cross-validation into the model selection process for drug
repurposing tasks ensures a more thorough and reliable evaluation of the models. This
approach underscores the commitment to selecting the best possible models based on their
ability to consistently perform well across different data samples, a crucial factor in the
high-stakes domain of drug discovery and repurposing.

In the following sections, different models that have been explored will be investigated.

4.3.1. Feedforward Neural Network

As a start to experiments with Deep Learning models simple feedforward neural networks
were chosen. It was thought to be a good starting point since it is simple to interpret.
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Feedforward neural networks (FNNs) represent a category of artificial neural networks
where information moves in a single direction. These networks are structured with input,
hidden, and output layers, with each hidden layer comprising multiple artificial neurons.
The training process of FNNs involves fine-tuning the weights of the connections between
neurons. They find wide-ranging uses in numerous fields, such as image recognition,
natural language processing, and predicting time series data.

4.3.2. LSTM

Long Short-Term Memory (LSTM) models, a variant of Recurrent Neural Networks
(RNNs), have proven to be particularly effective for classification tasks involving sequen-
tial data, such as time series analysis or natural language processing. LSTM models are
designed to remember patterns over time and are thus well-suited for classifying, predict-
ing, and generating sequences. LSTMs, given their capability to handle sequence data,
can be used in drug repurposing, especially considering the sequential nature of biologi-
cal and chemical data, like genetic sequences, chemical structures, and temporal patient
data. LSTM-based models for drug repurposing can provide valuable insights by identi-
fying patterns and associations in sequential data. For this reason, LSTM models were
implemented with implemented with different configurations and tested.

4.3.3. LSTM with Attention Mechanism

Attention layers have emerged as a key innovation in deep learning, particularly when
integrated with Long Short-Term Memory (LSTM) networks. These layers boost the
proficiency of LSTM in processing sequential data by allowing the model to selectively
concentrate on certain segments of the input sequence during prediction. This feature
proves invaluable in applications such as language translation, speech recognition, and
text summarization.

• Exploring the Attention Mechanism: The attention mechanism empowers the model
to dynamically prioritize specific sections of the input sequence while constructing
each segment of the output sequence. It assesses the significance or relevance of
each input timestep in relation to the present output.

• Context Vector Creation: For every output timestep, the attention mechanism cre-
ates a context vector. This vector is a weighted aggregate of the input sequence’s
hidden states, where the weights denote the pertinence of each input timestep to
the ongoing output.
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• Calculation of Alignment Scores: The weights are derived using an alignment func-
tion, which evaluates the compatibility of inputs near a certain position ’i’ with the
output at position ’j’.

To encapsulate, attention layers significantly enhance LSTM networks by facilitating a
dynamic engagement with different portions of the input sequence. This enhancement
substantially improves the model’s learning capacity and generalization, especially in in-
tricate sequence modeling tasks.

Implementation

Envision an LSTM (Long Short-Term Memory) network as an adept memory specialist,
tasked with comprehending and condensing extensive narratives. Within this framework,
the attention mechanism functions akin to an advanced, selective highlighter, meticulously
guiding the LSTM to concentrate on the narrative’s pivotal elements.

As the LSTM processes each word of the text sequentially, it meticulously catalogs and
integrates key information. Upon reaching the conclusion, it synthesizes a summary,
encapsulating the essence of the story. Here, the attention mechanism plays a crucial role
by enabling the LSTM to prioritize and emphasize the segments of the text that are most
pertinent, thereby enhancing the precision and succinctness of the summary.

The attention mechanism operates akin to a meticulous evaluator, allocating significance
scores to each word in the text, and gauging their relative importance within the overall
narrative. The LSTM, leveraging these evaluations, judiciously selects the words that
should be featured in the summary.

Furthermore, the efficacy of the attention mechanism evolves through continuous training
on diverse texts, progressively refining the LSTM’s capability to interpret and summa-
rize new material more effectively. This ongoing learning process fortifies the LSTM’s
proficiency in distilling the core message from complex and varied narratives.
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Feature/Component Model Configuration
Number of Inputs 2 (Input1 and Input2, both with shape (1, 100))
LSTM Layers for Input1
- Number of Layers 3
- Units per Layer 256 (LSTM_1), 128 (LSTM_12), 64 (LSTM_13)
Attention Layer for Input1
- Units 128
LSTM Layers for Input2
- Number of Layers 3
- Units per Layer 256 (LSTM_2), 128 (LSTM_22), 64 (LSTM_23)
Attention Layer for Input2
- Units 128
Concatenation Layer
- Name Concatenate_layer
Dense and Dropout Layers
- Dense Layer Units 64 (activation: relu)
- Dropout Rate 0.2
Output Layer
- Units 1 (sigmoid activation)

Table 4.1: Configuration of the LSTM model

4.3.4. AutoEncoders

Autoencoders are a type of artificial neural network used primarily for unsupervised learn-
ing tasks, particularly for the purpose of dimensionality reduction or feature learning. The
basic idea of an autoencoder is to learn a compressed representation of the input data,
typically for the purpose of data reconstruction [2]. Structure of Autoencoders An au-
toencoder typically consists of two main parts:

• Encoder: This part of the network compresses the input into a latent-space repre-
sentation. It encodes the input data as a compressed representation in a reduced
dimension [19]. The encoder layer transforms the input into a smaller, dense repre-
sentation, which is a lower-dimensional space than the input data.

• Decoder: This part of the network reconstructs the input data from the compressed
representation. The decoder layer takes the encoded data and expands it back to
the original input shape — ideally, the output of the decoder is a close match to the
original input data.
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Figure 4.5: Autoencoder Architecture

Autoencoders have been extensively utilized in various fields, including biology, where
they can be applied to extract informative features from protein sequences and molecular
structures. Using autoencoders for pre-training in a binary classification model where
the data consists of protein sequences and molecules involves several steps, which will
be explored later on. Autoencoders can be effectively utilized for pre-training in binary
classification models, serving to learn a robust representation of input data in an unsuper-
vised manner before fine-tuning the model for classification. This strategy is particularly
helpful in scenarios where labeled data for classification is scarce or expensive to obtain.

Ensuring the complexity of the autoencoder and classifier is suitable for the size and
nature of the dataset is key to preventing overfitting and underfitting. For this reason,
different models have been tried and evaluated with cross validation. Thorough evaluation
using metrics like precision, recall, F1-score, and AUC-ROC, especially in the context of
imbalanced datasets, is crucial for assessing model performance in biological classifica-
tions. For this reason throughout this thesis, different evaluation metrics were used as
they will be introduced in the next chapter. Autoencoders can serve as powerful tools for
unsupervised feature learning from biological data like protein sequences and molecular
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structures, subsequently enhancing the performance of binary classification models in pre-
dictive tasks. Balancing the complexity of the model, ensuring robust pre-processing, and
rigorously evaluating model performance are key to successfully employing autoencoders
in this domain.

Implementation

During the execution phase, various dataset combinations underwent experimentation.
Initially, BindingDb was the sole source for both pretraining and classification tasks.
Subsequently, two alternative datasets were explored for pretraining purposes: Homosapi-
ensDb and AllProDb, both containing a broader range of protein sequences. Similar to
other models, a variety of configurations, varying in the number of layers and neurons,
were also subjected to testing. The configuration of the model that has the best perfor-
mance is given in Table 4.2.

Feature/Model Autoencoder 1 Autoencoder 2 Final Combined Model
Number of Input Features 100 200 100 & 200
Encoder Layers
- Number of Layers 3 3 3 each (total 6)
- Neurons (per Layer) 64, 40, 25 100, 50, 25 64, 40, 25 & 100, 50, 25
Decoder Layers
- Number of Layers 3 3 1
- Neurons (per Layer) 40, 64, 100 50, 100, 200 50

Table 4.2: Configuration of the Autoencoder model

4.3.5. LSTM AutoEncoders

Before, use cases for LSTM and autoencoders were seen. Here the two will be used
in a combined manner. When LSTMs and autoencoders are combined, we get LSTM
autoencoders. These are particularly useful for sequence data. This model consists of a
pre-training phase just like the previous autoencoder model. LSTM Autoencoders have
been used in medical research in previous studies [11] but not in the drug repurposing
context. In the LSTM Autoencoder, there is an additional layer called RepeatVector
which is used to create a bridge between the encoder and autoencoder while using LSTM
layers. The RepeatVector layer in Keras is a utility layer that repeats its input a specific
number of times. It’s often used in sequence processing models, particularly in sequence-
to-sequence models like autoencoders and Recurrent Neural Networks (RNNs).

Functionality: The RepeatVector layer takes a 2D input (a single vector) and converts it
into a 3D output (a sequence of vectors). It repeats its input vector n times, where n is
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a parameter you specify. For instance, if the input to RepeatVector(n) is a vector [a, b,
c], and n=3, the output will be [[a, b, c], [a, b, c], [a, b, c]]. Usage in Autoencoders:

In the context of an LSTM autoencoder, the RepeatVector layer is crucial for bridging the
gap between the encoder and decoder. The encoder typically processes the input sequence
and compresses it into a lower-dimensional representation (a single vector). This is done
by LSTM layers that do not return sequences. The decoder, on the other hand, is designed
to process sequences. To transform the compressed representation back into a sequence,
RepeatVector is used. It repeats the single vector output from the encoder to create a
sequence that can be fed into the decoder’s LSTM layers.

Figure 4.6: LSTM Autoencoder Architecture

Imagine an LSTM autoencoder that processes input sequences with a length of 10. The
encoder part compresses these inputs into a solitary vector. However, for the purpose of
reconstructing the initial sequence, the decoder requires more than just this single vector
- it needs a full sequence. This is where RepeatVector comes into play; it duplicates the
condensed vector 10 times, creating a sequence that mirrors the length of the original
input. This allows the decoder to work towards rebuilding the initial sequence.

To put it briefly, RepeatVector is a tool in sequence-to-sequence models that transforms
a singular vector into a series of vectors. This transformation is crucial for moving from
a compressed form back to a sequence structure that the decoder can work with.

This model has 2 parts like classical autoencoders:

• Encoder: The encoder processes the input sequence and returns its own internal
state. For this, LSTM layers are used, and only the final LSTM state (after pro-
cessing the sequence) is passed on, which serves as the compressed representation
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of the input.

• Decoder: This part aims to reproduce the input sequence from the internal state.
Again, LSTM layers are used. The decoder takes the final state of the encoder as
its initial state and tries to generate the original sequence. The RepeatVector layer
in Keras can be used to convert the encoder’s final state to the initial sequence for
the decoder.

The LSTM autoencoder is trained by feeding a sequence into the encoder, which then
produces a compressed representation. This representation is then fed into the decoder
to produce the output sequence. The model is trained to minimize the difference between
the input and output sequences.

In LSTM Autoencoders, the encoder’s output can be used for feature extraction for other
tasks. This use case will was used in this thesis.

Implementation

In this context, using an LSTM autoencoder for protein and molecule sequences means
we’re attempting to capture the intrinsic patterns and structures within those sequences
in a compressed manner. Once trained, the encoder’s representation can then be utilized
as meaningful features for further tasks, like classification. In Table 4.3 configuration of
the best-performing LSTM Autoencoder model can be seen.

Feature/Model Autoencoder2 Autoencoder1 Final Combined Model
Maximum Sequence Length 1 1 1
Number of Input Features 300 100 100 & 300
Encoder LSTM Layers
Number of Layers 2 2 2 each (total 4)
Neurons (per Layer) 128, 64 64, 32 64, 32 & 128, 64
Decoder LSTM Layer
Neurons 300 100 N/A
Dense Layers
Neurons N/A N/A 96

Table 4.3: Configuration of the LSTM Autoencoder model

During the implementation, different combinations with different datasets were tested.
The first option was using only BindingDb for both pretraining and classification. After
that two other datasets were tested as the pretraining data. These are HomosapiensDb
and AllProDb which include many additional protein sequences. Like other models, dif-
ferent configurations with different numbers of layers and neurons were put into tests.
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5.1. Experiment design

5.1.1. Cross Validation

Cross-validation is a robust statistical technique used to assess the performance of machine
learning models, including deep learning models in classification tasks. It’s particularly
valuable because it provides a more generalized performance metric than a single train/test
split. For these reasons cross validation was chosen to evaluate the models that has been
used. Here’s a detailed explanation:

The definition of cross-validation is it involves partitioning the original dataset into a
training set to train the model and a test set to evaluate it. However, unlike a simple split,
it does this multiple times in different ways. The most common type of cross validation is
k-fold cross-validation. The data is partitioned into ’k’ segments, and the model is trained
on ’k-1’ segments, with the remaining segment serving as the test set. This process is
repeated ’k’ times, cycling through the segments used for testing. Here for the ’k’ value 5
was chosen since it shows a balance between complexity and evaluation power. Choosing
a value higher would be computationally expensive in this drug repurposing task. Why
Use Cross-Validation in Deep Learning for Classification?

• Model Generalization: It helps in assessing how well the deep learning model will
generalize to an independent dataset.

• One benefit of cross validation is mitigating overfitting. Since deep learning models
are prone to overfitting, especially with limited data, cross-validation ensures that
the model’s performance is not just a result of the specific way the data was split.

• It can also be used in hyperparameter tuning. It’s a reliable method for tuning
hyperparameters. By evaluating different hyperparameters across the folds, one can
choose the set that performs best on average.

• Cross validation also provides a more robust and less biased estimate of the model’s
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performance, especially important in classification tasks where the balance of classes
can vary.

Performance Evaluation: After training and validating all folds, the performance metrics
(like accuracy, precision, recall, F1-score) are averaged out. This average performance is
a more reliable estimate of how the model will perform on unseen data.

Cross validation was also used to optimize hyperparameters. Choose the configuration
that yields the best average performance across all folds.

First thing to consider while applying cross validation is computational cost.Cross-validation
can be computationally expensive, especially with large datasets and complex deep learn-
ing models. Each fold essentially requires training a new model from scratch. For this
reason 5 was the most feasible option since values more than 5 would be computationally
quite expensive for this use case.

The second aspect to consider is data representativeness: It’s crucial that each fold is rep-
resentative of the overall dataset, especially in terms of class distribution in classification
tasks.

Also, k value selection is quite important in application. The choice of ’k’ (e.g., 5 or 10)
can impact the balance between bias and variance in the model assessment. More folds
typically provide a more accurate estimate but at a higher computational cost.

Cross-validation is a powerful tool in the machine learning workflow, especially for deep
learning models in classification tasks. It helps in rigorously assessing a model’s ability
to generalize beyond the training data, guiding decisions about model architecture and
hyperparameters. Despite its computational intensity, the benefits it offers in terms of
robust model evaluation are often worth the extra time and resources [18].

5.2. Evaluation Metrics

In this part, different evaluation metrics that have been used throughout this thesis will
be discussed in terms of their advantages and disadvantages in certain conditions. This
will be a useful guide to evaluating different methods that have been used in the later
chapters.

5.2.1. Accuracy

Accuracy is a performance metric that measures the overall correctness of a model’s
predictions. It tells you the percentage of correctly classified instances out of the total
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number of instances in the dataset. Accuracy is defined as:

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions
(5.1)

• Correct Predictions: In the context of drug repurposing, "correct predictions" refer
to cases where the model correctly identifies whether a drug is suitable for repur-
posing or not. If the model accurately classifies drugs based on their potential for
repurposing, these are considered correct predictions.

• Total Predictions: This is the sum of all the predictions the model makes, including
both true positives (correctly identified repurposable drugs), true negatives (cor-
rectly identified non-repurposable drugs), false positives (non-repurposable drugs
mistakenly identified as repurposable), and false negatives (repurposable drugs mis-
takenly identified as non-repurposable).

Accuracy provides an overall view of how well the model is performing in terms of correctly
classifying drugs for repurposing. It represents the proportion of correct predictions out
of all predictions, regardless of whether they are positive (repurposable) or negative (non-
repurposable).

While accuracy is a widely used metric, it’s important to consider its limitations, especially
in imbalanced datasets. In drug repurposing, where the number of potential repurpos-
able drugs may be much smaller than non-repurposable drugs, a high accuracy can be
achieved by simply predicting all drugs as non-repurposable. This would not be useful
in practice, as it would miss potential repurposing opportunities. Therefore, accuracy
should be considered alongside other metrics like precision, recall, and F1 score to get a
more comprehensive understanding of the model’s performance, especially in situations
with imbalanced classes. For this reason, more metrics to evaluate the performances of
the models will be introduced.

5.2.2. Precision

Precision is a fundamental performance metric used in classification tasks, including ma-
chine learning and deep learning. It measures the accuracy of positive predictions made
by a model. In the context of classification, we often have two classes: positive (the class
of interest) and negative (everything not in the positive class). Precision is defined as:

Precision =
TruePositives

TruePositives+ FalsePositives
(5.2)
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Here’s what each term means:

• True Positives (TP): These are the instances that are actually in the positive class,
and the model correctly predicted them as positive.

• False Positives (FP): These are the instances that are not in the positive class, but
the model incorrectly predicted them as positive.

Precision essentially tells us: out of all the things the model labeled as "positive," how
many were truly positive? Some key points about precision include:

It focuses on the accuracy of positive predictions. It tells you how reliable the model’s
positive predictions are.

High precision means that when the model predicts something as positive, it is usually
correct. It indicates a low rate of false positives.

Precision is particularly important when false positives are costly or undesirable. For
example, in medical diagnosis, you want a model with high precision to avoid unnecessary
treatments or surgeries.

they often have an inverse relationship, meaning that improving one metric typically
comes at the expense of the other. Increasing precision may lead to a decrease in recall,
and vice versa.

In summary, precision is a critical metric for assessing the quality of a model’s positive
predictions. It helps you evaluate how well the model performs when it claims that
something belongs to the positive class.

In the context of drug repurposing, precision plays a crucial role in assessing the perfor-
mance of classification models. Here’s what can be said about precision in this context:
Precision is essential because you want to be highly confident that the drugs recom-
mended by the model are indeed effective for the target disease. High precision means
that when the model suggests a drug, it’s likely to be a genuinely promising candidate for
repurposing.

Also minimizing false positives is an important part of drug repurposing. False positives
in drug repurposing can be costly and potentially harmful. Recommending a drug that is
not effective for the target disease could waste resources and time and potentially harm
patients. Therefore, high precision in drug repurposing models is desirable to reduce the
likelihood of false positive drug recommendations.

Balancing precision and recall is essential in drug repurposing. While high precision is
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desirable to ensure the safety and efficacy of recommended drugs, you also don’t want to
miss out on potential candidates. Therefore, finding the right balance between precision
and recall is critical, as overly stringent criteria for precision might lead to missing out on
promising repurposing opportunities.

Drug repurposing often requires domain expertise in pharmacology and biology. High
precision in a model can be achieved by incorporating domain knowledge and careful data
curation. Domain experts can help validate and refine the model’s predictions to ensure
they align with the current state of scientific understanding.

In summary, precision is a vital metric in drug repurposing classification models because
it directly relates to the reliability and safety of drug recommendations. High precision
is desirable to reduce the risk of false positive predictions, but it should be balanced
with other considerations, such as recall and domain expertise, to ensure that valuable
repurposing opportunities are not missed.

5.2.3. Recall

Recall, also known as Sensitivity or True Positive Rate, is a fundamental performance
metric used in classification tasks, including machine learning and deep learning. Recall
measures the ability of a model to correctly identify all relevant instances in a dataset.
In the context of classification, we often have two classes: positive (the class of interest)
and negative (everything not in the positive class). Recall is defined as:

Precision =
TruePositives

TruePositives+ FalseNegatives
(5.3)

In simple terms, recall answers the question: "Of all the instances that are actually in the
positive class, how many did the model correctly identify as positive?"

Some key points about recall include, Recall focuses on the ability of the model to capture
all relevant instances of the positive class. It tells you how well the model avoids missing
positive cases. High recall means that the model is good at finding most of the relevant
instances of the positive class. It indicates a low rate of false negatives.

Recall is particularly important when it’s crucial not to miss any positive instances, even
at the cost of some false positives. For example, in medical diagnosis, you want a model
with high recall to ensure that potentially life-threatening conditions are not overlooked.

In summary, recall is a critical metric for assessing the completeness of a model’s pre-
dictions regarding the positive class. It helps you evaluate how well the model identifies
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and includes all relevant instances in the positive class, which is important in various
classification tasks, including drug repurposing.

5.2.4. F1 Score

The F1 score is a performance metric commonly used in classification problems, including
those related to drug repurposing. It is especially valuable when dealing with imbalanced
datasets, where one class is significantly smaller than the other class. The F1 score is the
harmonic mean of precision and recall, and it balances the trade-off between these two
metrics. It is defined as:

F1Score = 2 ∗ Precision ∗Recall

Precision+Recall
(5.4)

The F1 score is the balance between precision and recall. It is particularly useful when
you want to find a trade-off between minimizing false positives (precision) and ensuring
that all positive instances are captured (recall).

In drug repurposing, the F1 score helps you evaluate the model’s ability to identify poten-
tial repurposable drugs while maintaining a reasonable level of precision. It addresses the
challenge of imbalanced datasets, where the majority of drugs may be non-repurposable,
and it ensures that the model doesn’t overly bias predictions toward the majority class.
Since the dataset used also includes some imbalance this metric is useful for the context of
this thesis. A high F1 score indicates that the model is performing well in terms of both
precision and recall, striking a balance between correctly identifying repurposable drugs
and avoiding false positives. It is a valuable metric when the goal is to discover promising
candidates for drug repurposing while minimizing the risk of recommending ineffective or
unsafe drugs.

5.2.5. AUC

AUC refers to "Area Under the (Receiver Operating Characteristic) Curve." When applied
to drug repurposing, or any other domain using classification models, AUC is a widely
used evaluation metric to understand the performance of a binary classifier.

AUC-ROC Explained: ROC Curve: The Receiver Operating Characteristic (ROC) curve
is a graphical representation of the trade-off between true positive rate (sensitivity) and
false positive rate (1-specificity) across different thresholds for classifying an instance.

AUC: The Area Under the ROC Curve quantifies the overall performance of the binary
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classification model, representing the likelihood that the model will rank a randomly
chosen positive instance higher than a randomly chosen negative one.

In the context of drug repurposing, using machine learning and classification models, it is
possible to utilize AUC as a metric to evaluate how well the models distinguish between
two classes: for example, effective and non-effective drug candidates for a new therapeutic
application. Here’s how:

• Positive Class: Compounds (or drugs) that are effective or show a desirable effect
against a particular disease or condition.

• Negative Class: Compounds that are not effective or don’t show the desired effect.

The AUC provides a single scalar value representing the overall model performance. A
model that predicts classes perfectly has an AUC of 1.0, while a model that predicts classes
no better than random has an AUC of 0.5. In the scope of drug repurposing, a high AUC
indicates that the model is capable of effectively distinguishing between effective and non-
effective drugs, which can be immensely useful for identifying promising drug candidates
for further experimental validation.

5.2.6. Matthews Correlation

Since imbalanced databases were included in this project, more evalution metrics were
used in order to be able to assess the performance of the models. Matthews correlation
coefficient (MCC) is a good example of this since it provides a balanced measure even if
the classes are of very different sizes, making it particularly useful in cases where precision
and recall may give misleading results. Here’s an overview:

The Matthews correlation coefficient is a correlation coefficient between the observed and
predicted binary classifications. It returns a value between -1 and +1. A coefficient of +1
represents a perfect prediction. 0 indicates no better than random prediction. -1 indicates
total disagreement between prediction and observation.The MCC is calculated using the
formula:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.5)

There are some characteristics of MCC to consider which includes: Being balanced: It is
regarded as a balanced measure which can be used even if the classes are of very different
sizes. Interpretability: The value of MCC is easy to interpret. Applicability: It is used
in various fields, especially in bioinformatics for validation of protein structure prediction
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methods. Robustness: MCC is generally regarded as a robust metric that provides a more
truthful representation of the model’s performance than other metrics like F1-score, espe-
cially in imbalanced datasets. Different advantages of MCC can be listed. Effectiveness in
Imbalanced Datasets: MCC is effective for evaluating classifiers on imbalanced datasets,
whereas other metrics like accuracy can be misleading. Comprehensive: It takes into
account true and false positives and negatives, providing a more comprehensive measure
than accuracy alone. If disadvantages are considered they can be listed as: Less Intuitive:
For those unfamiliar with it, MCC can be less intuitive than other metrics like accuracy,
precision, and recall. Complexity: The calculation is more complex than simpler metrics
like accuracy. MCC is particularly useful in medical, biological, or any field where binary
classification tasks are performed. MCC is also useful in imbalanced data. It is ideal for
datasets where one class is much larger than the other. Comparisons with Other Metrics
Unlike accuracy, MCC considers all four quadrants of the confusion matrix (TP, TN, FP,
FN). MCC is generally a more reliable statistical rate than precision, recall, or F1 score
when dealing with imbalanced datasets.

In summary, the Matthews correlation coefficient is a valuable metric for evaluating the
performance of binary classification models, particularly when dealing with imbalanced
datasets. It provides a more nuanced and accurate measure of performance compared to
more traditional metrics. For this reason, it was selected as one of the metrics to evaluate
different models in this drug repurposing task.
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Model Accuracy Precision Recall F1 Score

Feedforward Neural Network 88.94 95.51 87.02 91.06

LSTM v.1 83.49 92.30 83.29 87.45

LSTM v.2 84.30 92.45 84.16 88.18

LSTM with Attention Mechanism 84.42 93.19 86.25 89.44

LSTM with Attention Mechanism v.2 90.30 87.15 94.28 90.57

Autoencoders BindingDb 81.88 88.97 85.21 87.04

Autoencoders BindingDb v.2 88.27 95.39 87.98 91.53

Autoencoders HomosapiensDb v.1 88.84 95.42 86.70 90.85

Autoencoder HomosapiensDb v.2 88.68 95.54 86.71 90.91

Autoencoder AllProDb v.1 83.64 84.24 82.76 83.49

Autoencoders AllProDb v.2 87,32 86.02 89,16 87.55

LSTM Autoencoders BindingDb 90.60 88.39 93.48 90.86

LSTM Autoencoders HomosapiensDb 91.61 88.56 95.56 91.92

LSTM Autoencoders AllProDb 91.62 88.25 96.04 91.98

Random Predictor with Bias 58.10

Table 6.1: Results of each model

In table 6.1 results of different models that have been tested throughout this study can
be seen. Here the metrics shown are Accuracy, Precision, Recall and F1 score.
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To analyze the values from the results table 6.1: Random Predictor with Bias is the
baseline model for comparison. It was created by generating random values while giving
bias to popular values in order to measure the effect of imbalance in the dataset. Its low
accuracy (58,10%) shows it’s not a good predictive model, as expected.

Feedforward Neural Network was the beginning point here. This model has a high pre-
cision (95,51%) and a good F1 score (91.06%), indicating effective identification of true
positives, even though it does not include any complicated structure.

LSTM Models: These models (Long Short-Term Memory) vary in configuration and per-
formance. LSTM with Attention Mechanism v.2 is the best among them, with the highest
accuracy (90,3%) and a balanced F1 score (90.57%).

Autoencoder Models: These models are used for learning efficient data codings in an un-
supervised manner. The "Autoencoders BindingDb v.2" and "Autoencoders Homosapi-
ensDb" have high accuracy and F1 scores, indicating robust performance.

Overall, the best-performing models appear to be the LSTM Autoencoders and various
configurations of Autoencoders, particularly those with pretraining and using Homosapi-
ensDb. These models exhibit a good balance between accuracy, precision, recall, and F1
score, indicating robust and reliable performance.

The variant with AllProDb shows even higher performance metrics with an accuracy
of 91.62%, precision at 88.25%, and an exceptional recall of 96.04%. The F1 score is
significantly high at 91.98%. This suggests that this model is not only accurate overall but
particularly strong in identifying true positive cases (as indicated by the high recall). Its
F1 score suggests an excellent balance between precision and recall, making it potentially
the most effective model in the table.

In summary, the LSTM Autoencoder models, particularly the "LSTM Autoencoders All-
proDb," demonstrates outstanding performance across all metrics. The high recall rates
are especially notable, indicating these models are very effective in identifying positive
cases, which is often a critical aspect in many machine learning applications.

The results presented in the table are metrics for various models used in this task. Drug
repurposing involves finding new uses for existing drugs, which requires accurate and
reliable models to predict drug-target interactions, efficacy, or suitability for new diseases.
Let’s interpret each metric and how the models perform:

AUC (Area Under the Curve): This mentioned metric is derived from the Receiver Op-
erating Characteristic (ROC) curve and measures the ability of the model to distinguish
between the classes (effective vs. non-effective drugs for new purposes). A higher AUC
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Model AUC Matthews Correlation
Autoencoder with AllProDb v.1 91.19 67.16
Autoencoders with AllProDb v.2 94.47 74.56
LSTM Autoencoders AllProDb 96.3 81.19
LSTM Autoencoders BindingDb 96.51 82.78
LSTM Autoencoders HomosapiensDb 96.52 83.32
LSTM Autoencoders AllProDb 96.37 83.42

Table 6.2: AUC and Matthews Correlation for Top Models

indicates better model performance. An AUC close to 1.0 suggests excellent model per-
formance, while an AUC closer to 0.5 suggests no discriminative power.

Matthews Correlation Coefficient (MCC): This is a more informative metric than accu-
racy, especially for imbalanced datasets, which are common in drug discovery. It considers
true and false positives and negatives, providing a balanced measure even if the classes
are of very different sizes. A coefficient of +1 represents a perfect prediction, 0 is no
better than a random prediction, and -1 indicates total disagreement between prediction
and observation.

Looking at the results:

Autoencoder Models: These models have high AUC values (above 90), indicating good
predictive capabilities. Their MCC values are also relatively high, suggesting that the
predictions made by these models are reliable and not skewed by class imbalance.

LSTM Autoencoder Models demonstrate even higher AUC values, nearing 96, indicating
excellent predictive performance. The MCC values are also robust (above 80), suggesting
a high level of reliability in the predictions, considering the balance of true and false
positives and negatives, while LSTM Autoencoder with AllProDb shows the best results.

So values in this table show results that match with previous ones. This gives the model
more reliability. Having a high matthews correlation value is especially important here
since it gives good results with imbalanced datasets. Since imbalanced datasets are com-
mon in drug repurposing and the dataset that has been here has similar characteristics,
these results imply that this model is promising with different types of data.

In summary, different models show promising results in the drug repurposing task, with
LSTM Autoencoder models showing powerful performance. These models are likely ef-
fective in distinguishing between drugs that can be repurposed and those that cannot,
and their predictions are balanced and reliable, as indicated by the high MCC values.
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This makes them very promising for use in drug repurposing research, where accuracy
and reliability are paramount.

In the pretrained LSTM Autoencoder models, even the beginner model with only Bind-
ingDb showed good results. Having more protein sequences in HomosapiensDb gives bet-
ter, more balanced predictions. Since AllProDb has more diverse protein sequences when
it is added to the used datasets it results in slight increases in almost all metrics. These
factors show us the potential of the LSTM Autoencoder models in drug repurposing.

In conclusion, the task of drug repurposing within the BindingDb dataset was successfully
undertaken using LSTM autoencoders, as evidenced by key performance metrics. The
effectiveness of this approach is clearly reflected in the substantial improvements across
various metrics, including accuracy, precision, recall, F1 score, and Matthews correlation
coefficient. These results underscore the capability of LSTM autoencoders to adeptly
navigate and interpret the complexities of imbalanced datasets, providing a robust and
efficient solution to predict novel interactions between proteins and ligands in challenging
data environments.
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In conclusion, the comprehensive analysis of various machine learning models, as detailed
in the previous chapters, offers insightful revelations for a drug repurposing task. The
evaluation spans a range of performance metrics, including Accuracy, Precision, Recall,
F1 Score, Area Under the Curve (AUC), and Matthews Correlation Coefficient (MCC),
providing a multifaceted view of each model’s capabilities.

The LSTM Autoencoder models, particularly those configured with AllProDb, Bind-
ingDb, and HomosapiensDb data, emerged as the top performers. These models not
only demonstrated excellent AUC values, nearing 96, indicative of their superior ability
to discriminate effectively between suitable and unsuitable drugs for repurposing but also
showcased robust MCC values above 80. This high MCC metric is especially crucial as
it signifies that the models’ predictions are not only accurate but also reliable and well-
balanced, considering the true and false positives and negatives — a critical aspect in the
context of drug repurposing where the cost of false predictions can be high.

As seen in the results, the LSTM Autoencoder models and their variations stand out.
These models exhibit exceptional balance across all key metrics. The "LSTM Autoen-
coders with all the protein data configuration, in particular, display a notable blend of
high precision and recall, culminating in a remarkable F1 score. This suggests its pro-
ficiency in accurately identifying drugs suitable for repurposing while minimizing false
positives and negatives. Also in the other metrics, the LSTM Autoencoders demonstrate
superior performance, as indicated by their high AUC values and robust MCC scores.
These high scores are indicative of the models’ excellent predictive power and reliability,
crucial in drug repurposing where precision is paramount.

This extensive analysis highlights the immense potential of machine learning in drug
repurposing. The LSTM Autoencoder models, in particular, demonstrate outstanding
predictive accuracy and reliability, making them highly suitable for this task. Their ability
to deliver balanced predictions across multiple metrics suggests strong applicability in the
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complex domain of drug repurposing.

These findings underscore the potential of advanced machine learning techniques in revolu-
tionizing drug repurposing. By efficiently identifying promising repurposing opportunities,
these models can significantly accelerate the drug development process, potentially lead-
ing to quicker and more cost-effective therapeutic solutions. This is particularly valuable
in the pharmaceutical industry, where the traditional drug discovery and development
processes are lengthy and expensive.

In light of these results, future work should focus on further optimizing these models,
exploring their applicability to a broader range of datasets, and integrating them into a
holistic drug discovery framework. The integration of machine learning into drug repur-
posing not only promises to enhance the efficiency of the drug development process but
also opens new avenues for discovering therapeutic options for unmet medical needs.

For the real-world application and validation of this study, applying these models in real-
world scenarios, such as in clinical trials or in silico screenings, would provide valuable
feedback on their practical utility and areas for improvement. Also enhancing model
interpretability to understand the rationale behind predictions can build trust and provide
valuable insights for researchers and clinicians.

Another possible approach is integrating these models into existing drug discovery pipelines.
This could provide pharmaceutical companies with powerful tools to identify repurposing
candidates more efficiently.

Collaboration with Bioinformatics and Pharmacology experts could also be beneficial in
this kind of study. Collaborative efforts with experts in bioinformatics, pharmacology,
and clinical sciences could lead to more holistic and interdisciplinary approaches to drug
repurposing.

Looking forward, these results pave the way for a more integrated and data-driven ap-
proach in the pharmaceutical industry. Optimizing these models and exploring their
applicability to diverse datasets could revolutionize drug discovery, leading to more effi-
cient and cost-effective therapeutic solutions. The integration of robust machine learning
models like LSTM Autoencoders in drug repurposing signifies a promising step toward
addressing the urgent need for effective and accessible treatments in various medical do-
mains. Here it was seen that with the number of protein sequences in the dataset for
proteins increasing, the performance of the model was increasing. So for the possible
future works on these adding more data for the pretraining phase might increase the per-
formance of these models. At the same time, it is possible to extend the number of layers
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and neurons in the models, of course, these are limited by the computation power of the
system. Also, different architectures that are combined with LSTM Autoencoders might
prove useful. So Future work could explore the integration of additional datasets, includ-
ing more diverse molecular and clinical data, to further enhance the models’ predictive
capabilities.

In conclusion, the study showcases the potential of advanced machine learning models in
revolutionizing drug repurposing through accurate and reliable classification using pro-
tein sequences and ligands. The promising results pave the way for more efficient, cost-
effective, and innovative approaches to therapeutic discovery, highlighting the significant
role of machine learning in the future of pharmaceutical research and development.





49

Bibliography

[1] N. C. Baker, S. Ekins, A. J. Williams, and A. Tropsha. A bibliometric review of
drug repurposing. Drug Discovery Today, 23(3):661–672, 2018. ISSN 1359-6446. doi:
https://doi.org/10.1016/j.drudis.2018.01.018. URL https://www.sciencedirect.

com/science/article/pii/S1359644617302878.

[2] D. H. Ballard. Modular learning in neural networks. In Proceedings of the Sixth
National Conference on Artificial Intelligence - Volume 1, AAAI’87, page 279–284.
AAAI Press, 1987. ISBN 0934613427.

[3] Binding Database. Bindingdb. https://www.bindingdb.org, 2023.

[4] M. De Rosa, R. Purohit, and A. García-Sosa. Drug repurposing: a nexus of in-
novation, science, and potential. Scientific Reports, 13:17887, 2023. doi: 10.1038/
s41598-023-44264-7. URL https://doi.org/10.1038/s41598-023-44264-7.

[5] G. De Simone, D. Sardina, M. Gulotta, and U. Perricone. Kuala: a machine
learning-driven framework for kinase inhibitors repositioning. Scientific Reports,
12(1):17877, 2022. doi: 10.1038/s41598-022-22324-8. URL https://doi.org/10.

1038/s41598-022-22324-8. PMID: 36284125; PMCID: PMC9595087.

[6] L. Deng, Y. Zeng, H. Liu, Z. Liu, and X. Liu. Deepmhadta: Prediction of
drug-target binding affinity using multi-head self-attention and convolutional neu-
ral network. Current Issues in Molecular Biology, 44(5):2287–2299, 2022. doi:
10.3390/cimb44050155. URL https://doi.org/10.3390/cimb44050155. PMID:
35678684; PMCID: PMC9164023.

[7] S. D’Souza, K. Prema, and S. Balaji. Machine learning models for drug–target inter-
actions: current knowledge and future directions. Drug Discovery Today, 25(4):748–
756, 2020. ISSN 1359-6446. doi: https://doi.org/10.1016/j.drudis.2020.03.003. URL
https://www.sciencedirect.com/science/article/pii/S1359644620301033.

[8] A. Ghimire, H. Tayara, Z. Xuan, and K. Chong. Csatdta: Prediction of drug-target
binding affinity using convolution model with self-attention. International Journal

https://www.sciencedirect.com/science/article/pii/S1359644617302878
https://www.sciencedirect.com/science/article/pii/S1359644617302878
https://www.bindingdb.org
https://doi.org/10.1038/s41598-023-44264-7
https://doi.org/10.1038/s41598-022-22324-8
https://doi.org/10.1038/s41598-022-22324-8
https://doi.org/10.3390/cimb44050155
https://www.sciencedirect.com/science/article/pii/S1359644620301033


50 | Bibliography

of Molecular Sciences, 23(15):8453, 2022. doi: 10.3390/ijms23158453. URL https:

//doi.org/10.3390/ijms23158453. PMID: 35955587; PMCID: PMC9369082.

[9] T. He, M. Heidemeyer, F. Ban, A. Cherkasov, and M. Ester. Simboost: a read-across
approach for predicting drug-target binding affinities using gradient boosting ma-
chines. Journal of Cheminformatics, 9(1):24, 2017. doi: 10.1186/s13321-017-0209-z.
URL https://doi.org/10.1186/s13321-017-0209-z.

[10] K. Huang, T. Fu, L. M. Glass, M. Zitnik, C. Xiao, and J. Sun. DeepPurpose: a deep
learning library for drug–target interaction prediction. Bioinformatics, 36(22-23):
5545–5547, 12 2020. ISSN 1367-4803. doi: 10.1093/bioinformatics/btaa1005. URL
https://doi.org/10.1093/bioinformatics/btaa1005.

[11] M. R. Ibrahim, J. Haworth, A. Lipani, N. Aslam, T. Cheng, and N. Christie.
Variational-lstm autoencoder to forecast the spread of coronavirus across the globe.
PLOS ONE, 16(1):1–22, 01 2021. doi: 10.1371/journal.pone.0246120. URL https:

//doi.org/10.1371/journal.pone.0246120.

[12] T. P. Kenakin. A pharmacology primer: theory, application and methods. Academic
Press, 2009.

[13] Y. Ko. Computational drug repositioning: Current progress and challenges. Applied
Sciences, 10:5076, 07 2020. doi: 10.3390/app10155076.

[14] B. Krawczyk. Learning from imbalanced data: open challenges and future di-
rections. Progress in Artificial Intelligence, 5(4):221–232, 2016. doi: 10.1007/
s13748-016-0094-0. URL https://doi.org/10.1007/s13748-016-0094-0.

[15] Y. Y. Li and S. S. Jones. Drug repositioning for personalized medicine. Genome
Medicine, 4(3):27, 2012. doi: 10.1186/gm326. URL https://doi.org/10.1186/

gm326.

[16] H. Öztürk, A. Özgür, and E. Ozkirimli. Deepdta: deep drug-target bind-
ing affinity prediction. Bioinformatics, 34(17):i821–i829, 2018. doi: 10.1093/
bioinformatics/bty593. URL https://doi.org/10.1093/bioinformatics/bty593.
PMID: 30423097; PMCID: PMC6129291.

[17] S. Pushpakom. Introduction and Historical Overview of Drug Repurposing Oppor-
tunities. In Drug Repurposing. The Royal Society of Chemistry, 02 2022. ISBN
978-1-78801-903-3. doi: 10.1039/9781839163401-00001. URL https://doi.org/10.

1039/9781839163401-00001.

[18] C. Schaffer. Selecting a classification method by cross-validation. Machine Learning,

https://doi.org/10.3390/ijms23158453
https://doi.org/10.3390/ijms23158453
https://doi.org/10.1186/s13321-017-0209-z
https://doi.org/10.1093/bioinformatics/btaa1005
https://doi.org/10.1371/journal.pone.0246120
https://doi.org/10.1371/journal.pone.0246120
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1186/gm326
https://doi.org/10.1186/gm326
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1039/9781839163401-00001
https://doi.org/10.1039/9781839163401-00001


7| BIBLIOGRAPHY 51

13(1):135–143, 1993. doi: 10.1007/BF00993106. URL https://doi.org/10.1007/

BF00993106.

[19] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, Jan. 2015. ISSN 0893-6080. doi: 10.1016/j.neunet.2014.09.003. URL
http://dx.doi.org/10.1016/j.neunet.2014.09.003.

[20] J. Souza, M. Fernandes, and R. De Melo Barbosa. A novel deep neural network
technique for drug–target interaction. Pharmaceutics, 14:625, 03 2022. doi: 10.3390/
pharmaceutics14030625.

[21] B. Wei, Y. Zhang, and X. Gong. Deeplpi: a novel deep learning-based model for
protein–ligand interaction prediction for drug repurposing. Scientific Reports, 12:
18200, 2022. doi: 10.1038/s41598-022-23014-1. URL https://doi.org/10.1038/

s41598-022-23014-1.

[22] Y.-F. Zhang, X. Wang, A. C. Kaushik, Y. Chu, X. Shan, M.-Z. Zhao, Q. Xu, and
D.-Q. Wei. Spvec: A word2vec-inspired feature representation method for drug-
target interaction prediction. Frontiers in Chemistry, 7, 2020. ISSN 2296-2646.
doi: 10.3389/fchem.2019.00895. URL https://www.frontiersin.org/articles/

10.3389/fchem.2019.00895.

https://doi.org/10.1007/BF00993106
https://doi.org/10.1007/BF00993106
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/s41598-022-23014-1
https://doi.org/10.1038/s41598-022-23014-1
https://www.frontiersin.org/articles/10.3389/fchem.2019.00895
https://www.frontiersin.org/articles/10.3389/fchem.2019.00895




53

List of Figures

1.1 Traditional way of drug discovery versus drug repurposing using conven-
tional methods [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

4.1 Molecule Structure of Aspirin . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Drugs Length Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 3D structure of hemoglobin . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Proteins Length Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Autoencoder Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 LSTM Autoencoder Architecture . . . . . . . . . . . . . . . . . . . . . . . 31





55

List of Tables

3.1 Number of Proteins in Datasets . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Number of Proteins in Datasets . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Configuration of the LSTM model . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Configuration of the Autoencoder model . . . . . . . . . . . . . . . . . . . 30
4.3 Configuration of the LSTM Autoencoder model . . . . . . . . . . . . . . . 32

6.1 Results of each model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 AUC and Matthews Correlation for Top Models . . . . . . . . . . . . . . . 43





57

Acknowledgements

I extend my deepest gratitude to my family and friends, whose unwavering love and sup-
port were instrumental in my success. Without their encouragement, this endeavor would
have been insurmountable. I am also immensely thankful to my professor and supervi-
sor, who provided invaluable guidance and constructive feedback throughout my research
journey. Their expertise and mentorship were invaluable in shaping my understanding
and facilitating my progress.




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Literature Review
	History of Drug Repurposing
	Studies Using Machine Learning

	Datasets
	Statistics About Data
	Affinity and Kd Value In Data
	Data Labeling
	Additional Data For Pretraining
	Imbalanced Dataset Problem

	Methods
	Drug Representation
	Protein Representation
	Model Selection
	Feedforward Neural Network
	LSTM
	LSTM with Attention Mechanism
	AutoEncoders
	LSTM AutoEncoders


	Experiments
	Experiment design
	Cross Validation

	Evaluation Metrics
	Accuracy
	Precision
	Recall
	F1 Score
	AUC
	Matthews Correlation


	Results and Discussion
	Conclusions and Future Developments
	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

