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1. Introduction

The scienti�c community is facing problems as
the extension of the Standard Model, the un-
known Dark Matter, Cosmogenesis and many
other. Several theories have been written but
only experimental data can con�rm their valid-
ity, one promising benchmark is studying the
neutrino properties [3]. In 2020 it was proposed
the neutrino spectra that reaches the Earth [10],
it's obtained summing over the three �avor and
integrating over the direction, the result shows a
�ux at energy below the eV. Those neutrino are
not detected by the detectors available nowadays
since they are not energetic enough to generate
a lepton that emits Cherenkov radiation. The
scope of this thesis work is to explore a way to
detect the neutrino-�ux with energy in the range
of meV − µeV; we remind that plasmon has en-
ergy in the same order of magnitude, therefore
we seek for a scheme to make the neutrino �ux
interacts with the electron plasma. The plasma
is a system where the collective behavior pre-
vails, this results in waves that can be excited
out of instability as the beam-plasma instabil-
ity [4]. We work with graphene thanks to the
high quality plasmons. The main result is the
design of a detector for slow neutrino-�ux using

a metamaterial-plasma.

2. Plasma and Detection

The Plasma Wave (PW) is generated in the elec-
tron (e−) solid-state plasma, in particular in a
graphene sheet where the electron has mass M ;
the graphene can be used both as single layer or
in the Bi-Layer Graphene (BLG) con�guration,
it's used as channel in a Field-E�ect Transistor
(FET) con�guration as Fig.1. There are source
and drain contacts at the edge of the channel
of length L, moreover an W thick oxide barrier
separates the graphene to the gate contact.
The plasmon can be generated by imposing an
modulation (with amplitude V0) of the source
potential [1], or by the Dyakonov-Shur instabil-
ity [2], or even by coupling an ElectroMagnetic
(EM) radiation (if a proper grating structure is
used [6], [5]). The generated PW travel along
the channel with speed S de�ned by the sys-
tem and Boundary Conditions (BC), the plas-
mon can be detected by the use of Langmuir
probe embedded in the FET structure. Other
techniques can reveal interesting feature and al-
low us to better characterize the plasma oscilla-
tion. Resonant detection can be performed if the
source (drain) is an close (open) circuit. These

1



Executive summary Carlo Al�si

Top gate

Si
SiO

2

hBN
hBN

L

W

VSD

Graphene

Top Gate
Drain

Vg

Source

Figure 1: The FET is composed by a channel
(length L) at which edges there are Source and
Drain contacts, an oxide layer (thickness W )
separate the channel to top the Gate. Figures
from [1].

asymmetrical BC results in a peaked potential
across the channel if the plasmon has frequency
equal to the odd harmonics of the channel i.e.,
Ωj = (2j + 1)πS/2L. The responsivity of the
system is de�ned as the VSD normalized by the
gate potential Vg [2], it reads as:

R =

(
Sτ

L

)2 (V0/Vg)
2

4(ω − Ωj)2τ2 + 1
, Lpl > L, (1)

where τ is the momentum relaxation time and
the plasmon propagation length Lpl = Sτ is the
length before attenuation is signi�cant. The de-
tection can be done also by the thermal current
(Ith) produced by the electrons scattering with
the PW, the interference of the wavefront in-
duces a characteristic signal as shown in Fig.2,
it require a modi�cation of the FET scheme as
explained in [5]. Finally we could use the EM
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Figure 2: Resulting thermo-current as function
of the plasmon origin. The Ith shows an oscil-
lation feature caused by the self interference of
the plasmon. Figures from [5].

radiation produced by the plasmon decay per-
form a spectral analysis [9], this is obtained if
the radiative decay is favored over the thermal

decay. The plasmon detection, regardless the
speci�c technique, requires a Signal to Noise ra-
tio (SN) larger than 1, it will set the constrain
on the neutrino �ux we can detect.

3. Weak Interaction

The neutrino (ν) is a chargeless lepton with a
mass that has to be de�ned yet, although exper-
imental data constrains its value to bem < 1eV.
The only way the neutrinos can interact with
the electrons is by the weak interaction, it cou-
ples the lepton through the Fermi constant GF.
The interaction is described in the Quantum
Field Theory by the lagrangian of Eq.(2) [8], it
can be reduced to the semiclassical Lagrangian
in Eq.(3) by the formal substitutions ψ̄γµψ →
{n;nv/c} and ψ̄γµ(1 − γ5)ψ → {n;nv/c},
where n (v) is the classical density (velocity)
of the distribution previously described by the
�eld ψ.

Lint = −GF√
2
ψ̄eγ

µ
[
(1− γ5) + (CV − CAγ5)

]
ψe ×

× ψ̄νγµ(1− γ5)ψν = (2)

= −GF√
2
(CV + 1)

[
nenν − (neve)·(nνvν)

c2

]
. (3)

We can derive the Hamiltonian governing the
system, it will be useful to derive the force
between the two distributions. We can write
the electrons (neutrinos) hamiltonian using the
free Lagrangian and the Lint with the Legendre
transformation obtaining the Eqs. (4). We used
pe = Mneve and pν = mγνnνvν with γν the
relativistic correction for the neutrinos.He =

p2e
2M

+ G̃Fnν ,

Hν =
√
p2νc

2 +m2c4 + G̃Fne,

(4)

where we introduced G̃F = GF(CV+1)/
√
2. The

conjugate momentum of specie i, in the presence
of species j, reads as Pi = pi + G̃F ni njvj/c

2.
We can thus calculate, by the Hamilton equa-
tion ∂tPi = −∇Hi, the time variation of the
conjugate momentum; it leads to the force ex-
perienced by the particle i due to the Weak in-
teraction with the distribution j [8], the result
is Eq.(5),

FW
i = −G̃F

[
∇nj +

∂tnjvj
c2

]
. (5)

This force shows that electron and neutrino af-
fect each other and their interaction is sym-
metric; we must remember that the electron
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has a charge therefore it feels also the pres-
ence of EM �elds, therefore we will consider the
FEM
e = e∇ϕ where ϕ is the sum of the exter-

nal and self-consistent electric potential. We can
now derive the Dispersion Relation (DR) of the
system by the use of Kinetic Equations; the sys-
tem is described by the continuity Eq., the force
Eq. and the Maxwell Eqs. For the electrons and
neutrinos distributions, the equations are

∂tne +∇ · (neve) = 0, (6)

∂tve + ve ·∇ve =
FEM+FW

e
M , (7)

∂tnν +∇ · (nνvν) = 0, (8)

∂tvν + vν ·∇vν = FW
ν
m . (9)

The next step is the linearization, we state
that the electrons have a non vanishing equilib-
rium density Ne and a null equilibrium velocity,
meanwhile the neutrino have �nite equilibrium
density Nν and velocity Vν . By the formal sub-
stitutions ne(x, t) → Ne + ne(x, t), nν(x, t) →
Nν+nν(x, t) and vν(x, t) → Vν+vν(x, t) we can
rewrite the Eqs.(10)-(13), where we kept only
the �rst order terms. It's worth to notice that
the electron-plasma is assumed to be 2D and
therefore the Fermi constant must be adjusted
to match the dimensional, the result is the for-
mal substitution in FW

ν of G̃F → g̃F ≃ G̃F/a
where a is the thickness of the graphene chan-
nel.

∂tne +Ne∇ · ve = 0, (10)

∂tve=
1
M

[
e∇ϕ− G̃F

(
∇nν+

Nν∂tvν+Vν∂tnν
c2

)]
,(11)

∂tnν +Nν∇ · vν + Vν ·∇nν = 0, (12)

∂tvν + Vν ·∇vν = − g̃F
m

(
∇ne +

Ne∂tve
c2

)
. (13)

The four linear di�erential equations can be re-
duced to two 2nd di�. equations of two unknown
(ne, nν) by eliminating the the velocities ve and
vν . Follows the Fourier Analysis of the system
stating {ne, nν , ϕ} ∝ exp[i(kx − ωt)], the re-
sulting second order di�erential system reads as
Eqs.(14), (15) where we perform the formal sub-
stitutions ∂2t → −ω2 and ∇2 → −k2.

neω
2+Ne

M

[
ek2ϕ+ nνG̃F

(
ω2

c2
− k2

)]
=0 (14)

ne
Nν g̃F
m

(
ω2

c2
− k2

)
+ nν (ω − Vνk)

2 = 0.(15)

We still have to evaluated ϕ, it's linked to the
electron distribution by the Maxwell equations;

we are going to consider two cases, the Gated
and Ungated scenario. In the Gated case an
electric potential is applied at the gate contact
leading to ϕ = −ene/C where C is the ca-
pacitance of the Gate-Oxide-Channel structure,
moreover the bare DR of gate electron is lin-
ear thus implying a non-dispersive plasmon. In
case of Ungated structure the Poisson Eq reads
as ϕ = −ene/2ϵ0k producing a DR with root
square dependency. Notice that the neutrino
bare DR is linear with velocity given by Vν ,
therefore we expect quite di�erent behavior in
case of interaction with gated or ungated elec-
trons. Writing the matrix form of the Eqs.(14),
(15) and imposing the determinant to vanish we
obtain the Joint Dispersion Relation; it contains
the mode that the ν − e− system can sustain,
they are presented in Fig.3. We see the possi-
bility to generate plasmon out of the instabil-
ity feature in the Ungated case, the instability
comes from the �nite imaginary part of the joint
DR. This occurs at the intersection of electrons
and neutrinos DR; the gated case has real modes
and no instability takes place since the bare DRs
do not cross.
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Figure 3: Gated and ungated joint DR with
ω0 = c/L ≃ 10GHz. a) the DR for Gated is
Real and Linear, the weak interaction implies
only a splitting of the modes; b) the Ungated
modes are complex with �nite imaginary part
around the intersection of the Bare DR of neu-
trinos and 2D electrons.
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4. Metamaterial

For the interaction of the 2D electron with the
3D neutrino �ux we needed the Dimensional Re-
duction to match the di�erent dimension of the
two systems. The result is a larger coupling con-
stant g̃F ∝ a−1 but the physical cross section
of the interaction is almost null since the inter-
action requires Vν in the channel-plane; there-
fore we de�ne an e�ective 3D material out of
the 2D graphene. We started by considering
the Bi-Layer Graphene as basic element -it en-
sures an constant e�ective e− mass- and now we
stuck several BLG keeping a bu�er layer (thick-
ness d) between each other. The MetaMaterial
(MM) dispersion relation is then calculated by
considering the mutual EM interaction, increas-
ing the number of layer wee see a convergence of
the DR as depicted in Fig.4, We notice that for
high wavevector the DR converge to the BLG
DR while for low wavevector the DR it has a
larger group velocity.

2D plasma

MetaMaterial
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Figure 4: The evolution of the DR from single
BLG to metamaterial, the red curve is obtained
if the number of layers is larger than 20; in the
inset a pictorial representation of the MM with
only 2 layers.

To obtain an simpler expression, we focus on
the low wavevector limit expanding up to 2nd
order the full DR, obtaining Eq.(16). We used
adimentional quantities de�ned by ω̃ = ω/ωM

with ω2
M = Nee

2/2Mϵ0d and k̃ = kd, then the
MM optical mode is

ω̃2 − (36− 35k̃)2

216
k̃ = 0. (16)

We see that the behavior is still as root square
with a linear correction, this expression approx-
imates well the DR in the region k < 0.2d; we
are going to use this expression for study the
neutrino-plasma instability.

5. Projection of ν-detector

The interaction is now between the neutrino-�ux
and the electrons in the MM, we can thus recover
the G̃F in FW

ν since both systems are tridimen-
sional, moreover we can de�ne the e�ective elec-
tron density in the MM as NM

e = Ne/d. The
DR we are going to solve is Eq.(17) where we

introduced the coupling constant Γ =
G̃2

FNνNM
e

mMc4

and de�ned the adimensional velocities (Ṽν , c̃)
by dividing for dωM .[

ω̃2 − k̃ (36−35k̃)2

216

]
(ω̃ − Ṽν k̃)

2 +

−Γ(ω̃2 − c̃2k̃2)2 = 0 (17)

The interaction, as mention above, bends the
bare DR of neutrino and electron making them
complex. The solution of Eq.(17) produces the
mode showed in Fig.5 where we see the mode α
has a positive imaginary part, this is the mode
the instability will excite during the neutrino-
plasma interaction.
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Figure 5: The modes of the neutrino-plasma
system, in the inset a zoom in the intercep-
tion showing the bending of the modes. The
imaginary part of mode α is multiplied by 100
for better visibility, it is worth mentioning that
the mode β has a negative imaginary part while
mode δ is fully real.

The growth rate, γ = Im(modeα), is responsi-
ble of the exponential ampli�cation of the PW,
the γ gets bigger when Γ increases i.e., when the
neutrino density increases or the mass decreases,
assuming Ṽν ,(Fig.6). We will focus on the plas-
mon that grows faster, it has wavevector kC and
frequency given by ωR + iγm, we choose to have
kC = 0.1/d.
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Figure 6: The γ amplitude and width de-
pends on the parameter Γ, here the result
for Ne = 1015m−2, M ≃ 0.018MeV, d ≃ 0.4µm,
m = 0.01eV and Vν = 0.1 c and some Nν .

The complex frequency implies that the plasmon
density not only oscillates but also grows expo-
nentially as

ne(x, t) = n0e exp[i(kCx− ωRt)] exp(γmt), (18)

where n0e is the amplitude given by the ther-
mal noise. To actually compute the SN of the
plasmon we must specify the plasma and neu-
trino parameters, we consider a plasma with
Ne = 1015m−2 and M ≃ 0.018MeV, the MM
has d ≃ 0.4µm, while the neutrino is character-
ized by m = 0.01 eV and Vν = 0.1c. We want
to generate a plasmon with amplitude hundred
time larger than the initial one, this requires
exp(γmtD) = 100 where tD is the time that the
neutrino-�ux spends inside the MM interacting
with the electrons i.e., tD ≃ L/Vν . These re-
quest sets the length of the MM: it depends on
the neutrino density because Nν and Ṽν , de�ne
the γm. It is worth to remind the detectability
is related to the Signal to Noise ratio de�ned as

SN = 10 log10

[
exp

(
2
γmL

Vν

)]
. (19)

In case of neutrinos at 10−4eV and Nν =
104m−3 the MM is approximately 1cm long with
SN > 1, for Nν = 10−2m−3 we need a MM of
1m to get the same ampli�cation. The neutrino
can have di�erent energy and the γm dependents
on that. We start assuming L = 1cm while the
neutrino hasm = 0.01eV and Nν = 104m−3; the
kinetic energy of the �ux varies from 10−7 eV
to 1 eV; the resulting parameters are shown in
Fig.7. Increasing the energy the Vν increases
and thus the tD decreases and so we expect a

reduction of the γm; trying to compensate, we
increases the Ne as the ν energy increases -to
increase Γ but the γm still decreases. The con-
sequence is a reduction of the SN as the ν energy
increases, therefore the more energetic neutrinos
are unlikely to be detected with this technique.
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Figure 7: Evolution of the instability parame-
ters as function of the neutrino kinetic energy
for L = 1cm, Nν = 104m−3 and m = 0.01eV.

Finally we evaluate the SN varying both energy
and �ux of the neutrino, the SN is presented
in Fig.8 using the quantity Φ = NνVν . It is
straightforward to see that larger �ux are more
easy to be detected, on the contrary, increas-
ing the energy reduces drastically the SN mak-
ing virtually impossible to detect neutrino with
energy above the eV: this instability detection
technique is suitable for ultra-low energetic ν-
�ux.
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Figure 8: Evolution of the SN for L = 1cm, m =
0.01eV and for Ne that increase from 1011m−2

to 1016m−2 to try compensate the decreasing tD.
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6. Conclusions and Future

The weak interaction generate a ponderomotive-
like force between solid-state plasma and neu-
trino �ux, with the kinetic theory we derived the
joint dispersion relation that has an imaginary
component. The resulting instability is able to
generate plasmons, in particular we considered
the electrons in the metamaterial obtained by a
graphene metamaterial; the graphene has metal-
lic contact at the edge to create a FET-like
structure, this can be used to detect the plas-
mons and thus infer on the neutrino �ux prop-
erties. Several assumptions have been made dur-
ing this thesis work and we will analysis in future
works their consequences; in particular in all cal-
culation the neutrino mass was assumed to be
constant, it must be taken into account its un-
known value along with the �avor oscillation in
the presence of medium and EM �elds. There's
the possibility for the plasmon to force an �avor-
oscillation in the neutrino-�ux. The DR was ob-
tained in the linear perturbation approach lead-
ing to a constant growth rate, non linear terms
must be taken into account to �nd the saturation
of the instability; we can consider the MM at
ultra-low temperatures to avoid the saturation.
The assumption of initial plasma at rest could
be relaxed to see if the instability bene�t from
that, look for appendix A for the additional term
in the FW we neglect. Moreover it was not con-
sidered the decay of the plasmon, future works
must examine its consequences on the signal to
noise ratio. So far it seems that our scheme is
the �rst proposal to detect neutrino with energy
below the eV by plasma-interaction, we there-
fore see large room for improvement. The study
of low energetic neutrino can set constrains on
the theories beyond the Standard Model, it will
helpful to set boundary for the neutrino mass;
lastly but not least the measurement of slow neu-
trino can implies the existence of the so-called
Relic Neutrino, therefore helping in the Dark
Matter solution and Early-Universe models.
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