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Abstract: The understanding of the physical/chemical properties of molecules
in aqueous solution is required to accurately describe the strength and nature of
electrostatic interactions that play a central role in a variety of biological processes.
The use of continuum solvent models such as the the Poisson–Boltzmann Equation
(PBE) for modeling such interactions in biomolecular systems of ever growing
complexity, heavily relies on the availability on accurate and efficient numerical
methods and on the ability of their implementation to properly scale on modern
highly parallel computer architectures. In this context, the present thesis presents
the design and scalable implementation of easy_pbe a scalable numerical solver
code for the linearized PBE. The solver is based on a Finite Element discretization
of PBE on hierachically refined cartesian grids and allows to choose between various
possible approaches for the description of the molecular surface. After introducing
the problem formulation, and its non-dimensional form, we describe in particular
detail some important aspects of the implemented solver such as the approach used
to deal with singularities caused by point sources in the model, then we present a set
of meaningful test cases to validate the code accuracy and its parallel scalability.

Key-words: Molecular electrostatics, Poisson–Boltzmann Equation, Molecular Surface, Oct-tree grid,
MPI parallelization.

1 Introduction
This thesis deals with numerical methods and High Performance Computing (HPC) Techniques for the compu-
tation of the electrostatic potential at the surface of complex molecules (typically proteins) in aqueous solutions.
The mathematical modeling tool we choose to use for this purpose is the Poisson Boltzmann Equation (PBE),
which, in mathematical terms, is a boundary value problem for a semi-linear elliptic operator with discontinuous
coefficient and point sources. In particular, we present the design and scalable implementation of easy_pbe [1] a
numerical solver code for the linearized PBE. The understanding of the physical/chemical properties of molecules
in aqueous solution is required to accurately describe the strength and nature of electrostatic interactions that
play a central role in a variety of biological processes. The introduction of such model dates back almost exactly
one century ago to the seminal work of Born [10], but its relevance for chemical and biological applications, e.g.
for drug discovery, still holds [18], furthermore, when applied to large and complex molecules, such as, e.g. the
SARS-CoV-2 spike protein [20], the solution of the PBE is a challenging benchmark for state–of–the–art HPC
techniques. Among the many popular open implementations of PBE solvers we note, in particular, APBS [16]
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and Delphi [23, 24, 26, 32], the former implements both a Finite Element (FE) discretization method on adap-
tive, conforming, simplicial meshes [5, 17] (more accurate, less efficient) and a Finite Differences (FD) scheme on
tensor product cartesian grids, while the latter strongly relies on the benefits of FD schemes on cartesian grids
in terms of memory efficiency and scalability. Here we focus on the performance and scalability assessment of
numerical methods for the PBE based on hierarchically refined cartesian Oct-tree grids [2, 3], which is a topic
that received a growing interest in the research community in recent years [11, 20, 25].
The thesis is organized as follows. In Section 2 we introduce the problem statement for the PBE and for
its linearized version. In Section 2.1 a suitable scaling procedure is presented to reduce the PBE in its non-
dimensional form, while in Section 2.2 two approaches used to deal with singularities caused by point sources
are presented. One aspect in the modeling of protein electrostatics by means of the PBE that has been shown
to play an important role both in terms of accuracy of the results and of computational efficiency, is that of
the geometrical description of molecular surfaces [13, 35]; the comparison of different approaches for the surface
definition is the subject of Section 3. In Section 4 we described the Oct-tree grids, focusing on their benefits
in terms of efficient parallel partitioning, refinement, coarsening and balancing. The implementation aspects
are described in Section 5. Finally, in Section 7, a set of numerical tests of growing complexity are presented
in order to thoroughly validate the numerical algorithm and its implementation, while Section 8 contains the
conclusions. In the Appendix a minimal user reference for easy_pbe is included for sake of convenience.

2 The Poisson–Boltzmann Equation

Figure 1: Schematic representation of the problem domain.

In order to introduce the mathematical statement of the PBE problem let us start by defining the geometry of
the domain where the problem is set. To that end, consider the schematic 2D representation of Figure 1 and
let the computational domain Ω be defined as Ω ≡ Int

(
Ωm

⋃
Ωs

)
,Ω ⊂ Rd, where the interior of the molecule

is denoted by Ωm, and the solvent by Ωs.
While solving the equation, both the solute and the solvent are treated as continuum media, each one charac-
terized by its dielectric coefficient.
For a proper description of the problem physics, at least two different values for the coefficient are necessary.
The difference between the two is due to the fact that the solvent is more easily polarized by an electric field,
so that it is generally characterized by a higher dielectric constant εs, while the solute dielectric constant εm is
about two orders of magnitude smaller.
Usually the relative electric permittivity is assumed to take the form{

εr(x) = εs(x) in Ωs

εr(x) = εm in Ωm

(1)

According to (1), the relative electric permittivity is uniform inside the solute, whereas it is a smooth function
of the position x in Ωs. This implies that εr is discontinuous across the interior boundary Γ = ∂Ωs∩∂Ωm which
represents the molecular surface.
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The electrostatic potential is related to the fixed charge density ρf and to the density of solution ions ρs by the
Poisson equation {

−∇ · (ε0 ε(x) ∇φ(x)) = ρs + ρf in Ω

φ(x) = g(x) on ∂Ω,
(2)

where φ is the unknown scalar electrostatic potential and ε0 is the electric permittivity of vacuum.
The PBE is obtained by assuming that the density of charge in the solvent obey an equilibrium Boltzmann
distribution, so that it can be expressed as a function of the electrostatic potential.
In the most simple case (where only monovalent ions are assumed) such function may be expressed as

ρs = −2eC0 sinh
( e φ

kBT

)
, (3)

where kB is the Boltzmann constant, T is the absolute temperature and e is the electron charge. The bulk
concentration of monovalent species C0, is often expressed in terms of the ionic strength I as

C0 = 1000NAV I,

where NAV is the Avogadro number and I is expressed as a molar concentration.
Substituting (3) into (2) and assuming the fixed charge density to be given by

ρf =
∑
i

qi δ(x− xi), (4)

where the points xi are the centers of the atoms composing the molecule, and the values qi their charges, we
end up wit the semilinear PBE

−∇ · (ε0 εr(x) ∇φ(x)) + 2eC0 sinh
( e φ

kBT

)
=

∑
i

qi δ(x− xi) in Ω

φ(x) = g(x) on ∂Ω.

(5)

The boundary condition g(x) in (5) can be set in different ways and we refer the interested reader to, e.g., [27],
in what follows we will mostly assume, for sake of simplicity, that g(x) = 0.
If φ(x) is not too large w.r.t. kBT , the semilinear PBE can be linearized by approximating the sinh term with
a linear function, which leads to the following linearized PBE

−∇ · (ε0 εr(x) ∇φ(x)) + 2

(
e2

kBT

)
C0φ =

∑
i

qi δ(x− xi) in Ω

φ(x) = g(x) on ∂Ω.

(6)

The major problems to face while trying to solve (6) are the following:
1. the very large scale algebraic systems of equations, due to the complex structure of the examined

molecules, which require the adoption of HPC techniques for the solution of the problem;
2. the discontinuity of the dielectric coefficient across the interface between the solvent and molecule;
3. the presence of singularities, which can generate singularities in the problem solution and coefficients.

In order to deal with all these aspects, we adopted some mathematical and numerical tools and approaches that
will be described in detail in the following sections.

2.1 Scaling and Dimensionless Formulation
Before proceeding to solve either (5) or (6) it is useful common practice to perform a scaling procedure to
transform them into their nondimensional counterpart. The purpose of such procedure is, on one hand, to scale
the variables and coefficients in the problem so that their numerical values are more amenable to numerical
representation while, on the other hand simplifying the notation by grouping several dimensional coefficients
into few dimensionless numbers.
To perform the scaling, we start by expressing each physical quantity in (2) as the product of a scaling factor
(with physical dimensions, identified in what follows by the ·̄ symbol) and a dimensionless variable denoted by
the ·̂ symbol, i.e.:

φ := φ̄φ̂

x := x̄x̂

ρs := ρ̄ρ̂s

ρf := ρ̄ρ̂f .

(7)
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Scaling Factor Value

φ̄ kBT/e

x̄ 1 Å
ρ̄ e/(4πx̄3)

Table 1: Choice of scaling factors

Table 1 shows the most common choices for the scaling factors, which are used in the implementation of
easy_pbe.

Using the notation in (7), dividing both sides of (2) by ρ̄, and assuming φ̄ =
kBT

e
(which is the most common

choice for the scaling factor for electrostatic potential) leads to

−ε0 φ̄

x̄2ρ̄
∇̂ ·

(
εr ∇̂φ̂

)
− ρ̂s = ρ̂f , (8)

which, upon defining

ε̂0 :=
1

ρ̄ x̄2
ε0 φ̄

becomes
−∇̂ ·

(
ε̂0 εr ∇̂φ̂

)
− ρ̂s = ρ̂f . (9)

Introducing the scaled ionic force coefficient Î := 2eC0

ρ̄ , letting ε̂0 εrκ
2 := Î and the nondimensional atomic

charges q̂i =
qi
x̄3ρ̄ the semilinear version of the PBE can now be written as

−∇̂ ·
(
ε̂0 εr ∇̂φ̂

)
+ ε̂0 εrκ

2 sinh (φ̂) =
∑
i

q̂i δ(x̂− x̂i)

while the linearized, nondimensional form becomes

−∇̂ ·
(
ε̂0 εr ∇̂φ̂

)
+ ε̂0 εrκ

2φ̂ =
∑
i

q̂i δ(x̂− x̂i). (10)

For the sake of easing the notation, we will henceforth drop the ·̂ symbol and consider the PBE to be expressed
in nondimensional form.

2.2 Treatment of Point Sources
As anticipated in the previous section, the presence of point sources induces singularities in the analytical
solution of the PBE that are one of the main issues in the numerical solution of the problem.
Two main approaches can be used to deal whith suche issue, namely (i) adopting a regularized reformulation of
the problem (10) that removes the point sources by accounting for their presence by means of a surface charge
density either on Γ or on ∂Ω; or (ii) adopting a smoothed representaion of the atomic charges, i.e. representing
them as finite charge density distribution functions with a small and compact, yet finite, support.
The first approach can be pursued in different ways that all exploit the availability of explicit expressions for
the Green functions for the differential operator in (10), a review of a variety of such ways is given in [21], here
we only give and example of such approach in Section 2.2.2, which is not currently implemented in easypbe.
The approach (ii) can also be implemented in different ways, but the most natural one in the framework of
easy_pbe relies on expressing the atomic charges as linear combinations of Finite Element shape functions and
is described in Section 2.2.1 below.

2.2.1 Representing Atomic Charges via FEM Shape Functions

As easy_pbe adopts a Finite Element discretization for tsolving the PBE, the most natural way of defining
a continuous function with finite support consists of representing it as a linear combination of Finite Element
shape functions.
In particular, as easy_pbe use continuous first-order Lagrangian Finite Elements, the degrees of freedom of
each shape function are collocated at one of the cell vertices, therefore the natural choice consists of defining
the i–th smoothed atomic charge density function ρi(x) as
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ρi(x) :=
∑
k

Nk(x)qik,

where Nk(x) denotes the shape function relative to the k–th mesh vertex and qik are the values of ρi at that
vertex.
The main constraint that the nodal values qik must obey is that of preserving the total amount of charge, i.e.∫

Ω

ρi(x) dω =
∑
k

qik

∫
Ω

Nk(x) dω = qi.

A simple choice that satisfies this latter constraint is setting

qik := qi
Nk(xi)∫

Ω
Nk(x) dω

.

Indeed, from this definition it follows that∫
Ω

ρi(x) dω = qi
∑
k

Nk(xi)

∫
Ω
Nk(x) dω∫

Ω
Nk(x) dω

= qi
∑
k

Nk(xi) = qi,

where the last inequality discends from the fact that the basis functions enjoy a partition of unity property.
Notice that, for first-order continuous Finite Elements, if the atom center xi lies in a cell τ , only the basis
functions that are collocated at the vertices of τ are non vanishing at xi therefore the weights qik are non
vanishing only for a small set of values of k1.

2.2.2 Example of Regularized Formulation Without Point Charges

The point charges can be eliminated from the problem introducing one of the so-called regularization techniques.
We consider one example of these techniques which transfers the effect of the point charges to the boundary
conditions and to the interface condition on Γ. Let’s start considering the nondimensional semi-linear boundary
value problem with homogeneous Dirichlet boundary conditions on ∂Ω, namely−∇ · (ε0εr(x) ∇φ(x)) = −ε0εr(x)κ

2φ(x) +
∑
i

qi δ(x− xi) in Ω

φ = 0 on ∂Ω

(11)

We decompose φ(x) as φ(x) = φs(x) + φm(x), where φm(x) is the contribution to the electrostatic potential
due only to point sources, while φs(x) accounts for the correction due to the surface polarization charge related
to the discontinuity in the permittivity. If the dielectric permittivity were independent from position x, the
scalar electrostatic potential due to the i-th point charge and φm(x) would be respectively

φi(x) =
qi

4πε0εm |x− xi|
φm(x) =

∑
i

φi(x)

Then the potential correction φs(x) is given by the difference between the exact electrostatic potential and the
one only due to point source charges

φs(x) = φ(x)− φm(x). (12)

Since no point sources are present in Ωs, the equation in the solvent domain becomes

−∇ · (ε0εm ∇φm)(x) = −ε0εm ∆φm = 0, in Ωs (13)

We start from the equation in (11) restricted to the solvent domain Ωs. Exploiting both the observation made
in (13) and the definition of the potential correction (12), we obtain

−∇ · (ε0εs(x)∇φs) = −∇ · (ε0εs(x)∇(φ− φm))

= −∇ · (ε0εs(x)∇φ) + ε0εs∆φm + (ε0∇εs) · (∇φm)

= −ε0εsκ
2(φs + φm) + (ε0∇εs) · (∇φm).

1For a tensor-product hexahedral cartesian mesh, this would be exactly 8 values of k, but given that we use a refined
mesh with hanging nodes the number of non vanishing coefficients depend on the mesh refinement.
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While at the interface Γ

0 = [[−εr∇φ · n]]Γ = [[−εr∇φs · n]]Γ − [[εr]]Γ(∇φm)|Γ · n,

where [[·]]Γ represents the jump of quantity between brackets across the interface.

Finally, on the domain boundary ∂Ω, substituting the definition of the potential correction (12), inside the
Dirichlet boundary conditions of problem (11) we obtain

φ(x)|∂Ω = (φs(x) + φm(x))|∂Ω = 0.

Therefore, reformulating the problem (11) w.r.t. φs(x), it becomes



−∇ · (ε0εs(x) ∇φs) = (ε0∇εs) ·
∑
i

∇
( qi
4πε0εm|x− xi|

)
− ε0εsκ

2
(
φs +

∑
i

qi
4πε0εm|x− xi|

)
in Ωs

−∆φs = 0 in Ωm

[[−εr∇φs · n]]Γ = [[εr]]Γ∇φm · n on Γ

φs(x) =
∑
i

qi
4πε0εm|x− xi|

on ∂Ω

which has no point charges. Notice that third relation of the above system is expressed in [C/m2] SI units, so
that it can be interpreted as a surface charge distribution. The main advantage of this regularization technique
is to avoid the need of using small mesh sizes in Ωm, but only at the molecular surface.

3 Geometric Representation of the Molecular Surface
The representation of the molecular surface Γ is a focal point of research in numerical methods for implicit
solvent continuum models of biomolecular systems.
Given the positions xi, i = 1 . . . na of the atomic centers and the atomic radii ri, one has to define the 2D
manifold Γ, and this can of course be accomplished in many different ways, the choice among which is guided
by several characteristics of the generated surface.
The main requirement is, of course, the accuracy of the electrostatic computation results, which is usually
measured by comparison to results of solvent explicit computations. In addition to this, though, other properties
are to be taken into account such as, for example, the differentiability of the surface w.r.t. to the atomic positions
and radii and the continuity of the molecular surface area w.r.t. the atom positions.
The arguably most simple approach to the surface definition is the so called Van der Waals approach, according
to which the molecular domain is defined as the union of the spherical regions centered at xi and with radius
ri.
In [13], a comparison of three approaches is given, namely

1. Blobby surface,
2. Skin surface,
3. Solvent Excluded Surface (SES), a.k.a. Connolly surface.

These three options are all implemented in easy_pbe, the first one via a native implementation, the latter two
via an interface to the geometrical library NanoShaper [14] and are therefore described in detail below.
library [12] to deal with this task.

3.1 Blobby Surface
Blobby surface, proposed in [7, 36], is an implicit surface whose definition is based on Gaussian atom center
idea. Any implicit surface can be visualized using a ray-tracing technique which consists in finding all the points
where an intersection with the surface occurs by tracing rays along a prescribed direction.
Its mathematical definition is quite simple and intuitive: it is the level set S, see Figure 2, of a particular
function G(x), namely

S := {x ∈ R3 : G(x) = 1}, G(x) =

na∑
i=1

exp
(
B
( ||x− xi||2

r2i
− 1

))
, (15)

where x represents a point over the surface, while B is the blobbyness, a parameter that controls the surface
roughness and that has to be tuned. Then there are three quantities that describe the chosen molecule: na, the
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number of atoms inside the molecule, ri which is the radius of the i-th atom and xi, the vector of coordinates
of the i-th atom center.

Figure 2: 0.5 level-set, Blobby surface [12].

Even if the usage of this kind of surface is fascinating because, due to its simple definition, it is easy to implement,
also in parallel, it is not so easy to define a projection method for a point over the surface. Indeed, contrary to
the Skin and SES surfaces, it cannot be partitioned in analytical patches. Another thing to point out is that
while on one side it is appreciated for its smoothness which guaranties continuity and differentiability without
any self-intersection nor singularities, on the other side it is not superior to the Connolly surface for the solution
of electrostatic problems. Moreover, the choice of the blobbyness, which is a key parameter for the calculus of
the energy estimates of the molecules, can create some problems. All these drawbacks lead to prefer Skin and
SES surface for more accurate results.

3.2 Skin Surface
The Skin surfaces, as the Blobby, is an implicit surface appreciated for its smoothness and because it is expected
to provide a surface area continuous with respect to atom positions and radii. Its definition was proposed in
[15], and it is more complex from a mathematical point of view. It can be constructed starting from a set of
weighted points S and a shrink factor s ∈ (0, 1]. The latter is the characterizing parameter for the Skin surface
that has to be set, similarly to the blobbyness B in the Blobby case. The set S and the weights of the points
wi can be defined as follows:

S =
{
pi = (ci, wi), xi ∈ R3, i = 1, ..., na

}
wi =

r2i
s

(16)

where na is the number of atoms inside the considered molecule and ri and xi are respectively the radius and
the center of the i-th atom.
For defining precisely the Skin surface, the concept of mixed complex has to be introduced, since starting from
it the surface equations can be derived. The mixed complex is composed of mixed cells µs

X which are solids that
can be computed through the Minkowsky sum "⊕", as reported in (17), exploiting either the Voronoi diagram
or Delaunay tetrahedrization.

µs
X = {s · νx ⊕ (1− s) · δx} (17)

In this definition, X is a subset of a finite set of spheres in R3 and νX is a non empty Voronoi cell with
corresponding Delaunay simplex δX [15]. After the mixed cells are calculated, a ray-tracing software can be
used in order to define the inside and outside of the surface. A schematic representation of both the mixed
complex and Skin surface of a simple molecule where 8 equal atoms are put on the vertices of a cube can be
seen in Figure 3.
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Figure 3: Skin Surface and mixed complex (transparent). Surfaces corresponding to µs
3,0, µs

2,1, µs
1,2

mixed complex are represented in green, yellow and magenta, respectively [12].

The existence of such fast algorithms as Voronoi diagram or Delaunay tetrahedrization for the construction of
the Skin surface constitutes an advantage with respect to other kind of surfaces. In addition, also the presence
of pathological configurations which can create normal discontinuities are extremely limited. In any case, the
computational costs are higher than the Connolly ones and, moreover, Skin surface can create unphysical high
dielectric cavities, regions that can affect the energy estimate of the system.

3.3 Connolly Surface
The SES is one of the most commonly adopted molecular surfaces in Computational Biological Chemistry for
the visualization of the surface area. This kind of molecular surface was suggested by Lee and Richards in [22]
but it is commonly known as Connolly surface, so called because of the famous algorithm computation proposed
by Connolly.
For defining the Connolly surface, we start from a simpler definition of molecular surface, in which it is defined as
the contact surface between the Van der Waals envelope of the solute molecule and the probe solvent molecule.
The Van der Waals surface is the enclosing surface obtained by the superposition of hard spheres which represent
the atoms present inside the examined solute molecule. The union of all the hard spheres forms the Van der
Waals volume and each of those spheres has radius equal to the Van der Waals radius, that is calculated as a
distance between atoms in crystals and indicates the largest distance at which an atom repels its neighbors. On
the other hand, considering the solvent molecules, Solvent Accessible Surfaces (SAS) are adopted. This kind of
surface can be described as the locus of the centers of a spherical probe that rolls over the molecular system.
This kind of surface coincides geometrically with the Van der Waals surface, where each radius of the above
described hard spheres is increased by the probe radius size. Starting from SAS, further developments lead to
the Solvent Excluded Surface (SES), which separates the finite volume accessible to a finite size solvent probe
from the inaccessible one. Indeed, also SES surface is computed by rolling the probe sphere over the van der
Waals surface of the molecule, but in this case the surface is determined by the surface of the probe, instead of
its center. Figure 4a shows schematically the difference between SAS, SES anche the Van der Waals surface,
while Figure 4b represents a simple example of Connolly surface in 3D.
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(a) Schematic representation of the difference between SES,
SAS and Van der Waals surface, with an example of probe.

(b) Connolly surface [12].

Figure 4

The Connolly surface is appreciated because it is conceptually simple, but on the other hand it can present
some singularities and a discontinuous dependence of the surface area on the position of atom centers.

4 Oct-tree grids
The very large size and complex structure of the molecules being studied leads to very large scale algebraic
systems of equations which demand for state-of-the-art HPC solver technology. The novelty of this work
w.r.t. the already existing PBE solvers consists in solving the linearized Poisson–Boltzmann equation with
Finite Element method on Oct-tree, which are hierarchically refined, non conforming, cartesian grids. Indeed,
typically the other solvers calculate the electrostatic potential adopting either tensor product cartesian grids
with simple numerical methods, which is characterized by high memory efficiency, but it is not so accurate, or
adaptive, simplicial, conforming meshes with Finite Differences method, less efficient and more accurate. The
choice of Oct-tree grids gives our solver benefits in terms of efficient parallel partitioning, refinement, coarsening
and balancing, while FE is more flexible for local mesh refinement.
The structure of an Oct-tree grid can be easily represented as a tree (Figure 5b), as the name suggests, where
each octant (i.e. each element of the mesh, see Figure 5a) is a either a leaf or has 8 children. Indeed, the mesh is
generated starting from a 3D cube and then iteratively refining or coarsening the elements in a non conforming
way.

(a) Example of a simple Oct-tree mesh. (b) Tree associated to the Oct-tree grid.

Figure 5

More in detail, the starting 3D cubic domain is initially uniformely refined in a rough manner in order to obtain
a first solution, that will be used as a starting point for the following refine-coarsen iterations. Then, the idea is
to divide a mesh element into 8 smaller cubes when it contains either an atom charge or part of the molecular
surface, and coarsen the grid otherwise.
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The initial level of refinement is indicated as level 0, then if one element belonging to level 0 is refined N times,
each of the resulting subelements belongs to level N. Each cubic element of the mesh is characterized by the
same numbering of faces, edges and nodes, which is the one reported in Figure 6. All these enumerations, jointly
with the quadrant indexing too, follow the z-ordering.

Figure 6: From left to rigth: numbering of faces, edges, nodes of each quadrant.

The quadrant numbering is particularly important in parallel applications because it produces a smart subdivi-
sion of the mesh octants among the involved processors. This operation takes the name of parallel partitioning
and is performed according to a given number of elements per processor or according to some prescribed weights
associated to those elements. To better understand in which way this is done, a simple example of the refine-
ment process of a 2D Quad-tree mesh is reported below in Figure 7. The initial square domain is split into
four elements, all belonging to level 1 (Figure 7a). Then, only the element indicated with number 1 is refined
and all the squares are renumbered as shown in Figure 7b. In the third step element 3 is divided into four
subelements so that the enumeration changes again. The correlation between the quadrant numbering and the
corresponding tree is pointed out in Figure 7c, where the Morton S-shaped space filling curve is reported. The
nodes are subdivided among the processors following this curve, so that nodes belonging to the same processors
are also neighbors in the mesh. This is useful in order to limit communications between processors.
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(a) First refinement step.

(b) Second refinement step.

(c) Third refinement step with Morton S-shaped space filling
curve.

Figure 7: Quad-tree mesh refinement example.

The resulting mesh is a non conforming mesh, in which at most 2:1 edge size relations between neighboring
octant is ensured, that is the so-called balancing. This is done in order to properly deal with the hanging nodes.
These kind of nodes are, in 2D case, nodes belonging to an edge which is refined for two elements, but not for
the neighboring one, like for example two red marked nodes in Figure 8. In the Oct-tree cases these nodes can
be generated both on faces and on edges. Their main characteristic is that they present a local numbering, but
no global numbering. In order to be identified, they are related to the global numbering of their non-hanging
parents, i.e. the nodes belonging to the same edge or face (the latter only in the 3D context) where the hanging
node is present. Since hanging nodes are not present inside the set of the degrees of freedom, they have to be
taken into account in a different way.
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Figure 8: Example of hanging nodes, marked with red spots. Black numbers refer to quadrant num-
bering, blue to node local indices, orange to node global indices.

5 Implementation strategy
During this thesis we have developed a parallel solver on adaptive meshes for the solution of the linearized PBE.
The implemented code can be found inside this repository: https://github.com/carlodefalco/easy_pbe.
The user reference with the instructions on how to compile and use the code and for the output visualization
can be found in Appendix A.

To achieve our goals, the bim++ library which provides at the same time a high-level access to meshes with
a series of functions for the solution to PDEs in the FE method context and also a c++ interface to p4est
library, was adopted. Through p4est library it was possible to handle the Oct-tree grids and perform the hier-
archical mesh refinement over the octants that compose the 3D domain, while the efficient construction of the
molecular surface and the evaluation of its interior and exterior points, rely on NanoShaper. The latter is able
to find some surface characteristics such as the volume of the molecule, the surface area and cavities (regions
present inside proteins, big enough to contain one or more water molecules) through a ray-casting technique. It
is possible to construct both SES and Skin surfaces, while the Blobby surface is not available for the NanoShaper
API. For this reason this kind of surface was directly implemented inside the code using its definition (15).

5.1 Code Description
The main function of the code is the poisson_boltzmann.cpp file, in which the functions and methods necessary
for the computation of the electrostatic potential are called. The algorithm is composed of six steps, described
in the subsections below.

5.1.1 Data Input

The first step consists in reading from the two input files selected by the user: the options.pot file, with the
simulation parameters, and a .pqr file, containing the 3D molecular structure. The atom characteristic extracted
from such file are stored in vector of NS::Atom class objects. The Atom class is defined in the NanoShaper library
as reported below, where the member functions have been dropped for brevity.

class Atom: public Point
{
public:

double radius;
double radius2;
double charge;
int dielectric;
AtomInfo ai;

// *member functions*
};

5.1.2 Surface Creation

For the surface creation a query to NanoShaper API was introduced. This is done only by rank zero at the line
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ray_cache.init_analytical_surf (pb.atoms, pb.surf_type, pb.surf_param,
pb.stern_layer, pb.num_threads);

where the analytical surface is created starting from the atom characteristics, passed to NanoShaper through
pb.atoms, that is the previously cited std::vector<NS::Atom>.
Once the analytical surface is created, the geometric surface can be defined by tracing the rays which start from
one domain boundary face and arrive to the other. Through this technique, NanoShaper is able to stabilize
where the molecular surface intersections occurs. This operation is performed in the following step.

5.1.3 Mesh Creation and Refinement

The Oct-tree grid is created and initialized accordingly to the user requests, then the refinement and coarsening
operations can be performed. In particular, at each iteration a loop over the octants of the mesh is done. The
current cell is refined either if it contains at least one non hanging node inside the molecule and at least one in
the solvent, which means the molecular surface is contained in the current element, or when it contains a point
charge. During the coarsening iterations the opposite idea is carried out: the mesh can be coarse where neither
the point charges nor molecular surface are present and the 2:1 edge size relation between neighboring octants
is still respected.
In order to establish if a point is either inside or outside the molecule, we exploits the information about the
intersection given by NanoShapers and assign to that point value 1 when it is inside the molecule, 0 if it is
outside, -1 if unknown. The latter is returned only by the non-zero processors when the ray to which the point
belongs is not present inside their ray_cache_t object. The design of the ray_cache_t class is explained in
detail in the next paragraph.

5.1.4 Ray Caching

NanoShaper can be executed either in serial or using multiple threads, while our solver parallelization rely on
MPI which is based, instead, on multi-core processing. This difference leads us to implement a Master–Slave
program, where the NanoShaper functions are explicitly called only by rank zero, while the other processors ask
for the desired information to the root. In order to limit the communication among the processors, we created
a cache structure, consisting in a std::map, in which the rays progressively traced by NanoShaper and received
from rank zero are collected. This can be done because the mesh is cartesian and hierarchically refined, which
means that the number of traced rays can be at most equal to the number of rays casted for a uniform grid.
The logarithmic complexity of the map find method can be even reduced using a std::unordered_map to linear
complexity.
The rays map declaration is the following

std::map<std::array<double, 2>, crossings_t, map_compare> rays;

Each key of the map is an array of two double, storing the two coordinates corresponding to the traced ray,
while each value is an object of the class crossings_t. The keys are sorted using the previously implemented
map_compare functor. Since the rays are traced along the y direction, the key–array contains the x and z
coordinates prescribing that ray. The crossings_t class is the one containing the ray information: the direc-
tion along which it is traced, the coordinates prescribing it, the vector containing the intersections with the
molecular surface, the corresponding normals and the variable init, created to check if for this class object the
intersection and normal fields have been already initialized.

The member functions of the ray_cache_t class involved in the caching operation are:
• crossings_t & operator() (double x0, double x1);
• void fill_cache ().

While the second of the two will be described in detail in the following section, here we focus on the first.
It overloads the function call operator. We call such function by passing as arguments the two coordinates
specifying the desired ray. There are two possible scenarios:

1. the map already contains the initialized ray and the correspondent crossings_t object is returned;
2. the map doesn’t contain an initialized ray, in which case further distinctions have to be done. When the

rank calling the operator is zero, the ray is created. initialized and returned. Instead, if rank is not zero,
the requested ray is created, but cannot be initialized. The returned ray has init value equal to zero.

Below is reported part of the function call operator definition, in which the previously described distinction
corresponds to the if–else conditional statements.
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crossings_t &
ray_cache_t::operator() (double x0, double x1)
{

//...
static std::array<double, 2> start_point;
start_point = {x0, x1};
auto it0 = rays.find (start_point);

if (it0 != rays.end () && it0->second.init == 1)
cr_t = it0->second;

else if (it0 != rays.end () && it0->second.init == 0)
if (rank == 0)
compute_ns_inters (it0->second);

else
{
// create a new ray
crossings_t tmp;
tmp.point[0] = x0;
tmp.point[1] = x1;
if (rank == 0)

compute_ns_inters (tmp);
rays[start_point] = tmp;
cr_t = rays[start_point];

}

return rays[start_point];
}

In order to check if the passed couple of values corresponds to a key of rays, the map find method is used.
The function compute_ns_inters is a member function of the same class, responsible for the initialization of
the rays through NanoShaper. In particular, it fills the intersections and normals vectors and change the
variable init value from 0 to 1.
Regardless of the actual scenario, the function call operator returns a crossings_t object. When initialized,
it is used to establish if a given point belonging to that ray is either inside of outside the molecular surface.
Instead, if init = 0, the calling processor must ask to rank zero for the initialization of that ray and the couple
given by x, z is added to the requested rays set, namely rays_list.

The fill_cache function is the second method involved in the caching process. Inside this function the
non zero ranks ask and receive the missing rays from the root. If the requested ray is already present inside
rank zero cache, then it is just transmitted to the asking processor, otherwise it is first calculated and then
sent. Since all the involved objects belong to the standard library, the communication among the processors
can be done using the serialization process. It consists in translating data structures or objects into a format
that can be communicated in an efficient way. To transmit each data, a write function is implemented. It
converts the object to a vector of bytes that can be sent as an MPI message. After this first communication,
the corresponding read function transforms the vector of bytes into the initial object.
Since the crossings_t class is non–trivial, the serialization of the rays map was obtained taking advantage of
the implementation of simpler serializations. We started from the serialization for vectors, maps and vector of
maps containing trivial types (serialization.h file). Thereafter, we exploited them in order to implement the
write and read methods for the crossings_t objects first, and rays map then.
In the following box, the principal lines of fill_cache function, where both the serialization and the commu-
nication are performed, are reported.

void
ray_cache_t::fill_cache ()
{
//...
std::vector<unsigned char> local_ser_rays_vec = serialize::write (rays_vector);
//...
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MPI_Gatherv (&local_ser_rays_vec[0], ser_rays_len, MPI_CHAR, &global_ser_rays_vec[0],
proc_ser_rays_len, displ_ser_rays_vec, MPI_CHAR, 0, mpicomm);

if (rank == 0)
{
serialize::read (global_ser_rays_vec, rays_vector);

//...
for (int i = 1; i < size; i++)
{
//...
std::transform (rays_vector.begin () + cum_rays_vec[i-1],

rays_vector.begin () + cum_rays_vec[i],
std::inserter(local_req_rays_map, end(local_req_rays_map)),
[this](std::array<double,2> arr)
{ return (std::pair<std::array<double,2>, crossings_t>
(arr, (*this)(arr[0], arr[1]))); });

local_ser_map = write_map (local_req_rays_map);
//...
global_ser_map.insert (global_ser_map.end (), local_ser_map.begin (),

local_ser_map.end ());
//...

}
//...

}

//...
MPI_Scatterv (&global_ser_map[0], proc_ser_map_len, displ_ser_map, MPI_CHAR,

&local_ser_map[0], local_ser_map_len, MPI_CHAR, 0, mpicomm);

if (rank != 0)
{
//...
read_map (local_ser_map, local_req_rays_map);
(this->rays).insert (local_req_rays_map.begin (), local_req_rays_map.end ());

}
//...

}

First of all, each list of the requested rays is converted to a vector of bytes using the serialize::write for
vectors. Then, the local_ser_rays_vec are sent using MPI_Gatherv to rank zero, which collects them inside
a global vector.
At this point, the root can transform back the received data into a std::vector<std::array<double, 2».
They will be used to fill an initially void map, previously created for each processor, with the requested rays
just computed or found in the cache from rank zero. All this process is done within the std::transform, with
the aid of a lambda function. Then, the serialization is performed by converting, sending and transforming back
the local maps. Finally, the initialized rays are added to each processor cache and can be used to correct the
previously unknown nodes marked with value -1.

5.1.5 Matrix and Vectors Assembling

Once the previous steps are completed, the matrix and vectors composing the linear system for the so-
lution of the non-dimensional PBE can be assembled. This operation is performed by bim++, using the
bim3a_advection_diffusion, bim3a_reaction and bim3a_rhs functions. The matrix and vectors are re-
spectively a distributed matrix exported in aij or csr format, depending on which linear solver was selected,
and distributed vectors.
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5.1.6 Linear System Solution

Finally the electrostatic potential is calculated by solving the linear system using either mumps or lis. The
first implements a multi-frontal direct method, which solves the system through the LU factorization, while the
latter is a large library offering different iterative methods, in particular Krylov methods, with a large variety
of preconditioners.

6 Validation Test Cases with Exact Solution
Before passing to real molecule simulations, we performed a series of validation tests with the aim of checking
the correctness of results given by the implemented code. For these ad hoc simulations the exact solution can
be easily computed and then compared with the numerical one using the Paraview software. We constructed
a .pqr file (Figure 9) containing one charged atom with radius equal to 10Å and charge equal to the proton
charge, posed at the origin of Cartesian axes. Six more atoms with null charges and 0.01Å radii are disposed
symmetrically around the central charged particle, within its radius. These atoms are present in order to
guarantee the construction of the molecular surface using NanoShaper, which requests at least four atoms
inside the .pqr file.

Figure 9: File UNITSPHERE_DISC.pqr content.

The domain is the cube Ω = [−32, 32]3, while the resulting molecular surface is a sphere of radius 10Å, as
schematically shown in Figure 10, where the six particles with null charge have been neglected for simplicity,
because they don’t affect neither the exact and numerical solutions calculation nor the resulting molecular
surface.

Figure 10: Schematic representation of the domain used for the validation tests.

6.1 Test Case in a Homogeneous Dielectric
The first test case was done to compare the exact solution with the one calculated with our code in a homogeneous
dielectric. The problem geometry is the same reported in Figure 10, but the distinction between Ωm and Ωs

refers only to the molecular surface which separates the solvent and the solute, not to the dielectric coefficients.
Indeed, they are assumed to be both equal to the vacuum permittivity in all the domain Ω, which means
εm = εs = 1. The unique charge is q located at the axis origin, which coincides with the atom center x1.
For this simple test case, we calculated the exact electrostatic potential φ using Gauss’s Law for the electric
field. It states that the electric flux through any closed surface is proportional to the total electric charge
enclosed by the surface, namely ∮

S

E · n ds =
q

ε0εm
, (18)
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where E indicates the electric field, S is the closed surface containing the charge q and n is the outward pointing
unit normal at each point on the boundary.
In our case, the surface S is a sphere of radius r centered at the point charge q, which coincides with the proton
charge. Exploiting the spherical symmetry, the electric field E becomes a constant that can be taken out of the
integral. Then, integrating the remaining quantities we obtain Coulomb’s law

E(r) =
q

4πε0εmr2
. (19)

Recalling the electrostatic potential definition

E = −∇φ

and substituting Coulomb’s law (19), the equation we want to solve, in spherical coordinates, assumes the
following expression

−∂φ(r)

∂r
=

q

4πε0εmr2
, 0 < r < ∞. (20)

Integrating both sides of the above relation we obtain the following electrostatic potential

φ(r) =
q

4πε0εmr
+ C, (21)

which is defined up to an additive constant. In order to find the value of the constant C, a position where the
electrostatic potential is null have to be chosen. Assuming the potential null at infinity, namely

lim
r→∞

φ(r) = 0, (22)

the constant C is equal to 0 and the exact solution is given by the Coulomb potential

φ(r) =
q

4πε0εmr
. (23)

For what concerns the numerical solution with our code, we calculated the potential by fixing the ionic strength
to zero, so that also the κ2 coefficient is zero and the solved equation coincides with (20). The boundary
conditions were manually set as follows

φeasy_pbe(r) = φ(r), on ∂Ω.

The comparison between the numerical and theoretical solutions is reported in Figure 11. We calculated the
easy_pbe electrostatic potential using both a uniform grid and an adaptively refined grid. The former has with
a discretization pass equal to 0.25Å, the latter has minimum pass of about 0.03Å and maximum pass 1Å. This
results in a uniform grid which is made of about 16,8 millions of cells, while the refined one contains about 2,6
octants. Despite the large difference between the number of elements, in both cases the discrepancy from the
exact solution is negligible.

(a) Uniformly refined Oct-tree grid of level 8. (b) Adaptive Oct-tree grid with maximum level of refine-
ment equal to 11, minimum level equal to 6.

Figure 11: Exact solution (green) vs numerical solution (blue) calculated with easy_pbe solver.
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In Figure 12 the relative error of φeasy_pbe calculated on the uniform grid nodes is represented. The curve
rapidly drops to zero starting from the maximum value of about 17%. Indeed, the relative error becomes less
than 1% from 1.5Å and less than 0.1% from 0.4Å. The numerical solution becomes nodally exact in some point
starting from 21Å, in the solvent domain. The differences in the first part can be attributed to the imprecise
geometry and to the source charge which is not precisely a point source for the solver.

Figure 12: Relative error of the electrostatic potential obtained using the uniform grid.

6.2 Test Case in a Non Homogeneous Dielectric
In this second validation case we wanted to test if the electrostatic potential was correctly calculated when a
dielectric discontinuity is present at the interface between the solvent and the solute. We compared the results
obtained using the easy_pbe solver with both the exact theoretical solution and the solution given by the Delphi
solver, where the computational domain ΩDelphi was [−25, 25]3 in both this and the following test cases. For
easy_pbe instead, the problem setting is the same introduced in the previous sections and reported in Figure
10. Inside the sphere, we fixed the molecular relative permittivity coefficient εm = 1, while outside the molecule
the solvent permittivity constant is equal to εs = 40. Like in the previous test case, the ionic strength was fixed
to zero, so that no reaction term is present in the equation.
Focusing on the region outside the molecule, the system of equations takes the form reported below

− 1

r2
∂

∂r

(
ε0εsr

2 ∂φout

∂r

)
= 0, rs < r < ∞

−
(
ε0εs

∂φout

∂r

)∣∣∣
rs

=
q

4πr2s
lim
r→∞

φout(r) = 0,

(24)

where rs is the radius of the molecular surface sphere. The first equation in (24) is the Poisson’s equation where
the rhs is equal to zero because no charge is present in the solvent. The second and third equation of the system
are the boundary conditions of the problem. The first of the two is prescribed at the interface between the
solvent and the molecule, the second assumes the potential equal to zero at infinity. The analytical solution of
this problem is given by

φout(r) =
q

4πε0εsr
. (25)

Inside the molecular surface we can apply Gauss’s Law for the electric field and use the electrostatic potential
definition as before, which means that the equation to be solved is (20), with the corresponding solution (21).
The constant C can be found imposing the continuity of the electrostatic potential at the interface

φin(rs) = φout(rs). (26)

We obtain

φin(r) = φout(rs) +
q

4πε0εmr

(rs − r)

rs
. (27)

The exact electrostatic potential in all the domain Ω is the sum of the two local solutions (27) and (25) restricted
to their region of interest
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φ(r) = φin(r)χΩm
(r) + φout(r)χΩs

(r). (28)

Then, we compared our result with the analytical solution and the numerical solution given by the Delphi
solver. We imposed manually the analytical solution value at the boundary of the easy_pbe potential, e.g.
φeasy_pbe(r)|∂Ω = φ(r)|∂Ω. In Delphi we don’t have the possibility to set manually the desired value at the
boundary, so we choose Coulombic boundary conditions. This option gives an estimate of the potential at a
certain distance. For the Poisson’s equation, this value is equal to the potential generated by a point charge
in a homogeneous dielectric with permittivity constant equal to εs, which is exactly φ(r)|∂Ω. The results are
reported in Figure 13, where φeasy_pbe was calculated both on a uniform grid composed of about 16 millions of
cells and a refined mesh with less than 6 millions of elements. Also in this case the graphs are very similar so
that it is difficult to see the differences and the discontinuity at 10Å is always well detected.

(a) Uniformly refined Oct-tree grid of level 8. (b) Adaptive Oct-tree grid with maximum level of refine-
ment equal to 11, minimum level equal to 6.

Figure 13: Comparison between exact solution (green), easy_pbe solution (blue) and Delphi solution
(red).

6.3 Test Case in a Non Homogeneous Dielectric with Reaction term
In this last validation test the problem setting is the same of the previous validation case, where the two relative
dielectric coefficients are εm = 1 and εs = 40. The only difference lies in the ionic strength, which is here fixed
equal to the commonly accepted value of 0.145M. In this case the Poisson’s equation becomes the PBE, where
also the reaction term is present. We checked the correctness of our code by comparing the easy_pbe potential
with the analytical solution first, and then with Delphi’s results.
Similar arguments to the ones made for the test without the reaction term can be done also in this situation.
This means that, outside the molecule, the problem for the electrostatic potential becomes

− 1

r2
∂

∂r

(
ε0εsr

2 ∂φout

∂r

)
+ ε0εs κ2φout = 0, rs < r < ∞

−
(
ε0εs

∂φout

∂r

)∣∣∣
rs

=
q

4πr2s
lim
r→∞

φout(r) = 0.

(29)

The solution translates into

φout(r) =
q

4πε0εsr

eκ(rs−r)

1 + κrs
. (30)

The problem in the solute is given by equation (20) coupled with (26). The solution is given by (27), with
φout(rs) calculated from (30). The analytical solution is composed of the two contributions (28).

Numerically, we imposed φeasy_pbe|∂Ω = φ|∂Ω. The uniform and refined grids are characterized by the same
number of cells reported for the previous test case and the results are close to the analytical solution as shown
in Figure 14.
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(a) Uniformly refined Oct-tree grid of level 8. (b) Adaptive Oct-tree grid with maximum level of refine-
ment equal to 11, minimum level equal to 6.

Figure 14: Exact solution (green) vs easy_pbe solution (blue).

For this problem, the comparison with Delphi is less accurate because the Coulombic boundary conditions for
the PBE do not coincide with the exact ones, but they are based on the Debye–Hückel theory that are more
precise with higher ionic strength values. We choose homogeneous Dirichlet boundary conditions for our code,
which are the ones chosen for the simulations where the exact value is not known a priori. The potentials
obtained from these numerical simulations are shown in Figure 15. The differences between the two curves are
from about 20Åto 25Å, where the ΩDelphi boundary is located. At 32Å, our solution drops to zero, as expected
from the imposed BCs. The boundary, as expected, but the trends of the curves are very similar in the other
points.

(a) Uniformly refined Oct-tree grid of level 8. (b) Adaptive Oct-tree grid with maximum level of refine-
ment equal to 11, minimum level equal to 6.

Figure 15: Delphi solution (red) vs easy_pbe solution (blue).

7 Numerical Results on Real Molecules
Nowadays, the use of molecular electrostatics simulations in chemistry and biology is still an important tool.
The main applications regard the protein folding and structural-based drug design, which, by making use of
cutting-edge HPC techniques, can be applied to large and complex molecules. We tested our code with different
molecules for different targets, whose main results are presented in the following sections. The structural data
of the biological macromolecules are all taken from RCBS Protein Data Bank [6].

7.1 Crambin Test Case
The first protein used for testing our code is a plant seed protein called crambin [8, 9]. It is relatively small as it is
composed of 327 atoms and a unique protein chain. We employed the crambin molecule in order to both evidence
the main differences between the three molecular surface definitions presented in this thesis and compare the
potential with the one calculated by Delphi. The simulations have been performed on the computing server
GIGAT of the MOX lab of Politecnico di Milano (6 nodes, 12 Intel Xeon E5-2640v4 @ 2.40GHz, 120 cores, 64GB

20



RAM per node, O.S. CentOS 7 interconnected by a dedicated Gigabit Ethernet), on 1 node and 8 processors.
In Figure 16 you can see the electrostatic potential at the surface using respectively Blobby surface (Figure
16a), Skin surface (Figure 16b) and Connolly surface (Figure 16c). In the three examples, the domain extremes
are the ones corresponding to the stretched mesh option, in this case Ω = [−22.73, 25.085]× [−27.01, 27.146]×
[−22.169, 22.309].

(a) Blobby with B = -2.5. (b) Skin with s = 0.45. (c) SES with probe radius 1.4Å.

Figure 16: Electrostatic potential at the surface for a crambin molecule using different surface repre-
sentations.

Looking at the three shapes, the Blobby one is most recognizable, while the Skin and SES surfaces, characterized
by an higher livel of detail, are very similar to each other. This can be explained recalling that the Blobby
surface definition is based on the level-set method, while Skin and SES rely both on alpha-shapes.
The electrostatic potential values at the molecular surface seem to be qualitatively similar in all the three cases.
To inspect better the results, we plotted φ on a line passing through the center and parallel to the x axes,
as shown in Figure 17. Notice that the line used for the extraction of the values is completely arbitrary and
equivalent results can be obtained with other sampling choices. Also in this case the results given by the three
surfaces are similar. The Skin and SES curves are extremely close one to the other, while the potential obtained
with the Blobby surface presents some more evident discrepancies from the other two, especially inside the
molecule. This is again attributable to the surface aspect, which affects the resulting grid and the numerical
solution.

Figure 17: Electrostatic potential value for the crambin molecule over a line parallel to the x axes and
passing through the center.

In table 2 we reported some useful information about the three simulations. The last two columns contain the
number of cells corresponding to each test and the computational times for the principal operations made by
the code:
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• Computation of the electrostatic potential (P);
• Creation of the markers (M);
• Adaptive refinement of the mesh (R).

.
Both these aspects are comparable for the last two surfaces, while the Blobby one, which presents more elements,
has the highest computational costs.

Surface type min-max-uni level Times Number of mesh cells

P: 47.3448 s

Blobby 2-9-5 M: 64.404 s 1334572

R: 154.745 s

P: 44.529 s

Skin 2-9-5 M: 5.750 s 1218722

R: 62.073 s

P: 45.913 s

SES 2-9-5 M: 5.668 s 1206458
R: 61.610 s

Table 2: Comparison between different molecular surfaces for crambin molecule. Min-max-uni level
refer to minumum, maximum and initial uniform level of refinement of the surface.

In order to obtain the same level of refinement at the surface, with a uniform mesh the number of elements
would be higher than 134mln. This means that the adaptive refinement produces a saving of about 99,01%,
99,09% and 99,10% for Blobby, Skin and SES respectively.

In order to validate our solution, we compared the results obtained using the SES surface with the one given by
Delphi solver. The Delphi potential was computed on a uniform grid, in which each side of the cubic domain
was divided into 200 elements. Since our code can actually divide each side of the mesh by powers of two, we
set the starting refinement level to 8, which corresponds to 256 subdivisions, and performed just one refinement
iteration. Then, we projected the Delphi solution over the resulting grid, whose extremes were fixed equal to
Delphi’s ones. The first column in Figure 20 shows that the easy_pbe and Delphi potential values are almost
exactly superposed.
Then, we tried to compare the Delphi results with a more pronounced refinement. In this case the minimum
level was fixed to 5, while the maximum level to 9. In Figure 18 the differences between this and the previous
mesh results.

(a) minlevel = 8, maxlevel = 9. (b) minlevel = 5, maxlevel = 9.

Figure 18: Comparison between an almost uniform mesh and a refined one.
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The accuracy is still acceptable, even if there are some evident different in the potential mostly inside the
molecular surface, as shown from column two in Figure 20.

(a) Potential values on the line parallel to x axes, with
minlevel = 8, maxlevel = 9.

(b) Potential values on the line parallel to x axes, with
minlevel = 5, maxlevel = 9.

(c) Potential values on the line parallel to y axes, with
minlevel = 8, maxlevel = 9.

(d) Potential values on the line parallel to y axes, with
minlevel = 5, maxlevel = 9.

(e) Potential values on the line parallel to z axes, with
minlevel = 8, maxlevel = 9.

(f) Potential values on the line parallel to z axes, with
minlevel = 5, maxlevel = 9.

Figure 19: Delphi and easy_pbe potential values sampled on specific lines parallel to one axis and
passing through the center of the domain.

Focusing on the potential values at the surface, shown in Figure 20, the results are comparable even if the last
one is obtained with a mesh composed of about one tenth of cells of Delphi.
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(a) Delphi solution. (b) easy_pbe solution with pa-
rameters minlevel = 8, maxlevel =
9, surface = SES with 1.4Å probe
radius.

(c) easy_pbe solution with param-
eters minlevel = 5, maxlevel = 9,
surface = SES with 1.4Å probe ra-
dius.

Figure 20: Crambin electrostatic potential at the surface computed with Delphi and easy_pbe.

7.2 Parallel Scaling Test
In this section, we present the results of parallel scalability tests that have been performed again on the
computing server GIGAT of the MOX lab of Politecnico di Milano. We choose the nerve growth factor, whose
structure can be seen in Figure 21, which is an important protein that is involved in a variety of physiological
processes in cell survival, differentiation, proliferation and maintenance [30, 31]. It is composed of a unique
protein chain and 1750 atoms.

Figure 21: Electrostatic potential value calculated at the surface of crystal structure of Nerve growth
factor.

The results of parallel scalability tests are reported in Figure 22. The trend of the curves is very close to the
linear line up to 8 processors, after that, the distance with the linear curve increases, but the computational
time saving is still satisfying. As expected, the direct solver is slower than the iterative one, as Figure 22b
shows.
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(a) (b)

Figure 22: Figures (a) and (b) refer respectively to the speed-up of the Geometry Management and
Linear Solvers using 1 node and 1–20 processors.

8 Concluding Remarks and SARS-CoV-2 Spike Protein Simulation
The role of electrostatics in bio-molecular recognition is prominent, this is due to the features of electrostatic in-
teractions both at long and short distances. Indeed, long range electrostatic interactions impact both on general
repulsion/attraction of same and differently charged molecules, but also on the time that two biomolecules stay
in close proximity, allowing them to find the most complementary conformations [19]. Short range electrostatics
is also extremely important, since it helps achieve the specificity that is necessary for the correct functioning of
biochemical signalling. Its contribution to solvation is the third element which makes electrostatics so relevant
in this field.
The Poisson Boltzmann equation is routinely used to estimate the role of electrostatics and desolvation to
molecular binding, as well as to pKa shifts in titratable residues and in many other situations. It proved able
to pinpoint molecular determinants of protein-protein interaction specificity [29] as well as the effects of shape
in protein-DNA interaction [28].
For such reasons, Poisson-Boltzmann calculations, may deserve to be considered one of the enabling technologies
for developing automatic strategies for drug discovery or drug repurposing.
To test the applicability of our solver on molecular structures of actual interest for applications we ran easy_pbe
simulations on two molecules that are clearly relevant targets for this sort of studies, in particular the spike
protein of two different strains of the SARS-CoV-2 virus, e first strain [33, 34] versus the Omicron variant [37, 38].
Results reported in Figure 23 were obtained using SES surface and took about 4 and 3 hours respectively on
the computing server GIGATLONG of the MOX lab of Politecnico di Milano, using 20 processors. The times
are divided in the following way:

• Between 59-60% for the refinement and coarsening steps,
• between 39-40% for the calculus of the electrostatic potential,
• the remaining time for the markers computation and the export of the calculated quantities, mesh in-

cluded.
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Figure 23: SARS-CoV-2, spike protein, ectodomain structure open state (left), Omicron variant of
concern (right).
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A easy_pbe user reference
This appendix contains the instructions on how to compile and use the code and visualize the outputs.
The implemented code can be found inside the repository: https://github.com/carlodefalco/easy_pbe,
and its structure is schematically reported in Figure 24.

easy_pbe

data

*.pqr

options.pot

include

GetPot, GetPot.hpp, GetPot.cpp

json.hpp

pb_class.h

raytracer.h

serialize.h

src

Makefile

pb_class.cpp

poisson_boltzmann.cpp

raytracer.cpp

Figure 24: Repository structure scheme with both folders and files.

The repository contains three directories. Inside the folder data two kind of files are included: the option.pot
file, in which the user can set the parameters for the simulation, and some .pqr files with the molecule informa-
tion. The include and src directories respectively contain the header and source files of the code. Inside the
src folder the main function poisson_boltzmann.cpp and the Makefile, necessary for the compilation, can
be found.

A.1 Installation
The direct dependencies of the code are bim++ and NanoShaper, while Paraview and octave are necessary for
the post-processing operations.
For the compilation, a local_settings.mk file must be created in order to add or modify, accordingly to the
user necessities, the compilation options present inside Makefile, and then the following command must be
executed

make

28

http://dx.doi.org/10.1101/2021.02.25.432969
http://dx.doi.org/10.1101/2021.02.25.432969
http://doi.org/10.2210/pdb7TB4/pdb
https://github.com/carlodefalco/easy_pbe


A.2 Input files
The code takes as input two files:

• options.pot file, containing the parameters for the simulation;
• .pqr file.

The .pqr file format is a modification of the .pdb format, which is used for the description of the 3D structure
of the molecules of the Protein Data Bank. The correct .pqr format can be generated starting from the .pdb
format using the PDB2PQR tool (https://server.poissonboltzmann.org/pdb2pqr) and selecting TYL06
as output naming scheme with the whitespaces option activated together with the default ones. Inside a .pqr
file all the information about the studied molecules can be found. In Figure 25 the first lines of the crambin
molecule .pqr file are reported as an example of its content.

Figure 25: First lines of 1CCM.pqr file.

The fieldname corresponds to a string which specifies the type of the PQR entry, it can be either ATOM or
HETATM. The Atom_number and Atom_name are respectively an integer with the index of each atom and a
string containing its name, while the following two fields regards the residue. The remaining columns are the
most important because they contain the information for the electrostatic potential computation: the atomic
coordinates of the atom center (expressed in Å), the charge (expressed in electrons unit) and the atom radius
(expressed in Å).

An example of option file can be seen in Figure 26.

Figure 26: Example of options.pot file.
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Below the description of the parameters is reported.
Mesh options:

• maxlevel: maximum level for the mesh refinement, root assumed level 0.
• minlevel: minimum level for the mesh refinement.
• unilevel: level chosen for the initial uniform refinement of the mesh.
• mesh shape: it can be cubic (option 0), stretched (option 1) or manually set (option 2). Consider for

instance the problem domain

Ω = [xmin, xmax]× [ymin, ymax]× [zmin, zmax]

With cubic option, the list of all the atoms inside the examined molecule is scrolled in order to find the
maximum (minimum) coordinate value without distinguishing among the three axis directions. Then the
right (left) domain extremes of each interval in Ω are set equal to this value summed (subtracted) to six
times the maximum radius among all the atoms of the chosen molecule. In this way the min and max
values of each interval are the same along the coordinates.
For the stretched option instead, the maximum (minimum) coordinate value is searched separately in
every direction, so that in general xmin ̸= ymin ̸= zmin and xmax ̸= ymax ̸= zmax.
The user can also decide to set the domain coordinates explicitly by selecting the manual setting and
filling the corresponding spaces with the desired domain vertex coordinates.

Model parameters:
• linearized: 1 for solving the linearized PBE, the only available up to now.
• bc_type: 0 for homogeneous Neumann, 1 for homogeneous Dirichlet.
• molecular_dielectric_constant: relative permittivity constant of the molecule.
• solvent_dielectric_constant: relative permittivity constant of the solvent.
• ionic_strength: I expressed in molar concentration.

NanoShaper surface parameters:
• surface_type:

◦ 0 for SES (or Connolly surface);
◦ 1 for Skin surface;
◦ 2 for Blobby surface.

• surface_parameter:
◦ SES probe radius (default value 1.4Å).
◦ Skin surface parameter s ∈ (0, 1). The default value is 0.45, which corresponds to a surface very

similar to the SES one. If s = 1, it corresponds to the convex hull, if s = 0 it coincides with the
Van der Waals surface.

◦ Blobby parameter B (default value -2.5, not too far from SES).
• stern_layer_thickness: (not yet available for NanoShaper API).
• number_of_threads: set the available threads for NanoShaper surface computation.

Algorithm options:
• linear_solver: the user can decide to use either mumps direct solver, or lis iterative solver.
• solver_options: only for the iterative solver, see lis manual [4] for the complete list of available options,

e.g. solvers, preconditioners, tolerance, etc.

Output options: arbitrary names for the creation of the output files.

A.3 Launching Simulations from the Command Line
To run the code in serial, using the default options.pot file and the 1CCM.pqr file, the necessary commands
are

mkdir results
cd results
../poisson_boltzmann

To run in parallel with MPI, change the last line with

mpirun -np <number of processes> ../poisson_boltzmann

with processors_number equal to the desired number of processors.
To select a different option file add the following option
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--potfile /your/folder/<file name>.pot

While to change the input molecule add the following option

--pqrfile /your/folder/<file name>.pqr

A.4 Post-processing of Output Files
The user can use the octave script called export.m and distributed with bimpp (it is located in the folder
script/m) for the post-processing. When the user adopts the default names for the files, it can write the
following command line for the creation of a .vtu file that can be opened using Paraview.

export_tmesh_data (’poisson_boltzmann_surface_%1.1d_%4.4d’,
{’poisson_boltzmann_surface_%1.1d_%4.4d’, ’phi_%1.1d_%4.4d’,
’rhs_%1.1d_%4.4d’, ’rho_%1.1d_%4.4d’}, {’surface’, ’phi’, ’rhs’, ’rho’},
{’poisson_boltzmann_marker_%1.1d_%4.4d’, ’epsilon_%1.1d_%4.4d’,
’reaction_%1.1d_%4.4d’}, {’marker’, ’epsilon’, ’reaction’},
’output_name’, 0, processors_number)

where output_name can be substituted with an arbitrary name for the .vtu file and processors_number must
be replaced by the number of processors used for the simulation. The user can also decide to convert only some
among the outputs according to his necessities.
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Abstract in lingua italiana
Per capire le proprietà fisiche e chimiche delle molecole immerse in soluzioni acquose, è fondamentale una
descrizione accurata della forza e della natura delle interazioni elettrostatiche, le quali giocano un ruolo fonda-
mentale in una grande quantità di processi biologici. L’utilizzo dei cosiddetti continuum solvent models, come
l’equazione di Poisson–Boltzammn (PBE), per la modellizzazione di queste interazioni in sistemi di biomolecole
di una sempre meggior complessità, dipende fortemente dalla possibilità di utilizzare e implementare metodi
numerici efficienti, accurati e scalabili, in modo da sfruttare l’elevato parallelismo delle architetture dei com-
puter moderni. Questa tesi si pone in questo contesto con l’implementazione di easy_pbe, un solutore numerico
scalabile per l’equazione linearizzata di Poisson–Boltzmann. Il solver è basato sulla discretizzazione a Elementi
Finiti della PBE su mesh cartesiane gerarchicamente raffinate e permette di scegliere tra diversi approcci per
la descrizione della superficie molecolare. Dopo aver introdotto la formulazione del problema, e la sua forma
adimensionale, verranno descritti nel dettaglio alcuni aspetti inerenti al solutore implementato, come l’approccio
utilizzato per trattare le singolarità causate dalla presenza delle cariche puntiformi all’interno del modello. Suc-
cessivamente verranno presentati alcuni casi test significiativi per la validazione dell’accuratezza del codice e la
sua scalabilità in parallelo.

Parole chiave: Elettrostatica molecolare, equazione di Poisson–Bolztmann, superficie molecolare, mesh
Oct-tree, parallelizzazione MPI.
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