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Abstract 

An ever greater need of automation in factories, togheter with an ever changing market, 

have led the modern robotics industry to an evolution in which the collaborative robots are 

rising significantly. Consequently, the physical human-robot interaction is becoming more 

and more frequent, and it is important to use a control that guarantees an always stable 

system and an easy collaboration. To enable this, the impedance control, which is widely 

used in collaborative operations, comes in handy. However, this type of control needs to 

estimate the impedance parameters of the operator arm, so as to act in the best possible way 

understanding the intentions of the human operator, and adapt its parameters to act 

accordingly. 

This work proposes a method for the estimation of the impedance parameters of the 

operator arm during the collaborative operations, which is minimally invasive and can be 

used in real time. It is based on the EMG signals coming from the main muscles of the 

human arm and on the data of the operator posture. 

First, the kinematic and the dynamic model of the operator arm are built, using the same 

method used for the robotic manipulators; later a methodology for obtaining the parameters 

for these models, from sensors placed on the human arm, is presented. Then, the criteria 

for the identification of the parameters of the impedance model, and the experimental 

procedure to extract the necessary data to calculate them, are reported. Lastly the method 

proposed in this work has been compared with a previous one. 

Key words: Human-robot interaction, human arm impedance, human modelling, 

impedance control. 

 





 

 

 

 

 

Sommario 

Un sempre maggiore bisogno di automatizzazione nelle aziende, unito ad un mercato in 

continuo cambiamento, hanno portato l’industria robotica moderna ad un’evoluzione in cui 

i robot collaborativi stanno aumentando in modo significativo. Di conseguenza, 

l’interazione fisica tra uomo e robot sta diventando sempre più frequente, per cui è 

importante utilizzare un controllo che garantisca di avere sempre un sistema stabile e una 

facile collaborazione. Per consentire ciò, ci viene in contro il controllo di impedenza che è 

largamente usato in operazioni collaborative; questo controllo però, per intervenire al 

meglio, necessita di conoscere i parametri di impedenza del braccio dell’operatore, in modo 

da poter intuire le intenzioni di quest’ultimo e adattare i propri parametri per agire di 

conseguenza. 

Questo lavoro propone un metodo per la stima dei parametri d’impedenza del braccio 

dell’operatore, durante le operazioni collaborative, poco invasivo e da poter utilizzare in 

tempo reale; esso si basa sui segnali EMG provenienti dai principali muscoli del braccio e 

dai dati sulla postura di quest’ultimo. 

Come prima cosa, viene costruito il modello cinematico e dinamico del braccio 

dell’operatore, utilizzando la stessa metodologia impiegata per i manipolatori robotici; 

successivamente è presentata una procedura per ottenere i parametri per questi modelli 

attraverso dei sensori posizionati sul braccio umano. In seguito, verranno riportati: il 

criterio per l’ottenimento di tutti i parametri del modello d’impedenza, e la procedura 

sperimentale con cui estrarre i dati necessari per calcolarli. In ultimo, il metodo descritto in 

questo lavoro viene confrontato con uno utilizzato in precedenza. 

Parole chiave: Interazione uomo-robot, impedenza del braccio umano, modellistica 

umana, controllo ad impedenza. 
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Introduction 

From the second half of the 20th century, the robots have becoming a fundamental part 

of factory production, they are especially used in repetitive and dangerous operations. 

However, some tasks can be either too complex or too expensive to automate, and either 

too difficult or too heavy to make them manually, in these cases the human-robot 

collaboration becomes necessary; and this is why the use of collaborative robots are 

becoming more and more popular. With the growth of the collaborative robots market, the 

need for a safe control of human-robot interaction has grown up too; the most used control 

to fulfil this request is the impedance control. In the collaborative operations, where the 

impedance control is applied, the operator is able to manipulate directly the robot by 

applying forces and torques to the robot end-effector, nevertheless to guarantee a stable 

interaction the controls parameters, in particular the damping or the stiffness, are set to high 

values but in this way the robot becomes more difficult to move for the operator. This 

choice, of the controls parameters, is done because the operator have the ability to vary its 

arm endpoint impedance depending on what he wants to do; so the controller, that not know 

the operator intention, has to mantain the collaboration stable in any case. The online 

adaptation of the impedance parameters according to the impedance of the operator’s arm 

has been proposed in literature to improve the cooperation; in particular this impedance 

estimation has been done through the EMG signals coming from the principal muscles of 

the upper arm (biceps and triceps). 

In this scenario, the aim of this thesis is to present an online, non-invasive, 

computationally efficent, and EMG based human arm impedance estimation method. First, 

the reduced complexity model is presented; then the human arm triangle model is described 

as an intuitive and simple tool to describe the arm posture and the corresponding joints 

angle and endpoint stiffness profile from the sensors data. At the same time, the 

experimental procedures to obtain data to build the method are described, and in particular 

from these experiments are obtained the experimental: inertia term, dumping term, and 

stiffness term. The first term obtained is used as constant in the model, the second one is 

used to discretize the dumping trajectory, and the last term is used to calculate the minimum 

activation joint stiffness matrix and a co-activation index, defined based on the EMG 

signals, that rescales this matrix; both used in the stiffness model. Finally, the estimation 

method is simulated, starting from the design of the kinematic and dynamic model of the 

human arm built in the same way as for robotic manipulators; then the impedance model 

parameters are derived from experimental data, and the obtained impedance profile is 

compared with another coming from an estimation method previously used. 

All the impedance parameters are taken into account to realize a complete impedance 

estimation model of the human arm. 
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Thesis organization 

The thesis is organized as follow: 

• Chapter 1: A brief introduction on the collaborative robots focusing on their 

benefit and their footprint on the robotics market. 

• Chapter 2: In this chapter the human-robot interaction is described in the first 

section, and in the second one a brief explanation of the impedance control is 

done. The third section explains the robot dynamic model; in the last one the 

impedance control is applied to a manipulator. 

• Chapter 3: The human arm dynamic model is first described, followed by an 

impedance model for the arm. Later, all the techniques, the tools, and the 

experimental procedures to obtain the data to build the impedance model are 

described. 

• Chapter 4: All the simulations needed to obtain, from data, all the necessary 

parameters for the human arm endpoint stiffness model are reported, with the 

simulation results. Finally, a brief comparison with a previously used method 

is done. 
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Chapter 1 

1 Collaborative Robots 

1.1 Industrial Robotics in the 20th Century: 

Industrial robots born from the idea to build devices that could substitute humans in 

repetitive or heavy tasks. The evolution of industrial robots can be subdivided in four 

generations that span from ‘50s to the present day. 

The first industrial robot generation rise at the beginning of ‘50s up to the end of ‘60s. 

The robots of this generation were provided with low-tech equipment and with a basic 

control; they are only programmable machine with no control on task execution. Movement 

of the axes were managed by mechanical stops that limit movement of the axes, also this 

kind of robots are actuated by hydraulic actuator “controlled” via relays which switched 

solenoid valves. 

 

Figure 1.1: Example of robot of first generation (the Unimate robot). 

The second generation of industrial robots spans from the end of ‘60s to the end of 

‘70s. These robots could carry out more complex tasks with respect to the ones of the earlier 

generation since they could recognize the external enviroment, even if only in a basic way. 

They were controlled by microprocessor or PLC and could be programmed by an operator 

using a teach box. 

These kind of robots were equipped with servo-controllers which enable them to perform 

point-to-point motion and continues path, however they had a limited versatility since they 

were designed for a specific task. This generation of robot saw the transition from hydraulic 

to electric actuators, thanks to the wide diffusion of the microprocessors. These technology 

changes increased productivity and reduced the cost. 
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Figure 1.2: Example of robot of second generation (The Stanford Arm). 

The third generation starts at the end of ‘70s to the end of the century. This generation 

of industrial robots could be used to perform a large amount of different tasks since they 

could be programmed either on-line or off-line by a PC. This ease of programming in 

addition at the implementation of advanced sensors on board (e.g. force sensors, laser 

scanners, cameras) made possible the interaction with environment and humans, in order 

to carry out more complex tasks. 

 

Figure 1.3: Example of robots of the third generation (AdeptOne SCARA robots) 

At the beginning of the 21st century the fourth generation of industrial robots starts, 

and is still continuing. Robots of this generation have a huge computational power that 

make them able to perform complex control strategies, deep learning, logical reasoning, 

collaborative behaviour. 

1.2 Collaborative Robotics: 

The collaborative robots, or cobots, are all the robots designed to work alongside 

humans with shared spaces or in close proximity, when used in industry they are called 

collaborative industrial robots. 

The International Federation of Robotics divide collaborative robots in two groups, this 

division is based on whether or not the ISO 10218-1:2011 norm is fulfilled. This norm 

“specifies requirements and guidelines for the inherent safe design, protective measures 

and information for use of industrial robots” [1]. 

In the first group we have the robots designed for a human robot interaction, but they 

do not fulfil the aforementioned norm. These robots are however considered safe since they 
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follow different safety standards. An example of cobots belonging to this group are the 

home cleaning robots that follow the in-house safety standards. 

The second group contain industrial robots that fulfil the ISO 10218-1:2011 norm. This 

norm allows four type of different collaborative operations (Figure 1.4). 

The first collaborative operation is safety-rated motion stop, where the industrial 

robots work in a separate workspace, normally surrounded by a cage, with respect to 

workers; but they can enter at any time in this space. If the cage is opened or the worker 

enters inside the collaborative workspace the robot become standstill without an 

interruption of the power, in this way the robot is ready to resume as soon as the worker 

leaves the collaborative workspace. 

The next operation is hand guiding, where the robot motion happens only through 

direct input of the worker. This input is given by moving manually the robot end effector 

that is equipped with a force/torque sensor, used to detect operator intention. 

The third collaborative operation admitted is the speed and separation motoring. This 

operation is a kind of evolution of the first one, indeed robot can behave in three different 

ways depending on the distances between the worker and the robot. The robot works 

normally until the distance from worker becomes less then a threshold, then robot speed is 

reduced and if the distance is further reduced below a second threshold the robot speed is 

reduced again and so on until the distance is below the minimum threshold. In this last case 

the robot standstill without an interruption of the power as long as the distance exceeds the 

narrow threshold.  

The distance between the robot and the worker is measured by sensors installed inside the 

collaborative workspace. 

The last collaborative operation admitted from the norm is power and force limiting 

by inherent design or control, the robots used in this scenario are equipped with force and 

speed sensor at joints to measure the entities of the contact with the operator, that has not 

to exceed some limits. 

In the second and the fourth cases, where the robot works a direct contact with worker, 

the robots are built with some technical solutions to not injure worker following a collision. 

These solutions include rounded contours, lightweight materials, etc. 



10 

 

 

Figure 1.4: Type of collaborative operation admitted by ISO 10218-1 

1.2.1 Benefits of collaborative robotics 

The cobots, with respect to standard robots, give some advantages. The first one is the 

short installation, which require few time because cobots are light, compact, programmed 

by a user friendly software and mobile applications, without too specific knowledge. Also, 

they are able to remember actions that are taught to them manually. This benefit makes 

them flexible, so they can change task easily. 

Besides cobots do not need physical barriers, this enables them to be used in the same 

workspace with humans in a safety manner, and reducing the floor occupation. For this 

reason, they are employed in collaboration to workers to share advantages of both, like: 

precision, strength, repeatability of the robot, combined with adaptability and intelligence 

of the worker. They are also used to help worker with heavy and boring tasks as for example 

move or keep in position heavy object. 

1.2.2 Collaborative robotics market 

In the last few years collaborative robot are becoming more and more common in 

industry thanks to the continuous innovation in this branch, and is expected to be a 

breakthrough in the coming years. Indeed the “collaborative robot market is projected to 

grow from USD 981 million in 2020 to USD 7,972 million by 2026” [2]. In particular in 

this forecast cobots with payload less than 5 kg will take the larger part of this market, since 

they are cheap and need less space compared with the cobots with bigger payload; 

consequently they are the best choice for the companies that want to start to become 

automate. The sector that will be most affected by light payload robots is the electronic 

one, where the cobots will be use alongside worker to help them to handle and assemble 

fragile circuit boards. 
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A big boost for this market will be given by programming software, since cobots 

producers are investing on the development of more and more intuitive programming 

software as well as application specific ones. This development will bring cobots to be 

increasingly easy and fast to deploy for new users. 

 

Figure 1.5: Collaborative robot market, by region (USD million) 
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Chapter 2 

2 Impedance control 

2.1 Robot interaction control 

In a large part of the industrial robot applications, the robot is assumed to be in a free 

environment where the dynamical interaction with objects can be either absent or 

negligible. In these cases, the robot is considered as a stand-alone system, and the 

traditional control strategies are sufficent for a correct execution of the tasks. However, 

there are operations which require that the robot has to interact either with the environment, 

or with other devices, or with humans; in these scenarios the assumption of a free 

environment is not true anymore and a traditional industrial robot, as it is, is not able to 

perform these tasks. In order to allows a robot interaction with the environment, the robot 

needs external sensors (such as force/torque sensors, vision sensors, etc.) that make the 

robot aware of what happens around it, and a control strategy able to manages these new 

signals coming from these sensors to get the wanted behaviour. 

2.1.1 Force/torque sensors 

The force/torque sensors are used in all the application where the control of the 

interaction force is needed. These sensors are usually placed in the manipulator wrist near 

the working tool in a way as to return the three component of the interaction force and the 

three components of the moment with respect to a local frame. The sensing part of these 

sensors is based on strain gauges made with piezoelectric material that changes its electrical 

resistance consequently to a strain; by measuring the voltage at the ends of the sensing part 

is possible to obtain the strain.  

 

Figure 2.1: Force/Torque sensor 
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2.2 Impedance control 

The impedance control is the most used control in physical human-robot interaction, 

this control has the purpose to makes the robot behaves has a generalized mass, spring, and 

dumper system. A big advantage of this control strategy is that allows to control the motion 

and the contact force at the same time. 

Fist we have to define the mechanical impedance, that is the dynamical relationship 

between force and velocity (or displacement) for a mechanical system. In our case the 

impedance is the ration between the contact force resulted from interaction and the velocity 

of the manipulator, and in frequency domain the impedance 𝑍(𝑠) can be written as [3]: 

 𝑍(𝑠) = 𝐹(𝑠)/𝑋̇(𝑠) (2.1) 

Where 𝐹(𝑠) and 𝑋̇(𝑠) are the Laplace transformation of the interaction force, and the 

manipulator velocity respectively. Substituting 𝑋̇ with 𝑠𝑋 and rewriting equation (2.1), we 

obtain: 

 𝑠𝑍(𝑠) = 𝐹(𝑠)/𝑋(𝑠) (2.2) 

And isolating 𝐹(𝑠): 

 𝐹(𝑠) = 𝑠𝑍(𝑠) ∙ 𝑋(𝑠) (2.3) 

From equation (2.3) is possible to notice that 𝐹(𝑠) and 𝑋(𝑠) cannot be controlled 

separately since they are related by 𝑠𝑍(𝑠), so the control strategy is based on the control 

𝑋(𝑠) and the choice of the desired impedance behaviour through the tuning of Z(s). 

Normally, 𝑍(𝑠) take the shape of: 

 𝑍(𝑠) = 𝑀𝑠 + 𝐷 + 𝐾/𝑠 (2.4) 

Where 𝑀,𝐷,𝐾 represent the inertia, dumping and stiffness value of the desired 

impedance behaviour; this impedance behaviour in time domain can be seen as: 

 𝑀𝑑(𝑥̈(𝑡) − 𝑥̈𝑑(𝑡)) + 𝐷𝑑(𝑥̇(𝑡) − 𝑥̇𝑑(𝑡)) + 𝐾𝑑(𝑥(𝑡) − 𝑥𝑑(𝑡))
= 𝐹(𝑡) 

(2.5) 

Where 𝑀𝑑,𝐷𝑑, 𝐾𝑑 are the desired value of inertia, dumping and stiffness; 𝐹(𝑡) is the 

contact force; 𝑥(𝑡) is the actual position of the robot end effector and 𝑥𝑑(𝑡) is the desired 

position of the end effector. 

2.3 Robot dynamic model in interaction with the environment 

The dynamic model of a manipulator in interaction with environment in vector form 

can be described as follow: 

 𝐵(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹𝑣𝑞̇ + 𝑓𝑠(𝑞, 𝑞̇) + 𝑔(𝑞) = 𝜏 − 𝐽𝑇(𝑞)ℎ (2.6) 

Where: 
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• 𝒒 ∈ ℝ𝑛, 𝒒̇ ∈ ℝ𝑛, 𝒒̈ ∈ ℝ𝑛 are vectors that contain the robot joints positions, speeds, 

accelerations of the manipulator; and 𝑛 is the number of degrees of freedom of the 

robot; 

• 𝑩(𝒒) ∈ ℝ𝑛×𝑛 is the Inertia matrix of the manipulator that is symmetric, positive-

definite and depend on 𝑞; 

• 𝑪(𝒒, 𝒒̇) ∈ ℝ𝑛×𝑛 is a matrix that contains the centrifugal and Coriolis term. The 

matrix 𝐶 is not unique, however normally its elements are chosen following the 

Christoffel symbols method in order to achieves important proprieties of the 

dynamic model [4]. This matrix depends on joints positions and speeds; 

• 𝑭𝒗 ∈ ℝ𝑛×𝑛 is a diagonal matrix that contains the viscous friction coefficients of 

the joints, and −𝐹𝑣𝑞̇ represents the viscous friction torques; 

• 𝒇𝒔(𝒒, 𝒒̇) ∈ ℝ𝑛 is the function that represents the static frictions at the joints, 

normally this term is simplified as 𝐹𝑠𝑠𝑔𝑛(𝑞̇); 

• 𝒈(𝒒) ∈ ℝ𝑛 represents the moments generated by the gravity at the joints axes in 

the current configuration, it depends by the vector of joints positions 𝑞; 

• 𝝉 ∈ ℝ𝑛 is a vector that contains the actuation forces/torques at each joint; 

• 𝑱𝑻(𝒒) ∈ ℝ𝑟×𝑛 is the Jacobian matrix, and 𝑟 is the dimension of the velocity vector. 

This matrix maps joints velocities into the end-effector velocities, according to the 

relation: 

 
𝑣 = [

𝑝̇

𝜔
] = 𝐽(𝑞)𝑞̇ 

(2.7) 

Where 𝑣 is the velocity vector; 𝑝̇, and 𝜔 are the linear and angular velocities 

of the tool frame. The Jacobian is called geometric, if the angular speed is 

expressed in a minimal representation; 

• 𝒉 ∈ ℝ𝑟 is a vector that contains the resultants of external forces 𝑓 and moments 𝜇 

applied by the end effector on the environment, with respect to the origin of the 

end-effector frame, in formulas: 

 
ℎ = [

𝑓
𝜇
] 

(2.8) 

2.4 Impedance control applied to a manipulator 

The dynamic model of a manipulator in interaction with the environment is described 

by (2.6), and we use an inverse dynamic control law [4]: 

 𝜏 = 𝐵(𝑞)𝑦 + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) (2.9) 

Now substituting this expression in (2.6) we obtain: 

 𝑞̈ = 𝑦 − 𝐵−1(𝑞)𝐽𝑇(𝑞)ℎ (2.10) 

Where 𝑦 is the control variable. The equation (2.10) represent a nonlinear coupling 

term due to external forces. We assume for 𝑦 the expression used in the inverse dynamic 

control in the operational space [4]: 
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 𝑦 = 𝐽𝐴
−1(𝑞)(𝑥̈𝑑 + 𝐾𝐷 𝑥̇̃ + 𝐾𝑃𝑥̃ − 𝐽𝐴̇(𝑞, 𝑞̇)𝑞̇) (2.11) 

Where 𝐽𝐴(𝑞) is the geometric Jacobian matrix, 𝑥𝑑 is the desired position, 𝐾𝐷 and 𝐾𝑃 

are tuneable parameters respectively, and 𝑥̃ is: 

 𝑥̃ = 𝑥𝑑 − 𝑥 (2.12) 

By substituting the expression (2.11) in (2.10) we obtain the dynamics equation in 

closed loop: 

 𝑥̈̃ + 𝐾𝑃 𝑥̇̃ + 𝐾𝐷𝑥̃ = 𝐵𝐴
−1(𝑞)ℎ𝐴 (2.13) 

Where 𝐵𝐴(𝑞) is: 

 𝐵𝐴(𝑞) = 𝐽𝐴
−𝑇𝐵(𝑞)𝐽𝐴

−1 (2.14) 

Matrix founded in (2.14) represents the inertia matrix in the operational space. The ℎ𝐴 

term represents is a vector that contain the generalized forces performing work on 𝑥̇, and 

is related to ℎ by the following relation: 

 ℎ𝐴 = 𝑇𝐴
𝑇(𝑥)ℎ (2.15) 

With 𝑇𝐴that is the following matrix: 

 
𝑇𝐴 = [

𝐼3×3 03×3

03×3 𝑇(𝜙)
] 

(2.16) 

Where 𝑇(𝜙) represents the transformation matrix from 𝜙̇ to 𝜔, and 𝜙 is a vector that 

describe the orientation in a minimal representation. 

In equation (2.13) we have obtained an impedance relation which can be tuned by choosing 

a proper 𝐾𝑃 and 𝐾𝐷 for the dumping and stiffness contribution respectively, but this system 

is only partial assignable and also coupled. In order to solve these problems we have to 

measure the interaction forces with a force sensor, and ones the force measurements are 

available, is possible to slightly modify equations (2.9) and (2.10) in order to obtain the 

following ones: 

 𝜏 = 𝐵(𝑞)𝑦 + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) + 𝐽𝑇(𝑞)ℎ (2.17) 

and 

 𝑦 = 𝐽𝐴
−1(𝑞)𝑀𝑑

−1(𝑀𝑑𝑥̈𝑑 + 𝐷𝑑 𝑥̇̃ + 𝐾𝑑𝑥̃ − 𝑀𝑑  𝐽𝐴̇(𝑞, 𝑞̇)𝑞̇ − ℎ𝑎) (2.18) 

Where 𝑀𝑑,𝐷𝑑,𝐾𝑑 are diagonal and positive definite matricies. The term 

−𝐽𝐴
−1(𝑞)𝑀𝑑

−1ℎ𝑎 was introduced in (2.18) in order to obtain a linear impedance with respect 

to ℎ𝐴, otherwise the term 𝐽𝑇(𝑞)ℎ in (2.17) compensates exactely the external forces and 

makes the manipulator infinitely stiff concerning the contact forces. 

Now we can use these two new equations to repeat the same procedure as before, and after 

some calculation we obtain: 

 𝑀𝑑 𝑥̈̃ + 𝐷𝑑 𝑥̇̃ + 𝐾𝑑𝑥̃ = ℎ𝐴 (2.19) 
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With 𝑀𝑑,𝐷𝑑,𝐾𝑑 that can be tuned to select the wanted inertia, dumping, and stiffness 

parameters of the mechanical impedance; in order to obtain the wanted behaviour. We have 

obtained in (2.19) a complitely decoupled and assignable system. 

However, this approach has several issues: 

• It requires a perfect knowledge of the dynamic model of the manipulator and a 

complete cancellation of nonlinearities and coupling terms; 

• This method assume that the joints torques are complitely accessible; 

• The system become compliant to external disturbance, while normally the 

industrial robots be not. 

To solve these problems, we use an admittance filter, which convert a force into 

desired displacement, relying on the position control already present on the manipulator. 

In Figure 2.2 is possible to see how impedance control with admittance filter is 

implemented. 

 

Figure 2.2: Impedance control with admittance filter. 
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Chapter 3 

3 Human arm dynamic model 

3.1 The reason of the dynamic model estimation 

During a human- robot interaction normally an impedance control based on position 

control of the manipulator is used, however there is a condition for which the system 

formed by human and robot can become unstable. This unstable condition occours when 

the operation stiffs his arm, in this scenario the time delay of the movements of the robot 

or the operator makes the overall system unstable. To stabilize this condition the virtual 

impedance of the robot has to be retuned by increasing the stiffness or the dumping 

parameter of the impedance control. For this reason, normally viscosity or stiffness 

coefficent of the robot control are settled at high value, to prevent the system to fall into 

the previous mentioned unstable condition. Nevertheless, this solution is not an optimal 

one, since the choice of high impedance characteristic of the robot makes the collaboration 

more laborious, indeed the worker has to carry out the task with an extra load due to this 

parameters selection. To get an overall system that reduce the over load for the operator or 

that can solve some optimization problems, we need that the impedance control tune its 

parameters by looking at the stiffness of the operator’s arm impedance at the wrist, so we 

can estimate the human arm impedance parameters and tune the impedance control 

parameters consequently to obtain the desired behaviour. This approach is called variable 

admittance control. 

3.2 Reduced complexity impedance model of the human arm 

In section 3.1 we have spoken about the advantages of estimating the human arm 

impedance parameters and also the importance to know the human arm stiffness, so in this 

section we will treat a computationally efficent cartesian stiffness model of human arm, 

based on the arm posture and the activation levels of biceps and triceps; i.e. the two 

dominant upper arm muscles. 

First of all, we start by presenting the human arm impedance model: 

 𝑀𝐻𝑥̈ℎ + 𝐷𝐻𝑥̇ℎ + 𝐾𝐻𝑥ℎ = 𝐹 (3.1) 

Where 𝑥̈ℎ, 𝑥̇ℎ, 𝑥ℎare the acceleration, velocity, position of the human arm endpoint; 

and 𝑀𝐻 ∈ ℝ𝑛𝑐×𝑛𝑐 , 𝐷𝐻 ∈ ℝ𝑛𝑐×𝑛𝑐, 𝐾𝐻 ∈ ℝ𝑛𝑐×𝑛𝑐 are the inertia, dumping and stiffness term 

of the human arm respectively; and 𝑛𝑐 is the dimension of the cartesian space; finally 𝐹 is 

the interaction force. The inertia, dumping and stiffness matricies vary at the changing of 

the human arm configuration, muscle contraction level, etc; however the inertia term is 
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considered as constant [5], since we ignore the negligible effect of the muscle mass 

distribution in a neighbourhood of the predetermined arm configuration.  

Now we want to explore the human arm endpoint stiffness parameter, which is the 

more interesting model part for a stability purpose. 

In presence of constant muscular contraction, the arm geometry affects both the joint and 

the Cartesian stiffens behaviour. The joint stiffness is mainly due to changes in joint 

proprieties (as muscle and tendon length, moments arm, etc.), instead the Cartesian one 

needs an additional trasformation which requires the arm Jacobian. We explore a 

trasformation between two nearby equilibrium to investigate the arm geometry dependency 

of the two stiffness profiles [6] [7]: 

 [𝑞0, 𝐾𝐽(𝑝, 𝑞0), 𝐾𝐶(𝑝, 𝑞0)] (3.2) 

and 

 [𝑞0 + 𝛿𝑞, 𝐾𝐽(𝑝, 𝑞0 + 𝛿𝑞),𝐾𝐶(𝑝, 𝑞0 + 𝛿𝑞)] (3.3) 

The expression of the cartesian stiffness is: 

 𝐾𝐶(𝑝, 𝑞0 + 𝛿𝑞) = 𝐽+𝑇(𝑞0 + 𝛿𝑞)[𝐾𝐽(𝑝, 𝑞0 + 𝛿𝑞) − 𝐺(𝑞0 + 𝛿𝑞)]𝐽+(𝑞0 + 𝛿𝑞) (3.4) 

Where 𝐾𝐶 ∈ ℝ6×6 is the cartesian stiffness; 𝐽 ∈ ℝ6×7 is the human arm Jacobian; 

𝐾𝐽 ∈ ℝ7𝑥7is the human arm joint stiffness; 𝑞 ∈ ℝ7 is the vector that contains the value of 

the joints angles; 𝑝 is the co-contraction index which is considered constant in both the 

equilibria; 𝑞0 is a vector that contains the initial value of the joints angles, therefore is the 

initial arm configuration; 𝛿𝑞 is the infinitesimal variation of joints angles between the two 

near equilibria. The last term 𝐺(𝑞) is defined as: 

 
𝐺(𝑞) =

𝜕𝐽𝑇(𝑞)𝑓0
𝜕𝑞

+
𝜕𝜏𝑔(𝑞)

𝜕𝑞
 

(3.5) 

Where 𝑓0 is the external load and 𝜏𝑔(𝑞) is the gravitational load. A rough estimation 

of gravitational load is: 

 

𝜏𝑔(𝑞) = ∑𝐽𝑐𝑜𝑚𝑖
𝑇 (𝑞)

𝑛𝐽

𝑖=1

𝑔𝑚𝑖 

(3.6) 

Where 𝐽𝑐𝑜𝑚𝑖
 is the centers of mass Jacobian of the 𝑖th joint of the human arm; 𝑚𝑖 is 

the mass of the 𝑖th joint; 𝑔 is the vector of gravitational acceleration; and 𝑛𝐽 is the number 

of joints. 

Now a Taylor expansion of the first order is applied to the cartesian stiffness 

expression (3.4): 

 
𝐾𝐶(𝑝, 𝑞0 + 𝛿𝑞) = 𝐾𝐶(𝑝, 𝑞0) +

𝜕𝐾𝐶(𝑝, 𝑞)

𝜕𝑞
|
𝑞=𝑞0

𝛿𝑞 
(3.7) 

And by computing the last term of the above equation we obtain: 
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 𝜕𝐾𝐶(𝑝, 𝑞)

𝜕𝑞
|
𝑞=𝑞0

𝛿𝑞 = 

𝜕𝐽+𝑇(𝑞)

𝜕𝑞
|
𝑞0

𝛿𝑞[𝐾𝐽(𝑝, 𝑞0) − 𝐺(𝑞0)]𝐽
+(𝑞0)

+ 𝐽+𝑇(𝑞0) [
𝜕𝐾𝐽(𝑝, 𝑞)

𝜕𝑞
|
𝑞0

𝛿𝑞

+
𝜕𝐺(𝑞0)

𝜕𝑞
|
𝑞0

𝛿𝑞] 𝐽+(𝑞0)

+ 𝐽+𝑇(𝑞0)[𝐾𝐽(𝑝, 𝑞0) − 𝐺(𝑞0)]
𝜕𝐽+(𝑞)

𝜕𝑞
|
𝑞0

 𝛿𝑞 

(3.8) 

Is possible to notice, from the previous equation, that the pose-varying component of 

the joint stiffness matrix in cartesian coordinates is given by the only term: 

 
𝐽+𝑇(𝑞0) [

𝜕𝐾𝐽(𝑝, 𝑞)

𝜕𝑞
|
𝑞0

𝛿𝑞] 𝐽+(𝑞0) (3.9) 

Watching at this term is possible to notice that the human arm Jacobian has a quadratic 

effect in Cartesian stiffness matrix behaviour; however far from the arm joints limits, in 

proximity of the middle ranges of the joints, the muscle length and the moment arm 

variations are small and bounded [6] [7]. Therefore, in a limited part of the human arm 

workspace the effect of the arm geometry in directional variations of the principal axes of 

the Cartesian stiffness ellipsoid is more effective than the configuration-dependent joint 

stiffness term, this implies that in the used model we consider the effect of the human arm 

Jacobian in directional variation of the arm endpoint stiffness ellipsoid on the major axes, 

while neglecting the contribution of the configuration-dependent joint stiffness matrix. This 

choice is made consequently to a compromise between accuracy and model complexity. 

As presented in [5] [8] [9], the modification in volume of the endpoint stiffness ellipsoid 

present a solid evidence of a contribution given by the coordinated stiffening of the arm 

joints, so to model the active joint stiffness regulation we use the term  

 𝐾𝐽 = 𝑐(𝑝)𝐾𝐽
̅̅ ̅ (3.10) 

Where 𝑐(𝑝) is a size-adjusting co-contraction index and 𝐾𝐽
̅̅ ̅ is a constant matrix which 

correspond to the joint stiffness matrix at the minimum muscle activity, which can be 

experimentally achieved. For better visualization and understanding the 𝐾𝐽
̅̅ ̅ matrix can be 

divided into several 3 dimensional submatrices and subvectors [10]:  

 

𝐾𝐽
̅̅ ̅ = [

𝐾𝑠𝑠 3×3
𝐾𝑒𝑠 3×2

𝐾𝑤𝑠 3×2

𝐾𝑠𝑒 2×3
𝐾𝑒𝑒 2×2

𝐾𝑤𝑒 2×2

𝐾𝑠𝑤 2×3
𝐾𝑒𝑤 2×2

𝐾𝑤𝑤 2×2

]

7×7

 

(3.11) 

Where the subscripts 𝑠,𝑒,𝑤 stand for shoulder, elbow, and wrist respectively. The 

matrices on the main diagonal of the 𝐾𝐽
̅̅ ̅ matrix represent the single-joint stiffness, so the 

relative rotational joints stiffness of the shoulder, wrist, and elbow respectively. The other 

components of the 𝐾𝐽
̅̅ ̅ matrix represent the cross-joint stiffness, that is the cross-coupling 

effects between different physiological joints. 
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Finally, after all these considerations the model for the cartesian stiffness become: 

 𝐾𝐶(𝑝, 𝑞) = 𝐽+𝑇(𝑞)[𝑐(𝑝)𝐾𝐽
̅̅ ̅ − 𝐺(𝑞)]𝐽+(𝑞) (3.12) 

We have obtained a computationally efficent method to compute online the human 

arm endpoint stiffness in 3D tracking the arm configuration and the co-contraction index. 

3.3  Myo armbands 

In the previous section we have founded computationally efficent method for the 

human arm impedance estimation in real-time. It needs the co-contraction index 𝑝, and the 

arm configuration 𝑞; both parameters can be founded by using two Myo armband. The Myo 

armband is a wearable gesture control device composed by 8 Medical Grade Stainless Steel 

EMG sensors, that can measure the muscles activities, and IMUs that contains 

accelerometer, gyroscope, magnetometer which are used to monitor arm movements. This 

armband has been developed by Thalmic Labs. 

 

Figure 3.1: Myo armbands 

In the human arm stiffness method, presented before, two Myo armbands are used: one 

positioned on the upper arm near the shoulder, and the other one at the half of the lower 

arm near the elbow. The armband on the upper arm is used to monitor the activity of the 

two dominant muscles of the arm (the triceps and biceps), using two of the eight EMG 

sensors; is also used to monitor the position of the upper arm using the integrated IMUs. 

The other armband is used only to monitor the motion and rotation of the lower arm. The 

position of both the parts of the arm are detected under the form of quaternions. We chose 

to use for the arm position detection the IMUs of two armband instead of a motion tracking 

based on vision sensors, because the second option may be significantly affected by 

occlusion during physical human robot interaction [11]. 
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Figure 3.2: Signal collection from the Myo sensors 

3.4 Human arm triangle 

In this section we will describe how to pass from quaternions given by myo armbands 

to the human arm joints values using the human arm triangles model. First of all, we use a 

typical kinematic model defined using the Denavit and Hartenberg notation normally used 

for the manipulators. We use seven rotational joint to describe all the degree of freedom of 

the human arm: 3 DOF at the shoulder, 2 DOF at the elbow, 2 DOF at the wrist. In Figure 

3.3 are represented the DH frame for each joint. In Table 3.1 are reported the DH 

parameters of this model, with the values between parentheses that indicate the offset of 

initial value of each joints angles. 

( 𝑇𝑖 
𝑖−1 ) 𝜃𝑖 𝑑𝑖 𝛼𝑖 

0 -90° 0 -90° 

1 𝜃1(90°) 0 90° 

2 𝜃2(0°) 0 -90° 

3 𝜃3(90°) 𝑙𝑢 90° 

4 𝜃4(0°) 0 -90° 

5 𝜃5(-90°) 𝑙𝑙 90° 

6 𝜃6(90°) 0 -90° 

7 𝜃7(0°) 0 180° 

Table 3.1: DH parameters of human arm kinematic model 

For convenience the base frame is disposed with: the center of the frame in the center 

of the shoulder, the 𝑧𝑏 axis in upward direction, the 𝑥𝑏 axis in horizontal right direction, 

and the 𝑦𝑏 axis is disposed in horizontal forward direction. The 7th frame has the center in 

the center of the palm, the 𝑧7 axis overlaps at the normal vector to the palm plane, the 𝑥7 
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axis points in direction of the fingers, and the 𝑦7 axis complete the right-handed frame 

pointing in the opposite direction with respect to the thumb. Finally, 𝑙𝑢, 𝑙𝑙, 𝑙ℎ are the length 

of the upper arm, the length of the lower arm, and the distance from the center of the palm 

to the center of the wrist.  

 

Figure 3.3: Human arm kinematic model 

The seven joints of the DH model correspond to: 

• Joint 1: shoulder inward/outward rotation; 

• Joint 2: shoulder horizontal right lift/invers lift; 

• Joint 3: shoulder outward/inward self rotation; 

• Joint 4: elbow extension/flexion; 

• Joint 5: elbow outward/inward self-rotation; 

• Joint 6: wrist extension/flexion; 

• Joint 7: wrist abduction/adduction 

Completed the kinematic model of the arm is possible to define the human arm triangle 

model. 
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Figure 3.4: Human arm triangle 

The human arm triangle can be expressed by five parameters (Figure 3.4): 

• 𝒓: is the unit direction vector of the upper arm; 

• 𝒍: is the unit normal vector of the plane of the human arm triangle determined 

by the right-hand screw in the direction of elbow extension. 

• 𝜶: refers to the angle between the upper arm and lower arm; 

• 𝒇: is the unit vector in the direction of the fingers; 

• 𝒑: is the unit perpendicular to the palm plane, which point outward from the 

center of the palm.  

It has been demonstrated in [11], [12] that the human arm triangle space spanned by 

these five parameters have a one to one mapping relationship with the seven degree of 

freedom kinematic model of the human arm presented before.  

The method proposed in Section 3.2 with the Myo armband and their positioning on 

the human arm (Section 3.3), can only estimates the position of the upper arm and the lower 

arm, by finding 𝑙,𝑟,𝛼 from the quaternions given by the IMUs present inside both armband. 

To do that we use a simplified version of human arm triangle model where the 𝑓 and 𝑝 

parameters are not considered, so we can estimate the value of the three shoulder joints 

angles, and the two elbow joints angles. The last two joints angles, the ones of the wrist, 

are calculated by performing a simple inverse kinematic using the robot endpoint position 

and orientation, because the human arm is physically attached to the robot handle. 
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Figure 3.5: Joints angles estimation based on IMUs 

3.4.1 Mappings from human arm triangle space to joint space 

The locus of the center of the elbow is a spherical surface centered in the center of the 

shoulder, that is supposed to be known, with radius equal to the length of the upper arm 

and the motion of the elbow center is guaranteed by 𝜃1 and 𝜃2. However taking into account 

the range of motion of the upper arm joints, 𝜃1 stay between 0°~ 360° and 𝜃2 between 

−90°~ 0°, we just consider a hemispherical surface where the longitude is controlled by 

𝜃1 and the latitude is controlled by 𝜃2, as is possible to see in the Figure 3.6. 

 

Figure 3.6: Algorithm representation of inverse mapping from human arm triangle sapce to joint space. 
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The algorithm starts from the frame 1{𝑂𝑥1𝑦1𝑧1}, that is obtained by rotating frame 

0{𝑂𝑥0𝑦0𝑧0} by 𝜃1 about the 𝑥0 axis; and according to the right hand rule the positive 

rotational direction of 𝜃1 is in direction of 𝑥0. In formulas: 

 

𝜃1 = 𝑎𝑟𝑐𝑐𝑜𝑠

(

 
− 𝑟𝑦 

0

√ 𝑟𝑦
2 + 𝑟𝑧

2
 

0
 

0

)

  

𝑖𝑓:− 𝑟𝑧 
0 < 0, 𝑡ℎ𝑒𝑛: 𝜃1 = 2𝜋 − 𝜃1 

(3.13) 

Where 𝑟 = 
0 [ 𝑟𝑥 

0 , 𝑟𝑦 
0 , 𝑟𝑧 

0 ]𝑇is the coordinate of the unit vector 𝑟 of the upper arm 

represented in frame 0. 

Then, the frame 2{𝑂𝑥2𝑦2𝑧2} is obtained by rotating frame 1 about 𝑧1 axis by 𝜃2, and 

the positive rotational direction of 𝜃2 is along 𝑧1 according to the right-hand rule. Now we 

have to express the unit vector 𝑟 in frame 1 in order to find 𝜃2, and we proceed as follow: 

 𝑟 
1 = 𝑅𝑇(𝑥, 𝜃1) ∙ 𝑟 

0   

𝜃2 = −𝑎𝑟𝑐𝑐𝑜𝑠

(

 
𝑟𝑥 

1

√ 𝑟𝑥
2 + 𝑟𝑦

2
 

1
 

1

)

  

(3.14) 

Where 𝑅𝑇(𝑥, 𝜃1) correspond to a rotational matrix around 𝑥 of an angle of 𝜃1. 

Next, we take in account for 𝜃3 and 𝜃4 that control the direction of the human arm 

triangle plane, and the angle between upper arm and forearm respectively. The ranges of 

these two terms are: −90°~270° for 𝜃3, and −180°~0° for 𝜃4. The frame 3{𝑂𝑥3𝑦3𝑧3} is 

obtained by rotating frame 2 about the 𝑧2 axis by ∆𝜃3, where ∆𝜃3 = 𝜃3 − 90°, and 

according to the right hand rule the positive rotation direction of ∆𝜃3 is in direction of 𝑧2 

axis. We have obtained that the 𝑥3 axis coincides with the parameter 𝑙 of the human arm 

tringle. We can notice that the direction of the unit normal vector of the plane of the arm 

triangle when 𝜃3 = 90° is 𝑥2, which in this particular case correspond to the tangential 

direction of the longitude at elbow center, so 𝜃3 can be calculated with the transformation 

matrix between frame 2 and 3 as follow: 

 𝑅2 = (𝑥2, 𝑦2, 𝑧2),   𝑅3 = (𝑥3, 𝑦3, 𝑧3) 
0

 
0  (3.15) 

Where 𝑅3 
0  and 𝑅2 

0  are the transformation matricies from frame 3 and 2 to frame 0 

respectively, and the value between parentheses are column vectors that correspond to axes 

of frame two and three represented in frame 0; also: 

 𝑧2 = 𝑧3 = 𝑟 
0 ,   𝑥3 = 𝑙 

0  

𝑥2 = 𝑅(𝑥, 𝜃1) ∙ (− sin(−𝜃2) , − cos(−𝜃2) , 0)𝑇 

𝑦2 = 𝑧2 × 𝑥2,   𝑦3 = 𝑧3 × 𝑥3  

(3.16) 

And 

 𝑅3 
2 = 𝑅2

𝑇
 

0 ∙ 𝑅3 
0 = 𝑅(𝑧, ∆𝜃3) (3.17) 
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Then 

 
{
𝑥2 ∙ 𝑥3 = cos (∆𝜃3)
𝑦2 ∙ 𝑥3 = 𝑠𝑖𝑛 (∆𝜃3)

 
(3.18) 

Finally, we obtain 

 ∆𝜃3 = arccos(𝑥2 ∙ 𝑥3)  

𝑖𝑓:   𝑦2 ∙ 𝑥3 < 0, 𝑡ℎ𝑒𝑛:   ∆𝜃3 = −∆𝜃3 

 𝑠𝑜 𝜃3 = 𝜋 2⁄ + ∆𝜃3,    𝑎𝑛𝑑    𝜃4 = 𝛼 − 𝜋  

(3.19) 

In conclusion we have obtained the values of the joints angles 𝜃1, 𝜃2, 𝜃3, 𝜃4, starting 

from the three parameters of the simplified human arm triangle model 𝑙,𝑟,𝛼. 

This algorithm can be expanded in order to find the last three joints angles values by 

knowing the wrist center, that can be found by the reduced algorithm considered above, 

and the last two parameters of the human arm tringle 𝑓 and 𝑝, but for the estimation method 

presented in this thesis this expansion is not used. 

3.5 Procedure to identify constant model parameters 

In this section we describe the procedure to identify the parameters which have to be 

identified offline and are needed for the reduced complexity model of the human arm. 

These parameters are: the minimum activation joint stiffness matrix 𝐾𝐽
̅̅ ̅, and the co-

contraction index 𝑐(𝑝) both presented in section 3.2. To identify these two parameters, first 

we assume that 𝐽(𝑞), 𝐺(𝑞) are known and 𝑓0 = 0, so there is no external load; then we 

follow the standard technique for the identification of human arm endpoint stiffness in 3D 

[13], that consist in applying stochastic perturbation to the human wrist through a handle 

while the restoring forces are recorded using a 6-axis force/torque sensor. 

 

Figure 3.7: Example of test locations 

This experiment is carried out in different arm configuration and in a reasonable arm 

workspace, avoiding joints limits and singular configurations, and at different co-

contraction levels. These configurations are chosen anterior to the coronal plane of the 
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operator (an example can be seen in Figure 3.7). In each wrist center position the shoulder 

wrist configuration is allowed to vary within the redundant manifold, in order to realize 

measurment with different elbow height (an example of the arm redundant manifold can 

be seen in Figure 3.8). For each configuration of the arm the operator modulates and keeps 

the co-activation level of the arm muscles in different levels: low-activity, mid-activity, 

and high-activity. These levels are calculated as a predetermined percentage of the 

maximum one, and in order to keep the right co-activation value the operator is helped by 

a screen that display the EMG signals.  

 

Figure 3.8: Example of redundant manifold of human arm in experimental setup  

The muscle co-activation index 𝑝 is obtained by a low pass filter and a moving average 

process applied to the extracted EMG signals coming from the two of eight channel closest 

to the two dominant muscle of the human arm (biceps and triceps). In order to describe the 

co-activation levels we use the following equation: 

 

𝑝(𝑘) =
1

𝑊𝑠
( ∑ 𝐸𝐵(𝑡 − 𝑘) +

𝑊𝑠−1

𝑘=1

∑ 𝐸𝑇(𝑡 − 𝑘)

𝑊𝑠−1

𝑘=1

) 

(3.20) 

Where 𝑊𝑠 is the window size, 𝐸𝐵 and 𝐸𝑇 are the amplitudes of the enveloped EMG 

signals of Biceps and Triceps respectively, 𝑡 is the current sampling time, and 𝑘 is the 

sample point. 
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Figure 3.9: Example of the envelope of co-activation index p obtained by moving average process and low 

pass filter. 

Before deriving the 𝐾𝐽
̅̅ ̅ and 𝑐(𝑝) parameters we have to focus on the dynamical relation 

between the arm endpoint displacements and the restoring forces, which can be described 

by the following relation: 

 

𝐹 = [

𝐹𝑥(𝑓)
𝐹𝑦(𝑓)

𝐹𝑧(𝑓)
] = [

𝐺𝑥𝑥(𝑓) 𝐺𝑥𝑦(𝑓) 𝐺𝑥𝑧(𝑓)

𝐺𝑦𝑥(𝑓) 𝐺𝑦𝑦(𝑓) 𝐺𝑦𝑧(𝑓)

𝐺𝑧𝑥(𝑓) 𝐺𝑧𝑦(𝑓) 𝐺𝑧𝑧(𝑓)

] [

𝑥(𝑓)
𝑦(𝑓)
𝑧(𝑓)

] 

(3.21) 

Where 𝐹𝑥, 𝐹𝑦, 𝐹𝑧 are Fourier transforms of the endpoint forces along the axes of the 

Cartesian reference frame; with 𝑥, 𝑦, 𝑧 that are the Fourier transforms of the human arm 

endpoint displacements in the Cartesian directions. To identify each transfer functions 𝐺𝑖𝑗 

we adopt a second order, parametric, linear model as below: 

 𝐺𝑖𝑗 = 𝐼𝐻𝑖𝑗𝑠
2 + 𝐷𝐻𝑖𝑗𝑠 + 𝐾𝐻𝑖𝑗 ,    𝑠 = 2𝜋𝑓√−1 (3.22) 

Where the 𝐼𝐻, 𝐷𝐻, 𝐾𝐻 are the human arm endpoint inertia, viscosity and stiffness 

matricies. The parameters of 𝐺𝑖𝑗 are identified using the least squares algorithm in 

frequency range 0~10 𝐻𝑧 [14]. 

Consequently, all the stiffness matricies 𝐾𝐻 obtained from tests that correspond to the 

minimum co-activation level are used to obtain the 𝐾𝐽
̅̅ ̅ matrix by minimizing the Frobenius 

norm below: 

 ‖𝐾𝐽
̅̅ ̅ − 𝐽𝑇(𝑞)𝐾𝐻(𝑝, 𝑞)𝐽(𝑞) − 𝐺(𝑞)‖ (3.23) 

Where, as we said before, the external load are supposed to be zero (𝑓0 = 0) and so 

𝐺(𝑞) =
𝜕𝜏𝑔(𝑞)

𝜕𝑞
. 

The other 𝐾𝐻, the ones obtained with mid and high muscular activation levels, are used 

to identify the constant parameters of 𝑐(𝑝), 𝑐1 and 𝑐2 by minimizing the Frobenius norm 

that follow: 

 ‖𝑐(𝑝)𝐾𝐽
̅̅ ̅ − 𝐽𝑇(𝑞)𝐾𝐻(𝑝, 𝑞)𝐽(𝑞) − 𝐺(𝑞)‖ (3.24) 

With 𝑐(𝑝) expressed as: 
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𝑐(𝑝) = 1 +

𝑐1(𝑒
−𝑐2𝑝 − 1)

(𝑒−𝑐2𝑝 + 1)
 (3.25) 

Finally, once obtained both 𝐾𝐽
̅̅ ̅ and 𝑐(𝑝) the online estimation of human arm endpoint 

stiffness matrix can be done using (3.12)  

One last comment on this impedance estimation method is on the dumping term, since 

as reported in [15] from the experimental results, the change of dumping matrix is not 

obvious within a small range of the muscle activation level centered at each level (low, 

mid, high). Therefore, we assume that the continuous trajectory of the damping matrix can 

be discretize in three different matricies corresponding to three different muscle activation 

levels for each arm configuration; so is possible to build a look-up table among the dumping 

matrix, arm configuration, and the muscle activation level, in a certain range based on 

experimental data. 
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Chapter 4 

4 Simulation 

In this chapter we will speak about the simulation part, that mainly consist in the 

derivation of the constant parameters to fit the model of section 3.2 from data of Table 4.1 

and then compare the stiffness estimation results, of the proposed method and a previously 

used one, on a human arm linear trajectory. 

The data used for the parameters estimation of the proposed method are taken from 

[16], where the procedure used for the data acquisition is similar to the one proposed in 

section 3.5, but with two slightly differences. These differences are: the subject’s arm is 

positioned in a planar posture with the elbow sustained, and the motion of the wrist is 

constrained to remain fixed with a wristband. The reasons of these differences are due to 

the fact that the previous stiffness estimation method work only in a planar condition. The 

data of Table 4.1 have been collected to be used with this method, consequently is possible 

to notice that the stiffness matricies founded from experiments are only two by two, since 

from this type of experiments only the planar stiffness can be found. The experiments are 

made in 4 different levels of co-activation levels of the human arm muscles, which are 0%, 

25%, 50%, 75%; and in twelve different arm postures. However not all the experimental 

positions in Table 4.1 can be used for simulations, since 𝑃0, 𝑃4, 𝑃11 are characterized by 

strange behaviours; this may be because they are singular arm postures. These three 

positions with 𝑃1, 𝑃8, 𝑃9 are not used in the simulations because they are considered not 

enough reliable. 
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Arm 

posture 
0% 25% 50% 75% 

0 [
606.5 1454.6
166 1592.5

] [
967.5 1861.7
188.1 2023.6

] [
1151.4 2040
232.5 2420.8

] [
1052.9 1840.4
180.7 2434.7

] 

1 [
589.7 998.2
196 1068.4

] [
921.8 1343.8
295.4 1463.7

] [
1191.9 1766.3
212.8 1853.1

] [
999.8 1956.9
74 2352.2

] 

2 [
838.3 1355.8
264.1 1192.8

] [
1102.9 1858.3
182.1 1623.6

] [
1538.8 2215
217.1 1996

] [
1776.8 2744.1
105.3 2652

] 

3 [
1277.5 1614.6
562.4 1192.8

] [
1102.9 1858.3
182.1 1623.6

] [
1538.8 2215
217.1 1996

] [
1776.8 2744.1
105.3 2652

] 

4 [
407.7 934.1
168.2 1274.2

] [
1681.5 2062.9
553.4 1468.2

] [
1950.4 2231.9
468 1567.3

] [
2337.7 2465.6
570.6 1989

] 

5 [
407.7 934.1
168.2 1274.2

] [
787.9 1348.6
178.5 1634.2

] [
1004.4 1508.4
215.3 1818.4

] [
801 1328.5

−52.8 1813.5
] 

6 [
239.4 1337.5

−158.1 1825.6
] [

626.5 1652.3
−101.2 2131.7

] [
779.2 2134.9
−44.2 2790.2

] [
938.2 2152.7
−46 2957.1

] 

7 [
584.6 1119.6
166.5 1387.4

] [
1033.6 1631.8
360.1 1721.1

] [
1289.5 1763.1
321.5 1790.2

] [
1159.3 2273.2
377.7 2449.8

] 

8 [
825.3 1110.6
251.1 1073.3

] [
1040.2 1507.7
170.3 1724.3

] [
1190 1655.7
200.1 1940.6

] [
1217.5 1462.8
−123.9 2384.1

] 

9 [
−54.3 906.3
−504.3 1626.8

] [
157.2 1230.3

−608.7 2220
] [

324.9 1584.1
−681.4 3065.6

] [
608.8 1984

−876.7 3490.2
] 

10 [
425.3 1169.9
−40 1815.3

] [
791.5 1572.6
−84.9 2515.1

] [
824.8 1748.6

−243.4 2905.1
] [

1045.6 2101.8
−276.8 3403.5

] 

11 [
698.2 1303.6
82.1 1970.4

] [
1069.8 1603
−116.7 2708.6

] [
1089.4 1558.7
113.7 2310

] [
1277 1849
−19.3 2868.4

] 

Table 4.1: Endpoint stiffness estimation data. 
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4.1 Proposed stiffness estimation model simulation 

In this section the explanation of all the code used to: simulate the arm, and find all the 

parameters by solving optimization problems. All the human arm structure simulations are 

done in MATLAB using the robotics toolbox [17] and the optimizations are done using the 

optimization toolbox [18]. 

4.1.1 Construction of the human arm model 

The operator’s arm has been modelled using the same procedure used for industrial 

manipulator; by using the DH parameters of Table 3.1, and the positions of the frames as 

in Figure 3.3; both presented in section 3.4. To simulate the kinematic model of the human 

arm the robotics toolbox [17] has been used. The initial position of the operator’s arm is 

chosen to be: 

 𝑞𝑖𝑛𝑖𝑡 = [
𝜋

2
0

𝜋

2
−

𝜋

2
−

𝜋

2

𝜋

2
0] (4.1) 

Where 𝑞𝑖𝑛𝑖𝑡 represents the vector of joints angles. This choice is done to start with a 

configuration similar to the experimental one and to have a starting point for the kinematic 

inversion. To complete the model, as reported in Table 3.1, I need three parameters 𝑙𝑢, 𝑙𝑙, 𝑙ℎ 

that are: the length of the upper arm, the length of the lower arm, and the distance from the 

center of the palm to the center of the wrist. These parameters are not measured during the 

experiments because the previous method does not need to know the arm posture. However, 

the operator during the experiments was a woman, so to fill this gap I search in literature 

for a model that knowing the height of the subject gives the arm length parameters [19]. 

The height of the subject is also unknown and so I search for the mean height of woman in 

Italy and is about 163.5 [20]. Now the operator’s arm can be represented, and the initial 

configuration can be seen in Figure 4.1. 

 

Figure 4.1: Initial configuration of operator's arm 
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Completed the kinematical part of the robot model I have focused on the dynamical 

part; since for the proposed parameter estimation of the stiffness model, the gravitational 

load of the human arm is requested. As for the arm lengths, the mass and the center of mass 

of the operator’s arm have not been measured. As before, to find these parameters, I have 

searched in the literature for a relationship between the weight of the subject and the 

weights and center of mass positions of upper arm, lower arm, and hand; I have found these 

parameters relationship in [21]. To complete the dynamic model I have to choose a weight 

of the subject, to do that I have searched for the mean weight of the woman in Italy that is 

about 59 Kg, as is possible to see in [22]. For sake of semplicity I have considered the 

weight of the hand added inside the weight of the lower arm, with a slightly modification 

of the center of mass of the lower arm. 

Obtained all these center of mass positions and the arm portions weights, the human 

arm dynamic model has added to the kinematic one obtaining the human arm model. 

4.1.2 Inverse kinematic and gravitational load 

The kinematic inversion is done in all the points where the experiment was carried out, 

so 𝑃2, 𝑃3, 𝑃5, 𝑃6, 𝑃7, 𝑃10. These points are identified starting from the base frame centered 

in the shoulder and each point is 10 cm away from the nearest ones and from the base frame 

as is possible to see in Figure 4.2. 

 

Figure 4.2: Trials point positions. 

The kinematic inversion can be executed using the 𝑖𝑘𝑐𝑜𝑛() function of robotics 

toolbox [17], this function has been chosen since the arm is redundant and so the kinematic 

inversion can give infinite results, however this function makes the invers kinematic by 

optimization considering the joints limits. Therefore, imposing to the joint 2 to remain still 

at 0 and using as initial position 𝑞𝑖𝑛𝑖𝑡, we obtain that the shoulder remains right lifted for 

all the kinematic inversions, and so we obtain the same arm postures as in the experiments. 

Once the vector of joints angles is known, with the function 𝑗𝑎𝑐𝑜𝑏0() the Jacobian was 

extracted. The results of the kinematic inversion are presented in Figure 4.3 below. 
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Figure 4.3: Results of kinematic inversion of: P2 (a), P3 (b), P5 (c), P6 (d), P7 (e), P10 (f). 

(a) (b) 

(c) (d) 

(e) (f) 
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Once the kinematic inversions are completed, the gravitational load can be computed. 

For this term, no function of the robotics toolbox can help us to find the analytic expression 

of the gravitational load, to then differentiate it and obtain the 𝐺(𝑞). To fill this gap I use 

the symbolic math toolbox, which allow to manipulate and solve symbolic expression, to 

generate the symbolic expression of the gravitational load according to equation (3.6), and 

the center of mass Jacobians are calculated with the data used to build the dynamic model 

of the human arm in section 4.1.1. Once the 𝜏𝑔(𝑞) analytical expression has been computed 

I proceed to differentiate it with respect to the vector of the joints angles 𝑞; in this way the 

analytical expression of the 𝐺(𝑞) term has been computed and by substituting the values 

of 𝑞 founded by the kinematic inversion I obtain the values of 𝐺(𝑞) in all the trials points 

of the experiments. 

4.1.3 Calculation of constant parameters 

The calculation of the constant parameters has been done according to the equations 

(3.23) and (3.24), by imposing the relative optimization problems. 

The first parameter obtained using the optimization toolbox [18] was 𝐾𝐽
̅̅ ̅, that is the 

constant joint stiffness matrix at minimum co-contraction. Firstly, I create a symbolic 

decision variable with the shape of a seven by seven matrix, which represent 𝐾̅𝐽 that has to 

be minimized. As reported in section 3.5 the objective is to minimize the Frobenius norm 

below: 

‖𝐾𝐽
̅̅ ̅ − 𝐽𝑇(𝑞)𝐾𝐻(𝑝, 𝑞)𝐽(𝑞) − 𝐺(𝑞)‖ 

To do that I use the following objective function: 

 

∑𝑡𝑟 (
(𝐾𝐽
̅̅ ̅ − 𝐽𝑇(𝑞𝑖)𝐾𝑖(𝑝(0%), 𝑞𝑖)𝐽(𝑞𝑖) − 𝐺(𝑞𝑖))

𝑇
∙

∙ (𝐾𝐽
̅̅ ̅ − 𝐽𝑇(𝑞𝑖)𝐾𝑖(𝑝(0%), 𝑞𝑖)𝐽(𝑞𝑖) − 𝐺(𝑞𝑖))

)

𝑖

 (4.2) 

Where 𝑖 = 2,3,5,6,7,10 and correspond to the considered trials points of experiments, 

𝑝(0%) is the value of co-activation index at the minimum value, and 𝑡𝑟 stands for the trace 

of the matrix. This function has to be minimized in 𝐾𝐽
̅̅ ̅. 

For this optimization problem only inequality constraints have been used and are: 

 𝐾𝐽
̅̅ ̅(1,1), 𝐾𝐽

̅̅ ̅(2,2), 𝐾𝐽
̅̅ ̅(3,3), 𝐾𝐽

̅̅ ̅(4,4), 𝐾𝐽
̅̅ ̅(5,5), 𝐾𝐽

̅̅ ̅(6,6), 𝐾𝐽
̅̅ ̅(7,7) ≥ 0 (4.3) 

These constraints mean that the main diagonal of the joint stiffness matrix at minimum 

level of co-contraction are all greater or equal to zero; this choice is done consequently to 

the composition that the matrix 𝐾𝐽
̅̅ ̅ have to assume [23]. 

In conclusion the overall optimization problem, to obtain the 𝐾𝐽
̅̅ ̅ matrix, become: 

 

mininize𝐾𝐽̅̅ ̅̅  ∑𝑡𝑟 (
(𝐾𝐽
̅̅ ̅ − 𝐽𝑇(𝑞𝑖)𝐾𝑖(𝑝(0%), 𝑞𝑖)𝐽(𝑞𝑖) − 𝐺(𝑞𝑖))

𝑇

∙

∙ (𝐾𝐽
̅̅ ̅ − 𝐽𝑇(𝑞𝑖)𝐾𝑖(𝑝(0%), 𝑞𝑖)𝐽(𝑞𝑖) − 𝐺(𝑞𝑖))

)

𝑖

, 𝑖 = 2,3,5,6,7,10 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                𝐾𝐽
̅̅ ̅(𝑗, 𝑗) ≥ 0,   𝑗 = 1,… ,7  

(4.4) 

The obtained 𝐾𝐽
̅̅ ̅ is: 



Chapter 4 - Simulation      39 

 

 

 

 𝐾𝐽
̅̅ ̅

=

[
 
 
 
 
 
 
0.0005
2.4056
0.0002
1.4331
0.0000
0.0000
0.0003

2.4119
86.7394
−0.0033
−66.8155
0.0000
0.0000

−1.4735

0.0002
−0.0092
0.0003
0.7139
0.0000
0.0000
0.0003

1.4311
−119.7925

0.7116
117.7467
0.0000
0.0001
3.1206

0.0000
0.0001
0.0000

−0.0001
0.0002
0.0000
0.0000

0.0000
−0.0002
0.0000
0.0003
0.0000
0.0002
0.0000

0.0003
−3.9878
0.0003
4.1865
0.0000
0.0000
0.1188 ]

 
 
 
 
 
 

 (4.5) 

The stiffness estimation results with the other co-activation levels, 25%, 50%, and 

75%, are used to identify the constant parameters 𝑐1 and 𝑐2 of the size-adjusting co-

contraction index 𝑐(𝑝); as reported in equation (3.25). However, the EMG signals of the 

experiments are not available, because the EMG signals are directly transformed in a co-

contraction index 𝐶𝑂𝐶 different from the index 𝑝 used in the presented method. Below the 

𝐶𝑂𝐶 expression is reported: 

 
𝐶𝑂𝐶𝑖𝑛𝑑𝑒𝑥 =

𝐸𝑀𝐺𝑚𝑖𝑛

𝐸𝑀𝐺𝑚𝑎𝑥
∙
𝐸𝑀𝐺𝑚𝑖𝑛 + 𝐸𝑀𝐺𝑚𝑎𝑥

2
∙ 100 

(4.6) 

Where 𝐸𝑀𝐺𝑚𝑖𝑛 and 𝐸𝑀𝐺𝑚𝑎𝑥 represents the minor and the major magnitude between 

the EMG signals coming from the biceps and triceps, these values can vary during the 

experiment. 

To fill the above mentioned gap, I have built an optimization problem in order to 

substitute the not calculable index 𝑝 with the available index 𝐶𝑂𝐶 in the equation (3.25). 

First, I have computed the value of the 𝑐(𝑝) index at 25%, 50%, and 75% making three 

different optimization problems. The first problem has as symbolic decision variables 

𝑐(𝑝(25%)), the second one has 𝑐(𝑝(50%)), and the last one has 𝑐(𝑝(75%)). The goal of 

these problems is to minimize the Frobenius norm below: 

 ‖𝑐(𝑝)𝐾𝐽
̅̅ ̅ − 𝐽𝑇(𝑞)𝐾𝐻(𝑝, 𝑞)𝐽(𝑞) − 𝐺(𝑞)‖ (4.7) 

Using as 𝑐(𝑝) the symbolic variable corresponding to the co-contraction level 

considered, and 𝐾𝐽
̅̅ ̅ is the one founded by the previous optimization problem. The following 

objective function has to be implemented to minimize the above Frobenius norm: 

 

∑𝑡𝑟 (
(𝑐(𝑝(𝑚))𝐾𝐽

̅̅ ̅ − 𝐽𝑇(𝑞𝑖)𝐾𝑖(𝑝(𝑚), 𝑞𝑖)𝐽(𝑞𝑖) − 𝐺(𝑞𝑖))
𝑇

∙

∙ (𝑐(𝑝(𝑚))𝐾𝐽
̅̅ ̅ − 𝐽𝑇(𝑞𝑖)𝐾𝑖(𝑝(𝑚), 𝑞𝑖)𝐽(𝑞𝑖) − 𝐺(𝑞𝑖))

)

𝑖

 (4.8) 

Where 𝑖 = 2,3,5,6,7,10, as before, represent the considered trials points of the 

experiment, while 𝑚 is the level of muscular co-contraction and span between 25%, 50%, 

and 75%, and 𝑡𝑟 stands for the trace of the matrix. This objective function has to be 

minimized in c(p). Then, I impose the following inequality and equality constraints: 

 𝐾𝑖(𝑝(𝑚), 𝑞𝑖) = 𝐽+𝑇(𝑞𝑖) (𝑐(𝑝(𝑚))𝐾𝐽
̅̅ ̅ − 𝐺(𝑞𝑖)) 𝐽+(𝑞𝑖) (4.9) 

As in the objective function 𝑖 = 2,3,5,6,7,10 and 𝑚 = 25%, 50%, 75%. This 

constraints means that the value of 𝑐(𝑝) has to make this equation true and so we have to 

get about the same value of 𝐾𝑖(𝑝(𝑚), 𝑞𝑖) as in the experiments. The inequality constraints 

are: 
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 𝑐(𝑝(𝑚)) ≥ 1 (4.10) 

These constraints are due to the value assumed by the 𝑐(𝑝) index, since when the co-

activation level is at the minimum this index is equal to 1, as I possible to see in [23]. 

So, the overall optimization problem, to obtain the value of 𝑐(𝑝) at different muscles 

co-activations level, is: 

 

mininize𝐾𝐽̅̅ ̅̅  ∑ 𝑡𝑟(
(𝑐(𝑝(𝑚))𝐾𝐽

̅̅̅̅ − 𝐽𝑇(𝑞𝑖)𝐾𝑖(𝑝(𝑚), 𝑞𝑖)𝐽(𝑞𝑖) − 𝐺(𝑞𝑖))
𝑇

∙

∙ (𝑐(𝑝(𝑚))𝐾𝐽
̅̅̅̅ − 𝐽𝑇(𝑞𝑖)𝐾𝑖(𝑝(𝑚), 𝑞𝑖)𝐽(𝑞𝑖) − 𝐺(𝑞𝑖))

)

𝑖

, 

  𝑖 = 2,3,5,6,7,10;   𝑚 = 25%, 50%, 75% 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜     𝐾𝑖(𝑝(𝑚), 𝑞𝑖)

= 𝐽+𝑇
(𝑞𝑖) (𝑐(𝑝(𝑚))𝐾𝐽

̅̅̅̅ − 𝐺(𝑞𝑖)) 𝐽+(𝑞𝑖), 

 𝑖 = 2,3,5,6,7,10;   𝑚 = 25%, 50%, 75%;  

                               𝑐(𝑝(𝑚)) ≥ 1,    𝑚 = 25%, 50%, 75% ; 

(4.11) 

The results of this optimization are: 

 𝑐(𝑝(25%)) = 1.1672; 

𝑐(𝑝(50%)) = 1.3482; 

𝑐(𝑝(75%)) = 1.5795; 

(4.12) 

Once the 𝑐(𝑝) values at 25%, 50%, and 75% have been computed I proceed to 

formalize the last optimization problem that gives as result the values of the coefficients of 

𝑐1 and 𝑐2. 

The aim of this optimization problem is to minimize the following Frobenius norm: 

 
‖𝑐(𝑝(𝑚)) − 1 +

𝑐1(𝑒
−𝑐2𝐶𝑂𝐶(𝑚) − 1)

(𝑒−𝑐2𝐶𝑂𝐶(𝑚) + 1)
‖ 

(4.13) 

Where 𝐶𝑂𝐶(𝑚) represents the value of the co-contraction index of the precedent 

method with m that span between 25%, 50%, and 75%, as before; the 𝑐(𝑝(𝑚)) takes 

values from the problem above. To minimize this norm, I have used the following objective 

function: 

 

∑𝑡𝑟

(

 
 

(𝑐(𝑝(𝑚)) − 1 +
𝑐1(𝑒

−𝑐2𝐶𝑂𝐶(𝑚) − 1)

(𝑒−𝑐2𝐶𝑂𝐶(𝑚) + 1)
)

𝑇

∙

∙ (𝑐(𝑝(𝑚)) − 1 +
𝑐1(𝑒

−𝑐2𝐶𝑂𝐶(𝑚) − 1)

(𝑒−𝑐2𝐶𝑂𝐶(𝑚) + 1)
)

)

 
 

𝑖

 (4.14) 

Where 𝑐1 and 𝑐2 are the symbolic variable of this problem. The values of the 𝐶𝑂𝐶(𝑚) 

indexes at the four muscular co-activation level used in the experiment are taken from the 

graph in Figure 4.4, where the first peak is at 25%, the second one is at 50%, and the last 

one is at 75%, and the 𝐶𝑂𝐶(𝑚) at the minimum co-activation level is obtained by the mean 

value of the graph values without considering the peaks. 
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Figure 4.4: Levels of COC index at 0%, 25%, 50%, and 75% 

The constraints for the problem are the following: 

 
𝑐(𝑝(𝑚)) = 1 +

𝑐1(𝑒
−𝑐2𝐶𝑂𝐶(𝑚) − 1)

(𝑒−𝑐2𝐶𝑂𝐶(𝑚) + 1)
 

(4.15) 

Where we have imposed that with the founded coefficients, 𝑐1 and 𝑐2, the 𝑐(𝑝(𝑚)) 

term is about the same that the one founded in the previous optimization problem at the 

same co-activation level. Also, I have imposed that: 

 𝑐1, 𝑐2 ≥ 0 (4.16) 

These conditions are imposed for the vale that these two parameters have to assume, 

as it possible to see in [24]. 

The overall control problem can be summarized as follow: 

 

mininize𝐾𝐽̅̅ ̅̅  ∑𝑡𝑟

(

 
 

(𝑐(𝑝(𝑚)) − 1 +
𝑐1(𝑒

−𝑐2𝐶𝑂𝐶(𝑚) − 1)

(𝑒−𝑐2𝐶𝑂𝐶(𝑚) + 1)
)

𝑇

∙

∙ (𝑐(𝑝(𝑚)) − 1 +
𝑐1(𝑒

−𝑐2𝐶𝑂𝐶(𝑚) − 1)

(𝑒−𝑐2𝐶𝑂𝐶(𝑚) + 1)
)

)

 
 

,

𝑖

  

𝑚 = 25%,50%, 75%; 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑐(𝑝(𝑚)) = 1 +
𝑐1(𝑒

−𝑐2𝐶𝑂𝐶(𝑚) − 1)

(𝑒−𝑐2𝐶𝑂𝐶(𝑚) + 1)
,    𝑚

= 25%, 50%, 75%; 

𝑐𝑖 ≥ 0,    𝑖 = 1,2; 

(4.17) 

The result of this optimization is: 

 𝑐1 = 2.0851𝑒 + 03 (4.18) 
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𝑐2 = 1.4496𝑒 − 05 

Computed all these optimization problems we have all the term needed to estimate the 

human arm stiffness at the endpoint, by substituting in the equation (3.12) the parameters 

(4.5) and (4.18) obtained from the optimization problems above. 

4.2 A brief comparison between two stiffness estimation 

methods 

In this last section we will treat a comparison between the stiffness estimation method 

explained in this thesis with a previously used one [16]. 

4.2.1 The previous method 

The previous stiffness estimation method simplifies the stiffness analysis by assume 

that there are no interferences between the two axes, so the terms outside the main diagonal 

of the stiffness matrix have been neglected. The terms on the main diagonal are obtained 

by the composition of two terms, the first one depends on the point of application and have 

the shape of a second order curve: 

 𝐾ℎ𝑥𝑥(𝑥ℎ , 𝑡)𝑝𝑜𝑠𝑡𝑢𝑟𝑒

= 𝑝00𝑥𝑥
+ 𝑝10𝑥𝑥

𝑥ℎ + 𝑝01𝑥𝑥
𝑦ℎ + 𝑝20𝑥𝑥

𝑥ℎ
2 + 𝑝11𝑥𝑥

𝑥ℎ𝑦ℎ

+ 𝑝02𝑥𝑥
𝑦ℎ

2 

𝐾ℎ𝑦𝑦(𝑥ℎ , 𝑡)𝑝𝑜𝑠𝑡𝑢𝑟𝑒

= 𝑝00𝑦𝑦
+ 𝑝10𝑦𝑦

𝑥ℎ + 𝑝01𝑦𝑦
𝑦ℎ + 𝑝20𝑦𝑦

𝑥ℎ
2 + 𝑝11𝑦𝑦

𝑥ℎ𝑦ℎ

+ 𝑝02𝑦𝑦
𝑦ℎ

2 

(4.19) 

the other term depends on co-contraction index: 

 𝐾ℎ𝑥𝑥(𝑥ℎ)𝐶𝑂𝐶 = 𝑚𝑥 ∙ 𝐶𝑂𝐶𝑖𝑛𝑑𝑒𝑥 

𝐾ℎ𝑦𝑦(𝑥ℎ)𝐶𝑂𝐶 = 𝑚𝑦 ∙ 𝐶𝑂𝐶𝑖𝑛𝑑𝑒𝑥 

(4.20) 

Where 𝑥ℎ is the human arm working point; 𝑝𝑖𝑗𝑥𝑥
, 𝑝𝑖𝑗𝑦𝑦

 are suitable coefficients; 

𝑚𝑥, 𝑚𝑦 are the linear coefficent of the x and y axes respectively; 𝐶𝑂𝐶𝑖𝑛𝑑𝑒𝑥 is the co-

contraction index. Putting both togheter we obtain: 

 𝐾ℎ𝑥𝑥(𝑥ℎ, 𝑡) = 𝑝00𝑥𝑥
+ 𝑝10𝑥𝑥

𝑥ℎ + 𝑝01𝑥𝑥
𝑦ℎ + 𝑝20𝑥𝑥

𝑥ℎ
2 + 𝑝11𝑥𝑥

𝑥ℎ𝑦ℎ

+ 𝑝02𝑥𝑥
𝑦ℎ

2 + 𝑚𝑥 ∙ 𝐶𝑂𝐶𝑖𝑛𝑑𝑒𝑥 

 𝐾ℎ𝑦𝑦(𝑥ℎ, 𝑡) = 𝑝00𝑦𝑦
+ 𝑝10𝑦𝑦

𝑥ℎ + 𝑝01𝑦𝑦
𝑦ℎ + 𝑝20𝑦𝑦

𝑥ℎ
2

+ 𝑝11𝑦𝑦
𝑥ℎ𝑦ℎ + 𝑝02𝑦𝑦

𝑦ℎ
2 + 𝑚𝑦 ∙ 𝐶𝑂𝐶𝑖𝑛𝑑𝑒𝑥 

(4.21) 

The coefficients of this method are reported in the table below: 
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𝑝00𝑥𝑥
 5.381𝑒3 𝑝00𝑦𝑦

 4.497𝑒3 

𝑝10𝑥𝑥
 1.186𝑒4 𝑝10𝑦𝑦

 1.357𝑒4 

𝑝01𝑥𝑥
 −1.06𝑒4 𝑝01𝑦𝑦

 −1.011𝑒4 

𝑝20𝑥𝑥
 5.195𝑒3 𝑝20𝑦𝑦

 1.226𝑒4 

𝑝11𝑥𝑥
 −2.164𝑒4 𝑝11𝑦𝑦

 −2.38𝑒4 

𝑝02𝑥𝑥
 −5.539𝑒3 𝑝02𝑦𝑦

 6.562𝑒3 

𝑚𝑥 10.2912 𝑚𝑦 19.809 

Table 4.2: Coefficients of previous method. 

This coefficients of Table 4.2 are taken from the data in Table 4.1, so the same data 

are used to determine the parameters of both the methods and a comparison can be done. 

4.2.2 The comparison 

The comparison, between the two stiffness estimation method, has been done by 

simulating a linear path followed by the human arm with constant speed. The linear path, 

that can be seen in Figure 4.5, is from 𝑃5 to 𝑃7 and is done in 0.5[𝑠] with a sampling time 

of 0.01[𝑠]. 

 

Figure 4.5: Simulated path 

During the trajectory simulation the co-contraction level of the human arm muscles 

has been increased at 0.2 [𝑠] and it has been reset to the initial value at 0.3 [𝑠]. In the 

following two graphs (Figure 4.6, and Figure 4.7) is possible to see the stiffness profile 

obtained with the two methods. 
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Figure 4.6: Stiffness simulation profile of the previous method. 

 

Figure 4.7:Stiffness simulation profile of the proposed method 

From these two graph is possible to see that both the methods have the same behaviour 

when a change in co-contraction occours, indeed in both the graphs can be seen that the 

stiffness level increases when the co-activation level increases and when it decreases the 

stiffness is reduced accordingly. This behaviour is due to the coefficients that rescale the 

stiffness according to the co-contraction level, this two are: 𝐾ℎ𝑖𝑖(𝑥ℎ)𝐶𝑂𝐶 for the previous 

method, and 𝑐(𝑝)𝐾𝐽
̅̅ ̅ in the proposed one.  

The second difference of the two methods is the presence of the diagonal terms in the 

proposed one which are not considered in the previous one, this guaranteed lees neglected 

terms and so more precision and a better description of the stiffness. 

The last consideration that can be done is on the diagonal terms of both the methods, 

in the previous method both the diagonal terms always increase, indeed in the proposed 
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one these two terms have more complex shapes. This means that the previous method is 

more conservative considering an always increasing stiffness profile, however the proposed 

stiffness description is more complex and describe more in depth the human arm endpoint 

stiffness without making the model more complex or laborious, and maintaining the ease 

of use. 
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Conclusions 

In this thesis a human arm impedance mapping strategy was developed. This strategy 

is of particular interest in the field of human robot interaction, in combination with an 

adaptive impedance control, to make robot able to understand the human intention and act 

accordingly. In particular, the controller can be tuned in relation to the human arm 

impedance to avoid extra load for the operator during the cooperation, and to achieve some 

goals to improve the collaboration. 

To accomplish that in this project, firstly, a human arm reduced complexity impedance 

model, based on the EMG parameters of the principal muscles of the operator’s arm and 

on its configuration, was described with an explanation of the reasons of all the 

simplification introduced. Then, the tools for the acquisition of the data from the human 

arm, which are minimally invasive and easy to wear, were presented. At the same time, a 

kinematic and dynamic model for the human arm, similar to the one used for robotic 

manipulators, and a method to derive the human arm posture and its joints angles, in a 

simple and easily understandable way, were described. Later, the experimental procedures, 

to obtain the data to calibrate and identify the model parameters, was presented. These 

experiments are based on the perturbation method for the arm endpoint impedance 

estimation and have to be carried out in different arm configuration, and co-activation 

levels of the arm muscles. Next, all the procedures to obtain the human arm impedance 

model parameters from experiments were described, and they were later simulated using 

experimental data to verify the applicability of these procedures; the obtained impedance 

profile was compared with a previously used method, to underline the potentiality of the 

proposed one. 

Further development 

In this thesis a good starting point for the derivation of a reasonably simple and 

computationally efficent model for the human arm impedance was described; it can be 

improved by the: 

• Use of more experimental data collected according to the procedure described 

in this thesis to validate the model; 

• Use the proposed approach to tune the parameters of a variable impedance 

control; 

• Use of more subject to verify the validity of the proposed method; 

• Enlarge the impedance model workspace of validity by enhancing the model 

of the joint stifness matrix. 

  



48 

 

 



 

49 

 

Bibliography 

 

[1]  International Organization for Standardization, “ISO 10218-1 (2011): 

Robots and robotic devices — Safety requirements for industrial robots — Part 

1: Robots,” Geneva, Switzerland, July 2011. 

[2]  Markets and Markets, “Collaborative Robot (Cobot) Market by Payload, 

Component (End Effectors, Controllers), Application (Handling, Assembling & 

Disassembling, Dispensing, Processing), Industry (Electronics, Furniture & 

Equipment), and Geography – Global Forecast to 2026,” Mar 2020. 

[3]  P. Song, Y. Yu and X. Zhang, “Impedance Control of Robots: An 

Overview,” in 2nd International Conference on Cybernetics, Robotics and 

Control, 2017.  

[4]  B. Sicigliano, L. Sciavicco, L. Villani and G. Oriolo, Robotics: Modelling, 

Planning and Control, Springer, 2009.  

[5]  A. Ajoudani, N. Tsagarakis and A. Bicchi, “Tele-impedance: Teleoperation 

with impedance regulation using a body–machine interface,” The International 

Journal of Robotics Research, 2012.  

[6]  A. Ajoudani, N. G. Tsagarakis and A. Bicchi, “On the role of robot 

configuration in cartesian stifness control,” IEEE International Conference on 

Robotics and Automation, June 2015.  

[7]  S.-F. Chen and I. Kao, “Conservative Congruence Transformation for Joint 

and Cartesian Stiffness Matrices of Robotic Hands and Fingers,” Sage journals, 

2000.  

[8]  M. Turvey, “Action and perception at the level of synergies,” Human 

Movement Scienze, vol. 26, no. 4, pp. 657-697, 2007.  

[9]  M. Ison and P. Artemiadis, “Proportional Myoelectric Control of Robots: 

Muscle Synergy Development Drives Performance Enhancement, Retainment, 

and Generalization,” IEEE Transactions on Robotics, 2015.  

[10]  C. Fang, A. Ajoudani, A. Bicchi and N. G. Tsagarakis, “Online Model 

Based Estimation of Complete Joint Stiffness of Human Arm,” IEEE Robotics 

and Automation Letters, vol. 3, no. 1, 2018.  

[11]  C. Fang and X. Ding, “A Set of Basic Movement Primitives for 

Anthropomorphic Arms,” in International Conference on Mechatronics and 

Automation, Takamatsu, Japan, 2013.  

[12]  X. Ding and C. Fang, “A Novel Method of Motion Planning for an 

Anthropomorphic Arm Based on Movement Primitives,” in IEEE/ASME 

Transactions on mechatronics, 2013.  



50 

 

[13]  E. J. Perreault, K. F. Robert and P. E. Crago, “Voluntary control of static 

endpoint stiffness during force regulation tasks,” Journal of Neurophysiol, vol. 

87, pp. 2808-2816, 2002.  

[14]  A. Ajoudani, C. Fang, N. G. Tsagarakis and A. Bicchi, “A Reduced-

Complexity Description of Arm Endpoint Stiffness with Applications to 

Teleimpedance Control,” in IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS), Hamburg, Germany, 2015.  

[15]  X. Chen, N. Wang, H. Cheng and C. Yang, “Neural Learning Enhanced 

Variable Admittance Control for Human-Robot Collaboration,” IEEE Access, 

vol. 8, pp. 25727-25737, 2020.  

[16]  M. Cavenaghi, Design of an adaptive admittance control for physical 

human-robot interaction in the lead-through programming collaborative task, 

2017-2018.  

[17]  P. Corke, Peter Corke. Robotics Toolbox for MATLAB Release 10., IEEE 

Robotics and Automation Magazine, 2017.  

[18]  J. Löfberg, YALMIP toolbox for Matlab R20200930, 2020.  

[19]  H. Dreyfuss, A. R. Tilley and S. B. Wilcox, The Measure of Man and 

Woman: Human Factors in Design, Whitney Library of Design, 1993.  

[20]  N. R. F. C. (NCD-RisC), “A century of trends in adult human height,” eLife, 

2016.  

[21]  P. de Leva, “Adjustments to Zatsiorsky-Seluyanov's segment inertia 

parameters,” Journal of Biomechanics, vol. 29, no. 9, pp. 1223-1230, 1996.  

[22]  G. Pierlorenzi, L’ITALIA SI MISURA. UNA RISPOSTA DI POPOLO 

PER UN BENESSERE DIFFUSO, Aracne, 2015.  

[23]  C. Fang, A. Ajoudani, A. Bicchi and N. . G. Tsagarakis, “Online Model 

Based Estimation of Complete Joint Stiffness of Human Arm,” IEEE 

ROBOTICS AND AUTOMATION LETTERS, vol. 3, no. 1, pp. 84-91, 2018.  

[24]  X. Chen, C. Yang, C. Fang and Z. Li, “Impedance Matching Strategy for 

Physical Human Robot Interaction Control,” in 13th IEEE Conference on 

Automation Science and Engineering (CASE), Xi'an, China, 2017.  

[25]  International Federation of Robotics, “Demystifying collaborative industrial 

robots,” in Positioning paper, Frankfurt, Germany, 2018.  

[26]  A. Gasparetto and L. Scalera, “A Brief History of Industrial Robotics in the 

20th Century,” Advances in Historical Studies, vol. 8, no. 1, 2019.  

[27]  WiredWorkers, [Online]. Available: https://wiredworkers.io/advantages-of-

cobots/. [Accessed October 2020]. 

[28]  S. Keeping, “Designing Collaborative Robots: Maximizing Productivity 

And Safety,” 27 August 2020.  



Bibliography      51 

 

 

 

[29]  N. Pires, J. Ramming, S. Rauch and R. Araújo, “Force/Torque Sensing 

Applied to Industrial Robotic Deburring,” ResearchGate, 2002.  

[30]  A. Ajoudani, C. Fang, N. Tsagarakis and A. Bicchi, “Reduced-complexity 

representation of the human arm active endpoint stiffness for supervisory control 

of remote manipulation,” The International Journal of Robotics Research, vol. 

37, pp. 155-167, 2018.  

 

 


	Abstract
	Sommario
	Introduction
	Thesis organization

	1 Collaborative Robots
	1.1 Industrial Robotics in the 20th Century:
	1.2 Collaborative Robotics:
	1.2.1 Benefits of collaborative robotics
	1.2.2 Collaborative robotics market


	2 Impedance control
	2.1 Robot interaction control
	2.1.1 Force/torque sensors

	2.2 Impedance control
	2.3 Robot dynamic model in interaction with the environment
	2.4 Impedance control applied to a manipulator

	3 Human arm dynamic model
	3.1 The reason of the dynamic model estimation
	3.2 Reduced complexity impedance model of the human arm
	3.3  Myo armbands
	3.4 Human arm triangle
	3.4.1 Mappings from human arm triangle space to joint space

	3.5 Procedure to identify constant model parameters

	4 Simulation
	4.1 Proposed stiffness estimation model simulation
	4.1.1 Construction of the human arm model
	4.1.2 Inverse kinematic and gravitational load
	4.1.3 Calculation of constant parameters

	4.2 A brief comparison between two stiffness estimation methods
	4.2.1 The previous method
	4.2.2 The comparison


	Conclusions
	Further development

	Bibliography

