POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

Enforcing Security Requirements in Smart Contracts:

Making Framework

A Decision-

LAUREA MAGISTRALE IN COMPUTER ENGINEERING - INGEGNERIA INFORMATICA

Author: TECLA PERENZE
Advisor: PROF. MATTIA SALNITRI
Co-advisor: PROF. GIOVANNI MERONI

Academic year: 2022-2023

1. Introduction

Smart contracts are blockchain-based algo-
rithms that execute when certain criteria are
met, eliminating the need for intermediaries and
third parties in transaction processes. Once
deployed, smart contracts are transparent and
immutable, making their results tamper-proof
and unchangeable [5].. The automated na-
ture of smart contracts brings several advan-
tages compared to traditional contracts, includ-
ing improved efficiency and cost-effectiveness
[13]. However, it is crucial to prioritize security
due to the potential financial and legal conse-
quences that can arise from security vulnerabil-
ities [3].

To mitigate these risks, blockchain technology
provides a secure and transparent environment
for the execution of smart contracts. The de-
centralized and immutable nature of nodes en-
sures that transactions are verified by each node,
updating the blockchain to reflect the modifica-
tions made by the smart contract [11]. However,
blockchain technology may not always satisfy all
security requirements, and there may be con-
flicts between some security requirements and
aspects of blockchain technology. To ensure the
utmost security of smart contracts, it is imper-

ative to determine which data elements should
be stored on-chain or off-chain based on their
security requirements and the potential impact
on the blockchain structure.

The primary goal of this thesis is to identify
which elements of a given process can be stored
on-chain, rather than off-chain through an anal-
ysis of security requirements, indeed, the study
assesses the process’s security needs and identi-
fies the best components that can be stored us-
ing blockchain technology. The thesis presents
a novel approach to improve an existing algo-
rithm [7] using SecBPMN2BC, a modeling lan-
guage that guides process modelers in designing
secure business processes suitable for implemen-
tation on a blockchain using smart contracts.
Two algorithms have been developed within this
framework: a brute force algorithm and an op-
timized algorithm. Both are aimed at determin-
ing whether an element should be placed on the
blockchain or kept off-chain through an analysis
of the security requirements associated with the
smart contract element. The focus is on finding
a comprehensive solution through two different
approaches that transcend the limitations of the
original algorithm, which only offered local so-
lutions.

2. State of Art

Since the proliferation of both blockchain and
smart contracts has recently increased, the de-
mand for secure data procession and storage is
exponentially grown, thus the problem of decid-
ing whether to put an element of the smart con-
tract on-chain or off-chain is nowadays a critical
decision [15]. Several approaches have been im-
plemented to address this theme: machine learn-
ing, dynamic and static analysis, and Cross-
chain solutions.

More in detail, Machine learning-based tech-
niques can involve training methods on past
smart contract transactions to predict the ideal
storage location for the new ones, so as to give
a great enhancement to the decision-marketing
process for on-chain or off-chain storage |[9].
Nevertheless, it does not represent a fail-safe so-
lution. Machine learning algorithms can be sub-
ject to inaccuracies and the amount of training
data needed can be highly taxing [8]. Addition-
ally, these techniques do not address the security
problems to identify all the possible conflicts and
vulnerabilities, as the model itself is at risk, so
these performing techniques should be used in
conjunction with other measures to guarantee
security assessment as well as security and in-
tegrity for smart contracts.

Other topics in the literature that are promis-
ing to optimize the smart contract code for
deciding where is better to store elements of
the smart contract are the so-called dynamic
and static analysis framework and algorithms
[9]. Nevertheless, due to the ongoing evolution
of smart contracts and blockchain architecture,
these strategies might not always offer the best
answer. It is, however, not deniable that the
subject of smart contract security and storage
optimization has advanced from the results of
these discoveries.

The framework "The Gasper" [2], for instance,
is used to evaluate the security of smart con-
tracts. It offers a thorough testing strategy that
addresses a variety of security flaws, is open-
source, adaptable, and necessitates substantial
processing power. Another useful security tool
called "Securefy" [12] may greatly increase the
security of smart contracts. The black mark is
that it may be expensive, and might only work
with a restricted number of smart contract plat-
forms or languages [1].

Cross-chain solutions may help researchers to fa-
cilitate the transfer of assets and data across
different blockchain networks [4], nevertheless
it is not sufficient to solve the security require-
ment problems but numerous projects and ini-
tiatives have been actively working to develop
solutions in this domain, an example is Polka-
dot [14], it is a multi-chain platform designed to
enable cross-chain communication as allow dif-
ferent blockchain network to connect and share
information through a unified protocol. It can
thus facilitate the decision of whether an el-
ement should be placed on-chain or off-chain
through its Paracahain structure. To be clearer
a Parachain is a specialized chain connected to
the Polkadot Relay Chain, which acts as the
main network for coordination and consensus
[6]. Through this platform, developers may con-
struct and opt to deploy their smart contracts
on particular Parachains, giving them the free-
dom to choose whether certain smart contract
components should be processed on-chain or off-
chain. It is worth nothing to say that the entire
decision should not rely on human capability as
an automated process will significantly reduce
the errors, especially when it comes to security,
a tool that analyzes all the security requirement
is thus necessary to guide the better organization
of element of smart contract to make it temper-
proof.

3. Baseline

This chapter will provide a detailed overview of
the algorithms employed to determine the ap-
propriate execution location (on-chain or off-
chain) for specific components within a smart
contract. Through an analysis of all secu-
rity requirements assigned to the element of
the smart contract taken into examination, it
manages to find a globally optimal solution
that helps the developer with the decision of
putting an element on a chain or off-chain. To
achieve this result SecBPMN2BC has been im-
plemented to model the smart contract process
that is given in input to the overmentioned al-
gorithms. SecBPMN2BC is an extension of the
widely used Business Process Model and No-
tation (BPMN) [10] architecture designed to
address security concerns in modeling and im-
plementing blockchain technology business pro-
cesses. The primary objective of SecBPMN2BC

is to ensure that smart contracts are secure and
tamper-proof by defining security requirements
at the process level, including access control,
data confidentiality, and integrity. To help the
reader to understand the detail of the algorithm
and its workflow, a running example in Figure 1
has been implemented in order to guide through
the whole thesis and is tailored specifically for
a ride-sharing platform. It shows the smart-
contract process that starts from the client’s re-
quest and terminates with the completion of the
ride, without excluding all events that may oc-
cur. The smart contract has been implemented
using SecBPMN2BC, in fact as it is possible to
notice by the structure in Figure 1, three pools
identify the main "participant" of the process,
including the Ride-Sharing Platform, the Driver,
and Payment. In each pool, tasks that represent
the activities are presented, and each of them is
connected throw sequence flows if two Tasks are
in the same pool, with sequence messages if are
in two different pools.

What is important to notice is that both
Tasks and Data Objects are subjective to se-
curity requirement that belongs to the busi-
ness process and model notation language. Fig-
ure 2 presented the security requirement in
secBPMN2BC.

To decide the storage of the element of the
smart contract on the blockchain it is crucial
to take into account the kind of blockchain be-
ing employed. While private blockchains are
controlled by a central organization or a small
group of people, public blockchains are decen-
tralized and enable everyone to access informa-
tion. OnChainModel, OnChainExecution, On-
ChainData, and BlockchainType are all prop-
erties that determine the execution logic of an
activity on-chain or off-chain. OnChainExecu-
tion specifies whether an activity will be exe-
cuted on-chain via a smart contract or off-chain.
OnChainData specifies how data associated with
a message or data object state will be stored and
validated. BlockchainType specifies whether the
on-chain portion of the process will be executed
on a public or private blockchain.

Rules for getting the ideal fusion of security el-
ements can be derived. In particular, the cor-
responding process elements are identified dur-
ing the analysis of each rule. There are several
sets of property values identified for each ele-

ment that satisfies the rule’s requirements. The
characteristics of the process element itself and
those of its relatives or related components are
included in these sets. Ultimately, a label is as-
signed to each combination of characteristics in-
dicating how strictly the rule is enforced by the
blockchain’s security system. The designations
are native when the blockchain fully or partially
enforces the property, possible when it does so
partially, and no enforcement when it offers no
assistance. In figure 3 are presented all the rules
that can be derived.

4. Algorithmic Framework

The architecture and security features of
blockchain require careful consideration of which
security properties can be supported on-chain
and which must be executed off-chain, as fail-
ure to address these conflicts and limitations
can expose smart contracts to significant secu-
rity vulnerabilities. To tackle this problem, the
algorithms presented aim to identify and opti-
mize the set of security properties that can be
executed on-chain, prioritizing the security re-
quirements that contribute to the highest possi-
ble level of security for the smart contract. By
doing so, the algorithms mitigate the risks asso-
ciated with conflicting properties and enhance
as they identify a combination of security prop-
erties of SecBPMN2BC for each node in a smart
contract, taking into account a global variable
called Global Enforcement. This numerical
variable helps to determine if an element of a
smart contract should be executed on-chain or
off-chain. In particular, the brute force algo-
rithm explores all possible combinations of se-
curity properties, while the optimized algorithm
reduces the number of combinations to explore
through a heuristic approach.

4.1. Global Enforcement

This parameter is a numerical value given to
each set of security rule combinations that aims
to indicate the global level of security that is
enforced by the blockchain’s security properties.
The calculation of Global Enforcement in the
context of combination rules takes into account
the local enforcement value of the specific com-
bination:
e When a combination possesses native en-
forcement, which implies an inherent and

Executive summary Tecla Perenze

Feedback

End Process

omer NN t

g3

Payment Data

P

receive confirmation

a

receive rejection

Updated

Payment beceptad?
o) 3 -
>

Figure 1: Example of SecBPMN2BC diagram for Ride Sharing System

i Auditability . Separation of duties . Privity - public . Enforceability of the control-flow

i Authenticity . Bind of duties . Privity - static . Enforceability of decisions - public
i Availability O Non Delegation . Privity - private . Enforceability of decisions - private
i Integrity . Privacy . Privity - strong dynamic . Enforceability of decisions - user defined
i Mon Repudiation . Privity - weak dynamic C53 On-chain (To be used on P2 and P3)

Figure 2: Graphical annotation of SeccBPMN2BC Security Requirements [7]

automatic enforcement mechanism, the
Global Enforcement value is assigned as 1,
indicating complete and full enforcement.

e If a combination has no enforcement, the
Global Enforcement value is assigned as 0

e In cases where the combination has possible
enforcement, the Global Enforcement value
is assigned a value between 0 and 1, repre-
senting the likelihood or probability of the
combination being enforced.

Regarding the "possible" case, it is important
to state the range of values that can be assigned
to the Global Enforcement in order to allow de-
velopers to prioritize and compare different re-
quirements based on their respective enforce-
ment capabilities, make informed decisions, and
allocate resources accordingly. Consequently,
it is crucially important to analyze all scenar-
ios where different levels of enforcement can
be achieved for each security requirement. For

OnChain OnChain Output OnChain OnChain Output OnChain OnChain Output
Model Execution Label Model Data Label Model Data Label
Authenticity Act any true native |AuthenticityDO any unencrypted native
any false no enf. any encrypted native
any digest no enf.
any none no enf.
AuditabilityAct any true native |AuditabilityDO any unencrypted native |AuditabilityMF any unencrypted native
any false possible any encrypted native any encrypted native
any digest no enf. any digest possible
any none no enf. any none no enf.
AvailabilityAct any true native |AvailabilityDO any unencrypted native |AvailabilityMF any unencrypted native
any false no enf. any encrypted native any encrypted native
any digest no enf. any digest possible
any none no enf. any none possible
IntegrityAct any true native |IntegrityD{) any unencrypted native |IntegrityMF any unencrypted native
any false possible any encrypted native any encrypted native
any digest native any digest native
any none no enf. any none no enf.
NonRepAct any true native NonRepMF any unencrypted native
any false possible any encrypted native
any digest native
any none possible
NonDelAct any true native
any false possible
BoDPool true true native |BoDPool true unencrypted native
(Act) true false possible|(DO) true encrypted native
false any no enf. true digest native
true none possible
false any no enf.
SoDPool true true native |SoDPool true unencrypted native
(Act) true false possible|(DO) true encrypted native
false any no enf. true digest native
true none possible
false any no enf.

Figure 3: Blockchain enforcement rules for SecBPMN2BC security annotations |[7]

instance, security requirements such as BOD,
SOD, and Non-Delegation all share the charac-
teristic that if their enforcement level is possi-
ble, the entire activity will be executed off-chain.
As a result, the range of values assignable to
Global Enforcement for these requirements will
be narrower compared to other security anno-
tations like Auditability, Availability, Integrity,
and Non-repudiation. These latter requirements
benefit from partial protection by the inherent
structure of the blockchain. Consequently, the
range of values for Global Enforcement in these
cases is higher, approaching the naive case. Ul-
timately, the user retains the authority to deter-
mine the exact value for the Global Enforcement
within the designated ranges, based on their spe-
cific needs. This empowers them to make cus-
tomized choices aligned with their requirements
and priorities.

4.2. Algoritmic description

The algorithm utilizes a tree structure to depict
the process model, where each element within
the smart contract is associated with a rule set
denoted as S(node). This set represents the in-
dividual security requirement properties of the
corresponding node. The root element repre-
sents the blockchainType property, that is the

process definitions. Pools are intermediate el-

ements that can have their onChainM odel at-
tribute set, as well as intermediary items like
subprocess activities. Tasks, Data Objects,
and Messages are the process child components.
The onChainData attribute can be set for leaf
items such as Data Objects and Messages, while
onChainFExecution is for the Tasks. Each ele-
ment has its specific property that is composed
of its local combination and its indirect ones.
More in detail "If a property belongs to a par-
ticular process element, we say that the prop-
erty value assignment directly holds for that el-
ement. If a property belongs to an ancestor of
an element rather than the element itself, we
say that a property value assignment for that
element indirectly holds" [7]. For example, the
Confirm Ride task node from the Running Ex-
ample in Section 1 subjected to the Audiabil-
ity security requirement acquires a set of prop-
erty combinations, each comprising three secu-
rity requirements: onChainFExecution for the
local node, onChainM odel for its parent, and
blockchainType for its ancestors. This combi-
nation format enables the systematic tracking
of parent and child constraints, thereby facili-
tating effective enforcement and maintaining the
integrity of the security measures within the sys-
tem. To visualize the structure described above,
Figure 4 provides a simplified graphical repre-

sentation of the process model.

ROOT

{BlockChainType}

POOL

{BlockChainType
OnchainModel}

POOL

{BlockChainType
OnchainModel}

TASK

{BlockChainType
OnchainModel
OnchainExecution}

TASK
{BlockChainType

OnchainModel
OnchainExecution}

Figure 4: Graphical process representation

4.3. Deriving Local Combination

A single node within the system can be subject
to multiple security requirements, each gener-
ating its own set of constraints. To establish a
coherent and comprehensive set S(node) of com-
binations for a node, it is necessary to merge the
individual security requirement sets Sg,(node).
However, this merging process can introduce
conflicts among the requirements when differ-
ent security rules impose contradictory or in-
compatible conditions. Conflicts arise when
two combinations, C; = ([Py]1,lel, gle;) from
the rule set Sgi(node) and Cy = ([Pyl2, lez, glea)
from the rule set Spa(node), associated with dif-
ferent security requirements for the same node,
exhibit the same property pair [Pg]; and [Pg]o,
but have different local enforcement values (le)
or global enforcement values (gle) (le; # les or
gle1 # gleg). These conflicts arise due to diver-
gent enforcement values for the same property
pair within different sets of rules representing
distinct security requirements associated with
the same node.

To address this problem, the approach used fo-
cuses on prioritizing rules that impose fewer
limitations on specific security needs. This is
achieved by evaluating the local enforcement
values le for each combination and selecting the
one with the lowest value.

By selecting the combination with the lowest en-

forcement value, the strategy aims to minimize
the limitations and constraints placed on the se-
curity need. This approach allows for a more
flexible and accommodating solution, prioritiz-
ing combinations that provide fewer restrictions
while still meeting the necessary security stan-
dards. To find a compromise between conflicting
enforcement values and gain a global perspec-
tive, the average of the matching values from
the two sets is computed to update the global
enforcement value (gle).

_gler +gley

{
gee 5

1)
This approach produces a global enforcement
value that reflects a compromise between the
conflicting goals, ensuring that no one set of
rules predominates over the other.

Thus, in the scenario where le; < leg, the combi-
nation (] is included in the resulting set, along
with the updated Global Enforcement value.
Conversely, if le; > leg, the combination Cjy is
added to the resulting set, also with the updated
gle value.

4.4. Structure of the algorithm

The algorithms consist of two phases: the
bottom-up and top-down phases. In the bottom-
up phase, the algorithm propagates the set of
combinations from the child nodes to their par-
ent node. The objective is to update the parent
node’s set of combinations by incorporating only
those that do not result in conflicts, following the
method explained in Section 4.3. This ensures
that the parent node maintains a consistent and
conflict-free set of combinations based on the
combinations received from its child nodes.

In the top-down phase, a single combination is
chosen from the obtained set. This selected com-
bination represents the highest level of security
enforcement and is then transmitted downward
in the second phase to eliminate any incompat-
ible combinations determined in the first phase.
There are two implemented versions of the algo-
rithm that share the same structure but differ in
the criteria used to identify all potential combi-
nations and select the best one

5. Bruteforce strategy

The brute force approach is a technique used
to solve optimization problems by exhaustively

evaluating all possible combinations of elements.
It consists of two stages, bottom-up and top-
down, where every potential combination is con-
sidered. This algorithm systematically explores
each solution without using optimization tech-
niques to narrow down the search space.

5.1.

The propagateUp algorithm (shown in pseu-
docode in Algorithm 1) is designed to propa-
gate combinations from leaf nodes to root nodes
in a hierarchical structure using a brute-force
strategy. Its main objective is to determine the
ultimate set of admissible combinations by it-
eratively propagating and constraining them as
necessary.

When propagating constraints from child nodes
to parent nodes, it is crucial to remove the lo-
cal properties specific to each current node. This
ensures that conflicts are avoided and the parent
node’s constraints are appropriately enforced.
To achieve this, the algorithm creates a tempo-
rary set called Siemp, which contains all combi-
nations of the current node excluding its local
properties.

However, during the removal of local properties,
duplicate combinations can arise within Siemp,
leading to conflicts. To address this issue and
maintain constraint integrity, the algorithm gen-
erates subsets within a set called S;,. Each sub-
set represents a unique combination and is de-
rived by considering all possible cases and com-
binations. By splitting Siemp into subsets with-
out repetition using the splitCombination func-
tion, the algorithm guarantees that each combi-
nation appears only once within S, effectively
eliminating conflicts caused by duplicate combi-
nations.

To successfully propagate constraints from child
nodes to parent nodes, the subsets of S, need to
be merged with the parent node’s constraint set.
This merging process ensures that the child con-
straints are incorporated into the parent while
considering all possible combinations.

The algorithm accomplishes this by invoking the
constrainSet function. This function compares
each combination from the subsets with the par-
ent constraint set and adds the combination to
the final set, denoted as S'f;pq, only if it does not
conflict with the parent’s existing constraints.
The constrainSet function essentially updates

Propagate up Bruteforce

o ook W N o=

10
11
12
13
14
15
16
17

18

19
20

21
22

23

the parent constraint set with all the possible
combinations obtained from the subsets of S,,.
This process of constraint propagation and
merging continues recursively throughout the
hierarchical structure until it reaches the root
node. At each level, the algorithm progressively
refines and narrows down the set of admissi-
ble combinations. Finally, the algorithm pro-
duces the final set of admissible combinations
for the entire hierarchical structure, represented
by Sroot and its corresponding relative Syinqi.

Algorithm 1 propagateUp

Input: SecBPMN2BC node: element

Output: Sgna @ all possible admissible property
value combinations for parent element

Stemp = newSet ()

for C; in Syo4c do

Clemp = newCombination()

for Py in C;.properties do

L if P;.name not in node.properties then

| Ciemp-properties.add(Py)
L Stemp~add(ctemp)

if not node.isLeaf then
for child in node.children do
Sparent = newSet();

Sup = newSet();
Stinal = newSet();
for C.pi1q in propagateUp(child) do

Chparent = newCombination()

for P.p;1q in Cepita.properties do

if P.pi1q not in node.properties then
L LC’parem.properties.add(Pchild)

Sparent 'add(cparent)

if Sparent s not Empty then
L Sup-addAll(splitCombination(Sparent))

if Sy, is not Empty() then
L Stinar = constrainSet(Syp, Stemp)

return Sy

5.2.

In this phase, the algorithm aims to derive the
best combination from each set in terms of secu-
rity. Its objective is to select a combination that
maximizes security enforcement and propagate
it from the root to the leaf nodes, constraining
each set accordingly.

Using a brute-force approach, the algorithm
considers one combination at a time for each
set and propagates it down the tree. After
the propagate-up phase, the resulting root set

Propagate Down Bruteforce

24
25
26
27
28

29
30

31
32
33
34

Sroot 1s influenced by the constraints imposed
by its children. The algorithm iteratively se-
lects each combination of the root set and prop-
agates it down, constraining each set through
the constrain function. It removes any incom-
patible combinations from the child set with the
selected combination, resulting in the set Spest.
When a node is not a leaf, the algorithm chooses
one combination at a time the from the previ-
ously constrained set as the current best com-
bination. This combination is saved and prop-
agated to the child nodes. When a node is a
leaf, a different method is employed to determine
the optimal combination (see Algorithm 3). The
set Spest Obtained by constraining the set with
the best combination passed down by the parent
node is filtered in order to select the combina-
tion that that maximizes security enforcement.
It first selects only the combinations with the
maximum local enforcement (filtered with native
value), and if none exist, it filters based on possi-
ble values. If still no combinations are found, it
includes combinations with no enf values. Fi-
nally, among the filtered combinations, the one
with the highest Global Enforcement is selected,
and the Speg is updated with this best combi-
nation for the current iteration.

Through this iterative process, the algorithm
systematically evaluates all possible combina-
tions within each set, selects the optimal combi-
nation at each step, and propagates it down to
the leaf nodes.

Algorithm 2 propagateDown
input : SecBPMN2BC node: node

if node.parent then
Shnode=constrain(Spest,S[node.parent])
for C; in Syoqc do
L Cbest - Cj
Shest = newSet(Chpest)

for child in node.children do
L propagateDown(child)

if node is leaf then
Snode=constrain(Syoqde,3[node.parent|)
Chest = getBestCombination(node)
Snode - newset(cbest)

35
36
37

38
39

40
41

42

Algorithm 3 getBestCombination

input : SecBPMN2BC node

output: Combination Ches:: combination providing
maximum enforcement

S tinai=getMaxGle(node, native’)
if Sfinai-size=0 then

L S tinai=getMaxGle(node, possible’)
if Sfinai-size=0 then

L Stinai=getMaxGle(node,’no_enf.’)
else

L Sfmal.size:()

err.raise(node,’Conflict detected’)

6. Optimized Strategy

The optimized approach is a more efficient algo-
rithm that aims to find the best combination
of elements. It selectively focus on the most
promising combinations, eliminating unneces-
sary computations and reducing search space.
It consists of two distinct phases: a bottom-up
phase and a top-down phase. Each phase pro-
vides a detailed description of each phase.

6.1.

The optimized propagateUp algorithm (Algo-
rithm 4) operates within a hierarchical struc-
ture, where nodes represent elements with as-
sociated properties. Its main goal is to propa-
gate property combinations from child nodes to
their parent node, ensuring that the parent node
only includes properties not already present in
its children.

At a high level, the algorithm begins similarly to
the brute force version by initializing an empty
set, Stemp, to temporarily store combinations.
However, the key difference lies in handling con-
flicts. In this optimized version, the Constraint
function is invoked on Siemp to eliminate con-
flicts by selecting combinations with the lowest
local enforcement value and updating the global
enforcement accordingly.

The resulting set is then propagated up to the
parent node, and the parent node undergoes a
similar constraint process to avoid conflicts.
Finally, the algorithm returns Sgpa, which rep-
resents all possible valid combinations of prop-
erty values for the parent node within the hier-
archical structure

Propagate up optimized

o ook W N =

10
11
12
13
14
15
16

17

18
19

20

Algorithm 4 propagateUp

Input: node: GMTNode

Output: Stine = all possible admissible property
value combinations for parent node

Stemp = newSet()

for C; in S(node) do

Ctemp = newCombination()

for P, in C;.properties do

L if Pi.name not in node.properties then

| Ciemp-properties.add(Py)
| Stemp add(Cfemp)

if not node.isLeaf then
Sparent = newSet()
for child in node.children do
Sup = propagateUp(child)
for Cchild m Sup do
Chparent = newCombination()
for P.p;1q in Ceniig-properties do
if P.ni1q not in node.properties then
L LCparem.properties.add(Pchild)

Sparent . add(cparent)

if Sup is not empty then
L Stinal = constrain(Syp, Stemp)

return Syinal

6.2.

In the optimized Propagate Down phase (Algo-
rithm 5), a more efficient approach is taken com-
pared to considering all combinations. Instead,
the algorithm focuses on selecting the best com-
bination for each node, maximizing security en-
forcement.

The algorithm starts at the root node and iter-
atively chooses the best combination from the
available options. This selected combination is
then propagated down to the child nodes. To
ensure compatibility, a Constraint function is
used to filter out any incompatible combina-
tions, resulting in a constrained set for the next
iteration.

Similar to Algorithm 3 used for leaf nodes in the
brute force algorithm, the obtained set from the
parent node is filtered based on the same cri-
teria. This allows the algorithm to choose the
best combination that maximizes enforcement
for each set, which is then propagated down the
tree.

Propagate down optimized

By following this iterative process, the algorithm
systematically evaluates and selects the optimal
combination for each node, efficiently propagat-
ing it down to the leaf nodes. This optimized

approach reduces computational complexity and
ensures a focus on maximizing security enforce-
ment throughout the entire tree.

Algorithm 5 Propagate Down

Input: node - current element
Output: Propagate constraints down the tree
if node.parent then
S(node) = constraint(Snode; Stemp)
for C; in S(node) do
Chest = getBestCombination(node)
Sbest = newset(cbest)
for each child in node.children do
L propagateDown(child);

7. Validation

A comparison was conducted between the brute
force version and the optimized version, focus-
ing on their characteristics, performance, and
evaluation results. The experimental setup in-
volved using the SecBPMN2BC modeling lan-
guage within the Eclipse development environ-
ment to test both algorithms on the same set
of smart contracts. The set included realistic
cases, boundary conditions, unusual inputs, and
security conflict vulnerabilities. The results are
presented in Table 1.

The evaluation criteria encompassed execution
time, memory usage, accuracy, robustness, and
scalability. The analysis of the results revealed
that the optimized version outperformed the
brute force approach in various aspects. Particu-
larly in boundary situations and security conflict
vulnerabilities, the optimized SecBPMN2BC
model consistently exhibited faster execution
times and lower memory usage.

The results of experiments on the optimized and
brute force algorithms are presented in Figures
6, 5, 7, and 8. These graphs illustrate the ef-
fects of increasing numbers of tasks and security
requirements on execution time and memory us-
age.

Specifically, the optimized algorithm demon-
strates a more gradual increase in execution time
as the number of tasks grows compared to the
brute force algorithm. It also maintains a steady
execution time across different security require-
ments, whereas the brute force algorithm experi-
ences a more pronounced rise due to its exponen-
tial complexity. Additionally, the optimized al-
gorithm consistently requires less memory than

Test Case

Execution Time (ms)

Memory Usage (MB)

Realistic Case

Boundary Conditions

Unusual Inputs

Security Conflict Vulnerabilities

44 ms (Opt) / 138 ms (Brute)
82 ms (Opt) / 194 ms (Brute)
24 ms (Opt) / 11 5ms (Brute)
112 ms (Opt) / 302 ms (Brute)

24.06 MB(Opt) / 38.07 MB (Brute)
27.16 MB (Opt) / 42.05 MB (Brute)
10.04 MB (Opt) / 18.07 MB (Brute)
29.46 MB (Opt) / 52.85 MB (Brute)

Table 1: Execution Time and Memory Usage Comparison

the brute force algorithm for the same number
of tasks and exhibits lower memory usage even
under heightened security requirements.

The findings clearly indicate that the optimized
algorithm surpasses in terms of performance and
control. It demonstrates superior effectiveness
in managing expanded tasks and security re-
quirements. Notably, when it comes to com-
puting Global Enforcement parameters, the op-
timized version outperforms the brute force al-
gorithm, resulting in improved decision-making
capabilities. Moreover, the optimized algorithm
enhances security analysis, ensuring the reli-
able enforcement of blockchain security require-
ments.

500 | [+~ Optimized Algorithm

—&- Brute Force Algorithm

400
300 |-

200 -

I I [I I [[]
2 4 6 8 10 12 14 16
Number of Tasks

Execution Time (ms)

Figure 5: Comparison of Execution Time with
Increasing Number of Tasks

500 (e~ Optimized Algorithm

—&- Brute Force Algorithm

Execution Time (ms)
\

2 4 6 é l‘l.) 1‘2 l‘-’l 1‘6
Security Requirements
Figure 6: Comparison of Execution Time with
Increasing Security Requirement

10

—e— Optimized Algorithm
&~ Brute Force Algorithm

100 -
80

60 -

40 q
-
o
20 - il

| I | | I I I I
2 4 6 8 10 12 14 16
Number of Tasks

Memory Usage (MB)

Figure 7: Comparison of Memory Usage with
Increasing Number of Tasks

q = L :
300 "o~ Optimized Algorithm

&~ Brute Force Algorithm

200 |- /
100 - /

| | |
5 10 15
Security Requirements

Memory Usage (MB)

Figure 8: Comparison of Memory Usage with
Increasing Security Requirement

8. Conclusion and future devel-
opments

This thesis aims to determine which elements of
a process can be stored on-chain or off-chain us-
ing blockchain technology. It presents a novel
approach to improving existing algorithms for
designing smart contract processes suitable for
implementation on a blockchain with smart con-
tracts in SecBPMN2BC. The algorithms intro-
duced are designed to tackle challenges arising
from conflicting and unsupported security prop-
erties in smart contracts within a blockchain
framework. Two algorithms were designed: a
brute-force algorithm and an optimized one.
The brute-force algorithm explores an exhaus-
tive assessment of all viable combinations of se-
curity features. The optimized algorithm aims
to strike a balance between accuracy and com-
putation between objects, resulting in faster and
more efficient security analysis.

The achievement of a Global Enforcement so-
lution for validating the security of smart con-
tracts was made possible by introducing a new
variable, Global Enforcement, within the com-
bination of each element subjected to a security
requirement. The optimized algorithm demon-
strated its effectiveness by providing a coherent
and efficient solution to address conflicting and
unsupported security properties in smart con-
tracts within a blockchain framework. By in-
corporating various strategies to enhance per-
formance and efficiency, this algorithm strikes
a balance between accuracy and computation
speed.

The significance of this thesis lies in its con-
tribution to the field of designing and evaluat-
ing smart contract processes on the blockchain.
The findings laid the groundwork for the devel-
opment of intelligent and adaptable algorithms
capable of dynamically adjusting security con-
figurations based on value variables and evolv-
ing threats. The knowledge gained from this
study opens doors to exploring other areas where
blockchain technology can be leveraged to en-
hance security and considerations in the smart
contract process.

Future research projects could include introduc-
ing cost variables for each combination of se-
curity requirements for elements, allowing for
an evaluation of the trade-offs between security
measures and financial implications. This addi-
tion ensures that the design and implementation
of smart contract processes on the blockchain are
not only robust and efficient but also economi-
cally viable. By combining comprehensive safety
analysis, computational efficiency, and the inte-
gration of cost variables, this research unlocks
the true potential of blockchain technology in
ensuring the integrity and reliability of smart
contracts.

References

[1] Salar Ahmadisheykhsarmast and Rifat Son-
mez. A smart contract system for secu-
rity of payment of construction contracts.
Automation in Construction, 120:103401,
2020.

[2] Ting Chen, Xiaoqi Li, Xiapu Luo, and
Xiaosong Zhang. Under-optimized smart

contracts devour your money. In 2017

11

13l

4]

[5]

(6]

17l

8]

9]

[10]

[11]

[12]

IEEE 24th International Conference on
Software Analysis, Evolution and Reengi-
neering (SANER), pages 442-446, 2017.

Thomas Hepp, Matthew Sharinghousen,
Philip Ehret, Alexander Schoenhals, and
Bela Gipp. On-chain vs. off-chain stor-
age for supply- and blockchain integration.
pages 283-291.

Yuxian Li, Jian Weng, Ming Li, Wei Wu, Ji-
asi Weng, Jia-Nan Liu, and Shun Hu. Zero-
cross: A sidechain-based privacy-preserving
cross-chain solution for monero. Jour-
nal of Parallel and Distributed Computing,
169:301-316, 2022.

Bhabendu Kumar Mohanta,
Soumyashree S Panda, and Debasish
Jena. An overview of smart contract and
use cases in blockchain technology.
2018 9th international conference on Com-
puting, communication and networking
technologies (ICCCNT), pages 1-4. IEEE,
2018.

In

Author Name. on-chain-vs-off-chain, Year
Published. Accessed on Month Day, Year.

Author Name. testo di partenza, Year Pub-
lished. Accessed on Month Day, Year.

Author Name. testo di partenza, Year Pub-
lished. Accessed on Month Day, Year.

Sara Rouhani and Ralph Deters. Secu-
rity, performance, and applications of smart
contracts: A systematic survey. IEEE Ac-
cess, 7:50759-50779, 2019.

Mattia Salnitri, Fabiano Dalpiaz, and Paolo
Giorgini. Designing secure business pro-
cesses with secbpmn. Software and Systems
Modeling, 16, 07 2017.

Hamed Taherdoost. Smart contracts in
blockchain technology: A critical review.
Information, 14(2), 2023.

Petar Tsankov, Andrei Dan, Dana
Drachsler-Cohen, Arthur Gervais, Flo-
rian Biinzli, and Martin Vechev. Securify:
Practical security analysis of smart
contracts. In Proceedings of the 2018
ACM SIGSAC Conference on Computer

Executive summary Tecla Perenze

and Communications Security, CCS ’18,
page 67-82, New York, NY, USA, 2018.
Association for Computing Machinery.

[13] Shangping Wang, Xixi Tang, Yaling Zhang,
and Juanjuan Chen. Auditable protocols
for fair payment and physical asset deliv-
ery based on smart contracts. leee Access,
7:109439-109453, 2019.

[14] Gavin Wood. Polkadot: Vision for a het-
erogeneous multi-chain framework. White
paper, 21(2327):4662, 2016.

[15] Lejun Zhang, Weijie Chen, Weizheng
Wang, Zilong Jin, Chunhui Zhao, Zhennao
Cai, and Huiling Chen. Cbgru: A detec-
tion method of smart contract vulnerability
based on a hybrid model. Sensors, 22(9),
2022.

12

	Introduction
	State of Art
	Baseline
	Algorithmic Framework
	Global Enforcement
	Algoritmic description
	Deriving Local Combination
	Structure of the algorithm

	Bruteforce strategy
	Propagate up Bruteforce
	Propagate Down Bruteforce

	 Optimized Strategy
	Propagate up optimized
	Propagate down optimized

	Validation
	Conclusion and future developments

