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Abstract

Guitar makers modify instruments to improve their sound quality, meet
the needs and preferences of musicians, and make them suitable for con-
temporary playing environments. Claims about such improvements are
often based on simple listening, without objective measurable results.
The sound of the instrument is affected by the choices made in the design
and building phases, so it is important to know the consequences on the
vibrational behavior of the instrument brought by these factors.

In this work of thesis, we analyze the effect of the outline and the
bracing features on the vibration modes of the guitar soundboard. To
do so, we have built a virtual model of a Torres guitar soundboard and
parameterized its shape, then we added the fan bracing parameterizing
also the layout and the size of the struts in the lower bout. We generated
several samples of soundboards through the variation of such parameters
and performed Finite Element Modal Analysis on all of them to obtain
their vibration modes and the natural frequencies.
Finally, we performed regression analysis on the results of the simula-
tions. The regression coefficients constitute a model through which we
can predict the natural frequencies of a soundboard knowing only its ge-
ometrical parameters. We use the regression coefficients also to measure
the weight of the parameters on the variation of the frequencies, and ver-
ified that the main contributions corresponded with higher correlations.
Our results indicate a generally lower contribution of the braces on the
eigenfrequencies if compared to the variations of the shape, but high-
lighted the modes that are more affected by the changes in the bracing
layout.

The regression model we found can help guitar makers predict the
vibrational behavior of a soundboard with fan bracing before building
it and give a tangible measure of the impact of different construction
choices. With this type of study, we are moving towards better tonal
characterizations of guitars and many other musical instruments.





Sommario

I liutai modificano gli strumenti per migliorarne le qualità sonore, per
incontrare necessità e preferenze dei musicisti e per adattarne le carat-
teristiche per gli ambienti di esecuzione comtemporanei. Le affermazioni
su tali migliorie sono spesso basate sul semplice ascolto, prive di risultati
misurabili ed oggettivi.
Il suono di uno strumento è influenzato dalle scelte fatte in fase di pro-
getto e costruzione, è dunque importante conoscere le conseguenze sul
comportamento vibrazionale dovute a questi fattori.

In questa tesi analizziamo gli effetti delle caratteristiche del contorno
e della catenatura della tavola armonica sui suoi modi di vibrazione. Per
questa analisi abbiamo costruito un modello virtuale di una tavola di
chitarra Torres e abbiamo parametrizzato la sua forma; successivamente
abbiamo aggiunto la catenatura e parametrizzato la disposizione e le
dimensioni dei rinforzi nella parte inferiore del corpo. Attraverso la vari-
azione di tali parametri, abbiamo generato molteplici campioni di tavole.
Abbiamo eseguito un’ analisi modale su modelli a elementi finiti di tutti
i campioni generati, ottenendo i loro modi di vibrazione e le relative fre-
quenze naturali, e controllando la presenza di inversioni nell’ ordinamento
per frequenza dei modi di vibrazione rispetto al modello di riferimento.
Infine abbiamo eseguito un’ analisi di regressione sui risultati delle sim-
ulazioni. I coefficienti di regressione costituiscono un modello attraverso
il quale possiamo predire le frequenze naturali di una tavola armonica
conoscendo solo i parametri geometrici che la descrivono. Abbiamo usato
i coefficienti di regressione anche per misurare il peso dei diversi parametri
sulla variazione delle autofrequenze, verificando che i contributi princi-
pali corrispondesero con correlazioni più alte.
I nostri risultati indicano che le catene contribuiscono meno alla modifica
delle autofrequenze rispetto alle variazioni della forma della tavola, ma
hanno un grado di influenza differente nei diversi modi di vibrazione.

Il modello di regressione proposto può essere d’aiuto per i liutai nella
predizione del comportamento vibratorio di una tavola armonica con
catenatura a ventaglio e dà una misura tangibile dell’impatto delle varie
scelte costruttive. Con questo tipo di studio, stiamo procedendo verso
una migliore caratterizzazione del suono della chitarra e di molti altri
strumenti musicali.
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1
Introduction

1.1 Aim of the Thesis

Classical guitar is a musical instrument finely crafted by luthiers who
carry on secular traditions. Although the definition of a modern guitar
originates in the work of Spanish luthier Antonio de Torres in the mid-
dle of the 19th century, many innovations regarding the soundboard and
bracing layouts have been brought during the 20th century. Technologi-
cal development and the interest of companies have been encouraging an
engineering approach to musical instrument making to complement the
artisan one. The interest in knowing the vibrational character of stringed
instruments has multiple goals. The research of alternative materials
[4, 5] to substitute increasingly rare or expensive ones, the implementa-
tion of physical models of sound generation, the optimization of the tonal
quality and radiation efficiency are some of the most relevant examples
of the interests behind the study of the acoustics of guitars and musical
instruments in general.

Although the working principles of the instrument are rather simple if
we try to broadly picture the instrument as a system of coupled vibrators
with a resonator [6, 7], a complete and detailed tonal characterization of
a guitar would be definitely complex. Many components actually interact
with each other and contribute to the sound of the instrument, therefore
we are still not able to address the role of each one of the luthier’s build-
ing choices to define a completely engineered model.
For this reason research proceeds in very focused ways to answer the
many specific questions that can be roughly summarized with: "how is
guitar sound characterized by its components?".
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Our goal is to find numerical models to predict the natural frequencies
(also called eigenfrequencies) of the braced soundboard from its geomet-
rical features. The analysis of the natural frequencies gives important
information about the tone color of the complete instrument. We stick
to the most traditional guitar model, considering the outline of the Tor-
res guitar with fan bracing and analyzing the effect of small variations of
the geometry and the number of braces in the fan layout.

This work fits in the research area of guitar modal analysis, specifi-
cally on the soundboard vibration alongside studies focused on the effect
of classical guitar bridge [8], on the difference between bracing layouts
[9, 2], on the effect of adding elements in the fan layout [10] or changing
the position of a single brace [11]. Furthermore, the effect of scalloped
braces has been measured on rectangular panels [12].
All of these studies measure the impact of various elements on the natu-
ral frequencies of the soundboard because it is the main acoustic radiator
of the instrument and it is the component that most affects the sound of
the complete instrument.
Some models even manage to approximate the resonances of the full
instrument knowing the eigenfrequencies of the soundboard and the ge-
ometry of the full instrument [7].
Even if many study cases have been already successfully covered, we are
still not ready to describe entirely the vibratory behavior of the guitar
based on its geometrical representation and its material specifications
without building it or performing a numerical simulation.

To model the eigenfrequencies of different soundboards we perform
Finite Element Modal Analysis on their meshes, a type of numerical sim-
ulation that calculates the normal modes of physical systems.
This method has been validated on full guitars [13, 14], guitar bodies
[9, 2] and piano soundboards [15], performing experimental modal anal-
ysis on real copies of the meshes with reliable results.
Usually, guitars are studied with a fixed boundary condition to mimic
the working conditions of the complete instrument and the test setup of
luthiers which measure the soundboard in the mold [7], so we used the
same condition for our simulations.

The results of our simulations are used to build a regression model
that predicts the eigenfrequencies of the soundboard from a set of geo-
metrical parameters that describe its shape and its bracing system.
Our model considers all the parameters simultaneously in order to ac-
count for the combined contributions, accurately predicting the eigenfre-
quencies.
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1.2 Application Fields

The relationships between geometric parameters and natural frequencies
of the soundboard of a guitar are useful indications for the design of an
instrument, whether performed by a luthier or in an engineered process.
Each influent parameter is a degree of freedom for the control of the
tone, allowing a wide range of possibilities to operate an adjustment of
the frequency response.
Although this work is focused on a very specific type of instrument, the
outline of classical guitars is almost standard, and the relations we mea-
sured between its dimensions and its vibrational behavior can be taken
into account with the right amount of care for guitars with different brac-
ing systems.
The proposed methodology is valid for the analysis of the vibration of
musical instruments in general, but also for any kind of modal analysis
of complex shapes where is necessary to control the natural frequencies
during design. This situation is common in structural engineering prob-
lems where the normal modes of a solid can cause excessive vibration or
a collapse.

1.3 Thesis Outline

This thesis is composed of three main parts.
After this introduction, Chapter 2 covers the background on the classical
guitar and the state of the art on the vibratory analysis of its soundboard
from different perspectives. The theoretical background on the Finite El-
ement Method and its software implementation are also discussed.
In Chapter 3 we describe the methodology we adopted to build a para-
metric model of a guitar shape that can be used to generate a dataset of
different meshes.
In Chapter 4 we describe the modal analysis of the dataset of sound-
boards starting from the configuration of the simulations. We organize
the results of the simulations classifying the eigenfrequencies with respect
to the corresponding modal shape in order to compare the same mode
for all the samples.
Then we present a regression analysis on the results of the simulations
to predict the eigenfrequencies from the geometrical features for a fully
parametric shape and a study case dedicated to braces only.
Finally, we draw the conclusions in Chapter 5 and discuss possible future
research works on the topic.





2
State of the Art and Background

In this chapter, we go through the topics that are introductory for our
study to properly understand the subject and its context.

We start by describing the instrument that is at the center of the the-
sis, the classical guitar; we present a quick overview of its components
and their working principles with some historical context. We go more
in-depth about the soundboard and the bracing describing some of the
choices that guitar makers do when they design and build their instru-
ments.

In the second part, we present the most relevant methods used to
find which are the modal shapes and eigenfrequencies of soundboards of
violins and guitars. We show that luthiers and researchers have different
approaches and tools to study musical instruments but eventually their
results can converge and build important shared knowledge.

Among the methods presented in the second part, the FEM method
is the one that we adopted for our study: theoretical background on this
topic is given in the third part of this chapter. The practical steps we
performed to configure the software for our simulations are described in
section 4.1.
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2.1 The Classical Guitar and its Components

Classical guitar is a plucked string instrument of the lute family. Its
strings are mainly tuned by fourths with the standard tuning being E4,
B3, G3, D3, A2, E2. The strings are parallel to the instrument and ex-
tend from the peghead or headstock to the bridge placed in the middle of
the soundboard. The resonator of the instrument is its body, composed
of a backplate, a front plate with an opening called soundhole, and en-
closed by the sides.
The body of the guitar has a characteristic outline that identifies three
main areas: from the tailpiece to the neck joint we have the lower bout,
the waist and the upper bout. The neck is attached to the body by means
of the neck joint or heel and its front surface is glued to the fretted fin-
gerboard. An overview of the guitar parts is visible in figure 2.1.

The dimensions of the guitar are not strictly defined, full-sized instru-
ments have a scale length of 650 mm circa referring to the distance from
the bridge saddle to the nut. Baritone and bass guitars as well as vari-
ous short-scale instruments are made, with the overall dimension of the
instrument adapted according to the scale [16].
The modern guitar shape derives from the instruments of Antonio de Tor-
res, one of the most important luthiers in history whose guitar-making
tradition spread from southern Spain in the late 1800s influencing what
is now worldwide conceived as classical guitar. Torres guitars have a
shape that is very similar to the modern concert guitar also in terms of
dimensions with the body being approximately 368 mm wide at the lower
bout and 490 mm long.

Classical guitar soundboards are usually composed of two symmetric
pieces of quarter-sawn spruce or cedar, glued in the centerline that runs
from the tailpiece to the neck joint. The sides and the backplate are
made of a different wood, usually rosewood, maple or fruitwoods. The
back is built gluing two or more plates of wood like the top plate, but it
is more arched and its bracing system is usually composed of transverse
braces only. Its thickness is about 2 mm.
The most important component for what concerns the tone of the instru-
ment is the soundboard, its material and bracing system are chosen by
the luthier to achieve the desired sound. For this reason, soundboards are
usually the parts of stringed instruments that require the most valuable
pieces of wood and to which many measurements and tuning procedures
are performed.

We now go in-depth describing the elements that are most involved
in the guitar tone.
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Figure 2.1: Exploded view of a classical guitar [1].
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2.1.1 The Strings

The excitation that is responsible for the sound of the guitar is applied
to the strings by the player’s fingers. The technique of the player, as well
as the string plucking point and material, are the first of many factors
that influence the resulting sound [17, 18].
While the first guitars were equipped with strings made of gut, modern
guitars come with nylon strings. Usually, the three thicker strings are
wound to increase their mass per unit length. In this way, they reach
lower frequencies with tension and size of the section that are comfortable
for the player. In fact, the length of the vibrating portion of the string,
its mass and its tension determine the pitch of the played note. The
fundamental frequency ff of a string can be calculated as

ff =
1

2L

√
T

µ
(2.1)

where the string properties are represented by its length L and its mass
per unit length µ while the tension is indicated with T .
The peg head holds the strings by means of the machine heads that allow
to adjust the string tension and tuning, using rotating knobs. The other
end of the string is tied to the bridge.

2.1.2 The Bridge

The vibration of the strings is transmitted to the instrument in the two
endpoints of their vibrating length. Most of the energy transmitted to the
soundboard travels through the bridge, in particular the saddle (called
bridge bone in figure 2.1), and makes it move. The bridge is therefore
important for the coupling between the string and the soundboard for
the propagation of the vibration.
Since the string is free to move in the infinite planes that cross its resting
position, the force exerted on the bridge by the vibrating motion has a
variable direction. Consequently, the bridge exhibits a composite motion:
a rocking motion due to the string vibration parallel to the bridge and a
motion towards the body due to the string motion in the same direction
[6].
In correspondence with the bridge position, on the internal side of the
soundboard an additional wood plate can be present to reinforce the
joint. Both the bridge and the underlying plate add mass and stiffness
to the central region of the soundboard, so their dimensions affect the
instrument resonances [8].
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2.1.3 The Soundboard

The soundboard (or top plate) is a common element between all the
stringed instruments, it is as simple as essential for the characterization
of the tonal quality and the acoustic radiation.
In classical guitars, the soundboard is a plate of wood usually spruce or
cedar with a soundhole in the upper part, between the transverse bars.
Its thickness can vary from 1.5 to 3 mm depending on the material, the
arching and the bracing system, parameters that are chosen coherently by
luthiers to account both for tonal characteristics and structural strength.
The sides and the plate are joined by the linings, a structure that in-
creases the surface to which the soundboard is fixed along the whole
outline. Through the linings, the boundary condition for the vibration of
the top plate changes from the ideal simply supported edge to a clamped
edge condition, meaning that few millimeters from the outline inwards
are not free to move. The size of the linings and the presence of carvings
on them called kerfs, hamper to different degrees the vibration of the
outer part of the surface.
The vibration of the soundboard causes both sound radiation outside
the instrument and an inward pressure wave. The resonances of the
air inside the guitar and those of the front and back plates characterize
the frequency response of the instrument. This is more evident at low
frequencies for which basic models have been developed to describe the
sound generation of the guitar with a system of a few elastic parts and
a Helmholtz resonator [7, 6]. The response at higher frequencies is more
involving the vibration of the soundboard which is therefore functional
to the brilliance of the instrument.

2.1.4 The Bracing

The tonal quality of the soundboard is affected by the underlying bracing
system. Thick soundboards with transverse braces were originally em-
ployed to resist the pull of the strings that exert a total tension of about
47 kg.
In the late 1800s, the demand for louder instruments drove the spread of
guitars with thinner soundboards that radiate more power, compensat-
ing the weaker structure with additional thin braces made of the same
material as the top plate and removing the transverse braces in the lower
bout.
It was in this period that the Spanish guitar-making tradition began to
spread, gradually leading to the use of the geometry of the Torres guitar
and the fan-shaped bracing system.
The fan layout consists of a set of thin braces developing from the trans-
verse strut under the soundhole to the lower edge of the guitar where two
additional braces can be placed in a v-shape enclosing the fan figure like
in figure 2.1.
These braces are glued to the soundboard after the bridge plate and lie
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Figure 2.2: Different bracing systems for classical guitars. From left to right:
Torres, lattice, Kasha and radial.

above it.
Many other building styles are used nowadays, some examples are shown
in figure 2.2; it is worth mentioning the X-shaped bracing developed by
Martin in the 1850s which is also widely employed on steel-string acoustic
guitars, the radial layout in which the braces are placed around the bridge
with radial orientation, the lattice layout employing two crossed sets of
parallel thin braces, the Kasha asymmetric bracing, and the double-top
guitars which soundboard is made by a thin honeycomb synthetic layer
enclosed by two wood plates [19].

Different bracing styles aim to different goals such as loudness, bril-
liance, sustain, and tone. Although research has proven some objective
differences between bracing systems [9, 2, 20], a perfect instrument does
not exist and the choice of its features ends up being a trade-off that
takes into account also the musical context of its performance and the
subjective personal taste.
The cross-section of the braces is usually rectangular or rounded and
their thickness is not uniform. After they have been glued to the sound-
board, luthiers carve the struts to remove mass from the soundboard and
tune its resonances to specific frequencies. Since the vibration near the
outline is hampered by the linings, braces are usually scalloped in that
area to keep the vibrating area as large as possible.

2.2 State of the Art on Modal Analysis of
String Instruments

The modal analysis of a resonant system consists of the study of its dy-
namic properties in the frequency domain. When analyzing a resonant
component of a musical instrument, vibrations at different frequencies
are usually measured in the steady-state condition. The most important
frequencies in musical instruments are the eigenfrequencies (or natural
frequencies) of their normal modes because they correspond to the max-
ima of the frequency response.
The normal modes of soundboards have been studied for centuries thanks
to the characteristic vibration shapes that they assume along the surface
called modal shapes.
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Violin and guitar plates are studied in a slightly different setting:
while violin plates are tuned in the carving stage by regulating the thick-
ness profile, guitar soundboards are measured just before the braces are
added. The braces add stiffness that raises the eigenfrequencies of the
plate depending on their height and profile [12], therefore the luthier
proceeds carving the braces to achieve the desired tone. The goal of this
stage is to have a proper value of the eigenfrequencies and a reasonable
ratio between surface and mass of the vibrating area [7].
When measuring the vibrational behavior of a plate it is important to ac-
curately control its boundary conditions. Both the free and the clamped
boundary conditions are used: for the free condition, the plate is usually
suspended with a system of elastic bands, while the clamped one can be
realized with a mold.

Nowadays, luthiers still rely on approximate methods to tune the top
plate of violins and guitars. The traditional techniques used to mea-
sure the eigenfrequencies of the plates are the tap-tone method and the
Chladni patterns [21].
In the context of industrial and academic research, the Chladni patterns
are commonly considered, but also more advanced methods have been
developed with the help of software simulations and electronic measur-
ing instruments.

We now describe the main methods employed for the analysis of the
resonances of the soundboards.

The Chladni Pattern method is used to find the eigenfrequencies of
the soundboards and visualize the corresponding modal shapes.
The procedure involves dust or sand being scattered over the surface of
a plate lying in horizontal position. When one of the resonances of the
plate is excited the particles jump across the surface and tend to col-
lect along the nodal lines. If the mode is excited for enough time and
with enough energy, the nodal lines become visible where the powder is
concentrated and the lobes of the vibration correspond to the uncovered
areas.
The original method of excitation was to run a bow on the plate edge
until a vibration mode was excited. From the 20th century, loudspeakers
were employed for easier and more precise control of the frequency of the
excitation: if a sufficiently powerful speaker is placed under a suspended
plate, the emission of a pure tone by the speaker is able to excite the
corresponding resonance of the plate. Another possible method of exci-
tation is the use of a shaker as shown in figure 2.3.
A non-invasive method for the visualization of the vibration modes is
given by the holographic interferometry [2, 22, 23]: with this method,
the vibration of the structure can be detected without even touching it.
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Figure 2.3: Chladni patterns of a soundboard mounted on a guitar body,
excited at two different frequencies [2]

The tap-tone technique is another method used to find the eigenfre-
quencies of a plate but in this case, it is more convenient for the luthier
to know approximately the nodal lines of the modes he is analyzing.
To measure the eigenfrequency of a mode, the luthier holds the plate
with two fingers in a nodal position and taps it in the middle of an antin-
odal position. The luthier holds the plate close to his ear to listen to
the resulting tone. The sound is percussive and quickly decaying, so the
individuation of the frequency is quite difficult and not precise.
Nodes and antinodes of the resonances can be found repeating this method
with different tap positions and the same hold position or vice versa.
Marking the still zones of the plate for many measurements allows iden-
tifying the nodal lines, while the unmarked surfaces correspond to the
vibration lobes.

The FRF method gives a complete frequency response of a resonant
object computing the transfer function between a controlled excitation
signal and a response signal acquired through a sensor.
The excitation signal can be generated through an impact hammer that
also records the force applied during the measurement. The hammer ex-
citation generates an impulsive signal that carries energy across a range
of frequencies depending on the hardness of the hammer tip. Sound-
boards of various instruments like guitars [24], violins [25] and pianos
[15] have been studied with this method: accelerometers are positioned
on the soundboard in a non-symmetric location with respect to the exci-
tation point to record the plate response. The hammer and accelerometer
signals are simultaneously acquired and a transfer function is calculated
from the acquired data.
The FRF method provides the point-to-point frequency response for an
entire frequency band defined by the acquisition system properties. Since
we are interested in studying the vibrational behavior of the full plate,
the measurement has to be repeated at various points of the surface
through the roving hammer technique or the roving accelerometer one.
The results can be interpolated across the surface to get the frequency
response of the whole plate.
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The FEM simulation is a software-powered technique that computes
the normal modes of an object analyzing its geometrical representation.
The object is represented by a mesh of points that divide its volume into
small elements like for example tetrahedrons called finite elements.
The FEM simulation solves the equations of motion that describe the
normal modes of the geometry in all the points, providing its modal
shapes and eigenfrequencies. The frequency response function and the
transient response can also be calculated with this method using different
settings for the solver.
The mesh can be created with CAD software or generated with the 3D
scan of a real object. We used a third way for our analysis and realized
a Matlab script that creates a mesh of a guitar soundboard given its
geometrical parameters.
The FEM is a powerful tool but it operates on virtual representations
which are just approximations of the real plate. For this reason, they
are used to model the behavior of a class of instruments rather than
properly predict the result of a given sample, although the result can in
many cases be very accurate. FRF method can be used to validate the
results obtained through FEM simulations, comparison between these
two methods for guitar bodies has been presented in [9] and [2]. More
details on the FEM are given in the next section.

2.3 Background on Finite Element Method

Space- and time-dependent physical problems are generally expressed by
partial differential equations (PDEs) that can be solved analytically only
for simple shapes [3].
Most of the stringed instruments have soundboards with irregular shapes
for which the PDEs that describe the vibration of the surface need to
be simplified. In particular we are interested in computing the wave
equation:

∇2u =
1

c2

∂2u

∂t2
(2.2)

where ∇2 = ( ∂2

∂x2
, ∂

2

∂y2
, ∂

2

∂z2
) is the Laplace operator in the three dimen-

sions x, y, z. The wave propagation speed of the material is indicated by
c, and u = u(x, y, z, t) is the displacement of the soundboard from its
resting position.

With the FEM we compute an approximated numerical solution of
the PDEs in the discretized space. The problem is simplified as a sys-
tem of Ordinary Differential Equations (ODEs) for which the solution is
calculated in each point of the mesh, forming a piecewise approximation
of the real solution.
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2.3.1 Theoretical Background on FEM

The FEM begins with an ordered and well defined series of steps to
transpose a physical problem into a computable numerical approxima-
tion. Considering for simplicity a one dimensional wave propagation
problem

∂2u(x, t)

∂t2
− c2∂

2u(x, t)

∂x2
= f(x, t) (2.3)

FEM requires it to be defined in an integral form called weak formulation
[26]∫

Ω

∂2u(x, t)

∂t2
v(x, t) dx−

∫
Ω

c2∂
2u(x, t)

∂x2
v(x, t) dx =

∫
Ω

f(x, t)v(x, t) dx

(2.4)
where Ω is the domain in which the function is evaluated and v(x, t) is a
test function. The functions u and v are assumed to belong to the Hilbert
space H1(Ω) = {u, v : Ω → R|v, v′, u, u′ ∈ L2(Ω)}, with L2 indicating
the Lebesgue space to guarantee that the integrals assume finite values.
This formulation accompanied by the aforementioned assumption and
boundary conditions represents a well-posed problem that can be solved
in the finite element space.

The discretization of the domain Ω is achieved defining a basis like
shown in figure 2.4. This formulation in the discretized domain can be
properly expressed using an approximated variable uh ≈ u as

uh =
∑
i

uiψi (2.5)

where ψi indicates the i-th basis function in the domain Ω.

The problem 2.4 can be projected in the discretized space using the
Galerkin formulation as∫

Ω

∂2uh(x, t)

∂t2
vh(x, t) dx−

∫
Ω

c2∂
2uh(x, t)

∂x2
vh(x, t) dx =

∫
Ω

f(x, t)vh(x, t) dx

(2.6)
Equation 2.6 can be expressed in a second order ODE with coefficients

arranged in matrices to allow its algorithmic computation in all the finite
elements of the mesh

M∂2uh(x, t)

∂t2
+Auh(x, t) = F(t) (2.7)

with the matrices defined as

Mij =

∫
Ω

ψiψj dx Aij = c2

∫
Ω

∂ψi
∂x

∂ψj
∂x

dx

F(t) =

(∫
Ω

fψ1 dx , ...,

∫
Ω

fψj dx

)t
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Figure 2.4: The function u (solid blue line) is approximated with uh (dashed
red line), which is a linear combination of partially overlapping piecewise linear
basis functions ψi indicated in black (the shape of a single contribution ψ1 as
an example is represented by the cyan triangle). The coefficients are denoted
by u0 through u7. [3]

The last step to obtain a fully computable problem is time discretiza-
tion. To solve 2.7, each matrix element has to be computed at each time
interval with a time-marching scheme. The time derivatives need to be
approximated, for example using finite differences for a time step ∆T as

∂uh(x, t)

∂t
≈ uh(x, t+ ∆t)− uh(x, t)

∆t
(2.8)

In modern software, the time intervals and stepping schemes are au-
tomatically handled across the simulation steps to optimize the compu-
tation while respecting the convergence conditions [3].

The solution for a one-dimensional wave propagation problem con-
sists of a series of snapshots of the displacement across time. A visual
representation can be generated by software evaluating the displacement
of each point of the mesh and presenting an animation or a plot of the
temporal evolution of the system.

2.3.2 The Finite Element Modal Analysis

Since we deal with a solid, the one dimensional wave equation is not
enough to represent wave propagation in the soundboard. The type of
material under analysis defines the governing equation of motion of its
finite elements. For a linear elastic material, the relation between stresses
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and strains is expressed by Hooke’s law [27]

σσσ = σσσex + C : (εεε− εεεinel) (2.9)

where σσσex represents the contribution of the initial and viscoelastic stresses,
C is the 4th order elasticity tensor, the symbol ":" indicates the double-
dot tensor product or double contraction, and (εεε − εεεinel) is the elastic
strain tensor expressed as the difference between the total and the in-
elastic components. The stress tensor σσσ can be represented in matrix
form as

σσσ =

 σx σxy σxz
σxy σy σyz
σxz σyz σz

 (2.10)

where the two pedices of the elements indicate the direction of the force
application and the normal to the surface to which the force is applied.
The tensor is symmetric and represented by a total of six independent
variables. The same representation holds for the strains εεε. Stresses par-
ticipate to the force balance in Newton’s second law as

∇ · σσσ + fff = ρ
∂2uuu

∂t2
(2.11)

where ∇ · σσσ is the three dimensional gradient of the stress tensor, fff is
the force per unit volume applied to the system, ρ is the material density
and uuu is the displacement vector.

The type of material determines the expression of the stress terms.
For orthotropic materials like wood, the Hooke’s law can be expressed in
matrix form as


σx
σy
σz
σxy
σyz
σxz

 =


σx
σy
σz
σxy
σyz
σxz


ex

+D−1




εx
εy
εz

2εxy
2εyz
2εxz

−

εx
εy
εz

2εxy
2εyz
2εxz


inel

 (2.12)

where D is the symmetric compliance matrix, composed of the elastic
parameters of the material: the Young modulus E, the shear modulus G
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and the Poisson ratio v.

D =



1

Ex
−vyx
Ey

−vzx
Ez

0 0 0

−vxv
Ex

1

Ey
−vzy
Ez

0 0 0

−vxz
Ex

−vyz
Ey

− 1

Ez
0 0 0

0 0 0
1

Gxy

0 0

0 0 0 0
1

Gyz

0

0 0 0 0 0
1

Gxz


(2.13)

The combination of inertia and elasticity, through Newton’s second
law 2.11, gives the Navier-Stokes equation for elastic solids whose solu-
tions are wave-type functions [28]. Applying boundary conditions and
assuming a harmonic solution, this system translates into an eigenvalue
problem whose solutions are the natural frequencies.

2.4 Concluding Remarks

A deep study of classical guitar tone is a complex topic that involves
different approaches to analyze the factors that participate in the sound
generation. In this chapter we presented the necessary background to
understand the purpose of the modal analysis of a guitar soundboard, its
theoretical foundations and the state of the art from different points of
view.

At first, we showed that the classical guitar is a quite complex in-
strument that has undergone major development during the last two
centuries concerning both the bracing layout and the soundboard.
Then we discussed the main tools and techniques that are used to infer
the resonances of the plates from the point of view of both the luthier
and the engineer.
We finally introduced the theoretical background on the Finite Element
Modal Analysis, showing the main equations and parameters that char-
acterize these tools.





3
Building a Parametric Mesh of a

Braced Guitar Soundboard

In this chapter, we describe the process through which we created sample
meshes of guitar soundboards. The goal is to obtain a variety of samples
with different geometries, which we can be able to analyze with the Fi-
nite Element Method.
We have chosen the Torres guitar as a reference model to generate the
dataset, so we replicated its outline starting from simple shapes and su-
perimposed the result to a picture of a real guitar to check the accuracy
of the replica.
From the shape of the replica, we derived a set of parameters that de-
scribe the full geometry and are suitable for the generation of other guitar
shapes. The parameters concern the guitar outline, the bracing layout,
and the dimensions of the braces. The variety of the created samples
comes from the modification of such parameters in a random way.
We created the meshes by first defining the points of the outline and
soundhole and then placing the internal points to create the plate. The
meshes of the braces are built so that they adhere perfectly to the sound-
board, to allow the union of all the elements in a single mesh on which
our analysis is performed.
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3.1 Definition of the Geometrical Parame-
ters

Today’s guitars are an extremely common instrument with a character-
istic shape, easily recognizable by everyone. To synthesize a guitar plate,
we have chosen as a reference instrument the Torres guitar that is one of
the most influential models in the classical guitar tradition. Its body is
a model for the shape of guitars from the mid-nineteenth century, so we
used pictures of this instrument and schemes of its geometry to replicate
both the outline and the braces.

3.1.1 Outline Parameters

The shape of guitars [29], as well as many stringed instruments [30], has
been traditionally defined using circular shapes related by harmonic di-
mensions like simple fractions and golden ratios. The number and the
layout of the circles is not constant when characterizing a type of instru-
ment like the guitar throughout its evolution, but some features have
remained almost unchanged since well before the Torres era. As visible
in figure 3.1, the contour of a guitar plate is characterized by three main
curves that identify three main areas of the guitar body: the upper bout,
the waist, and the lower bout.
Our process of building a model of a guitar starts from the definition of
these three curves, which we found well represented by three properly
positioned circles. The outline is not an entirely curved shape though,
guitar bodies are often built with flattened edges behind the neck and in
the tailpiece.
The first step to create the model is to get a continuous line from the
connection of the circumferences. We constrained the line to overlap to
three arcs of the circumferences and defined two couples of points that
flatten the curve at the edges. We got the full contour simply mirroring
the described half with respect to the y axis.
The other characteristic shape that defines the guitar body is the sound-
hole, also represented by a circle.
Positioning these circles and points correctly, we have been able to get
an outline that is visually well superimposed to a picture of a real guitar.

In figure 3.1 on the left the construction of the outline using three
circles is shown: the characterizing circles are shown in blue, where the
thicker lines represent the arcs in which they are perfectly superimposed
to the outline. Two flattened lines are present also in the upper and lower
edges of the outline. On the right, the result of the correct arrangement
of the circles is shown: the dashed lines superimposed to the picture
represent the reconstructed outline and soundhole. To get a uniform
distribution of points in the outline, we applied a Matlab interpolation
algorithm [31] that creates a curve passing through the defined points
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Figure 3.1: Definition of the outline. In the left image the thick blue lines
represent the constraints on which the outline overlaps. The dashed lines in
the right image represent the resulting outline and soundhole.

using natural cubic spline functions [32].

Once the shape was correctly superimposed to the reference figure,
we parametrized the geometry through the radii and positions of the cen-
ters of the circles used to shape the outline. Since the parameters are
intended to vary in a range that is proportional to their reference value,
we have chosen them to give the outline a proportionate variation in all
its dimensions. For this reason, we express the coordinates of the three
outline circles as their distance to the centerlines of the guitar body.
The parameters of the outline are indicated in figure 3.2: the three cir-
cles that define the outline are controlled by the positions of their centers
c1, c2, c3 and their radii r1, r2, r3. With w1 and w2 we indicate the width
of the flattened parts of the outline in the lower bout and upper bout
respectively.

The waist should undergo only a little variation to avoid the outline
being distorted, so it has fewer parameters and smaller values than the
bouts circles. The horizontal position x2 of the waist circle is a function
of the other outline parameters: we keep it at a constant distance dx2

from the line connecting the centers of the two bouts circles c1 = (x1, y1)
and c3 = (x3, y3)

x2 =
y2 − q1,3

m1,3

− dx2 (3.1)

where m1,3 and q1,3 define the equation of the line connecting the two
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Figure 3.2: Outline parametrization. The variable parameters are indicated in
green, the constant parameter is indicated in red. The y axis is highlighted with
a black dashed line and constitutes an axis of symmetry for the soundboard.

circles as

y = m1,3x+ q1,3 =
y3 − y1

x3 − x1

x+ y3 −
y3 − y1

x3 − x1

x3 (3.2)

in this way, the depth of the waist curve is dependent only on the radius
of the middle circle.

For the soundhole, we have taken as variable parameters the radius
and the y-coordinate of the circle center, while its x-coordinate is set to
zero to maintain the symmetry.

3.1.2 Bracing parameters

Classical guitars have typically thicker braces in the upper half for struc-
tural support and a thinner bracing layout in the lower bout on which
luthiers operate to control the tone color and radiation power of the in-
strument: for this reason we define variable parameters only for the lower
bout braces.
The bracing configuration we considered is also inspired by the Torres
guitar but compared to the body shape, the bracing layouts are less stan-
dard. To build our model, we referred to the scheme of a guitar with three
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horizontal structural braces and two thin wood plates near the sound-
hole. In the lower bout, we use the fan pattern that is employed in the
original Torres model. Many other configurations are actually common
for the lower bout bracing, but we stick to the more standard case. The
reference layout has five braces in fan configuration and two braces placed
in a v shape below the fan layout. An overview of the bracing layout and
the thickness of the assembled geometry is visible in figure 3.3. Looking
at the thickness profile of the soundboard is possible to sense the position
and dimension of the braces: dark blue indicates the constant thickness
of the plate, light blue indicates the thin braces, and red highlights the
thicker section of the transverse braces.

Figure 3.3: Thickness of the reference soundboard with bracing

Each brace consists of a bar of wood glued to the soundboard by a
perfectly adherent rectangular face. The opposite face is curved, with the
maximum thickness at the center of the brace, like shown in figure 3.4.
We do not consider different sections, hollow braces or different types of
cuts.
Scalloping is also applied to the braces, furtherly reducing the thickness
at the edges.
The only exception in the braces shaping are the two thin plates near
the soundhole, that have a constant thickness without curvature or scal-
loping.

From the reference model, we take as parameters of the braces the
width of their cross-section w, the thickness at the edges hmin, and the
thickness at the center hmax. We control the length of the scalloped
parts of the brace with the coefficient s. The values of s are defined in
the range 0 to 0.5: the extreme values correspond to no scalloping and
edges scalloped until the middle point respectively.
Since in the reference scheme all the braces in the lower bout have the
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Figure 3.4: Orthogonal views of a brace shape: longitudinal view on the left
and cross-section on the right. The surface of contact with the plate is shown
flat but actually follows the light curvature of the soundboard. The parameters
hmin and hmax define the thickness of the brace at different points and w defines
its width.

same cross-section, we considered a single occurrence of the aforemen-
tioned parameters as controlling each brace in the lower bout collectively.

Also concerning the bracing layout, we have chosen the parameters
to control angles and locations of multiple elements with single values.
From the position of the lower braces and the angle of the outermost fan
brace, we reconstruct the positions of all the braces positioned internally
in the fan shape. The layout we used is always symmetric, so we defined
the parameters to describe one half of the geometry that can be mirrored
with respect to the y axis as done for the outline.

The y-coordinate of the two lower braces yV refers to the absolute
position of their centers; the angle αV indicates the angle between the
lower braces and the x-axis: with these two parameters we can define
a line equation that sets a lower boundary for the extension of the fan
braces, which are set to extend until a few millimeters from the lower
braces. The length of the two lower braces lV is also variable but does
not affect the fan bracing at all.
The angles of the fan braces depend on a single parameter called αfan that
linearly distributes the angle of each element in a range [αout, π − αout]
where the angle of the outermost brace is defined as

αout = −αfan + αK (3.3)

The angle αK is defined as the angle formed by the lying lines of the lower
and outermost fan braces in the reference 5 braces model as showed in
figure 3.5. The value of αfan does not refer directly to any geometrical
entity, but its mean value is equal to the one of αV . In this way, the
variation of the angle of the lower braces and the fan braces are in a
comparable range.
Through this kind of parametrization, we can manage any number of
braces in the fan layout.
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Figure 3.5: The bracing orientations are driven by two independent angles,
depicted in green. The angle αK is a constant term to get the angle of the
outermost fan αout from the parameter αfan

3.1.3 From the Torres Reference Model to a Dataset
of Guitar Plates

In the previous sections, we described the geometry we are treating and
the 20 geometrical parameters that allowed us to generate many vari-
ants of the reference model. We summarize the parameter names and
meaning in table 3.1. We recall that any coordinate and length value is
expressed in mm and any angle is expressed in radians.

Although the elements we defined can depend on each other in shape
or position, we have chosen each one of these 20 parameters to be in-
dependent of the others 19. Each dependent feature like the position of
the waist circle or the length of the fan braces is expressed by a rule
depending only on this set of parameters, as we will specify in the next
sections.
We analyzed also a second dataset to inspect more accurately the influ-
ence of the braces: this dataset is made similarly to the first one, but
only the 8 parameters of the braces are varying.

Calling pi a generic parameter in table 3.1, we modify its reference
value p0

i using a zero mean Gaussian distribution with standard deviation
σ fixed for all the samples in the same dataset:

δ = P (x) =
1

σ
√

2π
e−x

2/2σ2

(3.4)

The distribution of values for each parameter is centered in the reference
value and its standard deviation is proportionate to it as:

pi = p0
i (1 + δi) (3.5)
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name reference value description
Shape of the outline

r1 121 mm radius of the lower bout circle
r2 44 mm radius of the waist circle
r3 88 mm radius of the upper bout circle
r4 43 mm radius of the soundhole
c1,x 55 mm x coordinate of the center of the lower bout circle
c3,x 45 mm x coordinate of the center of the upper bout circle
c1,y -108 mm y coordinate of the center of the lower bout circle
c2,y 52 mm y coordinate of the center of the waist circle
c3,y 139 mm y coordinate of the center of the upper bout circle
c4,y 91 mm y coordinate of the center of the soundhole
w1 26 mm width of the flat part of the lower bout
w2 26 mm width of the flat part of the upper bout

Shape of the braces
s 0.3 scalloping factor
w 7 mm width of the cross-section
hmin 1.5 mm thickness at the edges of the brace
hmax 3 mm thickness at the center of the brace

Bracing layout
αV 0.6 rad angle of the two lower braces
αfan 0.6 rad angle of the fan braces
yV -161 mm y coordinate of the center of the two lower braces
lV 130 mm length of the two lower braces

Table 3.1: Summary of the geometrical parameters. Graphical represen-
tation of the parameters are shown in figure 3.2 for the outline and in
figures 3.4 and 3.5 for the bracing.

Since the Gaussian distribution is unbounded, to avoid distorted
shapes we need to define a range of suitable values. We generate random
values for δ rejecting every value until one of them lies inside the range
of ±2.5σ. According to the probability density function, the generated
values are accepted in the ≈ 98.8% of the cases. Using the generation
in a loop, we do not accumulate the remaining 1% of the values on the
extremes of the distribution.
The standard deviation σ of the distribution of the parameters is 0.05.
In the second dataset, to magnify the effect of the braces, we set σ=0.2.
Considering the limitation inside ±2.5σ, the resulting values of δ for the
first and second datasets lie in the ranges [−0.125, 0.125] and [−0.5, 0.5]
respectively.

Using this model, we have been able to treat every parameter in the
same way with the only exception of the length of the lower braces lV .
The reference value lV ≈170mm makes the braces span almost until the
outline. To keep the braces inside the soundboard, we reduce the cen-
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tral value of the distribution to 130mm, affecting both the mean and the
standard deviation of the values.

Instances in the dataset have also a variable number of fan braces
represented by an integer random variable nfan uniformly distributed be-
tween 4 and 8.
A graphical representation of the variation of the parameters is shown in
figure 3.6 .

Figure 3.6: Four sample shapes from the dataset with σ = 0.05. The full set
of parameters in table 3.1 is varying, the number of braces is kept constant.

3.2 Creation of the Soundboard Mesh

To create the surface of the soundboard, we evaluate in a loop each point
of a gridded version of the (x, y) plane. For each point of the grid, we
decide if it belongs to the soundboard and at which elevation h along the
z-axis it should be placed.
The soundboard of the guitar has typically a light curvature which is
modeled as a 2D Gaussian profile in the (x, y) plane as

h(x, y) = A exp

(
−
(

(x− x0)2

2σ2
+

(y − y0)2

2σ2

))
(3.6)

The curve is developed in the positive direction of the z axis, with a max-
imum elavation of A=3mm. The center of the Gaussian curve is located
in the bridge position (x0, y0). We used the same value σ=58 to express
the standard deviation in both the x and y directions.

The curvature is applied to the whole surface and to the soundhole
contour, while the external outline is constrained to z = 0. A smoothing
function is necessary to avoid abrupt changes of the slope near the edge
constraint: we defined two different functions for this operation along the
x and y axes respectively.
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In the x-direction, we apply a sinusoidal function that gives 0 in the
outline and 1 in the axis of symmetry as

Sx(x, y) = sin

(
π/2

x− xe(y)

x0 − xe(y)

)
(3.7)

where we indicate with xe(y) the x-coordinate of the outline point given
its y-coordinate.
To smooth out also the bottom edge ymin of the soundboard, we used an
arctangent function, normalized to [0, 1] by the 2/π factor

Sy(x, y) = 2/π arctan

(
10
y − ymin

y0 − ymin

)
(3.8)

The general expression for the elevation of a generic point of the upper
surface of the soundboard is given multiplying the contributions of the
curvature and the two smoothing functions as

zu(x, y) = h(x, y)Sx(x, y)Sy(x, y) (3.9)

We did not define a smoothing functon in the y-direction in the top edge
since the gaussian curve we defined was already flat enough in the upper
bout.

Figure 3.7: Soundboard points: z axis magnified. The (x, y) plane is centered
in the center of the curve.

To lighten the resulting mesh files, we control the density of points
using a random variable that prevents some points of the regular grid of
the xy plane to be placed. In figure 3.7 both the lightened distribution
of points and the smoothed Gaussian profile are visible. The goal is to
have a large mesh size in the central part of the mesh and a finer meshing
near the edges: for this purpose, we defined three coefficients measuring
the distance from the outline.

kx = min

(
x− xe(y)

35
, 1

)
(3.10)

The coefficient kx accounts for the horizontal distance from the outline
xe(y): it gives 0 in the outline and grows linearly up to 1 at the distance
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of 35 mm.

ky = min

(
y − ymin

50
,
ytop − y

50
, 1

)
(3.11)

The coefficient ky depends on the distance from the upper and lower bout
edges ymin and ytop respectively. Similarly to kx it grows linearly until 1,
reached at 50 mm from the extreme points in the y direction.

kh = min

(√
(x4 − x)2 + (y4 − y)2 − r4

35
, 1

)
(3.12)

With kh we measure the distance from the soundhole, centered in c4 =
(x4, y4) with radius r4: its value grows in the 35 mm around the sound-
hole. The multiplication of this three coefficients gives an indication
of the desired density of points in a certain position. Where the three
coefficients equal one the mesh size is uniform and large, otherwise we
gradually decrease it up to the edges.

The density is regulated through a comparison with a random num-
ber, generated with a uniform distribution between 0 and 1. The min-
imum density is realized by placing only the 15% of the points of the
(x, y) grid in the mesh.

Algorithm 1 Creation of the point cloud of the soundboard starting
from a grid of the (x, y) plane and applying a variable point density.

for points (x,y) inside outline do
randNum← generateRand01()
[kx, ky, kz]← calcCoefficients(x, y, outline)
if (randNum > kx · ky · kz · 0.85) then

addPoint(x, y)
end if

end for

Once we collected the points of the upper surface, a draft model of the
mesh could be available simply replicating the points 3.5mm below along
the z axis, transforming the defined surface into a solid plate. Never-
theless, to ease the union operations of all the mesh elements of the full
model, the areas of contact with the braces should be properly treated.
Once we created the point cloud of the braces, as described in the next
section, we replicated the points of the contact face of the braces in the
soundboard mesh. All the points of the soundboard which fall inside or
nearby these contact areas must be removed: this operation is crucial
to avoid mesh errors and intersections where the plate curvature is more
prominent.
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To export the meshes from Matlab® we created alpha shapes from
the point clouds of each element. we have chosen different values for the
alpha radius for each type of element we created, depending on the mesh
size we used in the composition of the point cloud. For the soundboard,
any value of the alpha radius that causes neither the soundhole to close
nor the surface to form holes can be used. The Alpha shape object can
finally be exported as an STL mesh file.

3.3 Creation of the Bracing Mesh

To create the mesh of the braces, we operated in three different ways for
the transversal structural braces, the thin plates near the soundhole, and
the parametric braces in the lower bout respectively. Each element in
the upper bout, namely the transverse braces and the two plates next to
the soundhole, is built depending only on the features of the soundboard.
The braces in the lower bout are positioned and stretched depending on
the parameters of the bracing layout (figure 3.5), while their thickness
and width depend on specific parameters (figure 3.4).

We will define the elevation of the points of the braces as their dis-
tance dz from the soundboard. The actual coordinate of the elevation is
calculated as

z = zu − 3.5− dz (3.13)
where zu(x, y) is the elevation of the upper surface of the soundboard,
calculated in equation 3.9 and 3.5 mm is the thickness of the plate.

3.3.1 Braces in the Upper Bout

The three structural braces have a fixed cross-section for all the sam-
ples, but we arranged them according to the outline and soundhole. We
positioned the two thicker braces just above and below the soundhole
respectively, with 4 mm of spacing from it. we have put the third brace
halfway between the top point of the outline and the brace above the
soundhole. All three braces fill the outline from side to side in the x-
direction.

We have built the mesh of these braces one cross-section at a time
along their main dimension; each cross-section is composed of three con-
tact points with the soundboard and a curve of 11 points in the opposite
edge like shown in figure 3.8.
For each cross-section we position the points pj of the curved edge eval-
uating a sinusoidal function in 11 points of the arc [0, π]:

yj = ys + ws cos(πj/10) ẑj = sin(πj/10) j ∈ [0, 10] (3.14)

With ws we indicate half the width of the transverse brace we are
building, and with ẑj ∈ [0, 1] we indicate the relative elevation of the
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points inside the curve. The coordinate ys indicates the centerline of the
brace along its main direction. The actual distance dz of the points pj
from the soundboard depends on the maximum thickness of the brace hs
and the position of the cross-section along the brace.

dz

ys ys+wsys-ws

hs

0.5hs

y

dz

ys ys+wsys-ws

hs

0.5hs

y

Figure 3.8: Points of the cross-sections of a brace in two different parts of the
longitudinal shape. The blue points are in contact with the soundboard and
the red points create the opposite face. The cross-section in the left picture is
the central one (xn = x = 0): it reaches the maximum thickness of the brace
hs. The cross-section in the right picture is near the edge (xn ≈ 1), where the
curved part flattens.

To realize the curved profile of the braces along the x-direction, we
evaluate the maximum elevation of each cross-section of the brace using
coefficients that account for the Gaussian curvature and the scalloping.
Since the three braces have different lengths, we get the scaled shapes
thanks to the auxiliary term xn = x/xe, a scaled axis that represents
the brace length: this axis is normalized to have xn = 0 in the center of
the brace and xn = 1 at the edge of the braces that reach the outline in
x = xe like shown in figure 3.9.
We compute the curve for xn ∈ [0, 1] and mirror it with respect to the y
axis.
Two curves contribute to the longitudinal profile of the brace. The overall
brace is characterized by a Gaussian curvature defined by

kg(xn) = exp(−x2
n/2σ

2) (3.15)

using σ = 0.6. The scalloping curvature is represented by a piecewise-
defined function

ks(xn) =

 1−
√

1 +
xn − 1

xs
xs ≤ xn ≤ 1

1 0 ≤ xn < xs

(3.16)

With the value xs ∈ [0, 1] we indicate the normalized portion of the
brace to which the scalloping is applied: we fixed it to 0.4 for all three
structural braces.
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Finally, the distance from the soundboard for the points of the curved
face are determined multiplying the contributions of the two curvatures
and the scalloping as:

dzj =
1

2
hs(1 + ẑj · kg · ks) (3.17)

The coefficients kg and ks make the thickness of the curved section grad-
ually decrease from the centre of the brace xn = 0 to the edges xn = ±1
where the thickness of the brace is half of its maximum hs.

xn

dz

xs 10

hs

0.5hs

Figure 3.9: Curvature of braces along the longitudinal direction (normalized).
In the interval [0, xs] the brace thickness is controlled by the gaussian curve.
In the interval [xs, 1] also the scalloping is applied.

We have built one of the two flat braces next to the soundhole using 4
lines of points along the y-direction and mirrored the points with respect
to the y axis to get the other plate. Their position is illustrated in figure
3.10.

d

24

4
7

d

Figure 3.10: Position of the braces next to the soundhole. The dashed lines are
centerlines of the brace and the soundhole. The distance d from the soundhole
to the waist depends on the parameters of the outline.

The flat braces are centered between the soundhole and the waist,
with a fixed width. The length of these braces depends on the size of
the soundhole, which affects the position of the braces among which the
plates are bounded with a fixed distance.
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3.3.2 Braces in the Lower Bout

The braces in the lower bout have a shape that is very similar to the
three horizontal braces in the upper bout, in fact, they all have a face
characterized by a scalloped Gaussian curve, and the opposite face per-
fectly flattened against the soundboard. For this reason, we have built
the braces in the lower bout similarly to what we have done for the struc-
tural ones with minor differences: the cross-sections are no more parallel
to the y-axis, the xn normalized axis is substituted by an axis with the
same orientation of the brace; furthermore the curved part of the brace
is not constrained to be half of the thickness, but two parameters inde-
pendently define the thickness at the edge and at the centre.

From the main parameter set we can extract the line equation of each
brace in the point-slope form y−yb = tan(θ)(x−xb): this line constitutes
the centerline of the brace along its main direction in the (x, y) plane,
where pb = (xb, yb) is the center of the brace and θ ∈ [−π, π] defines its
orientation. From the line equation, we build and align the cross-sections
with central points exactly on the centerline. We add the cross-sections
from the central one to the edges symmetrically, iteratively increasing
of 1 mm the distance l from the central point of the bar, computing for
each cross-section its center point

pc = (xb + l cos(θ); yb + l sin(θ)) l = 1, 2, ...L/2 (3.18)

The other two points of the base are distanced from pc by

dx = ±w
2

sin(θ); dy = ∓w
2

cos(θ) (3.19)

where w is the variable parameter indicating the width of the cross-
section (indicated in figure 3.4).
The curved surface of the braces is built similarly to what we did for
the transverse braces in equation 3.14, but in this case the orientation
is variable. Using again the coefficients dx and dy, we define the points
pj = (xj, yj, ẑj) placed in the curved part of the cross-section as

xj = xc + dx cos(πj/10),

yj = yc + dy cos(πj/10),

ẑj = sin(πj/10)

The cross-section of the braces in the lower bout can be slightly differ-
ent than the structural braces ones. We have built the structural braces
with a rectangular base whose thickness is half of the maximum thickness
of the brace (see equation 3.17); for the braces in the lower bout instead,
the two values of thickness hmax and hmin are independently variable
giving

dzj = hmin + (hmax − hmin)(ẑj · kg · ks) (3.20)
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The first braces we build are the two lower ones, for which the orien-
tation is directly expressed by the variable parameter αV . The centers
of these two braces are distanced from the y axis by 74 mm and their
y-coordinate is defined by the parameter yV . We define the line equations
of the braces by means of their central point and orientation, then we
place the points of their mesh as explained in the previous paragraphs.
The length of these braces is directly expressed by lV .

The length and position of the fan braces are affected by the position
of the two underlying braces: a scheme of the layout is visible in figure
3.11. To locate the fan braces we extend the line defining the lower braces
to the coordinate xext that represents the extreme of the lower brace in the
reference model and define the point pext there. From the point pext we
draw a line with angle αK−αV 6= αout and define the central point of the
outermost fan brace pout halfway between pext and the line intersection
with the upper limit of the bracing ymax. The x coordinate of the centers
of the fan braces are uniformly distributed in the range [−xext;xext];
similarly the angles are set to [−αout, αout] with αout = αK −αfan. The y
coordinate of these points is set to be halfway between the lower braces
and ymax. The length of the i-th fan brace is set according to the distance
of the centre from the upper limit li = 2(ymax − yi − 2)/ sin(θi).

d1 d2

pext

ymax

d1

d2
d3

d3
out

xext

pout

Figure 3.11: Scheme of the bracing layout assembly.
The distances di indicate that the centers of the fan braces, circled in black,
are always placed in the middle of a line that goes from the lower braces to the
upper y limit. The red values are the constants we used to locate pout based
on the lower braces position.
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3.4 Concluding Remarks

To study the vibrating behavior of different shapes of soundboards we
defined a parametric model starting from the scheme of a real guitar.
From this model, we want to generate a set of different soundboards to
grasp the relations between their geometrical features and their vibration
modes.

We described the steps performed to get a mesh of a guitar sound-
board starting from four circles. We showed our complete parametric
model, built from the classical Torres guitar shape as a reference, driven
by 20 geometrical parameters concerning the outline and braces. In sec-
tion 3.2 we pointed out that to make the union of all the created elements
work, the points of contact need to be replicated in the soundboard mesh.
In the next chapter, we will go into the details of the assembly of the full
mesh describing how we configured the COMSOL Multiphysics software
to perform the union operation and the modal analysis.





4
Finite Element Modal Analysis of

the Soundboard

In the previous chapter we presented the parametric model that allow
us to generate different shapes of soundboards and bracing. The meshes
generated in that way have been studied with the FEM method to ana-
lyze their normal modes.

In the first part of this chapter, we describe step by step the func-
tionalities of COMSOL Multiphysics that we used and how we configured
them to correctly assemble the meshes and analyze them. We performed
the simulation of datasets of 1000 samples in a loop using MATLAB®
LiveLink™, taking as input the meshes and parameters described in the
previous chapter.
In the second part, we present an overview of the results of the simula-
tions, namely the eigenfrequencies and modal shapes.
The modal shapes can undergo slight variation and their ordering on the
frequency axis is often swapped, so we recognize and label them to ensure
the comparison of the eigenfrequencies linked to the same shapes. The
labels of the modes are assigned through a comparison with the results
of the reference model that we used in the previous chapter to define the
mean values of the geometrical parameters.
Finally we perform regression analysis on the first seven eigenfrequencies
to obtain a prediction model.
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4.1 Performing the Eigenfrequency Study in
COMSOL

The soundboard meshes generated as in chapter 3 are characterized by
different shapes that give them different vibrational behaviors. We are
interested in analyzing the modes, characterized by different patterns of
vibration called modal shapes that correspond to the natural frequencies
of the structure (also called eigenfrequencies). To perform the modal
analysis of the geometries, we set up a Finite Element Model simulation
in the COMSOL Multiphysics software. We executed the eigenfrequency
study of the Structural Mechanics Module to get the natural frequencies
and vibrational modes of the soundboard assembled with the braces.
The COMSOL interface and workflow are organized in nodes and subn-
odes that are evaluated sequentially, in this section we describe our con-
figuration node by node following the software workflow shown in figure
4.1.

Mesh parts

Geometry Materials
Structural
Mechanics

Component Study Results
Global
Definitions

Eigenfrequency Export

Figure 4.1: COMSOL Multiphysics workflow. The software is organized into
nodes that are evaluated sequentially. Each of the 4 main nodes contains many
sub-nodes, we have shown in the figure those on which we operate.

4.1.1 Mesh Parts

When importing mesh elements in COMSOL the software needs to iden-
tify edges and faces to form solid objects. The detection has to be ad-
justed differently for elements of different dimensions and curvature. For
each sample, we import each mesh element in a different import node
to handle the face and edge detection sensitivity independently. Each
import has been defined in the Geometry node and generates an element
under the Mesh Parts node.
We disabled the mesh simplifications in each import node and chose a
suitable set of values for the edge and face detection fields: the sound-
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board should have no edges detected in the middle of the plate, and each
brace should have a plane face in contact with the plate, delimited by all
its 4 edges.
If the edge detection is too strict, the bases of the braces will not be
detected as planar, resulting in a rounded base not perfectly in contact
with the soundboard.
If the edge detection is too sensitive, the curved parts of the braces could
be spliced in smaller planar surfaces which risk causing failure when
COMSOL generates their meshes.

4.1.2 Geometry

When the mesh of the soundboard and braces are imported and set up
correctly, they can be joined together in the Geometry node using the
boolean union operation. As anticipated in section 3.2, the union be-
tween the braces and the soundboard is delicate, so it is important to
avoid self-intersecting curves or broken meshes otherwise the operation
will not complete.
A repair tolerance field can be adjusted in the Form Union node if the
operation fails: for each sample, we try different values from 0.2 and 0.6
mm until one of them works (usually the first). If all tolerances failed
the simulation stops and the sample is discarded: this happened for the
≈ 3% of the samples.

4.1.3 Materials

We then need to define a material for the elements: we chose the Sitka
spruce, taking the mechanical parameters of the wood from [33]. An or-
thotropic material node has been defined for the soundboard under the
Materials node, its elastic properties are depicted in table 4.1. Density
has been set to 450 kg/m3.

Young Modulus Shear Modulus Poisson’s Ratio
Ey = 10.8 GPa Gxy/Ey = 0.064 µxy = 0.04
Ex/Ey = 0.078 Gyz/Ey = 0.061 µyz = 0.467
Ez/Ey = 0.043 Gxz/Ey = 0.003 µxz = 0.435

Table 4.1: Orthotropic material model for the soundboard

We modeled the braces as made of the same wood as the soundboard,
but considering their different orientations, multiple material models
should have been defined to account for the different orientation of the
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wood grain. To overcome the need to define a different coordinate sys-
tem for each brace, we adopted a simplified solution and considered them
isotropic.
We define another material with the elastic properties equal to the ones
of the orthotropic one along its longitudinal direction like shown in ta-
ble 4.2. The difference in the vibrating behavior between isotropic and
orthotropic models for wood braces with bar shape has been measured
and found negligible [34]. As Poisson’s Ratio we used the coefficient µtl,
relative to the deformation along the longitudinal axis caused by stress
along the tangential axis [33]. Longitudinal and tangential axes are re-
ferred to the direction of the wood grains.

Young Modulus Density Poisson’s Ratio
El = 10.8 GPa 450 kg/m3 µtl = 0.025

Table 4.2: Isotropic material model for the braces

4.1.4 Solid Mechanics

In the Solid Mechanics node we apply the boundary conditions and the
material properties to the corresponding geometric entities. We have
chosen to test the soundboard in a similar configuration to its working
condition, namely with the fixed boundary condition applied using the
fixed constraint command.
To assign these conditions to the correct geometric entities, we use the
ball selection [35] function that can be set to identify entire solids or sin-
gle faces.

4.1.5 Eigenfrequency Study

In the eigenfrequency study node we define how many frequencies we
want to find and the search criterion. We look for the first modes of the
soundboard because they are the ones that most affect the tonal quality
of the instrument [36]. In fact, at higher frequencies, the peaks in the
frequency response are less prominent and less distanced from each other
[7]. We set the solver to find the first seven frequencies around 100 Hz
with a larger real part: modes with complex eigenfrequency would involve
rigid motions of the structure.

4.1.6 Results

Finally, in the results node we export the table of the eigenfrequencies
and the solid displacement data as CSV files. The displacement data
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reports for each point of the mesh the amplitude of its vibratory motion
in the z axis direction.

4.1.7 LiveLink™ scripting

To simulate a single model it is sufficient to follow the steps described
above within the standard COMSOL application. Since we simulated
groups of 1000 samples each, we converted the project to a MATLAB ®
LiveLink™ script. In this way, we automatically manage samples with
different numbers of parts and apply boundary conditions and material
to the actual coordinates of the elements. The coordinates of the ele-
ments are passed to the script as arguments from the function that built
the meshes.

4.2 Classification of the Vibration Modes

The results of the simulation of a sample consist of seven eigenfrequencies
and the related modeshapes represented by the displacement data. The
modes are identified by a number from 1 to 7 corresponding to the modal
shapes of the reference samples as we will explain later in the chapter.
Also an indication of the nodal lines is given in the (n,m) form where
n indicates the number of longitudinal nodal lines and m indicates the
number of the transversal ones.
If we plot them in a histogram, the eigenfrequencies of all the modes
gather in clusters resembling Gaussian curves with some overlap like
shown in figure 4.2. The histogram refers to the dataset in which all the
20 parameters are varied using a Gaussian distribution with σ=0.05.

The overlaps between the frequency bands of the modes suggest that
mode switching may occur. Let’s take as an example the large overlap
between modes 5 (0,2) and 6 (3,0), represented by green and cyan lines
in figure 4.2: the fifth and sixth modal shapes of two samples can be in
swapped positions if we sort them by their eigenfrequency.
We want to make sure that when we study a mode, we are actually re-
ferring to the same modal shape for all the samples, so we defined a
labeling convention based on the modal shapes and not on the order of
their eigenfrequencies. For this reason, we performed a simulation of the
reference model characterized by the regular Torres outline and a brac-
ing pattern involving 5 braces in a fan configuration. The modeshapes of
this geometry sorted by increasing frequency are labeled with numbers
from 1 to 8 and shown in table 4.3. We labeled the modes of all the
samples to have them match the mode of the reference model with the
corresponding label.
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Figure 4.2: Histogram of the eigenfrequencies. Dataset of 1000 samples with
all parameters variable (σ = 0.05). The different coloured distributions refer
to the seven different vibration modes.

Since switching occurred between modes 7 and 8, we computed the first
eight modes of the reference model to recognize both the shapes. Switch-
ing between modes 7 and 8 occurs only in fourty samples, so we proceed
our analysis considering only the first seven modes and neglecting the
few occurrences of mode 8.

We inspected the results of the samples to find deviations with re-
spect to the reference model. Some considerations can be also made just
looking at the reference modes: for modes 3,4 and 5, the vibration area
is confined neither to the upper bout nor to the lower bout, but involves
both the regions to different degrees depending on the sample.
In particular mode 5 is clearly a (0,2) mode in the reference model and
shows an uneven vibration in the three lobes. The upper lobe vibration
amplitude can be much higher with respect to the other two lobes gen-
erating a (0,0) mode in the upper bout.

In some samples, modes 3 and 4 can happen to be very similar: the
most common configuration are a (2,0) mode in the lower bout and a
dipole (0,1) between the upper and lower bouts with a curved nodal line
like shown in table 4.3; nevertheless they tend to blend in some samples.
The central lobe of mode 3 can extend to different degrees in the upper
bout, while mode 4 can see its nodal line so curved that it makes the
lower bout resemble a (2,0) mode; this tendency to blend and the little
difference of the eigenfrequencies make these modes quite difficult to dis-
tinguish, as visible in figure 4.3.

We automatically recognize the mode shapes from the displacement
data exported by the simulations. To do so, we define a 2D representation
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shape label shape label
Mode 1
(0,0)
251 Hz

Mode 2
(1,0)
342 Hz

Mode 3
(2,0)
474 Hz

Mode 4
(0,1)
495 Hz

Mode 5
(0,2)
580 Hz

Mode 6
(3,0)
632 Hz

Mode 7
(1,1)
746 Hz

Mode 8
(4,0)
814 Hz

Table 4.3: Modal shapes of the reference model. This model is not taken
from the dataset, it is equivalent to a sample in which all the parameters
are set to the mean value of their distributions.

Figure 4.3: From left to right, modes 3 and 4 variants, belonging to the same
sample

of the guitar plate employing a grid of the (x, y) plane limited inside the
outline of the sample. The vibration amplitude given as scattered data
for the mesh of points created by COMSOL, is fitted to the grid using
the griddata function of MATLAB®. This function builds a Delaunay
triangulation of the scattered data and evaluates the vibration amplitude
in the grid points through linear interpolation [37].

To classify the modal shapes of samples characterized by different
geometries we need to recognize the vibration patterns from the gridded
displacement data. For this reason, we used the two-dimensional Fourier
transform, which detects the harmonic components of the input data
along its two dimensions. We performed the 2D Fast Fourier Transform
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algorithm on the gridded data of each modeshape of each sample, includ-
ing the reference one. Since the spatial sampling resolution we used is
high relative to the size of the vibration lobes, we evaluate the 10 bins
closest to the zero spatial frequency in the two dimensions. Each shape
is thus represented by a 10x10 matrix in the spatial frequency domain.
Two examples of these matrix are shown in figure 4.4.
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Figure 4.4: Fourier transform of the displacement data of modes 3 (0,2) and 7
(1,1). kx and ky represent the wave number of the spatial frequency bin in the
two directions x and y.

Then, for each mode of the samples, a comparison with each one of
the 8 modeshapes of the reference model is performed through a simple
element-wise subtraction of the 10x10 matrix as shown in equation 4.1.

∆FFT(j) =
10∑
h=1

10∑
k=1

|FFTs(i, h, k)− FFTref(j, h, k)| (4.1)

FFTs(i, ·, ·) and FFTref(j, ·, ·) are the 10x10 matrices of modes i and
j of the sample and the reference model respectively.
For each computed mode, the assigned label is the one for which the dif-
ference between the reference modeshapes and the shape under analysis
is the minimum.

Label(i) = min
j

∆FFT(j) (4.2)

After all the modeshapes have been compared, for each sample we
check that there are not two or more modes marked with the same num-
ber. Otherwise, a final check is made on the labels since wrong identifi-
cation with this method can happen, especially for modes 4 and 6.
Mode 4 (0,1) can be identified as 1 (0,0) or 3 (2,0) due to its strongly
variable shape; so when one of these two labels is duplicated the one with
higher frequency is usually the correct mode 4.
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Mode 6 (3,0) can be identified as 3 (2,0) or 8 (4,0) because they all de-
velop nodal lines which are parallel to the y axis, but also in this case the
correction is pretty straightforward. It is sufficient to notice the presence
of three modes of this kind and make sure that the three occurrences are
marked respectively as 3, 6 and 8 if sorted by increasing frequency.

The correction of duplicates is based on the observation of the labels
assigned to the data, so it has to be adjusted with respect to the dataset.
The errors that are fixed in this way are systematic and involve a minor
part of the samples (≈ 5%) so we supervised this phase to get the correct
labels where the automatic labeling failed.
The complete procedure of mode labeling for a full dataset is synthesized
in the algorithm 2.

Algorithm 2 Automatic mode labeling.
FFTref ← Calculate FFTs of reference modes . 9 matrices
for samples S do

FFTs ← Calculate FFTs for the sample S . 7 matrices
for is = 1, 2...7 do . Loop sample modes

for j = 1, 2...9 do . Loop reference modes
∆FFT(j)← Compute difference (equation 4.1)

end for
Label(is)← Index with minimum difference (equation 4.2)

end for
Resolve duplicate labels

end for

4.3 Eigenfrequencies Prediction from Geomet-
rical Features

Since we recognized and classified the modes as described in the previous
section, we now refer to a generic mode n with eigenfrequency fn as the
n-th mode of table 4.3. The 40 samples that have the mode 7 switched
with mode 8, do not contribute to the prediction model for mode 7 be-
cause it is missing from its first 7 modes.
Our dataset includes N=1000 samples, each one described by a set of 20
geometrical parameters as possible predictors and seven eigenfrequencies
as outcomes.
To understand the influence of the geometrical parameters of the sound-
board with bracing on the frequency of its normal modes we look for a
function that relates them

f = f(x) (4.3)

where x is the vector of the parameters and f is the vector of the seven
eigenfrequencies.
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We have chosen to perform polynomial regression, looking for models
that best describe these relations in the form:

f̂ = b0 + B1x + B2x
2 + ε (4.4)

where b0 is a constant term, B1,B2 are matrices of the coefficients of
the 20 parameters contained in vector x, and ε represents the prediction
error. The vector f̂ represents the predicted eigenfrequencies for the first
seven modes, classified with the method described in the previous section.
Since the relation between the coefficients and the dependent variable is
linear, our model is equivalent to a multiple linear regression that treats
x and x2 as two independent variables. The coefficients b0,B1,B2 are
calculated through the least-squares method, and the reliability of the
fitted model is measured with the coefficient of determination

R2 = 1−

N∑
i=1

(fi − f̂i)2

N∑
i=1

(fi − f̄)2

(4.5)

where fi and f̄ are the actual values and mean value of the eigenfre-
quencies calculated with the simulations and f̂i are the values calculated
through the model.

We performed regression analysis using the polyfitn function in Mat-
lab [38] that allows the polynomial fitting of multiple independent vari-
ables simultaneously. The coefficients of determination in table 4.4 give
an indication of the accuracy of the fitting.

f1 f2 f3 f4 f5 f6 f7

R2 0.989 0.983 0.977 0.912 0.950 0.944 0.962

Table 4.4: Regression performance: R2 values of quadratic regression for
the 7 modes. All parameters varying (σ=0.05).

When evaluating the performance of the regression model we have to
keep in mind that the variation of the number of braces is not included
in the predictor set, so it can increase the prediction error and affect the
regression performance.

The contribution of each parameter in the model is different: some of
them happen to be almost irrelevant for the eigenfrequency prediction,
while a few others are sufficient to reach considerable accuracy. Figure
4.5 shows the fastest way to reach the maximum performance of linear
regression iteratively adding one parameter at a time.
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Figure 4.5: Performance of the quadratic regression incrementing the number
of parameters from 1 to 7. Each increment involves the parameter that max-
imizes the R2 index. The red line represents the maximum R2 corresponding
to the regression of all the 20 parameters listed in table 3.1

For each mode, seven parameters or even fewer ones are sufficient to
achieve a R2 value that is very near to the maximum one represented by
the red line. The model seems to be very simple especially for the predic-
tion of modes that vibrate in the lower bout: four parameters concerning
the lower bout and the soundhole are sufficient to have a good predic-
tion of frequencies 1, 2, 3, 6, and 7. This shows that some parameters
are much more influential than others in the prediction model, mainly
because the effect of some geometrical features on the frequencies may
vary considerably between different parameters.
We recall that the parametes of the outline are visible in figure 3.2 and
the whole parameter set is described in table 3.1.

To get a complete overview of the relations between eigenfrequencies
and parameters we calculate also the correlation matrix of the dataset:
the submatrix relating geometrical parameters to the eigenfrequencies is
visible in figure 4.6. Even if the correlation coefficient r does not im-
ply an actual dependence this picture well represents our data, in fact,
the highest-scoring values in this matrix correspond to the most influ-
ential parameters shown in figure 4.5. We got a nearly identical picture
also representing the linear terms of regression, weighted by the reference
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value of the corresponding parameter, in a matrix form: the parameters
highlighted for the greater contribution are the same. The actual values
of the regression coefficients are shown in tables in appendix A.

r

Figure 4.6: Correlation coefficients of the 20 geometrical parameters listed in
table 3.1 with the 7 eigenfrequencies. All parameters are varying with σ =
0.05 and described in table 3.1.

What is most evident across the whole parameter set is the domi-
nance of the two bouts and the soundhole over all the other parameters
in the dataset. In particular, the longitudinal position of the soundhole
c4,y and the radius of the lower bout indicated by r1, are strongly cor-
related with the frequencies of the modes that resonate in the lower bout.

Modes 4 and 5 are the only ones that involve a relevant vibration
of both the upper and lower bouts as suggested by the reference modal
shapes in table 4.3. This is coherent with the lower correlation with r1

and the higher correlation with the upper bout circle c3 compared to all
the other modes.

The common thread between these results is the limitation of the vi-
brating area as the main contribution of the geometrical features to the
regression model and to the frequencies.
On the other hand, parameters that do not affect the size of the vibrating
surfaces have minimum relations with the eigenfrequencies. For example,
the width of the flattened edges of the outline is negligible both in terms
of correlation and in terms of contribution to the regression model. The
same holds for the longitudinal position of the waist.
These three parameters in fact change more the shape of the guitar rather
than the actual dimensions of the vibrating areas.
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The transversal brace just below the soundhole has a role of struc-
tural support but also delimits the vibrating area of the lower bout [7], so
its position can affect the modes that vibrate in that area. In our model,
the soundhole position affects the eigenfrequencies indirectly because it
determines the position of this brace. Examining the correlations with
the frequencies, we found nearly identical values for the positions of the
soundhole and the underlying brace.
The soundhole radius instead has minor effects because its mean value
is way less than the value of its position: hence its effect on the position
of the underlying brace is less.
One possible implication is that for the considered bracing system the
size and position of the soundhole can be independently chosen to control
the resonances of the air cavity and the plate, respectively. In fact, the
guitar body also acts as a Helmholtz resonator, which resonant frequency
is determined by the volume of the body and the radius of the hole [7].
In the case of different bracing systems that ease the propagation of the
vibrations outside the lower bout instead, the implications about the
soundhole position would not hold.

The fourth mode (0,1) is the most complex to predict, in fact, no par-
ticularly relevant parameter tht influences the behavior of this mode is
visible both in figure 4.5 and 4.6. This is the mode that is most affected
by the waist r2 with a correlation of only 0.44, but there is not a single
parameter that noticeably affects its frequency more than others.
We tried to combine different parameters to see if some features score
higher correlations with this mode. We found the highest correlation
with the mean width of the outline scoring 0.67, but this actually corre-
lates in a similar measure to all the 7 eigenfrequencies.

The mode that is most involved with the upper bout is the fifth one
(0,2) because among its three lobes the one that vibrates there is the most
prominent. The fifth eigenfrequency has the strongest relations with the
parameters of the upper bout but the correlation values are not as high
as the ones regarding the lower bout modes. Summing the contribution
of c3,y and r3 we obtain the y coordinate of the neck joint for which the
correlation with the fifth frequency increases to 0.75. This noticeable
increment suggests again that the size of the vibrating area has a more
direct effect compared to the form factor.

Correlation helps us interpret the moderate contribution of the waist
and upper bout parameters, but can not help highlighting the minimal
role of the bracing parameters.
Neither regression coefficients nor the correlation ones show relevant con-
tributions of the braces in the lower bout. For this reason, we decided to
dedicate a study case on them and understand the degree to which they
influence the soundboard modes.



50

4.4 Bracing Influence on Eigenfrequencies

The dataset used for the study of the fan bracing is characterized by
the variation of the 8 parameters concerning the bracing layout and the
shape of the struts, while the other 12 parameters concerning the outline
are fixed to the values of the reference model.
We recall that in table 3.1 the parameters of the bracing are described
and separated by the ones of the outline, while figures 3.4 and 3.5 repre-
sent their geometrical interpretation.
The distribution of the parameters values in this dataset is characterized
by a standard deviation σ=0.2 which is four times larger than the one
used in the previous study case.

The resulting samples are characterized by a standard Torres out-
line and a fan bracing pattern that varies significantly more than the
one in the dataset analyzed before. The number of braces is uniformly
distributed from 4 to 8 elements in fan configuration exactly like in the
previous dataset.

It turns out that the variation of the frequencies is very low com-
pared to the previous case, the difference is immediately visible in the
histogram shown in figure 4.7.
The distribution still includes overlaps, but it is much narrower than the
one shown in figure 4.2.
To compare the variations in the two datasets, we report the standard
deviations in table 4.5, expressed as percentages with respect to the mean
values of the frequencies.

f1 f2 f3 f4 f5 f6 f7 µf
σ20[%] 6.0849 6.3319 5.8724 3.7625 5.1808 5.6335 6.5007 5.6238
σ8[%] 1.2551 1.6113 1.8647 0.7469 1.0412 2.6230 1.9130 1.5793
σ20/σ8 4.8483 3.9298 3.1492 5.0374 4.9757 2.1478 3.3982 3.5610

Table 4.5: Standard deviation of the frequencies calculated with the nu-
merical simulations, compared between the two datasets. Pedices in-
dicate the number of varying parameters: σ20 refers to the completely
variable dataset and σ8 refers to the bracing varying one. The mean of
the seven values of the standard deviation is expressed as µf .

On average, the frequency variation of the second dataset is 3.5 times
lower than the first one despite the geometrical parameters have a four
times higher variation. Hence the thin braces show only a small influence
for what concerns the eigenfrequencies.



Chapter 4. Finite Element Modal Analysis of the Soundboard 51

200 300 400 500 600 700 800 900
frequency [Hz]

0

200

400

600

800

1000

n 
sa

m
pl

es
f
1
(0,0)

f
2
(1,0)

f
3
(2,0)

f
4
(0,1)

f
5
(0,2)

f
6
(3,0)

f
7
(1,1)

Figure 4.7: Histogram of the eigenfrequencies. Dataset of 1000 samples with
only bracing parameters variable (σ=0.2).

This is coherent with the tradition of guitar making, as different fami-
lies of guitars employ different soundboard shapes to adapt to different
ranges or features of the instrument [16]. Steel string guitars or baritone
guitars for instance have different outlines than classical guitars. On the
other hand, fine-tuning of the plate can be performed when the main gui-
tar characteristics are defined. To do so, braces are carved when already
assembled with the soundboard

Since the bracing system we are studying is entirely confined to the
lower bout, the modes that have both vibration lobes and nodal lines in
that area are the most affected. Indeed, modes 3, 6 and 7, are the ones
that have a variation significantly above the average.

On this dataset we performed the same kind of regression as shown in
the previous section. The performance in this case is decreased as visible
in table 4.6.

f1 f2 f3 f4 f5 f6 f7

R2 0.841 0.798 0.871 0.759 0.571 0.691 0.607

Table 4.6: Regression performances: R2 values of quadratic regression
for the 7 modes. Eight parameters varying (σ=0.2)

The lower performance of the linear regression model led us to try
alternative methods for the prediction of the eigenfrequencies.
Inspired by the excellent results obtained on violins [34], we tried to use
a feedforward neural network to improve the accuracy of the model.
The network does not perform consistently better, even trying different
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numbers of neurons and layers, so we adopted also for this analysis the
quadratic regression as our prediction model.
The contribute of each parameter to the regression model is shown in
figure 4.8.

Figure 4.8: Performance of the quadratic regression, incrementing the number
of parameters from 1 to 7. Each increment involves the parameter that max-
imizes the R2 index. The red line represents the maximum R2 achieved with
all the 8 parameters.

The size of the cross section of the braces is a main contribution across
all the modes, as indicated by the parameters hmin, hmax, w. These three
parameters show a positive correlation with the frequency, meaning that
larger cross sections happen to make the lower bout stiffer.
The angles of the braces αfan, αV affect mainly modes 2, 3 and 6, in which
the nodal lines develop in the longitudinal direction of the soundboard.
The only case in which one parameter is enough to reach half of the
maximum R2 is the contribution of hmax in the first mode.

The correlation of the brace thickness is linked to the role of the
cross-section shape in stiffening a bar: a tall brace has a grater stiffening
contribution to bending than a large flat one [7]; this is highlighted for
the first mode because no brace lies on a nodal line so all braces con-
tribute in stiffening the plate against the vibration.
The different contribution of mass and stiffness of the fan bracing has
been addressed also in [10] where the addition of more braces raised the
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lower frequencies of the soundboard and lowered the higher ones: this
suggests that at lower frequencies the braces contribute more in terms of
stiffness, while at higher frequency they act as weights.

The contribution of the regression terms are very low with respect to
the previous case as the narrower distribution suggests. The magnitude
of the regression terms follows the width of the frequency distributions,
having minimum coefficients for mode 4 and larger ones for modes 3 and
6.
The parameters that most contribute to the regression like shown in fig-
ure 4.8 are the ones that have the higher regression coefficients. This
indicates that despite the small variation of the outcomes and the lower
scoring R2, the model is still considerably accurate.
The complete table of the calculated regression coefficients is visible in
appendix A.

We performed the same kind of regression analysis on the subset of
data that have 5 fan braces. The results are once again coherent with
what shown in this section, reporting the size of the cross sections of the
braces as main contributions for almost all the modes and the angle αfan

as relevant for modes 3 and 6.

In a complementary way, we looked at the role of the number of
braces and compared it to the brace size. As visible in figure 4.9, the
total volume of braces V is more correlated with the frequencies than the
single dimensions as it sums up their contributions.
it is interesting to notice that the first modes seem more affected by the
size of the braces expressed by the ratio V/n, while modes 5 and 7 have
higher correlation with the number of braces n instead. This can be
partly explained by the role of the brace position with respect to the
vibration lobes. While mode 1 senses a diffused stiffening of the surface,
higher modes with their small vibration lobes are differently affected if
the braces are positioned near the nodal lines or near the peak of the
vibration lobes.
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r

Figure 4.9: Correlation coefficients in the varying bracing case. The last three
variables on the x axis are the total bracing volume V , the number of braces
n and the ratio between the two. These parameters are derived from the other
8 ones, which are described in table 3.1 in the rows related to the bracing.

4.5 Concluding Remarks

In this chapter, we have shown how we performed the modal analysis of
datasets of guitar soundboards and inferred some relations between their
geometry and vibrational behavior.
The parametric model described in chapter 3 has been used to gener-
ate the mesh of all the samples we analyzed, and its parameters have
been used as predictors of the eigenfrequencies in a regression model.
We made separate datasets for the full variation of the model and the
only variation of the lower bout bracing. The full model analysis gives a
broad picture of the main contributions that sensibly raise or lower the
resonant frequencies of the plate and the whole instrument.
Since the contributions of the braces are way less effective than the out-
line features, we performed a dedicated study on it and found how the
different eigenfrequencies are affected.
The regression coefficients for both the studies are reported in the ap-
pendix A. With these coefficients, one can calculate the eigenfrequencies
of a custom plate from its geometrical features with neither a FEM sim-
ulation nor a concrete realization of it. This can be an additional tool in
the design process both for the luthier workshop and the industry.
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Conclusions and Future Works

This work of thesis presents a methodology to draw the relations between
geometrical features of the classical guitar soundboard and the resulting
vibratory response. The results of this work can be used in the design
phase to adjust the construction features in order to achieve a certain
tone on the finished instrument.

We focused our study on the shape of the Torres guitar top plate and
the features of the fan bracing.
Using a parametric model, we generated different braced soundboard
samples on which we performed Finite Element Modal Analysis. Nu-
merical simulations allow us to inspect the vibrational behavior of many
soundboards without actually building or borrowing them.
The regression analysis we performed on the construction parameters
provides a simple model to predict the eigenfrequencies we calculated
with the numerical simulations. The linear equation built with the re-
gression coefficients can be used also as an approximation for geometries
not included in our dataset but with a reasonable similarity.

The proposed approach has shown good reliability. The statistical
analysis reported relevant correlations and good performance, giving re-
sults that are coherent with the literature.
We show that the relations between the geometrical parameters and the
vibration modes of the soundboard are well described by quadratic func-
tions and we provide the formula and coefficients needed to predict the
first seven eigenfrequencies of any soundboard shape with fan bracing
that complies with our model. This formulation constitute an important
progress with respect to the empirical methods employed by luthiers and
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it is way faster than performing a numerical simulation.

5.1 Future Works

Despite the analysis of 20 different parameters and the variation of the
number of braces in the fan layout, our study is still focused on a very
specific type of guitar soundboard and bracing.
Other parameters and constructive aspect need to be studied to make this
model more general: parametric material properties, a variable thickness
profile along the soundboard, parametric arching of the plate and asym-
metric shapes can be used for example.
Including other parameters would make the model more complex; as a
consequence, different regression models like neural networks should be
tested to check for relevant improvement in the prediction.

Apart from adding parameters to this model, two different approaches
can be adopted to furtherly extend this research. The first one consists of
adding more elements to the simulations, starting from the bridge plate
that acts as an additional brace. The addition of elements can be ex-
tended to different degrees until the whole guitar is included.
The second approach is to build other parametric models to account
for all the guitars we do not consider in our study. The comparison
of different guitar types and bracing systems cannot be represented by
continuously distributed parameters like the ones we used but would con-
stitute new study cases for which our methodology would be interesting
to apply.
For what concerns the bracing, there is a huge variety of configurations
used by luthiers that would be inefficient to cover with as many study
cases. For this reason, developing a model in which the braces are ran-
domly distributed in the soundboard would be an interesting approach
to generalize their effect on the soundboard vibration, opening the pos-
sibility of a parametric design of new bracing systems.
Finally, the use of metamaterials for the construction of soundboards is
becoming widespread thanks to claims about its good tonal quality and
its louder radiation [7]. Studies on soundboards made of these materials
should be performed to validate and measure the difference with plain
wood ones.
Metamaterials have singular mechanical properties [39] that turned use-
ful in many applications. Acoustic applications are mainly studied to
control noise, employing analysis methods similar to the ones we showed
for soundboards [40].
Therefore, the modal analysis with parametric shapes we performed on
classical guitar and already studied on violins in [34] could include dif-
ferent materials and find a wide field of application also outside musical
acoustics.



My Appendices

A Tables of the Regression Coefficients

The tables shown in this section refer to the regression study described
in section 4.3. The rows correspond to the 20 geometrical parameters
described in table 3.1 and illustrated in figures 3.2 and 3.5. The seven
eigenfrequencies fi correspond to the first seven modal shapes shown in
table 4.3.

f1 f2 f3 f4 f5 f6 f7

w2 1.1 -4.7 0.17 17 -0.31 -8.7 10
w1 2 3.2 -2 9 7.3 7.2 8.7
c4,y -1.9 -4.9 -4.7 6.2 -7.3 -3.9 -10
r4 2.2 2.6 2.4 -2 4.3 1.6 10
c1,x 1.7 3.7 6 0.85 6.4 10 8.3
c1,y -2 -4.2 -4.3 0.41 -3.3 -4.7 -8.1
r1 -2.5 -6.1 -11 4.7 -4.2 -13 -11
c2,y 0.82 0.79 -0.14 0.55 -1.9 -1.6 1.3
r2 3.4 2.5 2 10 -5 12 17
c3,x 1.2 1.9 4.9 -0.25 5.9 4 2.5
c3,y -0.25 -0.54 -1.9 3 -13 -1.3 -1.7
r3 0.11 0.2 -1.1 8.4 -16 2.9 0.95
αV 70 75 2.2e+02 -76 2.6e+02 1.5e+02 2.7e+02
lV -0.11 -0.12 -0.43 0.27 0.15 0.15 -0.44
yV -0.45 -0.27 -2.4 2.3 -1 -0.84 -0.15
αfan 23 -3.6 -33 -38 2.3e+02 1.8e+02 -45
hmin -10 -12 30 -99 94 37 -1.8
hmax -29 -52 -64 44 -79 -1.2e+02 -1.6e+02
w 4.7 5 -18 18 -17 -22 -3.5
s -1.4e+02 -2.6e+02 -2.6e+02 -8.6e+02 1.2e+02 -1.1e+03 -1.3e+03

Table 1: Linear terms B1 of regression coefficients, dataset of 20 varying
parameters (σ = 0.05)
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f1 f2 f3 f4 f5 f6 f7

w2 -0.047 0.18 -0.0063 -0.66 -0.00082 0.34 -0.39
w1 -0.077 -0.12 0.083 -0.35 -0.27 -0.26 -0.32
c4,y 0.0021 0.0088 0.0086 -0.015 0.019 0.0076 0.017
r4 -0.016 -0.017 -0.017 0.032 -0.043 -0.014 -0.088
c1,x 0.0097 0.021 0.029 -0.006 0.052 0.053 0.055
c1,y 0.0033 0.012 0.013 -0.0056 0.0089 0.016 0.018
r1 0.004 0.014 0.031 -0.024 0.01 0.031 0.025
c2,y 0.0061 0.0051 -0.005 0.0073 -0.016 -0.022 0.0094
r2 -0.027 -0.018 -0.0094 -0.07 0.072 -0.12 -0.16
c3,x 0.0057 0.015 0.048 -0.043 0.034 0.034 0.011
c3,y 0.00079 0.0019 0.0069 -0.014 0.039 0.0045 0.0059
r3 -0.0008 -0.0014 0.0065 -0.057 0.069 -0.017 -0.0059
αV -53 -56 -1.9e+02 79 -2.1e+02 -1.2e+02 -2e+02
lV 0.00052 0.0007 0.0023 -0.0008 -0.00057 0.00039 0.0019
yV -0.0042 -0.0017 -0.024 0.025 -0.0075 -0.0076 0.0053
αfan -12 22 78 23 -1.9e+02 -81 48
hmin 4.1 5.8 -6.9 33 -28 -9.6 3.2
hmax 5.7 9.6 12 -6.7 14 22 30
w -0.32 -0.28 1.6 -1.3 1.2 1.8 0.35
s 2e+02 4e+02 4.1e+02 1.4e+03 -2.2e+02 1.8e+03 2.1e+03

Table 2: Quadratic terms B2 of regression coefficients, dataset of 20
varying parameters (σ = 0.05)
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f1 f2 f3 f4 f5 f6 f7

αV -0.54 -5.7 3.1 2.6 -4.3 -32 -63
lV 0.017 0.089 0.19 -0.019 -0.028 0.28 0.018
yV -0.12 0.019 -0.0011 0.036 -0.1 0.57 0.38
αfan 16 24 51 -16 19 51 12
hmin 4.8 10 14 2 15 24 27
hmax 3.2 4.1 5 1.8 5.1 7.3 11
w 1.8 3.5 5.9 1.1 3.5 8.1 7.6
s 1.6 -1.2 -3.5 -6.5 -23 13 8.5

Table 3: Linear terms B1 of regression coefficients, dataset of 8 varying
parameters of the bracing (σ = 0.2)

f1 f2 f3 f4 f5 f6 f7

αV 2.6 7.5 -8.2 5.1 13 29 63
lV 2.2e-05 -0.00011 -0.00025 0.00027 0.00016 -0.00025 7.5e-05
yV -0.00096 0.00094 0.00098 0.00079 0.001 0.0049 0.0084
αfan -7.9 -4.7 -3.8 15 -16 19 -12
hmin -0.49 -1.3 -2 0.42 -2 -4.1 -4.7
hmax 0.11 0.061 -0.085 0.14 -0.26 -0.079 0.19
w -0.074 -0.11 -0.2 0.029 -0.13 -0.16 -0.23
s -19 -20 -23 -3.6 13 -63 -63

Table 4: Quadratic terms B2 of regression coefficients, dataset of 8 vary-
ing parameters of the bracing (σ = 0.2)
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