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Abstract

Oscillating water column (OWC) systems hold significant promise for sustainable power
generation. Among the various options, Wells turbines emerge as strong candidates for
harnessing marine wave energy. However, they are subject to operational limitations,
such as Stall and Total-drag, that reduce their optimal performance. To mitigate these
phenomena, researchers have explored different techniques, including the installation of
fixed guide vanes (GV) before and after the rotor.

This thesis delves into the comprehensive analysis of Wells turbine behaviour and proposes
a novel performance enhancement strategy. The approach involves the addition of two
sets of Variable Inlet Guide Vanes (VIGV) positioned upstream and downstream of the
rotor.

The primary objective is to investigate the impact of VIGV on turbine performance
under variable wave conditions. Starting from the turbine design, the implemented model
analyses the performance of various machine configurations: the rotor with constant chord
or constant solidity, with or without guide vanes.

Computational Fluid Dynamics (CFD) is employed for a detailed validation of the pro-
posed model. Through it, analyses are carried out on the rotor alone and on different
configurations of the stators. Moreover, simulations of meaningful cases are performed on
the complete geometry.

The findings of this research suggest that the implementation of a VIGV system enhances
the overall performance of the machine, confirming its viability as a valid strategy to
optimize marine wave energy extraction in OWC power plants.

Keywords: Wells Turbine, Oscillating Water Column, Variable Inlet Guide Vanes, Com-
putational Fluid Dynamics.





Abstract in lingua italiana

I sistemi basati sul principio della colonna d’acqua oscillante (OWC) rappresentano una
promessa significativa per la generazione sostenibile di energia. Tra le varie opzioni, le
turbine Wells si rivelano essere le candidate migliori per sfruttare l’energia delle onde
marine. Tuttavia, esse sono soggette a limitazioni operative, come lo stallo e la fase
di total-drag, che ne riducono le prestazioni ottimali. Per mitigare questi fenomeni, i
ricercatori hanno esplorato diverse tecniche, tra cui l’incorporazione di guide fisse (GV)
prima e dopo il rotore.

Questa tesi approfondisce in modo esaustivo il comportamento delle turbine Wells e pro-
pone una nuova strategia per migliorarne le prestazioni. L’approccio prevede l’aggiunta
di due serie di guide variabili (VIGV) posizionate a monte e a valle del rotore.

L’obiettivo principale è investigare l’impatto delle VIGV sulle prestazioni della turbina
sotto l’effetto di onde di diversa intensità. A partire dal dimensionamento della turbina,
il modello implementato analizza le prestazioni di varie configurazioni della macchina:
rotore con corda costante o solidità costante, ciascuno dei quali con o senza guide.

Per convalidare il modello proposto, si ricorre all’analisi CFD (Computational Fluid Dy-
namics). Attraverso di essa, vengono condotte analisi sul solo rotore e su diverse config-
urazioni degli statori. Inoltre, vengono eseguite simulazioni di casi significativi sull’intera
geometria.

Le conclusioni di questa ricerca suggeriscono che l’aggiunta di un sistema VIGV migliora
le prestazioni complessive della macchina, confermando la sua validità come strategia per
ottimizzare l’estrazione di energia dalle onde marine nel contesto di un impianto OWC.

Parole chiave: Turbina Wells, Colonna d’acqua oscillante, Guide d’ingresso variabili,
Fluidodinamica Computazionale
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Introduction

Context

The interest in renewable energy sources has gained significant role in recent years, driven
by their importance in reducing emissions and environmental impact. Among all renew-
able sources, wave energy stands out as one of the most intriguing options due to its
abundant availability and relatively high predictability. Consequently, various technolog-
ical solutions have been proposed to harness and convert this energy source effectively.
One widely applied principle in Wave Energy Converters (WECs) is the Oscillating Water
Column (OWC), which involves a partially submerged chamber open at the bottom. This
chamber generates alternating airflow in a connected duct through the movement of the
water column inside. Wells turbines are commonly employed in the majority of these
devices to convert the pressure energy of the alternating airflow into mechanical energy,
subsequently generating electrical power through a generator.

A Wells turbine, named after its inventor Dr. A. H. Wells, is a type of axial turbine
designed to harness energy from OWC systems in the field of wave energy conversion.
Operating within the principles of fluid dynamics, the Wells turbine is specifically tai-
lored for the variable airflows generated by the OWC. The distinguishing feature of this
turbine lies in its symmetrical airfoil rotor blades, optimized for bidirectional airflows and
ease of rotation, eliminating the need for complex non-return valves mechanisms that are
necessary for other turbines. As the OWC system interacts with the turbine, the alternat-
ing airflow created by the water column’s vertical movement induces rotation in the Wells
turbine. Its symmetrical blade design ensures rotation in the same direction regardless of
airflow direction, enabling consistent energy conversion during both inward and outward
air flows. This characteristic aligns well with the oscillating nature of the OWC system,
allowing the turbine to harness energy efficiently from wave-induced air movements.

However, the Wells turbine also presents limitations and drawbacks, in particular at low
and high velocity air flows it can lead to performance limitations due to stalling and total-
drag conditions. Stalling occurs when airflow separates from the blade surface, leading
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to reduced efficiency. Total-drag condition arises when excessive drag counteracts the
rotational force, further diminishing turbine effectiveness (at low velocity air flows).

To address these limitations and enhance Wells turbine performance, research focuses on
innovative solutions and proposes a lot of alternative improved configurations.

These include solutions such as the bi-plane Wells turbine, wich consist of a series of
two rotor elements that can be co-rotating or contra-rotating, the incorporation of guide
vanes, strategically placed upstream and downstream of the rotor, to optimize airflow
dynamics and minimize stall and drag effects.

By carefully designing and integrating these stator components, researchers aim to refine
the Wells turbine’s efficiency, allowing an effective energy conversion in OWC systems
and advancing the viability of wave energy as a renewable energy source.

Literature Review

Reference [1] offers an encompassing review of the various approaches to harness the
wave energy. Notably, the discourse includes an exploration of various turbine systems, a
cornerstone in the quest for efficient wave energy conversion. Wells turbines, renowned for
their adaptability in oscillating water column systems, occupy a pivotal position in this
context. Their symmetrical blade design allows for bidirectional airflow, aligning perfectly
with the oscillating nature of wave-induced air movements. Additionally, impulse turbines,
a promising counterpart, are also dissected within this study.

Reference [2] provides an exhaustive overview of the primary technologies employed for
extracting energy from ocean waves within an Oscillating Water Column (OWC) system.
This comprehensive survey contains an array of innovative solutions designed to harness
the potential of wave energy. Among these, notable approaches include the Wells turbine
with guide vanes (WTGV), which integrates guide vanes to enhance efficiency and mitigate
operational limitations. The Biplane Wells turbine with guide vanes (BWGV) extends
the concept further by exploring biplane configurations to optimize energy conversion.
Another intriguing technology is the Turbine using self-pitch-controlled blades (TSCB),
which employs self-adjusting blades to adapt to varying flow conditions, ensuring optimal
performance. Moreover, the Contrarotating Wells turbine introduces a novel concept by
employing two counter-rotating rotors to enhance energy capture efficiency.

An important aspect for Wells turbines lies in their machine configuration. Following
the studies conducted by the authors of references [3] and [4], and notably the research
by Raghunathan [5], which serves as a milestone in this field, it is revealed that an
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excellent choice for the rotor involves utilizing unswept NACA0015 airfoil profiles, with
a midspan solidity of 0.4. The machine’s performance with only the rotor is primarily
enhanced by solutions that involve the implementation of fixed stator elements upstream
and downstream of the rotor, while adhering to the symmetry necessary for operation
under oscillating flow conditions.

The research has introduced other alternative methods to control phenomena that com-
promise turbine efficiency. For instance, strategies such as morphing blades, stall fences,
and plasma actuators have been envisaged to manage stall. These innovative approaches
aim to counteract the detrimental effects of stall by dynamically altering blade shapes
through morphing blades [6], employing stall fences to divert airflow and prevent sep-
aration [7], and utilizing plasma actuators to influence boundary layer conditions and
enhance airflow control [8].

All these methods aim to maximize the performance of Wells turbines, and research
continually strives to discover novel alternative approaches. This study falls within this
context, examining and proposing a new method to optimize wave energy utilization
through Wells turbines.

Structure of this work

This work is divided into five chapters.

The first chapter contains a collection of theoretical concepts that form the basis of the
operation of a Wells turbine in an OWC system.

The second chapter describes the implemented method for modeling its behavior based
on the chosen geometry and operating conditions.

The third chapter deals with CFD (Computational Fluid Dynamics) tests performed to
validate the choices behind the model described in the previous chapter. Results of the
CFD analysis are also reported here.

The fourth chapter is dedicated to the parametric analysis and its results carried out to
analyse the turbine under the effect of different waves.

Lastly, in the fifth chapter, the conclusions of this work are drawn and and an outlook on
this topic is provided.
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1| The Wells Turbine

This chapter discusses the OWC Power Plant and the Wells turbine, addressing all the key
aspects necessary to understand the functioning of this strategy to extract energy from the
ocean waves. Everything related to the plant’s structure, machine geometry, advantages,
disadvantages, and issues that arise during operational conditions is presented in this
chapter.

1.1. The OWC Power Plant

1.1.1. The OWC structure

An Oscillating Water Column (OWC) power plant is a technology that captures energy
from ocean waves to generate electricity. Its structure, shown in fig. 1.1, consists of a
partially submerged chamber open at the bottom, allowing the inflow and outflow of
seawater due to wave-induced oscillations. This movement alternately compresses and
decompresses the air within the chamber.

Figure 1.1: The OWC Power Plant
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As waves enter the chamber, the air is pushed upwards through a turbine situated at the
chamber’s top. This turbine, commonly a Wells turbine, converts the air movement into
mechanical energy. An electric generator is connected to the turbine, further converting
this mechanical energy into usable electrical power.

The strength of the OWC power plant lies in its straightforward design and effective
energy conversion process. Ocean waves, a consistent renewable energy source, drive the
continuous oscillations, ensuring a reliable power generation cycle. The Wells turbine is
the best solutions for oscillating airflows since it eliminates the need for intricate flow
rectification systems.

Oscillating water columns operate without any submerged components that could impact
marine life. Also, offshore OWC systems might have a positive ecological impact by
potentially fostering marine habitats through the creation of artificial reefs. However, a
key challenge lies in the potential noise pollution generated by OWCs and the aesthetic
appeal of coastal landscapes.

1.1.2. OWC main parameters

An OWC facility is designed based on the average parameters of oceanic waves prevail-
ing in the chosen location. A practical approximation to characterize wave behavior is
to model it as a sinusoidal waveform, thus describable by two fundamental parameters:
amplitude (a) and frequency (f). These parameters allow to understand the wave’s fun-
damental characteristics and tailor the OWC system to efficiently harness the oscillating
energy of the waves. From here, the wave elevation can be defined:

e = a sin (2πft) [m] (1.1)

Regarding the structure of the OWC, a pivotal parameter is the surface area of the lower
section of the tower (Sowc) where waves enter. This parameter significantly influences
the volume of air entrapped and subsequently displaced within the chamber, playing
a central role in determining the energy conversion potential of the system. Properly
sizing this area allows for effective capture and utilization of wave energy to drive the
oscillating air column within the chamber, thus facilitating efficient energy transfer and
power generation.

From these parameters, it is possible to assess the volumetric flow rate generated from a
wave characterized by amplitude (a) and frequency (f) into an OWC power plant charac-
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terized by lenghth (L) and width (Z):

Q(t) = L · Z · de
dt

= L · Z · a · 2π · f cos (2πft) [kg/m3] (1.2)

whose the maximum value is:

Qmax = Sowc · a · 2π · f [kg/m3] (1.3)

In the context of wave energy and Wells turbines, it’s important to note that shock
waves and supersonic currents are not relevant due to the subsonic nature of ocean waves.
The fluid is commonly treated as incompressible, aligning with the subsonic flow regime
associated with wave-induced motion and turbine operation.

By incorporating the dimensions of the chamber and the interaction between the oscillat-
ing air column and the incoming waves, it is possible to calculate the potential air flow
that can be harnessed for power generation. This estimation is fundamental for designing
the overall system and optimizing its efficiency, ensuring that the generated power aligns
with the available wave resources in a given location. Also it is possible to evaluate the
available Power of the OWC:

Pa owc =
ρw · a2 · 9.812

f · 8 π
[W/m] (1.4)

The true wave potential is lower as not all the available power is converted into the OWC
due to wave directionality issues, internal dissipations and the interaction with sea ground.

1.2. The Wells Turbine

1.2.1. Velocity triangles and Euler work

Like any other turbomachinery, the Wells turbine also relies on velocity triangles as a
fundamental aspect to analyze how fluid interacts within a bladed stage. Therefore, the
three vectors that are used to build velocity triangles are defined as: V, U and W.

• V: Absolute velocity, represents the fluid’s velocity with respect to an absolute
observer.

• U: Peripheral velocity, is the machine’s velocity with respect to an absolute observer.

• W: Relative velocity, denotes the fluid’s velocity relative to the machine.
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These three vectors are linked by the kinematic relation:

V⃗ = U⃗ + W⃗ (1.5)

These vectors provide essential insights into the fluid dynamics and energy transfer oc-
curring across the turbine’s blades, in fact the most significant concept associated with
these vectors is the concept of Euler Work:

Leul = U2V2t − U1V1t =
V 2
2 − V 2

1

2
+

U2
2 − U2

1

2
− W 2

2 −W 2
1

2
(1.6)

which represents the work exchanged between the blades and the fluid (it is considered
positive if the energy level of the flow increases, so for a turbine is negative). Dimen-
sionally, this is a specific work per unit of mass [J/kg], and it signifies a change in total
enthalpy:

Leul = ∆hT =

(
h2 +

V 2
2

2
+ gz2

)
−
(
h1 +

V 2
1

2
+ gz1

)
(1.7)

The terms related to gravity are usually neglected, and this leads to the definition of
another important quantity called Rothalpy:

R = h+
W 2

2
− U2

2
(1.8)

When considering rothalpy, it is important to note that, just as total-enthalpy
(
hT = h+ V 2

2

)
remains constant across a stator element, rothalpy is a quantity that remains constant
within the rotor.

Furthermore, considering the fundamental equation of Thermodynamics:

Tds = dh− dP

ρ
(1.9)

since the Euler work represent the work exchanged in an iso-entropic process (ds = 0), it
can also be expressed as:

Leul =
∆P

ρ
(1.10)

This parameter is crucial for assessing the energy transformation within the turbine and
plays a pivotal role in evaluating the turbine’s efficiency and performance.
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1.2.2. Features

The easiest design of a Wells turbine consists of a rotor, a shaft, and a set of blades. The
rotor is the primary component and is made of a series of blades arranged around the axis
of rotation, as shown in fig. 1.2.

Figure 1.2: The Wells rotor

The blades of a Wells turbine are characterized by their symmetrical and slender design,
ensuring consistent rotation in a single direction regardless of the airflow’s orientation, as
shown in fig. 1.3. When the airflow passes through the blades, it generates aerodynamic
forces that initiate the rotation of the turbine.

Figure 1.3: Working principle of a Wells turbine
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When the blade is exposed to an airflow with incidence β, it experiences an aerodynamic
force that can be decomposed into two components: Lift (L) and Drag (D). For analyzing
the behavior of a Wells turbine, it makes sense to consider the axial resultant (Fa) and
the tangential resultant (Ft) of these forces, as one represents the structural load on the
blade and the other is responsible for the rotational movement of the machine:

Ft = L · sin(β)−D · cos(β) (1.11)

Fa = L · cos(β) +D · sin(β) (1.12)

Wells turbines, renowned for their straightforward structure, offer significant advantages
that have made them a popular choice in various applications. The symmetry of the
blades plays a crucial role, allowing them to function without the need for a complex flow
rectification system. This simplified design not only reduces production costs but also
contributes to the longevity and reliability of the turbines.

However, despite their strengths, Wells turbines also present operational challenges. Their
efficiency is not consistent throughout all phases of the operational cycle, which represents
the passage of a wave. This limitation can impact performance in various ways. When the
airspeed surpasses a certain threshold, the blades are at risk of entering stall conditions.
This circumstance not only decreases efficiency but can also cause structural damage
to the blades themselves. Conversely, when the airspeed drops below a certain level, the
turbine might continue to rotate solely due to inertia, without effectively harnessing power
from the airflow. This phenomenon is known as "total-drag" and can further compromise
efficiency and overall turbine performance. The primary challenge in designing a Wells
turbine lies in mitigating these two phenomena.

1.2.3. Stall Condition

The phenomenon of stall in an aerodynamic profile occurs when the angle of attack, which
is the angle between the profile’s chord line and the direction of the incoming airflow,
becomes too steep, as shown in fig. 1.4. This happens when the absolute velocity of the
airflow increases over a certain value. As the angle of attack increases, the airflow over
the upper surface of the profile begins to separate from the surface, leading to a decrease
in lift and an increase in drag. This separation disrupts the smooth flow of air and
causes turbulent vortices to form, significantly reducing the profile’s overall lift-producing
capabilities.
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Figure 1.4: Stall condition

Stall is a critical point in aerodynamics because it marks the limit beyond which the
profile’s lift performance deteriorates rapidly. Once the stall angle is exceeded, the lift
drops abruptly, and the profile becomes less controllable and stable. On a Wells turbine,
this phenomenon results in a decreased extraction of power and consequently leads to a
reduction in efficiency.

1.2.4. Total-Drag Condition

As the airflow velocity decreases beyond a certain threshold, as shown in fig. 1.5, the
tangential force driving the turbine’s rotation reduces in magnitude. Eventually, the
turbine continues to rotate due to inertia but ceases to extract energy from the fluid.
Instead, it starts performing work on the airflow, a phenomenon known as total-drag
condition.

Figure 1.5: Total-Drag condition
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The total drag condition is quite critical as it is never entirely avoidable due to the fact
that during the passage of a wave, there is always a moment when the velocity tends
to zero, especially when the wave comes to a standstill. This phenomenon introduces
a challenging aspect in the operation of OWC systems, where the air turbine needs to
continue its rotation even in these low-velocity scenarios to prevent a reversal of energy
flow from the air column back to the wave, ensuring consistent power generation from the
wave energy resource.

1.2.5. Losses evaluation

In the turbomachinery environment, losses are defined as an increase in entropy [9]. For
turbines, it’s worth noting that they result in a decrease in the actual work extracted
from the fluid within the expansion process, shown in fig. 1.6.

Figure 1.6: Expansion process within a rotating stage

In presence of losses, the process becomes non-ideal. The impact of losses on the entire
expansion process is evaluated by efficiency, defined as:

η =
∆h

∆his

(1.13)

Various methods exist to evaluate losses, contingent upon the type and diverse scenarios
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encountered. Frequently, recourse is taken to models that involve the use of loss coeffi-
cients which frequently stand for an overall pressure loss in the system. These coefficients
are defined across a single stage and are dimensionless, scaled by a dynamic pressure:

Y =
Pt1 − Pt2
Pt1 − P1

(1.14)

These coefficients are defined through specific correlations depending on the model and
can vary across different components and operational conditions, making them a versatile
tool for quantifying losses and optimizing performance.

In the case of a simple configuration of a Wells turbine, comprising only the rotor, several
types of losses need to be considered. These include: Profile losses, which are dependent
on the blade geometry and the boundary layer generated around them when exposed to
an airflow. The effect of these losses results in an increase in drag force on the profile and
thickening of the vortex regions, phenomena that impede the blade’s advancement and
disrupt the flow’s smoothness, leading to a less efficient energy exchange. In a context
like that of Wells turbines, where analysis can be conducted treating the fluid as incom-
pressible, the following relationship between drag coefficient and total pressure losses can
be considered:

cD =
D

0.5 ρ c V 2
∞

=
s

c
Y

cosα3
m

cosαout
2

(1.15)

Additionally, there are Clearance losses, which concern the portion of air that is not
influenced by the rotor blades and instead bypasses the rotor, leaking through the gap
between the blade tips and the outer casing of the machine. Clearance losses are often
evaluated using the Dunham & Came model [10], which also incorporates Secondary
flow-related losses.

Ycle + Ysec =
c

b

[
0.0334

cosαout

cosαin

+B

(
k

c

)0.78
](

cL
s/c

)2
cosαout

2

cosαm
3

(1.16)

where: k is the clearance, s is the pitch, c is the chord, B is a parameter that is equal to
0.37 if the blades are shrouded and 0.47 if the blades are unshrouded and cL is the lift
coefficient, that can be evaluated as:

cL = 2
s

c
| tanαin − tanαout| cosαm (1.17)

However, for a Wells turbine with just a rotor configuration, considering the contribution
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of Secondary flow-related losses is unnecessary due to the flat and successive arrangement
of the blades, which prevents the formation of vortex channels as observed in some other
turbine designs.

Ycle =
c

b
B

(
k

c

)0.78(
cL
s/c

)2
cosαout

2

cosαm
3

(1.18)

It is notable that these quantities often depend on the aspect ratio c/s, known as solidity.
This parameter is indeed a crucial dimensionless factor indicating the density of the blade
row in a stage and thus how much it obstructs the airflow. During the design phase, the
choice of solidity is a critical aspect as it significantly influences the performance of a
turbomachine.

Lastly, Kinetic energy losses play a role, becoming more pronounced as the kinetic energy
of the outflowing air increases. To understand the meaning of this type of loss, the kinetic
energy loss coefficient is used (the significance of this coefficient is dual to the concept of
efficiency), which for an expansion process is defined as:

ζ =
h2 − h2is

ht2 − h2

=
h2 − h2is

V 2
2 /2

=
V 2
2is − V 2

2

V 2
2

(1.19)

these losses can be mitigated by reducing the flow velocity at the outlet section.

As mentioned earlier, losses should be understood as an increase in entropy, which occurs
due to dissipations. Starting from the fundamental equation of thermodynamics, this
increase is quantified as:

ds = cP
dT

T
−R

dP

P
(1.20)

and since Tt1 = Tt2 the entropy variation is:

∆s = R ln
Pt1

Pt2

(1.21)
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1.3. Design parameters

This section is dedicated to the work conducted by S. Raghunathan [5], which stands as
a milestone in the study of Wells turbines. The significance of this study, serving as the
foundation of this thesis, lies in its comprehensive and precise theoretical analysis, with
concepts and findings validated through experiments conducted by the author. Moreover,
all the necessary data, graphs, and concepts are made available, enabling a comprehensive
and in-depth exploration of this turbine type.

1.3.1. Studies and experiments on two dimensional symmetric

airfoils

Since Wells turbines feature a blade arrangement composed of symmetric airfoils, it is
essential to comprehend their behavior when subjected to an airflow. Raghunathan’s
study begins from this point, analyzing the performance of various symmetric NACA
airfoils (typically thin) under the same operating conditions. Results are visible in fig. 1.7:

Figure 1.7: Tangential and Axial force coefficients.
From: Raghunathan [5]

The aim of this analysis is to understand the intensity of the forces that develop on the
airfoil when subjected to an airflow, as the angle of incidence changes. It is important
to analyze both the axial and tangential components of the aerodynamic force generated
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on the airfoil because the tangential force, Ft, is responsible for the movement of the
rotor blades, while the axial force, Fx, indicates the structural load on the turbine, and
consequently the pressure difference between the region before and after the rotor.

The forces developed on the profiles (which depend on the flow) influence the turbine’s
efficiency, as shown in fig. 1.8: as mentioned before, dealing with waves modeled as
sinusoids, the turbine will experience (at the extremes of the operating cycle) both very
weak flows and very intense flows.

Figure 1.8: Efficiency trend for different flow coefficients.
From: Raghunathan [5]

When airflow rates are low (small angles of airflow incidence), the drag component in
the direction of the chord surpasses the lift, resulting in negative efficiencies (total-drag
condition). In such cases, the pneumatic power input is transformed into heat, yielding
no power output. It’s important to note that in these circumstances, unlike traditional
turbines, the Wells turbine doesn’t function as a pump. Conversely, at higher flow rates
(larger incidences), the blade’s boundary layer tends to separate (stall), causing a decrease
in efficiency.

Furthermore, it should be considered that the operational efficiency of a monoplane rotor
is influenced by the shared aerodynamic interactions among its blades, (generation of
vortices and induced velocities between adjacent blades). This interaction is determined
by the angle at which the airflow meets the blades and the blade solidity.

The trend of normalized coefficients Ct/Ct0 and Cx/Cx0 along with the variation of solidity
is illustrated in fig. 1.9, where Ct0 and Cx0 are measured values of force coefficients of an
isolated profile subjected to the same incidence in a wind tunnel.
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Figure 1.9: The effects of solidity on force coefficients.
From: Raghunathan [5]

1.3.2. Parameters affecting the design of a mono-plane Wells

turbine

As previously mentioned, the performance of a Wells turbine is contingent upon the
force coefficients, which are, in turn, influenced by several parameters. The subsequent
discussion will delve into their impacts on the machine’s behavior. Each parameter’s
influence has been assessed through experiments conducted on a reduced scale [5]. In
these experiments, the parameter of interest is varied while keeping the other parameters
fixed at suitable values.

• The rotor solidity (σ):
The turbine’s solidity represents the obstruction caused by the turbine to the airflow
and also it’s an index of the mutual interference between the blades. Observations
from experimental data on the average cyclic efficiency reveal that, at low solidity
values, the impact of solidity is minor; however, efficiency notably reduces for σ >

0.5, as shown in fig. 1.10.

The efficiency reduction in high-solidity Wells turbines is attributed to high kinetic
energy losses during the exit phase, linked to the exit swirl. Furthermore, three-
dimensional effects may emerge near the hub where closely spaced blades at high
solidity could interact with the boundary layer on the hub. These interactions could
lead to boundary layer separation on both the hub’s surface and the nearby blade
surfaces, since blades near the hub experience higher incidence than the blades at
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the tip.

Figure 1.10: The effect of solidity on efficiency.
From: Raghunathan [5]

• The hub-to-tip ratio (h):
This value influences the airflow’s angle of incidence at the hub, the tip clearance
losses and the relative interference effects at the hub.

In the context of a Wells turbine operating at a specific velocity, the angle of in-
cidence at the hub surpasses the one at the tip and rises as the hub-to-tip ratio
diminishes. Consequently, a reduction in the hub-to-tip ratio is likely to enhance
turbine stall and result in a decline in aerodynamic efficiency.

Given a specific tip clearance, the hub-to-tip ratio establishes the proportion be-
tween tip clearance and blade height. A reduction in h reduces this proportion,
potentially curbing tip clearance losses and thus enhancing aerodynamic efficiency.
Conversely, a reduction in airflow leakage around the tips leads to decreased relief
effects (reduced spanwise flow near the tips) potentially causing blade stall.

Additionally, the interference effects caused by the hub boundary layer affect aero-
dynamic efficiency. A reduction in h could mitigate these interference effects, thus
elevating efficiency.

The author [5] suggests to keep the value of h as close as possible to 0.6 as it is the
best compromise between all the three discussed effects, since the efficiency peaks
at that value as shown in fig. 1.11:
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Figure 1.11: The effect of hub-to-tip ratio on efficiency.
From: Raghunathan [5]

• The profile thickness:
The impact of airfoil thickness cannot be isolated from the Reynolds number effect.
Experiments demonstrate that reduced thickness tends to enhance efficiency, but it
can be detrimental to self-starting capabilities. Conversely, for thicker airfoils, the
opposite trend is observed, where they are advantageous for self-starting but may
hinder efficiency, as shown in fig. 1.12:

Figure 1.12: The effect of profile thickness on efficiency.
From: Raghunathan [5]
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• The aspect ratio (AR):
The aspect ratio, AR, impacts the efficiency of the turbine and the flow ratio at
which the turbine experiences stall. Decreasing the aspect ratio primarily leads to
higher efficiencies by delaying stall. This delay is linked to the ’relief effect’ on the
blades, resulting from a relatively higher mass flow through the tip. Lowering the
aspect ratio strengthens tip vortices. Additionally, it’s noted that the influence of
aspect ratio becomes more prominent as tip clearance increases. An AR value of
0.5 could be considered a suitable choice for a Wells turbine design. The effect of
this parameter on efficiency is shown in fig. 1.13:

Figure 1.13: The effect of aspect ratio on efficiency.
From: Raghunathan [5]

• The clearance (k):
The Wells turbine shows high sensitivity to tip clearance. Reducing tip clearance
promotes stall advancement but increases the efficiency due to reduced clearance
losses. Conversely, turbines with larger tip clearances can operate across a broader
range of flow rates without stalling.

However, values of tip clearance ratio beyond 0.02 do not yield significant advan-
tages. Hence, the author [5] recommends to use tip clearance ratios below 0.02.

The effect of this parameter on efficiency is shown in fig. 1.14:
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Figure 1.14: The effect of tip clearance on efficiency and stall.
From: Raghunathan [5]

1.3.3. Radial equilibrium

According to the theory of radial equilibrium, the fluid is irrotational, axially symmet-
ric, and its radial velocity component is zero. The pressure field acts opposite to the
centripetal acceleration and balances it, preventing the fluid from flowing radially. The
Momentum equation in radial direction yields to:

1

ρ

∂P

∂r
=

V 2
t

r
(1.22)
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2| The model

In this chapter, a method for modeling the rotor of a Wells turbine is presented, and
also a potential new strategy to enhance its performance is discussed. In particular, this
chapter outlines the features of this technology and presents all the aspects related to the
analytical method developed to describe its functioning. In this way, both the single rotor
and the complete configuration of the machine can be tested.

2.1. Model description

2.1.1. General outline

The purpose of this work is to analyze the behaviour of a simple Wells turbine and then
to study it after two rows of mobile guide vanes are added upstream and downstream of
the rotor, expecting and improvement of the performances.

The model was developed using Fortran 90.

The ultimate goal is to create a real turbine that one day will operate in a real OWC
power plant. The OWC design will start from the values (of amplitude and frequency) of
the most frequent waves present in the chosen area. The code thus defines the turbine’s
geometry starting from the selected/imposed OWC data. This way, the turbine will
encounter more frequently waves that are optimal for its geometry.

It’s important to notice that ocean waves don’t have a completely predictable nature, and
therefore, using average values is necessary to develop a more reliable analysis, considering
that some waves may not be optimal. This is also why attempting to add the two stator
rows is interesting: not only to extend the operational range within a single period but
also to correct the effects of waves different from the usual ones encountered.
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2.1.2. Structure of the code

The code allows the user to choose whether to perform the calculation for the configuration
with just the rotor or for the complete machine with the rotor and two stators.

The code takes as input:

• Length (Lowc) and Width (Zowc) of the OWC power plant.

• Amplitude (a) and frequency (f) of the wave.

• Turbine parameters (rpm, diameter ratio (h), solidity (σ), number of blades (Nb),
stall incidence of the rotor (βmax), total-drag incidence of the rotor (βmin).

• Inlet air data.

From this data, the code provides:

• The pressure values, the velocity components, and flow angles at each section of the
turbine and at every time-step.

• The useful power, the lost power, and efficiency at every time-step.

• The angle of rotation of each stator at each time-step.

• Values of flow angles, velocities, and forces generated at the hub, tip, and midspan
sections of one rotor blade.

2.2. Design steps

2.2.1. Evaluation of the OWC parameters

To proceed with the sizing and performance analysis of the Wells turbine, it is necessary
to evaluate three parameters of the OWC (see section 1.1.2). These parameters are:

• The OWC surface area (Sowc):

Sowc = L · Z (2.1)

It is a significant parameter when it is related to the surface area of the turbine St

(not yet evaluated). The smaller the ratio St/Sowc, the more the air moved by the
waves will be accelerated through the OWC structure towards the turbine’s inlet
section.
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• The maximum volumetric flow rate (Qmax):

Qmax = Sowc · a · 2π · f (2.2)

which, in addition to being a crucial parameter for understanding the maximum
velocity that will impact the turbine, serves as the reference value from which the
volumetric flow rate q (time-dependent) will be discretized. The time discretization
is a crucial aspect of the code’s structure, as a significant portion of its framework
involves a large loop iterating in this dimension, calculating quantities of interest at
each time step.

• The maximum available power (Pa):

Pa owc =
ρw · a2 · Z · 9.812

f · 8 π
(2.3)

This parameter proves to be a valuable indicator of the maximum exploitable power
but, in practice, the actual wave potential is lower than the theoretical maximum
because not all the available power can be effectively harnessed by the OWC. This
discrepancy arises from factors such as wave directionality constraints, internal dis-
sipations, and interactions with the seabed, all of which contribute to a reduction
in the power conversion efficiency.

These parameters are evaluated starting from:

OWC dimensions Wave data
Lowc = 3 [m] a = 2 [m]

Zowc = 3 [m] f = 0.1 [Hz]

Table 2.1: OWC and wave data

2.2.2. Air data

The following air properties data are used as a basis:
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Air data Value
Pair 105 [Pa]
Tair 288 [K]
µ 1.8 · 10−5[Pa · s]
R 287 J/kg/K;
γ 1.4 [-]

ρ = Pair/RTair 1.21 [kg/m3]

Table 2.2: Air data at the inlet

The initial values of pressure and temperature are chosen based on the following consider-
ations: at the beginning of the operating cycle, the wave has not yet risen and pressurized
the OWC chamber (so the pressure is ambient); the air temperature inside the chamber
is comparable to the water temperature (the chosen value is a suitable average).

2.2.3. Definition of the turbine geometry

In this phase only the rotor component is considered: the two stator components are just
added to it later accordingly to the geometrical constrains.

The turbine’s geometry is defined starting from the following assumptions, based on
Raghunathan’s research [5] (see Section 1.3):

• The turbine rotates at the constant speed of 3000 rpm.

• The hub-to-tip ratio is fixed at the value of h = 0.6 as suggested.

• The solidity at midspan is chosen to be σ = 0.4 in order not to de-rate too much
the efficiency.

• The rotor profile is a NACA0015 because of the best trade-off between the range
and the tangential force coefficient. Its stall angle is βmax = 15 [deg].

• The turbine blades (unswept) are chosen to be Nb = 5 with constant cord.

• The tip clearance is fixed at k = 1 [mm]

At this point, it is possible to evaluate:

The rotational speed:

ω = 2π
rpm

60
(2.4)
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The hub diameter:

Dh = 3

√
8 Qmax h2

π ω (1− h2) tan (βmax)
(2.5)

The tip diameter:

Dt =
Dh

h
(2.6)

The turbine surface:

St =
π D2

h (1− h2)

4 h2
(2.7)

The diameter at midspan:

Dm =
Dh +Dt

2
(2.8)

The chord:
c =

π Dm σ

Nb

(2.9)

The blade height:

b =
Dt −Dh

2
(2.10)

At this point, the rotor geometry is fully defined:

Lenght Value [m] Lenght Value [m]
Dh 0.577 c 0.193
Dm 0.770 b 0.192
Dt 0.962 τmax 0.028

Table 2.3: Rotor dimensions

2.2.4. Verification of Reynolds and Mach numbers

It is necessary to analyze the values of the Reynolds number and the Mach number.

The Reynolds number is evaluated at the hub (where it has the lowest value); it is neces-
sary to ensure that the value of the Reynolds number is greater than 105 to consider the
analysis valid, as it relies on the performance curves presented in Raghunathan’s work [5],
which were developed for a certain range of Reynolds numbers.

The maximum (at the tip) Mach number is evaluated just to confirm the subsonic regime
on the whole domain.
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In order to evaluate the Reynolds number

Re =
ρ W1h c

µ
(2.11)

and the Mach number:

Ma =
W1t√

γ R Tair

(2.12)

it is necessary to evaluate:

• The maximum axial (absolute) velocity:

Vx =
Qmax

St

(2.13)

• The relative inlet velocity at the hub:

W1h =

√
V 2
x +

(
ω

Dh

2

)2

(2.14)

• The relative inlet velocity at the tip:

W1t =

√
V 2
x +

(
ω

Dt

2

)2

(2.15)

2.2.5. Discretization of the time domain

A Wells turbine operates in a symmetrical manner. During the period in which a wave
rises and falls, the turbine encounters a flow rate that follows a sinusoidal law, as described
in fig. 2.1.

The flow rate is zero when the wave reaches its minimum and maximum heights, and it
is maximum when the wave is at its midpoint.

At the points where the flow rate is maximum and minimum, the regions affected by stall
and total-drag phenomena are located.

During the passage of a wave, the behavior of the flow rate can be divided into four inter-
vals, between the values of minimum and maximum flow rate. Therefore, it is sufficient
to analyze what happens during 1/4 of the period.
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Figure 2.1: Flow rate behaviour during a wave cycle.

The portion of the period under consideration is discretized into a sufficient number of
time steps (Nt). Considering the counter i marching from 1 to Nt + 1, the time step is:

t =
1

4 f

i− 1

Nt

(2.16)

At this point, it is possible to evaluate the flow rate at each time step. The calculated
flow rate values form a vector [q], with its elements arranged in descending order from
Qmax to Qmin.

qi = Qmax cos (2 π f t) (2.17)

The main structure of the code consists of a large time-iterative loop. At each iteration,
all the quantities of interest fot the specific time step are calculated starting from the i-th
element of the vector [q], so that the behaviour of the turbine receiving a certain flow rate
is known.

2.2.6. Discretization of the spatial domain

In addition to the temporal discretization, a spatial discretization is also performed to
analyze how the various quantities behave along the span of the blades more effectively.

In particular, a certain number of equidistant points (Np + 1) are distributed along the
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length of the blade, delineating the intervals into which the blade is divided (Np intervals),
as shown in fig. 2.2:

Figure 2.2: Blade discretization.

Just like for the time, considering the counter i marching from 1 to Np + 1, each value of
the diameter is collected into a vector:

di = Dh + (Dt −Dh)
i− 1

Np

(2.18)

Velocity triangles are radial-dependent. Each section of the blade has a different angle of
incidence (the highest is at the hub) and sees a different velocity (the highest is at the
tip).

This type of discretization is needed to perform a stream tube analysis, more accurate
than an analysis based on average values on the whole blade: the integral values of the
forces acting on the blade are more precise, as long as the evaluation of losses and the
variation of all quantities of interest along the radial direction.
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2.2.7. Iteration cycles

Once the turbine geometry has been defined and the vectors [q] and [d] have been created,
all the elements required to perform the calculations are available.

The main structure of the code consists of two major iterative loops: an outer loop
iterating over time, and an inner loop iterating over space. In this way, for each iteration
of the outer loop (for each flow rate value), all quantities are calculated within each of
the stream tubes into which the blade is discretized.

At this point, the first iterative cycle starts, and the inlet velocity, which is axial, is
immediately calculated.

Vx =
qj
St

(2.19)

This component of the Absolute velocity is assumed to be constant along the axial direc-
tion since the Wells turbine is an axial turbine.

Also, the total-pressure at the inlet section is evaluated:

Pt = Patm +
1

2
ρ V 2

x (2.20)

At this point all the quantities at the inlet section are known.

2.2.8. Analysis of the rotor

The analysis of the rotor, located between sections 1 and 2, occurs in the internal cycle,
where each spatial iteration analyzes what happens within a single interval of a rotor
blade.

At each time step, starting from the velocity triangle, the forces acting on each section
of the blade and the associated powers are calculated. In the end, all these quantities
are integrated over the length of the blade (and multiplied for the number of blades) to
determine the overall performance of the machine in terms of useful power, lost power,
and efficiency at each time step.

Velocity triangles before the rotor

All the information needed to evaluate the velocity triangles upstream of the rotor is
available.

On each blade interval into which the rotor is divided, a different velocity triangle acts.



32 2| The model

In fact, the i-th portion of the rotor blade rotates at the Peripheral velocity of:

U = ω
di
2

(2.21)

Due to this, the angle of incidence of each section is different, since is U-dependant:

β1 = arctan

(
Vx

U − V1t

)
(2.22)

The same applies to the Relative velocity:

W1 =
√

(U − V1t)2 + V 2
x (2.23)

In particular, near the hub,there are higher incidences and lower velocities, while near the
tip there are lower incidences and higher velocities, as shown qualitatively in fig. 2.3

Figure 2.3: Velocity triangles upstream the rotor.

The rotor solidity

Another quantity that varies with the radial position is solidity, that is calculated as:

σ =
c Nb

2 π drup
(2.24)
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where drup is a variable that represents the radius update: starting from the initial value
of Dh/2 (hub) a dr is added at each iteration of the internal cycle completing the entire
span of the blade up to Dt/2 (tip).

Force coefficients

The next step is to calculate the forces acting on each blade interval, which allows later
to evaluate the machine’s performances and calculate the downstream quantities.

The components of the force (F) acting on a blade interval with thickness dr are:

Fx =
1

2
ρ W 2

1 c Cx rCx dr (axial) (2.25)

Ft =
1

2
ρ W 2

1 c Ct rCt dr (tangential) (2.26)

In detail, Cx and Ct are the coefficients of axial and tangential force acting on a single
profile, and they are known from the studies of Raghunathan [5]. Their trend versus the
incidence angle is shown in fig. 1.7 in section 1.3 of this work.

Both functions of Cx and Ct are reconstructed pointwise and approximated with a poly-
nomial function:

• For Cx, it is sufficient to use a first-order polynomial with the coefficients:

Coefficient Value
B0 0
B1 0.097

Table 2.4: Coefficients of the polynomial approximating Cx

• For Ct, it is used a second-order polynomial with the coefficients:

Coefficient Value
C0 -0.015
C1 0
C2 0.0016

Table 2.5: Coefficients of the polynomial approximating Ct
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The two coefficients are then calculated as:

Cx = B1 β1 (2.27)

Ct = C2 β2
1 + C0 (2.28)

Furthermore, rCx = Cx/Cx0 and rCt = Ct/Ct0 are corrective coefficients that take into
account the dependence of force coefficients on solidity, which is different at each blade
section. The dependence on solidity, analyzed by Raghunathan [5], is shown in fig. 1.9 in
section 1.3 of this work.

In this case as well, to evaluate these quantities a polynomial approximation (second
order) is used:

rCx = D2 σ2 +D1 σ +D0 (2.29)

rCt = E2 σ2 + E1 σ + E0 (2.30)

Where:

Coefficient Value Coefficient Value
D0 1.0106 E0 1.0054
D1 -0.4247 E1 -0.4042
D2 2.4851 E2 2.8274

Table 2.6: Coefficients of the polynomial approximating rCx and rCt

In this way, at each temporal step of the outer cycle, the series of iterations of the inner
cycle is completed, calculating the axial and tangential force components on each blade
interval.

Velocity triangles after the rotor

The quantities downstream of the rotor are calculated starting from the Euler work. First
of all, for each blade interval, the tangential component of the Absolute velocity:

V2t = − Ft

ρ q(j)
Nb np

+ V1t (2.31)
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Then are evaluated the outlet angle,

β2 = arctan

(
Vx

U − V2t

)
(2.32)

and the Relative velocity:

W2 =
Vx

sin(β2)
(2.33)

The issue with this method is that it proves to be unreliable in evaluating quantities when
the turbine is in total-drag conditions since, for purely analytical reasons, it provides
results that are senseless. In fact, the tangential force (numerator) and the flow rate
(denominator) both tend toward zero in total-drag conditions, and the value of V2t in the
final iterations shows unrealistic values. For this reason, at this stage of the cycle, the
quantities are calculated based on the relative total pressure reduction:

W2 =

√
W 2

1 + 2
Fx

ρ St

Nb np

(2.34)

β2 = arcsin

(
Vx

W2

)
(2.35)

V2t = −W2 cos (β2) + U (2.36)

At this point, the velocity triangles downstream of the rotor are known, and it is possible
to move on to the evaluation of the losses associated with it.

Losses related to the rotor

The losses associated with the rotor are profile losses and clearance losses.

To assess profile losses, the drag force acting on a blade interval is calculated based on
the axial and tangential force components acting on it:

D =
Fx tan (β1)− Ft

tan (β1) sin (β1) + cos (β1)
(2.37)

Clearance losses are conventionally calculated using the Dunham & Came correlation [10]
(using the quantities evaluated at the midspan), where the secondary-flows contribute is
not considered since the rotor blades do not form a channel in which secondary flows can
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develop.

Yc =
c

b
B

(
k

c

)0.78(
cL
1/σ

)2
cos (β2)

2

(cos (βm))3
(2.38)

Where the lift coefficient is:

cL = 2
1

σ
| tan (β1)− tan (β2)| cos (βm) (2.39)

and the mean angle is:

βm = arctan

(
tan (β1) + tan (β2)

2

)
(2.40)

This correlation returns the integral value of Yc, but there is radial dependence, meaning
these losses have a different effect on each interval.

To account for this, Yc is assumed to have a linear distribution along the blade, with the
highest value at the tip and decreasing to 0 at the midspan, as shown in fig. 2.4:

Figure 2.4: Contributes of the clearance losses on a rotor blade

The maximum value of Yc is at the tip:

Yc max =
4 Yc

b
(2.41)



2| The model 37

The i-th contribution on the intervals after the midspan is:

Yc i = (
2 Yc max

b
) (i− 1− np

2
) dr (2.42)

There is no contribution on the intervals before the midspan.

The clearance losses result in an increase in Drag. On each blade interval, the axial force
Fx undergoes an increase due to clearance, given by:

∆Fx = Yc i
1

2
ρW 2

1 c dr (2.43)

which is added to Fx in the drag calculation.

Global values

Everything needed is available to calculate quantities related to one timestep:

• The total axial force acting on the rotor:

Fx tot = Nb

np+1∑
i=1

(Fx i) (2.44)

• The total tangential force acting on the rotor:

Ft tot = Nb

np+1∑
i=1

(Ft i) (2.45)

• The useful power:

Puse = Nb

np+1∑
i=1

(Ft i Ui) (2.46)

• The lost power:

Plost = Nb

np+1∑
i=1

(Di W1 i) (2.47)
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Pressure evaluation after the rotor

The static pressure difference across the rotor is known:

∆P =
Fx tot

St

(2.48)

and from here, the static pressure at section 2:

P2 = P1 −∆P (2.49)

Downstream of the rotor, each blade interval has a different velocity triangle. To calculate
a total-pressure value that is representative of section 2, it is necessary to consider a
velocity triangle exiting the rotor with average values.

Thanks to Euler work, it is possible to evaluate V2t:

V2t = − Ft tot

ρ q(j)
+ V1t (2.50)

It is an average value used as before to calculate V2 (and β2, W2) and, with it, the total-
pressure:

Pt2 = P2 +
1

2
ρ V 2

2 (2.51)

Radial equilibrium

At this point, a check on radial equilibrium is also performed to assess the pressure
gradient developing radially along the rotor blade:

Ptip − Phub = ρ V 2
2t ln

(
Dt

Dh

)
(2.52)

Losses related to kinetic energy

The last source of losses that remains to be evaluated is related to the kinetic energy of
the air flow after the rotor.

The lost power due to it is

Pkin = ρ q(j)
V 2
2

2
(2.53)
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Efficiency evaluation

At each timestep, the efficiency is determined by the ratio of useful power output to the
total power available in the airflow passing through the turbine:

η =
Puse

Puse + Pkin + Plost

(2.54)

It’s important to note that during the total-drag condition, the tangential force Ft (and
consequently Puse) are negative. Because of this, for analytical reasons, efficiency takes
on a negative value.

Physically, it makes sense to consider the efficiency equal to zero during that phase of the
period because the turbine is not producing power, and it’s moving only due to inertia.

Overall quantities

The useful power produced during the period is obtained by summing the contributions
of power produced at each time step. Since it is a time-varying quantity, it is good to
assess that the useful power produced by the turbine is the average value over the period:

Puse tot =

∑np−1

j=1 (Puse j)

np

(2.55)

The plant’s efficiency is finally assessed by comparing the integral value of the turbine’s
useful power with the available power from the OWC:

ηoverall =
Puse tot

Pa owc

(2.56)

At this point, the part of the model that allows analyzing the rotor’s behavior is concluded.



40 2| The model

2.3. Addition of VIGV

The idea is to add two rows of stator blades, one upstream and one downstream of the
rotor as shown in fig. 2.5. The key feature of these two blade sets is their ability to adjust
their angle of incidence relative to the oncoming airflow through a control law.

Figure 2.5: Structure of the turbine with the addition of the upstream and the downstream
stators.

The primary role of the upstream stator (S1) is to receive the airflow and redirect it
toward the rotor (R) with improved characteristics. The purpose of this component is to
prevent a potential stall of the rotor and to minimize the total drag condition as much as
possible, recognizing that this condition cannot be entirely eliminated.

For what concerns the downstream stator (S2), its purpose is to minimize the kinetic
energy of the flow at the machine’s exit.

Since the turbine is integrated into an OWC system, as mentioned earlier, air flows through
it first in one direction and then in the other. Therefore, it is essential for the problem
to be symmetric: the two rows of stationary stator blades must be identical. Indeed, one
set of blades must perform its role during the first operative cycle, but when the cycle
reverses, it must act like the other one.

Considering all these aspects, it is possible to see a qualitative representation of the whole
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turbine in fig. 2.6:

Figure 2.6: Qualitative visualization of the Wells turbine with two rows of VIGV

2.3.1. About the stators

The geometry of the stators must be chosen consistently with the rotor geometry. They are
just added to the rotor to improve its performance, so parameters such as diameters and
blade length must be the same. The parameters not constrained by the rotor’s geometry
include blade geometry (which must still be symmetric) and two of the following: the
number of blades, chord, and solidity. To minimize the losses generated by the stators,
flat plates are used for the following reasons:

• The two rows of stators only need to deflect to correct critical conditions during
the operational cycle; the rest of the time they are at zero incidence, and with an
almost negligible drag coefficient in that condition they do not introduce significant
losses to the machine.

• A row of flat plates can deflect by considerable angles before the profile losses in-
crease too much; for the stators, a maximum rotation is imposed to ensure this
phenomenon does not occur.
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• When the wave reverses its motion, and the two stators have to swap their roles,
the flat plates should not undergo particularly high rotations on themselves since
the leading and trailing edges are the same.

In this context, it is beneficial to reference the work of Coppinger & Swain [11]. Their
study focuses on a variable inlet guide vane system (VIGV) positioned upstream of a
compressor, analyzing their performance and losses as the angle of incidence varies, pro-
ceeding from the work of Handel [12]. Other studies about FP/VIGV are [13], [14], [15]
and especially the work performed by Frank (et al.) [16], since it contains a loss analys
analogue to [11]. With these studies, it is possible to draw some analogies for the case
under consideration in this work.

The VIGV system by Coppinger is structured in such a way as to enhance the performance
of a radial compressor. As seen in fig. 2.7, it is a system with eight blades positioned to
maintain a constant solidity equal to 1.

Figure 2.7: VIGV system, From Coppinger [11]

In order to adapt the Coppinger model to the Wells turbine featured in this study, several
considerations and modifications are necessary. Coppinger blades are attached to the
casing and point towards the shaft of the machine; the ratio between the hub diameter
and tip diameter is very low, and as a result, the blades end with a very small chord,
almost pointed.
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If one wishes to implement a VIGV system similar to that for a Wells turbine, where the
ratio between diameters is significantly higher (the shaft is very wide), the blades must
be increased in number to achieve a small chord near the hub; a small number of blades
would have higher chord near the hub and this would cause a larger clearance near the
hub.

So the following parameters are chosen:

• Number of blades: Nb = 20

• Solidity: σ = 1

Considering the reference geometry of the rotor (see Subsection 2.2.3), the stators can
have the following dimensions:

Lenght Value [m] Lenght Value [m]
Dh 0.577 ch 0.09
Dm 0.770 ct 0.12
Dt 0.962 ct 0.15
b 0.192 τ 0.005

Table 2.7: Stator dimensions

In fig. 2.8 a qualitative representation of the sized VIGV system is shown:

Figure 2.8: Qualitative visualization of the sized VIGV
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2.3.2. The upstream stator control law

As previously mentioned, the purpose of the first stator is to receive the airflow generated
by the oscillation of the waves and redirect it optimally towards the rotor.

The control law defining the stator adjustment must prevent the airflow from being dis-
charged onto the rotor at angles greater than the stall angle or less than the total-drag
angle, and also avoiding that the stator itself is involved in a stall phenomenon.

The result of applying this control law is to assign a tangential component (V1t) to the
absolute velocity V (which, when it impacts the machine, has only an axial component
Vx, known), to correct the velocity triangle on the rotor.

The limits within which the control law operates are:

• The stall angle of the rotor: according to the studies by Raghunathan [5], for a
flow field characterized by a Reynolds number on the order of 106, the stall angle
for a NACA0015 profile is βmax = 15 [deg]. This angle was also used to define the
turbine’s geometry.

• The total drag angle: this angle was defined performing calculations on the "rotor-
only" configuration. When the airflow impacts the rotor at an angle lower than
βmin = 5 [deg], the tangential force coefficient Ct becomes too low and then also
negative, and the turbine enters the total-drag condition.

• The stator’s maximum deflection angle: analyzing the results of the study of Cop-
pinger & Swain [11], a row of flat plates exposed to an airflow starts to generate
a significant total-pressure losses if it is inclined at angles greater than θ = 30

[deg], but they can be turned up to θ = 60 [deg] before critical phenomena (such as
blockage) happens.

Stall correction

To prevent the rotor from stalling, it is necessary to control the region of the blade that
stalls first among the others: the hub, where the incidence is higher than at any other
point, since there the Peripheral velocity (U) has the lowest value.

For each flow rate value, the angle of incidence at the hub is then calculated:

β1hub = arctan

(
Vx

Uhub

) (
where Uhub = ω

Dh

2

)
(2.57)
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If this angle is greater than the stall angle of the rotor, the stator is set to rotate by:

θS1 = arctan

(
V1t

Vx

)
(< 0) (2.58)

where the tangential component of the Absolute velocity, wich is imposed, is:

V1t = ω
Dh

2
− Vx

tan (βmax)
(< 0 , opposed to U) (2.59)

and the Absolute velocity is:

V1 =
√

V 2
x + V 2

1t (2.60)

This angle coincides with the angle of incidence of the stator itself, as the airflow arrives
with only an axial component, Vx. For the same reason, the upstream stator has no radial
dependence: every section of the stator blade has the same incidence.

This way, the angle of attack on the rotor is reduced by a sufficient amount to prevent it
from stalling. The result of this control law is depicted in fig. 2.9:

Figure 2.9: S1: Stall control

The rotation angle is imposed to never be greater than θmax, to avoid to increase too
much the losses related to the upstream stator.
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Minimum incidence verification

While controlling the incidence at the hub to reduce the angle of incidence on the whole
rotor blade, it is necessary to ensure that the blade tip has not been brought into total-drag
condition.

The tip is the location where the incidence is the lowest, and potentially there could be
the risk to send it below the angle βmin.

This must be avoided, as the final part of the blade is the one that sustains the major
loads and is responsible for the majority of the power produced.

Therefore, a check is performed on the angle at the tip:

β1tip check = arctan

(
Vx

ω Dt

2
− V1t

)
(2.61)

If this angle is less than βmin, then the following quantities are redefined:

θS1 = arccos

 Vx√
V 2
x +

(
ω Dt

2
− Vx

tan(βmin)

)2
 (2.62)

which is the stator maximum deflection that ensures an incidence of βmin on the rotor
tip: if θS1 is higher than this value, the tip enters the total-drag condition.

V1t = Vx tan (θS1) (2.63)

V1 =
√
(V 2

x + V 2
1t) (2.64)

Total-drag correction

To prevent the rotor from entering the total-drag condition, it is necessary to control the
region of the blade that is subject to the lowest incidence among the others: the tip, since
there the Peripheral velocity (U) has the highest value.

For each flow rate value, the angle of incidence at the tip is then calculated:

β1tip = arctan

(
Vx

Utip

) (
where Utip = ω

Dt

2

)
(2.65)



2| The model 47

If this angle is lower than the total-drag angle of the rotor, the stator is set to rotate by:

θS1 = arctan

(
V1t

Vx

)
(> 0) (2.66)

where the tangential component of the Absolute velocity, wich is imposed, is:

V1t = ω
Dt

2
− Vx

tan (βmin)
(> 0 , directed as U) (2.67)

and the Absolute velocity is:

V1 =
√
V 2
x + V 2

1t (2.68)

This way, the angle of attack on the rotor is increased by a sufficient amount to prevent
it from be in total-drag, remembering that this condition can’t be avoided completely on
the whole period, but only postponed or corrected.

The result of this control law is depicted in fig. 2.10:

Figure 2.10: S1: Total-drag control

(Note: actually, the rotor goes into total drag for a βmin < 3, but a slightly higher angle
has been set as βmin to increase the power extraction by the rotor in that period phase
where the speed is very low.)
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Maximum incidence verification

While controlling the incidence at the tip to increase the angle of incidence on the whole
rotor blade, it is necessary to ensure that the hub has not been brought into stall condition.

This situation is not as critical as the one before: the crucial thing is that the tip goes
into total-drag as late as possible, even at the cost of stalling the hub. In any case, it is
better to try to avoid both situations, so the check is still performed.

The hub is the location where the incidence is the highest, and potentially there could be
the risk to send it above the angle βmax.

Therefore, a check is performed on the angle at the tip:

β1hub check = arctan

(
Vx

ω Dh

2
− V1t

)
(2.69)

If this angle is greater than βmax, then the following quantities are redefined:

θS1 = arccos

 Vx√
V 2
x +

(
ω Dh

2
− Vx

tan(βmax)

)2
 (2.70)

which is the stator minimum deflection that ensures an incidence of βmax on the rotor
hub: if θS1 is lower than this value, the hub enters the stall condition.

V1t = Vx tan (θS1) (2.71)

V1 =
√
(V 2

x + V 2
1t) (2.72)

The main phase of the operative cycle

During the main phase of the operating cycle, where there are no phenomena to correct,
the stator has zero incidence and does not modify the flow direction. Therefore, the main
outputs of the control law are set to the value:

• θS1 = 0

• V1t = 0
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• V1 = Vx

The next step is to analyze the losses related to the upstream stator.

2.3.3. Losses related to the upstream stator

While the upstream stator is introduced to enhance machine performance, it is also a
source of losses, notably profile losses and clearance and secondary flows losses.

The assessment of losses related to the upstream stator relies on calculating the Total-
pressure loss coefficient, Ytot S1, which is the sum of the profile losses contribution (Yp S1)
and the clearance & secondary flows losses contribution (Yc S1).

The losses, quantified by the total-pressure loss coefficient, are discharged onto the static
pressure jump that occurs across the stator row.

S1 Profile losses

For the calculation of the total-pressure loss coefficient for profile losses in a row of flat
plates, reference is made to the work of Coppinger & Swain [11], which provides its trend
as a function of the angle of incidence, as shown in fig. 2.11:

Figure 2.11: Total-pressure loss coefficient versus incidence angle.
From: Coppinger [11]

The trend of Yp for flat plates is then reconstructed pointwise and approximated with a
fourth-order polynomial function, whose coefficients are:
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Coefficient Value
A0 0.020606060606061
A1 -0.000338023088023
A2 0.000114393939394
A3 -0.000001414141414
A4 0.000000030303030

Table 2.8: Coefficients of the polynomial approximating Yp

At each timestep, the angle of incidence of S1 is known, and consequently, the value of
Yp S1:

Yp S1 = A4 θ
4
S1 + A3 θ

3
S1 + A2 θ

2
S1 + A1 θS1 + A0 (2.73)

S1 Clearance losses

When the stator rotates to redirect the airflow, a portion of it is not processed by the
blades due to clearance. To evaluate Yc S1, when the stator has an incidence different from
zero, the correlation by Dunham & Came [10] is used (both the contribution of clearance
and secondary losses are considered):

Yc S1 =
cs
b

[
0.0334

1

cos (θS1)
+B

(
k

cs

)0.78
](

cL S1

1/σs

)2
1

(cos (θS1 m))3
(2.74)

where the lift coefficient is:

cL S1 = 2
1

σs

| tan (θS1)| cos (θS1 m) (2.75)

and the mean angle is:

θS1 m = arctan

(
tan (θS1)

2

)
(2.76)

Also, the parameter B is chosen to be B = 0.47 since the blades are unshrouded.

When the stator row has an incidence of of 0 [deg], the total-pressure loss coefficient
related to the clearance & secondary flows is set to be null since the flow path is not
influenced by the clearance.
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Pressure evaluation after S1

Once YS1 tot is known, it is possible to calculate the values of the static pressure and the
total pressure at section 1 (between the upstream stator and the rotor):

Pt1 = Pt0 − Ytot S1
1

2
ρ V 2

x (2.77)

P1 = Pt1 −
1

2
ρ V 2

1 (2.78)

At this point, the analysis of the upstream stator is completed.

2.3.4. The downstream stator control law

The downstream stator is located after the rotor, between section 2 and 3. Unlike the
upstream stator, its purpose is to slow down the flow exiting the rotor as much as possible
to minimize losses due to the kinetic energy associated to the flow leaving the machine.

At the same time, this component must accomplish its task while avoiding significant
losses. This implies that it should rotate as much as possible to oppose the airflow but
without stalling, hence without exceeding θmax (the same limit angle imposed on the first
stator).

The angle of the absolute velocity at the rotor exit is calculated:

α2 = arcsin

(
V2t

V2

)
(2.79)

This quantity coincides with the angle of incidence of the downstream stator, in case it
is straight. The control is then performed on this angle, as when its absolute value is
greater than θmax, it causes the stator to stall.

When this condition is met, the stator is forced to rotate on itself by:

θS2 = α2 + θmax (if α2 < 0) (2.80)

or by:

θS2 = α2 − θmax (if α2 > 0) (2.81)
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When the stator is rotated, its effective incidence angle is:

δs2 = θS2 − α2 (2.82)

For a clearer visualization, consider fig. 2.12:

Figure 2.12: S2: Stall controll

The Absolute velocity exiting the downstream stator is:

V3 =
V x

cos (θS2)
(2.83)

and its tangential component is:

V3t = V3 sin (θS2) (2.84)

The next step is to analyze the losses related to the downstream stator.
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2.3.5. Losses related to the downstream stator

The calculation of losses for the downstream stator proceeds similarly to those related to
the upstream stator, given that the two rows of blades are identical.

S2 Profile losses

For profile losses, reference is always made to the studies of Coppinger & Swain [11], as
done for S1. The profile losses for S2 at each time step are:

Yp S2 = A4 δ
4
S2 + A3 δ

3
S2 + A2 δ

2
S2 + A1 δS2 + A0 (2.85)

In this case, it is important to note that the incidence of S2, which follows the flow
downstream of the rotor, is always constant and is the maximum allowed. Consequently,
these losses (Yp S2) are always higher than those of S1 and are the same at each time step.

S2 Clearance losses

With the same precautions taken for S1, the clearance losses of S2 are evaluated at each
time step with the Dunham & Came correlation [10]:

Yc S2 =
cs
b

[
0.0334

1

cos (δS2)
+B

(
k

cs

)0.78
](

cL S2

1/σs

)2
1

(cos (δS2 m))3
(2.86)

where the lift coefficient is:

cL S2 = 2
1

σs

| tan (δS2)| cos (δS2 m) (2.87)

and the mean angle is:

δS2 m = arctan

(
tan (δS2)

2

)
(2.88)

In this case as well, the losses are expected to be higher than those of S1.

Losses related to kinetic energy

The downstream stator has a clear influence on the losses related to the kinetic energy at
the exit of the machine.
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The lost power is:

Pkin = ρ q(j)
V 2
3

2
(2.89)

This value increases with the exit velocity (V2 if there is only the rotor, V3 with the
stators): that is why the role of the downstream stator is to slow down the flow at the
exit, as shown in fig. 2.13

Figure 2.13: S2: reduction of kinetic energy at the exit

Pressure evaluation after S2

Once YS2 tot, sum of Yp S2 and Yc S2, is known, it is possible to calculate the values of the
static pressure and the total pressure at section 3 (after the downstream stator):

Pt3 = Pt2 − Ytot S2
1

2
ρ V 2

2 (2.90)

P3 = Pt3 −
1

2
ρ V 2

3 (2.91)

At this point, the analysis of the upstream stator is completed.

2.3.6. The diffuser

The last component of the machine is a diffuser, which aims to restore the air flow pressure
to the ambient level. Since the machine is axial, it has a conical shape. Its pressure
recovery factor can be assumed:

cp =
P4 − P3

Pt3 − P3

= 0.75 (2.92)
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So far, the pressures have been calculated based on the reference ambient pressure. How-
ever, the analyzed period begins from the moment the wave is at maximum speed, at
which point the chamber is already pressurized. To understand the true value of pres-
sures at each point in the machine, it is necessary to define the error in the calculation
of the pressure exiting the diffuser compared to the value at which it is expanded: the
ambient pressure.

The error made on the pressures is assessed as:

Perr = Patm − P4 (2.93)

At this point, the static and total pressure at each section of the machine are updated by
adding the error made on them to obtain their true value:

Ptrue = P + Perr (2.94)

Pt true = Pt + Perr (2.95)

2.3.7. An alternative to Flat Plates

An alternative that has been considered instead of flat plates is to use NACA0012 airfoils.
The geometry described earlier remains the same; the only change is in the blade sections.

Pros and cons

The reasons for analyzing this alternative are:

• When they are rotated at significant angles, NACA0012 is expected to react aero-
dynamically better than flat plates, having a much less pointed leading edge.

• In the literature, there is much more data analyzing the behavior of NACA0012 com-
pared to flat plates. These studies range from individual profile analyses ([17],[18])
to studies involving high/low span blades/wings ([19]) and also cascade of blades
([20],[21]).

Disadvantages are:

• When placed at zero incidence, NACA0012 profiles certainly generate more losses
compared to flat plates, through which the flow passes almost unchanged.

• Using NACA0012 profiles, when the wave reverses its motion and the two stators
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must exchange their roles, the blades must undergo a 180-degree rotation on them-
selves to have the correct orientation, since (unlike flat plates) the leading and
trailing edges are different. This would undoubtedly lead to a more complex (and
expensive) mechanism in the implementation of the machine.

Losses evaluation

The trend of the drag coefficient for a series of NACA0012 profiles as a function of the
angle of attack and solidity is available([20]), as shown in fig. 2.14:

Figure 2.14: Cd vs α for a NACA 0012 cascade

So, for what concerns the profile losses, it is possible to evaluate the total-pressure loss
coefficient through the following relationship between it and the Cd:

cD =
s

c
Y

cosα3
m

cosαout
2

(2.96)
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2.4. The model - constant solidity

Until now, the complete model has been described. As anticipated, the code allows the
user to decide whether to perform the analysis only on the rotor or on the rotor between
the two stators. Another choice provided to the user is to perform the analysis in a
particular case where the rotor is not characterized by constant chord, as analyzed so far,
but by constant solidity.

2.4.1. Considerations

The choice to analyze this geometry as well arises from the following considerations:

• To verify if maintaining the optimal (at midspan) solidity value, as defined by Raghu-
nathan [5], constant throughout the machine has any advantage compared to the
canonical case with constant chord.

• In the case of constant chord, the solidity is high at the hub: a high root of the blade
could obstruct too much the incident flow. This phenomena should be reduced with
constant solidity since the blade root becomes smaller.

• The final part of the blade is the region responsible for producing the majority of the
useful power. In the case of constant solidity, this region would be more extensive
and produce more power than the constant-chord case.

Two disadvantages that could be encountered using this solution are:

• There could be a considerable increase of the drag force in the final region of the
blades.

• Due to the increased forces near the blade tip, there could be structural integrity
issues at the root due to the reduced section of the root of the blade at the hub.

2.4.2. Differences from the constant-chord model

The sizing of the turbine does not undergo variations, as it is always based on values at
the midspan. Only the blades present a different shape, as showed in fig. 2.15:
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Figure 2.15: Wells rotor with constant solidity

In the rotor analysis, instead of considering solidity varying with the radius, the solidity
at the midspan is always used, while the chord varies:

c =
σ 2π drup

Nb

(2.97)

Furthermore, no correction is applied to solidity in the coefficients of the forces Fx and
Ft. The ratios rCx and rCt are always constant (at the value of solidity at the midspan)
with the value:

• rCx = 1.25

• rCt = 1.3

As in the case of constant chord, this solution can be evaluated on its own or enriched by
the presence of the two stators. In this way, once the geometry of the rotor is fixed, it is
possible to analyze and compare the four different configurations:

• Rc: Rotor (with constant chord)

• Rs: Rotor (with constant solidity)

• Rc + V IGV : Rotor (with constant chord) and the stators

• Rs + V IGV : Rotor (with constant solidity) and the stators

under the influence of waves of different intensity.
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The role of CFD in this work is to validate the model described in the previous chapter.
Specifically, the conducted simulations aim to reinforce certain assumptions and provide
a more realistic guideline in the analysis of Wells turbines.

The simulations were conducted with Ansys - CFX.

3.1. Simulations on the rotor

The rotor tests were conducted as follows: The behavior of the turbine is analyzed under
the influence of a wave of intensity such as to bring the hub almost to stall. In particular,
simulations are conducted on the mid and tip hub sections in such a way that the hub ex-
periences angles ranging from total drag to stall (angles on other sections will be smaller).
In this way, it is possible to assess various aspects of the turbine’s behavior under the
influence of a range of angles encountered during its operational period: In this case, the
goal is to evaluate the axial and tangential force coefficients, as well as the angle of the
flow exiting the rotor.

3.1.1. Problem setting

CFX-TurboGrid

To conduct these simulations on the rotor, three meshes were created for the three values
of solidity. Each mesh is 2D and consists of 100000 elements.

TurboGrid is not able to generate a mesh for a NACA0015 oriented at 90 degrees: the
problem arises from the fact that it can’t identify the leading edge and the trailing edge
according to the scheme it operates with (which in this case would coincide respectively
with the entire upper and lower part of the profile).

The solution to this problem is transferred to the CFX pre-settings, but firstly, the mesh
is created for a profile oriented at zero incidence in CFX-TurboGrid, as shown in fig. 3.1,
where the axis of rotation is Z:
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Figure 3.1: Mesh for a NACA0015 airfoil at zero incidence

CFX Pre-processing

In CFX-PRE the Inlet, Outlet, and both Periodic surfaces are redefined to apply the
proper boundary conditions. The curvature of the geometry is not in the right direction,
but this fact is negligible since the geometry is in 2D.

As shown in fig. 3.2, the Inlet BC is imposed on the (old) Periodic surface PER1, The
Outlet BC is imposed on the (old) Periodic surface PER2, and a Rotational periodicity
is imposed between the (old) Inflow and (old) Outflow surfaces.

Figure 3.2: Definition of Boundary conditions on the proper surfaces
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Normally, to operate in 2D in CFX, the dimensions of the machine are not real (a radius
is set at an unrealistic high value to have minimal curvature) but must be consistent with
the real case, especially the solidity must be correct. Usually, it is redefined by increasing
the number of blades so that there is a correct proportion between the real case and the
2D case, but in this case, this is not possible: changing the number of blades increases
the distance between Inlet and Outlet and not between the periodic surfaces.

To have the correct solidity, it is necessary to build correctly the .crv files of the hub
and shroud from which the geometry is created, to set the distance between the periodic
surfaces.

To have the desired distance between Inlet and Blade and between Blade and Outlet, one
must act on the choice of the number of blades.

In particular, a distance of three times the rotor chord is imposed between the Blade
and the Outlet, to map correctly the flow behaviour. There will be the same distance
between the Inlet and the Blade (this is not necessary but it is forced due to the limitation
previously described).

For what concerns the Boundary conditions:

• Inlet: Total-pressure and Static Temperature are imposed.

• Outlet: Static Pressure is imposed

• Blade: No-slip wall

• Hub and Shroud: Free-slip wall

• Periodic surfaces: Rotational periodicity

CFX-Solver

Each simulation reach convergence before the maximum number of iteration imposed
(2000), the residuals descend until the set value of 5 · 10−6.

It makes sense to start a simulation from the results of the previous one, so that com-
putation times are reduced. This choice is possible since, with the same geometry and
solidity, the only variable is the flow rate (defined by the boundary conditions at the inlet
and outlet).

As an example, for the set of simulation related to the hub solidity, the residual history
for mass and momentum (fig. 3.3), energy (fig. 3.4) and turbulence (fig. 3.5) are shown
(each main peak corresponds to the beginning of one simulation):
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Figure 3.3: Mass and Momentum residuals

Figure 3.4: Energy residuals

Figure 3.5: Turbulence residuals
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CFX Post-processing

In the post-processing phase, results are extracted. In addition to checking the conver-
gence of residuals, which is a necessary but not sufficient condition for the success of
the simulation, it is advisable to analyze the flow field to ensure that the results make
physical sense. As an example, the flow field around the hub is reported in fig. 3.6 for the
characteristic angles of the beginning, middle, and end of the period are shown.

The hub is chosen as an example because it is the region where separation/stall phe-
nomena occur first: simulations around the hub are the ones in which convergence is
more challenging since a steady-state simulation is unable to accurately analyze turbu-
lence when its characteristic scale increases too much. In any case, cases up to stall are
being analyzed, and not beyond, so simulations of this kind are appropriate: an onset of
separation around the hub at high angles is expected.

Figure 3.6: Velocity flow field at the hub

At the beginning of the period, the profile is subjected to the very low incidence angle of
1.2 [deg] and is entirely in total-drag condition: the force on it is expected to be opposite to
the direction of motion. At the midpoint of the period, there is an incidence of 7.2 [deg];
during normal operating conditions, there are no characteristic phenomena to analyze.
Separation phenomena starts to manifest on the profile’s tail at an angle of 14.2 [deg],
not far from the stall angle (15 [deg]).
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The pressure field, visible in the figure fig. 3.7, is consistent with the velocity field:

Figure 3.7: Pressure field at the hub

At this point, it can be stated that the simulations have converged, and it is possible to
extract and analyze the quantities of interest.

3.1.2. Force coefficients evaluation

Choosing to reconstruct the trends of force coefficients is aimed at validating the starting
point from which this study proceeds: Raghunathan’s work [5].

The reason to deepen this study is that it involves an analysis that starts with a study
of individual 2D profiles, to which a corrective and coefficient is subsequently applied to
predict the effect of solidity. With CFD a significant deviation from the old model is not
expected, but it allows for the simultaneous evaluation of various aspects, constituting a
more realistic assessment.

Through CFD analysis, in the post-processing phase it is possible to extract the axial and
tangential force values for each case, which are then made dimensionless to obtain their
respective coefficients:

Cx =
Fx

1
2
ρ W 2

1 c dR
(3.1)
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Ct =
Ft

1
2
ρ W 2

1 c dR
(3.2)

where dR is the width of the domain.

The plots in fig. 3.8 and fig. 3.9 show the variation of the axial force coefficient and
tangential force coefficient with respect to the incidence angle, for different solidity values.

The force coefficients increase with the angle of incidence and are higher for high solidity:

Figure 3.8: Cx versus β1 and solidity effect
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Figure 3.9: Ct versus β1 and solidity effect

The fact that force coefficients are higher for high solidity should not be confused with
the fact that for the force developed on the blades, it is the opposite. At the tip, where
the incidences are the lowest, the (relative) velocity W on the blade is much higher than
at the hub. This is why at the tip the forces are greater even though their coefficients are
lower than those at the hub.

The obtained data is comparable to that of the initial model. In figure fig. 3.10 and
fig. 3.11 the correspondence between the values of the coefficients of the model and those
obtained with CFD are reported. The difference between CFD and the model is quite
small, indicating that the initial model is reliable (although CFD provides a more accurate
result). Quantities related to the midspan solidity are chosen as an example:



3| CFD analysis 67

Figure 3.10: Cx versus β1 at midspan: comparison between the model and CFD

Figure 3.11: Ct versus β1 at midspan: comparison between the model and CFD
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3.1.3. Discharge angle evaluation

Another interesting aspect to verify consist of evaluating the discharge angle of the rotor:
in the model, it is calculated from the Euler work, but for a Wells turbine this method is
unstable during the period when the flow tends to zero (which is why other methods are
used to calculate this quantity during that phase).

To do this, in the post-processing phase, a plane is created at a distance equal to two
times the thickness of the rotor profile, on which the average axial and tangential velocity
components are calculated.

From these values, it is possible to determine the discharge angle of the rotor and evaluate
the effect of solidity on this quantity, as shown in fig. 3.12

Figure 3.12: β2 versus β1 and solidity effect

At this point, it is possible to compare the obtained values with those of the implemented
model. The model is quite accurate in evaluating the angles in the whole period, noting
that in the total-drag phase it deviates slightly from the expected values. It makes sense
to assert that CFD is a more accurate reference in evaluating flow exit angles, especially
in the total-drag phase especially.
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The approximation used in CFD involves considering ’average’ values on the plane created
downstream of the rotor. However, the total-drag phase is the least influenced by this
approximation, as the flow around the rotor is very similar to itself and is homogeneous
across the entire motion field. Near stall, the flow field is less uniform and more het-
erogeneous, but the results are extremely similar to those of the model. Therefore, this
assumption does not make the analysis less accurate, and CFD can serve as a good guide
for mapping the angles downstream of the rotor.

As an example, a comparison for the midspan values are shown in fig. 3.13, as before the
da:

Figure 3.13: β2 versus β1 at midspan: comparison between the model and CFD
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3.2. Simulations on the stators

The simulations on the stator cascade are conducted with the aim of verifying that it is
capable of directing the airflow onto the rotor in the best possible manner.

Regarding the blade profiles, three are taken into consideration: a Naca0012, a thin flat
plate, and a thick flat plate. The behavior of each profile is analyzed for a set of angles
of incidence that allow for conducting steady-state simulations, so up to the formation of
large scale turbulence/separation phenomena.

3.2.1. Setting

The simulations are set up similarly to those of the rotor, with the difference that the
grids can be created and managed conventionally.

For each case, the .crv files of hub, profile and shroud are created to define the geometry
and a grid of nearly 100000 cells is generated with TurboGrid, with higher density near
the trailing edge and the walls. The grids for the three geometries in the zero-angle-of-
incidence cases are shown in figure fig. 3.14:

Figure 3.14: Meshes for the three stator profiles

Every geometry is tested at the same solidity and with the same number of blades: re-
spectively σ = 1 and Nb = 20.
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For what concerns the boundary condition in CFX-PRE:

• Inlet: Normal Speed and Static Temperature are imposed.

• Outlet: Static Pressure is imposed

• Blade: No-slip wall

• Hub and Shroud: Free-slip wall

• Periodic surfaces: Rotational periodicity

The residuals of all quantities settle on the target value of 10−6, ensuring the convergence
of the simulations.

3.2.2. Post-processing

In all analyzed cases, the array of blades, inclined at a certain angle, is subjected to a
flow with only axial absolute velocity.

The relevant quantities extracted are the absolute velocity and its tangential component
downstream of the stator cascade. With these two data, a clear understanding of the flow
discharged onto the rotor is obtained.

Additionally, the total pressure at the outlet is calculated in order to compute the total-
pressure loss coefficient through the stator.

NACA0012

This geometry has been tested at the following set of incidence angles: [0 5 10 15 20
25]. Up to 20 [deg], the flow field remains smooth without separation, as shown in figure
fig. 3.15.

Attempting to further incline the profile (25 [deg]), the simulation does not converge
because turbulent phenomena reach a scale so high that a steady-state simulation cannot
close the problem. This phenomenon is consistent with the theoretical model [20] from
which the data were extracted to calculate the drag coefficient, where the cascade is also
studied up to the incidence of 20 [deg].
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Figure 3.15: Streamline across a cascade of NACA0012 at θ = 0, 10, 20 [deg]

The figure fig. 3.16 shows the absolute velocity at the outlet and its tangential component
as a function of the rotation of the blade row (which corresponds to the angle of incidence
relative to the airflow). The data are calculated starting from the axial and tangential
components of the velocity downstream of the airfoil, on a plane located at 1/4 chord
from the trailing edge. The error compared to the starting model is very small, but CFD
provides a more accurate result.

Figure 3.16: V1 and V1t versus θ for a cascade of NACA0012 with σ = 1

Furthermore, the total-pressure loss coefficient is presented in figure fig. 3.17. It is calcu-
lated by extracting the total pressure downstream of the airfoil and the static and total
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pressures upstream. The CFD results deviate slightly from the model: this is because, in
addition to the higher sensitivity of Y when calculated with respect to the inlet pressures,
the drag coefficient of the model (in the absence of other data) belonged to a blade array
with a solidity slightly lower than the unit solidity examined with CFD, that is still a
more accurate result.

Figure 3.17: Total-pressure loss coefficient for a cascade of NACA0012 with σ = 1

Note about flat plates

For flat plates there is not a comparable amount of data/studies available as for profiles
like NACA.

In particular, whenever a study is conducted on an array of VIGV, data about the profiles
or the geometry that makes up the flat plates belonging to those cascades is never pro-
vided. This is because such studies are always focused on improving the performance of
another machine (often a radial compressor), and each study uses specific and optimized
blades for the particular case.

Moreover, it is very unlikely that flat and symmetrically profiled blades in two directions,
as required in this work, are used in those cases, since having blades with an aerodynamic
profile leads to better performance for those situations.

This work relies on Coppinger’s reference [11] because it is the case with blades having a
profile more similar to the needs of this study, even though optimization has been done on
them with filing at specific points on the profile and so determining the exact geometry
is not possible.

So, the two geometries used for the next two cases were chosen in this way:
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• Thin flat plate: This has been composed in such a way as to be as similar as
possible to those of Coppinger [11]. In particular, it is a rectangular shape with a
thickness/length ratio of 0.04, while the leading and trailing edges are composed of
two semi-circles (not ellipses to avoid making them even sharper, further promoting
flow separation on the upper surface).

• Thick flat plate: analyzing the results of the thin flat plate (reported below), it was
decided to test also a thicker geometry, created to try to combine the positive aspects
of the NACA0012 while maintaining a symmetric geometry in two directions. With a
thickness-to-chord ratio of 0.08, a flat plate is composed whose leading and trailing
edges are both the tip of a NACA0012 (from the leading edge to the maximum
thickness). The obtained geometry turns out to be quite similar to that of another
study [15] conducted on a VIGV system, whose blades have an almost identical
length-to-thickness ratio (even if they are not symmetric in two directions).

In figure fig. 3.18, the chosen geometries for this work (left) are shown alongside their
closest counterparts found in the literature ( [11] up right and [15] down right):

Figure 3.18: Similarity between the chosen geometries for FP and literature ([11],[15])

Thin FP

This geometry has been tested at the following set of incidence angles: [0,10,20,30,40].
The separation phenomena, as shown in figure fig. 3.19, are already evident at an incidence
of 20 [deg] and become very intense towards 40 [deg], up to where steady-state simulations
are able to complete calculations by reaching convergence.
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Figure 3.19: Streamline across a cascade of thin FP at θ = 0, 10, 20, 30, 40 [deg]

The figure fig. 3.23 shows the absolute velocity at the outlet and its tangential component
as a function of the rotation of the blade row (which corresponds to the angle of incidence
relative to the airflow). The data are calculated starting from the axial and tangential
components of the velocity downstream of the airfoil, on a plane located after the turbu-
lent region. The error in comparison to the model becomes quite significant for higher
incidences.

Figure 3.20: V1 and V1t versus θ for a cascade of thin FP with σ = 1

Furthermore, the total-pressure loss coefficient is presented in figure fig. 3.21. It is cal-
culated by extracting the total pressure downstream of the airfoil and the static and
total pressures upstream. The CFD results deviate significantly from the model. This is
definitely due to using a geometry that is not sufficiently similar to that of the model.
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The high sensitivity of the flow to the leading edge shape influences the entire downstream
flow field generating high losses. In general, a row of flat plates, due to their pointed
geometry, separates earlier than a row of airfoils, but the turbulent zone (at the same
angle of attack) is smaller and more stable. Therefore, it makes sense to work to optimize
the profile of the flat plates to minimize Y as much as possible and prefer them to airfoils
for this application.

Figure 3.21: Total-pressure loss coefficient for a cascade of thin FP with σ = 1

Thick FP

This geometry has been tested at the following set of incidence angles: [0,5,10,15,20]. As
shown in fig. 3.22, the behaviour is similar for the cascade of NACA0012.

Figure 3.22: Streamline across a cascade of thick FP at θ = 0, 10, 20 [deg]
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The figure fig. 3.23 shows the absolute velocity at the outlet and its tangential component
as a function of the rotation of the blade row (which corresponds to the angle of incidence
relative to the airflow). The data are calculated starting from the axial and tangential
components of the velocity downstream of the airfoil, on a plane located at 1/4 chord
from the trailing edge. The error compared to the starting model is the smallest of the
three cases.

Figure 3.23: V1 and V1t versus θ for a cascade of thick FP with σ = 1

Furthermore, the total-pressure loss coefficient is presented in figure fig. 3.24. It is calcu-
lated by extracting the total pressure downstream of the airfoil and the static and total
pressures upstream. The thick flat plate has a much more acceptable behavior than the
thin flat plate for what concerns the losses generation, but has the same incidence limit
of a NACA0012 cascade, with the additional benefict to be symmetric in two directions.

Figure 3.24: Total-pressure loss coefficient for a cascade of thick FP with σ = 1
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3.3. Simulations on the complete configuration

In the preceding sections, the behavior of the rotor and stators has been analyzed indi-
vidually. At this point, it is possible to test them together. The analysis is conducted at
the midspan and a NACA0012 array is used as the stator.

The turbine, under the influence of a wave with an amplitude greater than the one used
to size its geometry, will experience three significant moments, analyzed in this section:

• Case 1: the inlet velocity is high (V x = 27 [m/s]), and the upstream stator is
rotated to reduce the incidence on the rotor and avoid stall.

• Case 2: the inlet velocity is moderate (V x = 17 [m/s]), with no corrective phenom-
ena, so the upstream stator is set to zero incidence relative to the flow.

• Case 3: the velocity is low (V x = 7 [m/s]), the turbine is in total drag phase, so
the upstream stator is rotated to increase the incidence on the rotor.

In all three cases, the downstream stator is positioned to avoid separation phenomena on
itself.

3.3.1. Setting

As described in the preceding sections, the stator and rotor grids are curved in two different
directions, making it impossible to generate an interface (Mixing Plane) between them.
Therefore, simulations are conducted sequentially, first S1, then R, and finally S2.

The quantities at the outlet of each component are used as boundary conditions at the
inlet of the next component. In particular:

• S1:

– Inlet: Normal speed and Static Temperature

– Outlet: Static Pressure

• R:

– Inlet: Cartesian Velocity Components (from S1 Outlet) and Static Tempera-
ture

– Outlet: Static Pressure

• S2:

– Inlet: Cartesian Velocity Components (from R Outlet) and Static Temperature
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– Outlet: Static Pressure

Also, for every piece:

• Blade: No-slip Wall

• Hub and Shroud: Free-slip wall

• Periodic Surfaces: Rotational Periodicity

3.3.2. Post-processing

During the post-processing phase, the following data is extracted for each section of
the turbine: Absolute velocity (fig. 3.25), Static pressure (fig. 3.26) and Total pressure
(fig. 3.27).

The graphs also include the values predicted by the model: comparing the data with that
of the model, it can be observed that the incurred error is quite low.

Figure 3.25: Absolute Velocity in every section
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Figure 3.26: Static pressure in every section

Figure 3.27: Total pressure in every section
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Moreover, coefficients of axial and tangential forces acting on the rotor are also extracted
and reported for all three cases in fig. 3.28:

Figure 3.28: Axial and Tangential force coefficients on the rotor
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4| Parametric Analysis

This chapter presents the parametric analysis that describes the turbine’s behavior under
the influence of various types of waves, and its results.

The four geometries analyzed in this study,

• Only rotor with constant chord

• Only rotor with constant solidity

• Rotor with constant chord and VIGV

• Rotor with constant solidity and VIGV

are tested with waves of different maximum amplitudes to understand which solutions are
better and what are the critical aspects.

The dimensions of the machine and the input data are specified in Chapter 2.

In the beginning, the behavior of the machine is analysed along the single period of three
characteristic waves with f = 0.1 [Hz]:

• The standard wave (a = 2 [m]): this is the wave used to size the turbine.

• a wave stronger by 25% (a = 2.5 [m])

• a wave weaker by 25% (a = 1.5 [m])

On these waves, the power production over the period, the incidence of the flow on the
rotor, and the control exerted on it (when needed) by the VIGV, are analysed.

Subsequently, the average power production is analysed across various waves of different
amplitudes.

The performance is analysed over a quarter of the period, since it is sinusoidal and subject
to temporal symmetry, from the moment when the velocity is maximum to the moment
when it is minimum.
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4.1. Effect of the standard wave

a = 2 [m]

This wave can be seen as an operational limit: the turbine has been sized based on its pa-
rameters, which means that when it encounters a wave of this type, the stall phenomenon
does not occur. The hub region, which is most affected by it, reaches the limit incidence
(without exceeding that value) when the air velocity induced by the wave is highest.
Waves stronger than this one lead to the stall of a portion of the blade or even the entire
blade.

As can be seen from fig. 4.1, in fact, the upstream stator does not come into play to reduce
the incidence on the rotor. It only activates during the total-drag phase (actually, a bit
earlier) to try to delay the onset of this phase and increase the power production in the
final part of the period, as visible in fig. 4.2.

Figure 4.1: Incidence at the hub (up) and at the tip (down) during the period of the
standard wave
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Figure 4.2: Orientation of S1 during the standard wave

For what concerns the power production during the period of the standard wave, the four
configurations are compared in fig. 4.3:

Figure 4.3: Power production during the period of the standard wave
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The four configurations have very similar behavior (so much that the solutions with the
stators perfectly overlap with those without them in the part of the period where they
are not acting). The constant solidity configuration is slightly better than the constant
chord one.

To define how effectively this power is generated, the efficiency parameter is used, whose
behavior is described in fig. 4.4:

Figure 4.4: Efficiency during the period of the standard wave

There are no significant changes between cases with only the rotor, while, as can be seen,
efficiency increases when the VIGV are present. This is because throughout the entire
period, the downstream stator is recovering some of the kinetic energy at the outlet, and
particularly, when activated, the upstream stator increases the power produced in the last
part of the period.

When the efficiency is zero, the turbine is in the total-drag phase, where it is the turbine
that performs work on the fluid, that is nearly stagnant, rotating only due to inertia.



4| Parametric Analysis 87

4.2. Effect of different waves

a = 2.5 [m]

This wave has an amplitude that is 25% higher than the standard one. Under the influ-
ence of this wave, during the first part of the period, the turbine is subject to the stall
phenomenon (and, of course, also to the of total-drag in the final phase). In this scenario,
the upstream stator comes into play to reduce the incidences during the initial part of the
period.

In fig. 4.5 the incidence history at the hub is reported:

Figure 4.5: Incidence at the hub during the period of a stronger wave

The configuration with only the rotor shows incidence angles well above the stall. The
upstream stator is capable of significantly reduce this phenomenon, keeping the rotor at
the limit incidence, avoiding critical situations for a good portion of the period during
which it would stall.

In the very early phase of the period, the VIGV cannot fully keep the angle below the
limit. This is due to the fact that a maximum rotation of 30 [deg] has been imposed,
although an optimized VIGV system may be able to handle much higher incidences, up
to 60 [deg] avoiding completely the stall.
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It’s also possible to observe an attempt to correct the total drag phase, where the stator
causes a slight increase in incidence on the rotor.

In fig. 4.6, on the other hand, the orientation of the upstream stator during the considered
period is represented:

Figure 4.6: Orientation of S1 during a stronger wave

Unable to rotate beyond the maximum imposed incidence, it stays at -30 [deg] in the first
part of the period to reduce the stall as much as possible. From the moment it proceeds
from -30 [deg] towards 0 [deg], it corrects it completely. It remains constant at 0 [deg]
when there are no phenomena to correct. Towards the end of the period, it bends up to
+30 [deg] to keep the incidence on the rotor as high as possible, trying to delay the total
drag, and finally remains at +30 [deg], being the maximum imposed incidence.

At this point, the power production over the period is analyzed in fig. 4.7, comparing the
different configurations:
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Figure 4.7: Power production during the period of a stronger wave

Solutions that involve the use of VIGV increase power production by extending the oper-
ating range of the turbine, preventing force coefficients from dropping abruptly in blade
regions subject to excessively high incidences.

Furthermore, a configuration with a rotor of constant solidity proves to be better than a
rotor with constant chord, in terms of power generation.

Regarding the total drag phase, there aren’t any truly significant corrections: the addi-
tional power produced due to the stator action is visibly minimal.

To define how effectively this power is generated, the efficiency parameter is used, whose
behavior is described in fig. 4.8.
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Figure 4.8: Efficiency during the period of the standard wave

As before, there are no significant changes between cases with only the rotor, while, as
can be seen, efficiency increases when the VIGV are present. This is because throughout
the entire period, the downstream stator is recovering some of the kinetic energy at the
outlet, and particularly, when activated, the upstream stator reduces the power dissipated
by drag in the first part of the period that it is quite high if the rotor stalls, and increases
the power produced in the last part of the period.
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a = 1.5 [m]

This wave is weaker by 25% compared to the standard one. Being a wave of low intensity,
there won’t be stall phenomena on the rotor, but the total-drag phase is more significant.
The region most affected by this phenomenon is the tip.

In fig. 4.9 the incidence history at the tip is reported:

Figure 4.9: Incidence at the tip during the period of a weaker wave

As always, the upstream stator is activated before entering the total drag phase, in an
attempt to increase power production in the final part of the period.

In fig. 4.10, on the other hand, the orientation of the upstream stator during the considered
period is represented.

In this case, there is no stall to correct, so it remains stationary with zero incidence
throughout the first part of the period. Shortly before the turbine enters the total-drag
phase, it quickly rotates to the maximum imposed incidence.
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Figure 4.10: Orientation of S1 during a weaker wave

Regarding power production, the four configurations behave similarly to each other, con-
sidering that a solution with constant solidity consistently proves to be better than one
with constant chord.

The total drag phase is not significantly delayed by the action of the upstream stator,
which is also moved before the critical phenomenon occurs, attempting to generate more
power in the final phase of the period. In this case as well, a maximum rotation has been
imposed, which is significantly lower than what an optimized VIGV system could achieve.

Since power production is low for weak waves, and in general, the total-drag phase is not
significantly improved, it makes sense that, for weak waves, the stator is rotated from
the beginning of the period to keep incidences on the rotor as high as possible (without
exceeding the stall limit), to increase power production throughout the entire period.

In fig. 4.11 is reported the power production according to the canonical control law for
the upstream stator, and in fig. 4.12 is reported the power production trend for the same
wave when the upstream stator is always deflected by the maximum rotation imposed
(+30 [deg]):
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Figure 4.11: Power production during the period of a weaker wave (1)

Figure 4.12: Power production during the period of a weaker wave (2)

A Wells turbine equipped with VIGVs does not worsen the effect of a wave weaker than
the standard one but improves it only slightly. Certainly, for low waves, it is better that
the stator is fully deflected during the whole period in favor of high incidences on the
rotor.
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To define how effectively this power is generated, the efficiency parameter is used, whose
behavior is described in fig. 4.13.

Figure 4.13: Efficiency during the period of the standard wave

As before, there are no significant changes between cases with only the rotor, while, as
can be seen, efficiency increases when the VIGV are present. This is because throughout
the entire period, the downstream stator is recovering some of the kinetic energy at the
outlet, and the upstream stator is trying to maximise the power production during the
whole period.
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4.3. Power production under different waves

Analyzing what happens in a single period is appropriate to understand the dynamics in
each phase, but, regarding power production, it is more accurate and representative to
consider the average power produced during the period. Below, in fig. 4.14, are the trends
of the average power produced by the four configurations analyzed in this study, for a set
of waves with amplitudes:

a = [1 1.5 2 2.5 3]

Figure 4.14: Average power production during different waves

There are no truly significant differences between constant chord or constant solidity, for
waves with amplitudes lower than the standard one. A slight improvement if reached if
VIGV are adopted.

Moreover, for larger amplitudes, solutions with constant solidity prove to be better than
those with constant chord, and solutions equipped with Variable Inlet Guide Vanes
(VIGV) turn out to be superior to those without.
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5| Conclusions and Outlook

In this work, various aspects related to Wells turbines have been analyzed. In particular,
in addition to normal operating conditions, the focus is set on methods to enhance their
performance and extend their operational field, even during phases when major challenges
arise. The aim of this work is not to replace the existing documentation or other solutions
proposed by other researches, but to contribute to it and suggest new alternatives to be
considered.

For what concerns the rotor only, it certainly makes sense to consider Wells rotors with
constant solidity: this type of geometry maximizes energy production compared to a rotor
with constant chord. To achieve this, attention must be paid to the structural issue that
could affect the blade at the root, as it presents a lower cross-section, and higher forces
at the tip.

Furthermore, the use of Variable Inlet Guide Vanes (VIGV) proves to be a promising
strategy to prevent stall on the rotor and extend the operational range to waves of greater
amplitude than the standard one, significantly increasing energy extraction.

An important aspect to consider regarding VIGV, in a future perspective, is to optimize
the blade profiles in such a way that there is a good compromise between high deflections
and low losses. Another interesting aspect to investigate is a spherical inlet system asso-
ciated with VIGV for which the literature suggests lower losses compared to a cylindrical
inlet, paying the price of an higher structural complexity.

Regarding the total-drag phase, a VIGV system does not create truly significant modifi-
cations: the phenomenon is, in fact, inevitable.

In conclusion, it makes sense to consider building OWC (Oscillating Water Column) plants
with Wells turbines equipped with VIGV systems in locations where standard waves are
not a requirement, as the system would be more versatile compared to a plant equipped
with regular Wells turbines.

Normally, a plant equipped with a canonical Wells turbine is designed not to stall on
the standard waves of a particular location. With the addition of a VIGV system, it is
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conceivable to place the plant where the waves are stronger than the standard one, as
energy extraction is higher and the stall phenomenon can be fully corrected or significantly
reduced. This could help compensate for the total drag phase, which proves to be always
critical, especially for waves weaker than the standard one.

To conclude, it is clear that a solution of this kind entails higher costs in terms of the
production and maintenance of turbines and plants. However, in exchange, it offers clean,
continuous, and available energy, considering also that an OWC plant is non-invasive and
not harmful to the marine ecosystem.
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