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Abstract 
Drought is one of the most dangerous natural extremes affecting society nowadays. 

These extremes are responsible for a yearly economic cost of about 9 billion euros 

in Europe and typically originate from precipitation shortfall, leading to water 

shortages, agricultural losses, and environmental deterioration. Even with all the 

work and recent improvements in weather and extreme weather event forecasting, 

it is still difficult to estimate rainfall reliably, especially at sub-seasonal lead times. 

The sub-seasonal time frame is indeed too short to be solely influenced by 

phenomena such as oceanic variability and, at the same time, too long to be mainly 

affected by the atmospheric initial conditions. Therefore, a soft contribution of both 

is present. Moreover, uncertainty persists regarding the relative contributions of 

local atmospheric conditions and climatic teleconnections to the development of 

total precipitation at the sub-seasonal scale. By advancing the Climate State 

Intelligence (CSI) framework and looking at how local atmospheric conditions and 

teleconnection patterns affect monthly total precipitation, we aim at addressing this 

lead time gap. To do so, this work is structured into three main Machine Learning 

(ML) model branches predicting total precipitation with a one-month lead time. The 

exploited ML algorithms include Extreme Learning Machines (ELM), Feed-

Forward Neural Networks (FFNN), and Convolutional Neural Networks (CNN). 

We ultimately test the performance of our ML-based precipitation forecasts using 

the ECMWF Extended Range forecasts as a benchmark. The presented framework 

was created as part of the CLImate INTelligence (CLINT) project and used in the 

Netherlands' Rhine Delta region. 
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Abstract – Ita 
La siccità è uno degli eventi estremi più pericolosi che interessa la società odierna. 

Questi eventi estremi sono responsabili di un impatto economico annuo di circa 9 

miliardi di euro in Europa e, in genere, traggono origine dalla carenza di 

precipitazioni che porta a scarsità d'acqua, problemi nel settore agricolo e 

depauperamento ambientale. Nonostante i recenti miglioramenti nelle previsioni 

del tempo e degli eventi meteorologici estremi, è ancora difficile stimare le 

precipitazioni in modo affidabile, specialmente per lead time sub-stagionali. L'arco 

temporale sub-stagionale è infatti troppo breve per essere influenzato unicamente 

da fenomeni quali la variabilità oceanica e, allo stesso tempo, troppo lungo per 

essere influenzato principalmente dalle condizioni atmosferiche iniziali. Pertanto, 

è presente un tenue contributo di entrambi i fattori. Inoltre, vi è incertezza in 

relazione ai contributi relativi delle condizioni atmosferiche locali e delle 

teleconnessioni climatiche allo sviluppo delle precipitazioni totali a scala sub-

stagionale. Attraverso l’estensione del Climate State Intelligence (CSI) framework 

e l’osservazione di come le condizioni atmosferiche locali e le teleconnessioni 

influenzano le precipitazioni totali mensili, miriamo a colmare questo divario 

presente alla scala sub-stagionale. Per fare ciò, questo lavoro è strutturato in tre 

diversi modelli di Machine Learning (ML) atti a prevedere la precipitazione totale 

con un lead time mensile. Gli algoritmi di ML sfruttati includono Extreme Learning 

Machines (ELM), Feed-Forward Neural Networks (FFNN) e Convolutional Neural 

Networks (CNN). La determinazione delle performances dei modelli addestrati 

rispetto allo stato dell’arte è stata eseguita mediante comparazione con “ECMWF 

extended forecasts products”. Il framework presentato nasce come parte del 

progetto CLImate INTelligence (CLINT) ed è riferito alla regione del delta del 

Reno nei Paesi Bassi. 
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1 Introduction 
In this section, an introductory overview of the problem is provided along with the 

main research questions addressed by the present work. Moreover, a brief 

introduction of the exploited methods is presented and the structure of the 

manuscript is introduced. 

1.1 Context 
With an annual economic cost of approximately 9 billion euros in Europe, droughts 

are one of the most severe natural disasters to society. A precipitation shortfall is 

typically the source of drought situations, which can then lead to water shortages, 

agricultural losses, and environmental deterioration. On that note, being able to 

forecast such events is crucial to timely prompt anticipatory drought management 

measures.  

Drought forecasting is and has always been a challenging research area, especially 

for sub-seasonal lead times (i.e., 1 month) where the contribution of multiple factors 

is distributed across different spatiotemporal scales. 

The present work is aimed at developing a Machine Learning (ML) framework 

made of a set of models able to perform precipitation prediction at sub-seasonal 

lead time. These precipitation predictions can then be translated into drought 

conditions thanks to the usage of drought indices such as the Standardized 

Precipitation Index (SPI). 

 

1.2 Motivation and research questions 
At sub-seasonal lead times, producing skillful forecasts represents a challenge for 

all weather-related variables. This is particularly true for precipitation that, 

compared with variables such as temperatures, is characterized by a less stable 

pattern. Moreover, forecasting precipitation is key to perform drought prediction by 

exploiting drought indexes such as SPI.  

On top of that, in the sub-seasonal context, the considered period is short enough 

for the atmosphere to retain a memory of its initial conditions, but, at the same time, 

long enough for oceanic variability to affect atmospheric circulation. This is 

directly translated in the concurrent influence of multiple factors across different 
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spatiotemporal scales affecting the precipitation forecasting process (e.g., local 

variables, teleconnection patterns, global climatic variables, etc.). Therefore, 

variables coming from both global and local contexts should in principle be relevant 

to forecast precipitation at sub-seasonal lead time. 

Another important aspect is the time domain on which the model is trained and is 

therefore able to produce predictions. For instance, ML models trained on data 

referred to a specific month, will be able to produce predictions only for that 

specific month. In the context of weather prediction this happens to be crucial 

because of the intrinsic meteorological variability encoded in each month due to 

seasonality. Moreover, models referred to shorter time domain have higher 

customization capabilities in terms of input variables than models referred to a 

wider time period. On top of that, as consequence of shrinking or extending the time 

domain of a model, the related dataset size decrease or increase accordingly (e.g., 

the dataset of a specific month will have fewer samples with respect to the complete 

dataset of the whole year) 

Based on the described scenario, the questions addressed by this research are the 

following: 

• Is the bridging of local and global contexts useful to increase the predictive 

skillfulness of the models? 

• Is the provision of climatic information (e.g., climate indices of 

teleconnection patterns) beneficial for model performances? 

• Which is the best tradeoff between model time-domain and number of 

training samples? (i.e., monthly-based models with few samples versus 

yearly-based model with many samples) 

1.3 Proposed approach and original contributions 
Due to the hybrid nature of the sub-seasonal lead time (i.e., variable from both local 

and global contexts happens to be relevant), the current study uses concurrent 

exploitation of global and local data to address precipitation forecasting. This 

concurrent exploitation is aimed at bridging global and local climate contexts thus 

enabling the provision of a more complete set of information to the models. 

Moreover, while investigating the meaningfulness of the global/local bridging 

process, the role of teleconnection patterns in enhancing that bridging has also been 

investigated. 
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This study is structured into three Machine Learning (ML) model branches aimed 

at forecasting the total precipitation in Rijnland (the study area in the Netherlands) 

with a one-month lead time. The exploited ML methods include Extreme Learning 

Machines (ELM), Feed-Forward Neural Networks (FFNN), and Convolutional 

Neural Networks (CNN). These three distinct branches are not conceived as a 

simple set of mirrored strategies. They will thus (i) utilize various sets of input 

features and (ii) be referred to various temporal domains. The different settings are 

designed to help determine which trade-off of type of input features, temporal 

domain, and dataset size is the most appropriate for precipitation prediction at the 

sub-seasonal scale. Moreover, for each branch, a different preprocessing 

framework derived or readapted from the existing literature is provided [1] [2] [3]. 

In the end, we use the ECMWF Extended Range forecasts as a benchmark to assess 

the quality of our ML-based precipitation forecasts. 

 

1.4 Outline of contents 
This study illustrates the design, implementation, and testing process of the three 

different ML model branches referred to the Rijnland case study. A literature review 

of the state of art is discussed in section 2. The case study and the data selection 

process are provided in section 3, followed by a detailed description of all the 

implemented approaches in section 4. The discussion of the obtained results is 

reviewed in section 5, followed by conclusions in section 6. 
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2 State of art 
This part provides a review of the relevant literature as well as a more general 

introduction to the key theoretical underpinnings of droughts and weather 

forecasting. Starting with the fundamentals of weather and precipitation 

forecasting, we go on to the notion of drought before coming to the concept of 

teleconnection patterns. 

2.1 Weather and precipitation forecasting at sub-seasonal lead-

times 
Weather forecasting consists in predicting atmospheric conditions over a certain 

location and for a certain time through the use of science and technology. The first 

step in forecasting weather is the gathering of observations from various sources, 

such as satellite and ground-based sensors, which provide information on the state 

of the atmosphere. This data can be projected into the future through an appropriate 

set of methodologies and/or models, providing a simulation of the evolution of 

weather conditions.  

In the context of weather forecasting, the length of time between the issuance of a 

forecast and the occurrence of the predicted phenomena is called “lead time” [4]. 

In other terms, the lead time it is how far into the future the model is going to 

generate a forecast. Over the scientific literature, it is possible to identify different 

ways of classifying forecasting based on lead times. One of the possible 

classifications divides the forecasts into seven main categories [5]: nowcast, a term 

used to reference a forecast up to the next six hours; short range forecast, category 

of forecasts which are typically delivered for lead times in a range of one up to three 

days; medium range forecast, going from 4 up to 10 days; extended range forecast, 

also called sub-seasonal forecasts, characterized by a lead time ranging between 

two weeks and a month; seasonal range forecast, with lead time up to three months; 

long range forecast, characterized by wider lead times reaching the temporal scale 

of a year; decadal projections, with a lead time that can reach 15 years. 

According to the desired lead time, different techniques could be exploited to 

produce weather predictions [6]: 
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• Persistence forecast: assumes that the current weather conditions are going 

to be constant in time, so that the future weather will be equal to the present. 

This assumption is very basic and works for lead times of a few minutes; 

• Extrapolative forecast or trend forecast: assumes the presence of a 

changing pattern that is constant in time (e.g., a cold front motion will be 

assumed as constant in speed and direction). This assumption is more 

aligned with reality but is still working well only for lead times ranging from 

minutes to hours; 

• Numerical Weather Prediction (NWP)-based forecast: it is by far the 

most used method for weather prediction nowadays. It is aimed at predicting 

future atmospheric conditions through a model that solves dynamics and 

physics equations designed to model the evolution of the atmosphere. These 

equations have a high degree of complexity, thus NWP models typically run 

on supercomputers able to handle such a high amount of computational 

needs. They can run either singularly, in the so-called Deterministic 

forecast, or as a multi-threaded setting, in the so-called Ensemble forecast. 

Ensemble settings typically improve long-term forecasting skills by 

initializing the NWP threads with a different set of initial conditions. This 

process allows for the mitigation of the endogenous uncertainty encoded in 

the initial conditions. The structure of the NWPs model is more adherent to 

reality compared to both persistence and extrapolative forecast and it works 

well for lead times from a few hours to a couple of weeks; 

• Climatological forecast: assumes that the weather state will fall into 

average conditions statistically derived from several years of observations, 

i.e. the climatology. The forecast is going to be uniquely based on 

climatological statistics instead of a dynamic evolution of current 

atmospheric conditions. This type of forecasting method starts gaining 

significance with lead times from several weeks up to several months.  

Analyzing the different forecasting methods, it is clear how lead time plays a 

fundamental role in weather forecasting. Persistence and extrapolative forecasts are 

well-performing if the goal is to predict precipitation at lead times of a few hours, 

Numerical Weather Prediction models are primarily used if the lead time is in the 

range of several days and climatological forecasts are very useful for longer lead 
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times up to several months but, at the same time, almost irrelevant for very short 

lead times. 

Short-medium and Seasonal-long range forecasting are characterized by different 

sources of predictability. The high accuracy level of short-medium ranges 

forecasting models (around 80% [5]), primarily comes from: the rising quality of 

observations data, especially satellite-based, characterizing the last decades, the 

improved performance of NWP models, and, most importantly, the strong 

dependency between atmospheric circulation and initial state of the atmosphere at 

these time scales. On the other hand, seasonal-long range forecasts are primarily 

governed by large-scale, slowly varying features such as ocean variability and 

teleconnection patterns. In other terms, weather forecasts typically cover a time 

interval extending up to 2 weeks, while climate forecasts start at 3-month time 

scales and go further in the future. The difference in the sources of predictability is 

reflected in the models used for weather and climate forecasting. Indeed, the 

traditional NWP systems used to perform short-medium term weather forecasting 

exploit high-resolution complex representations of the processes taking place in the 

atmosphere and are fed with the atmospheric initial conditions. In this case, the 

atmospheric dynamics can be skillfully predicted up to a limit of two weeks, as 

initial state-related atmospheric information is progressively lost [7]. 

 On the other hand, the traditional models used for climate forecasting (Global 

Circulation Models) are usually designed and defined as “coupled”, as they 

leverage the interaction between the atmosphere and the ocean. The exploitation of 

Figure 1: role of different earth system components at different lead time. [5] 
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this coupled interaction results in higher computational costs than NWP models, 

which is directly translated into the need for a reduction in data resolution [8]. 

Similarly, to reduce the computational needs, these “coupled” models rely on a less 

detailed representation of the atmospheric process with respect to classical NWP. 

In between these two categories, at the so-called sub-seasonal scale, the lead time 

is short enough for the atmosphere to still have memory of its initial conditions, but 

it is also long enough for the ocean variability to start playing a role in the 

atmospheric circulation, as it can be seen from Figure 1. In this context, strictly 

atmospherically based weather models from one side, and climate low-resolution 

coupled models from the other, make weather and climate prediction not directly 

applicable to sub-seasonal lead time [8]. Hence, a weather-climate prediction gap 

originates [8].  

The fundamental approach needed to produce skillful weather forecasts at sub-

seasonal lead times is to generate a blending system able to exploit both 

atmospheric and climatic information. This system should be based on the analysis 

of the interaction between the atmosphere and slowly varying elements such as land 

and ocean [8]. In the last decades, different operational centers have tried to 

improve weather forecasts for the sub-seasonal lead times. The European Centre 

for Medium-Range Weather Forecasts (ECMWF), for instance, started in 2002 with 

an ensemble model of monthly forecasts. Within 10 years, the performance of this 

model in predicting 2-meter temperature anomalies was made comparable to the 

one with 15/25 days of lead time in 2002 [9]. Experiments highlight how the 

majority of the improvements in the model during these 10 years were strictly 

related to the fine-tuning of model physic parametrization and, therefore, how the 

improvements in medium-range forecasts have a direct impact in improving 

forecasting skills at sub-seasonal scale as well [9].  

Starting from 2013, in order to concentrate the efforts and better study sub-seasonal 

lead times, the “sub-seasonal to seasonal prediction project” has been set up by a 

collaborative structure created by the World Weather Research Program (WWRP) 

and World Climate Research Program (WCRP). The main goal of the project was 

to bring together experts in the weather and climate fields to leverage their 

knowledge to improve forecasting skills and understanding of the sub-seasonal to 

seasonal (S2S) lead time scale [10]. This project was also characterized by a further 

declination towards extreme events such as tropical cyclones, droughts, and floods. 
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Another main aim of this S2S initiative was to compare sub-seasonal forecasting 

models of different operational centers to check for similarities or dissimilarities in 

skills improvement trends. Since the typical model structure is characterized by 

several ensemble members, and the original name of the S2S temporal range is 

extended-range, these models are formally called extended-range Ensemble 

Prediction Systems (EPSs). 

 

 
Figure 2: details about available EPSs in the S2S project from different operational centers (updated in 

February 2022) [11] 

 
Sub-seasonal lead time forecasting is today an active field of research and, although 

several efforts have already been done, because of the overlapping of different earth 

systems agents in this temporal range, the relative contribution of climate and 

atmospheric elements to the genesis of sub-seasonal forecasts remains unclear. Sub-

seasonal forecasting is generally difficult for all weather-related variables, but it is 

more difficult for precipitation forecasting because it is generally less stable than 

variables such as temperatures. Moreover, the influence of ocean variability and 

teleconnection patterns on precipitation phenomena at this time scale is not clear. 

Thus, these aspects have to be further investigated. 
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2.2 Droughts 

2.2.1 Background on droughts 

Drought events are recognized as one of the most severe environmental issues and 

can be in the most generic way associated with a lack of water for an extended time 

period over a specific region. These phenomena could last for months or even years 

and are strictly related to variables such as temperatures, winds, low relative 

humidity, and rain amount during crop seasons [12]. The concept of drought is often 

confused with the concept of heat wave or aridity, although the three phenomena 

are quite different from each other. The main difference between drought and 

aridity is that a drought is a temporary event that could also last for a long time 

period but not forever, while aridity is a permanent region-specific feature. In other 

words, drought is a phenomenon that could happen, aridity is an endogenous 

condition that affects a specific region [13]. Also, in the case of the difference 

between drought and heat waves, the main feature to focus on is time. Indeed, if 

from one side droughts, as mentioned, last for months or even years, the time range 

of heat waves is on average in the order of a week [14]. 

The reason why drought as a phenomenon is becoming more and more relevant in 

the last decades is that its occurrence, in parallel with the occurrence of floods, is 

becoming extremely frequent. Indeed, relevant drought events have recently 

affected almost every continent [15]. On top of their increased frequency, droughts 

are among the most slowly developing and longly lasting extreme events and 

probably the least predictable [12]. The low predictability and the potential high-

level impact that droughts can cause on the economy in general and on key sectors 

such as agriculture, lead to a boost in the research areas related to their assessment. 

Drought development mechanisms are very complex, especially because the 

atmosphere is not the only involved factor. What really acts as a proxy variable for 

droughts onsets is the interactions between the atmosphere and the hydrological 

processes providing it with moisture [12]. From a high-level perspective, it is 

possible to describe the mechanism of drought onset as follows: dry hydrologic 

conditions start, and as a consequence, the moisture content of upper soil layers 

decreases lowering the evapotranspiration rates and, in turn, lowering the relative 

humidity of the atmosphere. Low atmospheric relative humidity corresponds to a 

lower rainfall probability since it becomes more difficult to meet saturation 
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conditions [12]. The decrease in rainfall probability leads to an increase in the dry 

conditions, increasing the drought intensity and duration. 

There are many reasons why droughts are different from other extreme events: 

firstly, drought phenomenon, in the pool of all the extreme events, is first for the 

number of affected people [16]; it is difficult to pinpoint when a drought starts or 

ends, due to the fact that its impact is typically slowly incremental and could last 

for years; there is no single definition of drought; unlike extreme events such as 

floods, earthquakes, tornados, and hurricanes, droughts impacts are defined as 

“non-structural” since they hardly cause damage to infrastructures and buildings; 

in contrast to the other extreme events, droughts can be potentially directly triggered 

by human actions, such for instance when over farming, when deforesting, when 

over-exploiting  water [12]. 

Droughts are extremely complex phenomena and, in order to be able to deal with 

them, the scientific community needs some well-defined guidelines for their 

definition and for the estimation of their impacts. For this purpose, different 

definitions of droughts and different indices have been developed over the years. A 

list of the different definitions and indices is presented below. 

 

2.2.2 Drought types 

As previously mentioned, one of the issues related to drought monitoring and 

forecasting is the absence of a unique definition. Several authoritative sources 

define droughts in different ways: the World Meteorological Organization (WMO), 

for instance, defines droughts as a “prolonged dry period in the natural climate 

cycle that can occur anywhere in the world. It is a slow on-set phenomenon caused 

by a lack of rainfall”	 [17]; the National Integrated Drought Information System 

(NIDIS) states that drought is “a deficiency of precipitation over an extended period 

of time (usually a season or more), resulting in a water shortage” [18]. It is possible 

to identify four main drought categories [12]: 

• Meteorological drought: this term defines a condition of scarcity in 

precipitation over a specific region and in a specific time period. Different 

precipitation data can be used to study this kind of drought. Some studies, 

for instance, analyze meteorological droughts by the difference in 

precipitation with respect to the regional average-monthly values [19]; other 
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studies, instead, exploit cumulative precipitation data aggregated over a 

specific period [20]. It is also important to remember that the identification 

of a meteorological drought must be thought of as a context-specific task. 

Indeed, the atmospheric-related conditions that bring a precipitation deficit 

over a specific place are widely different according to the geographical 

region; 

• Agricultural drought: it is related to a period in which the soil moisture 

decreases, thus causing side effects such as crop failures. If a crop is used 

to receive a specific amount of water from the soil and this amount heavily 

decreases, the plant could be seriously affected; 

• Hydrological drought: this term is usually referred to a condition in which 

the amount of surface water (surface runoff, streamflow, reservoir level) or 

groundwater available is not enough to satisfy water demand. As a 

consequence, this low availability does not allow the water resources 

management system to work properly and satisfy all the demands [12]. 

Hydrological droughts are typically lagged in time with respect to 

meteorological, because of the temporal offset between the occurrence of 

precipitation deficit and the actual repercussions over the hydrological 

system (streamflow, reservoir, etc.); 

• Socio-economic drought: this concept is generated by conceiving water as 

a general-purpose good. Perfect market conditions are met whenever the 

supply of a good meets its demand. A good is said to be rare if the market 

asks for it more than its actual available quantity. The same concepts apply 

to socio-economic droughts: whenever a drought event takes place, water 

resources systems could experience difficulties in meeting the water 

demand, thus causing socio-economic impacts. 

 

These different drought types are linked together such that the occurrence of one of 

them could, in turn, generate the onset of another one (for instance meteorological 

drought can generate hydrological drought). Moreover, the genesis of these 
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phenomena is strictly related to several climate and meteorological variables. A 

schematic of relationships and causalities among the different drought categories is 

provided in Figure 3 along with the relevant involved variables. 

 

 
2.2.3 Drought indices 

Over the last decades, several drought indices have been developed to define the 

intensity, duration, and spatial extent of drought events and to assess their effects.  

Because of the lack of a unique drought definition, several drought indices have 

been developed to help drought assessment, each one tailored for a specific aspect 

of the event. These indices involve individual or multiple hydroclimatic variables 

and are defined for different time scales, ranging from the monthly to the yearly 

[21]. 

 

For the case of meteorological drought, one of the most commonly employed 

indices is the Standardized Precipitation Index (SPI). It was developed by T.B 

McKee, N.J. Doesken, and J. Kleist in 1993 and it is computed based on 

precipitation data solely. The SPI is computed by (i) fitting a probability distribution 

to a long-term precipitation timeseries of a specific location, and (ii) transforming 

Figure 3: drought categories and sequence of its occurrence and impacts (NDMC) [73]  
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it into a normal distribution such that the mean SPI is zero. The strength of SPI is 

its applicability at a variety of different time scales allowing, with the same index, 

the monitoring of short-term water-related phenomena (e.g., soil moisture 

monitoring, particularly important for agricultural purposes) and long-term water-

related phenomena (e.g., reservoir levels). Across the literature, it is possible to find 

a vast variety of applications of this index to study drought phenomena in different 

ways, ranging from spatiotemporal analysis and climate impact assessment up to 

forecasting [12]. Based on the value of SPI, different drought intensity classes are 

defined to assess the severity of the event. It is worth noting that the SPI is used to 

assess in general the conditions of precipitation of a specific location, ranging from 

wet to normal to dry. The classes are presented in Table 1. 

 
Table 1: SPI classes [22] 

SPI SPI class 

SPI ≥ 2.00 Extremely wet 

1.50 ≤ SPI < 2.00 Severely wet 

1.00 ≤ SPI < 1.50 Moderately wet 

0.00 ≤ SPI < 1.00 Mildly wet 

-1.00 ≤ SPI < 0.00 Mild drought 

-1.50 ≤ SPI < -1.00 Moderate drought 

-2.00 ≤ SPI < -1.50 Severe drought 

SPI < -2.00 Extreme drought 

 

Another very well-known drought index is the Palmer Drought Severity Index 

(PDSI), which uses temperature and precipitation data to estimate relative dryness 

[23]. The values of the index are standardized and typically represented in a range 

of -4	≤	PDSI	≤	4, although the real values could fall into a wider interval ranging 

from -10 up to +10. This index, as well as SPI, is employed for a variety of different 

applications such as the investigation of spatiotemporal drought characteristics, 

exploration of drought’s periodic behavior, and drought forecasting [12]. Although 

the PDSI is computed using meteorological variables, it is particularly suitable for 

monitoring agricultural droughts, since it was aimed at estimating soil moisture 
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[12]. Table 2 shows the different drought classes that can be identified according to 

the obtained PDSI value.  

 
Table 2: Classifications of Palmer Drought Severity Index [24]. 

PDSI PDSI class 

PDSI ≥ 4.00 Extremely wet 

 3.00 ≤  PDSI< 4.00  Very wet 

2.00 ≤ PDSI < 3.00 Moderately wet 

1.00 ≤ PDSI < 2.00 Slightly wet 

0.50 ≤ PDSI < 1.00 Incipient wet spell 

- 0.50 ≤ PDSI < 0.50 Near normal 

- 1.00 ≤ PDSI < - 0.50 Incipient dry spell 

-2.00 ≤ PDSI < -1.00 Mild drought 

-3.00 ≤ PDSI < -2.00 Moderate drought 

-4.00 ≤ PDSI < -3.00 Severe drought 

PDSI< -4.00 Extreme drought 

 

Still related to agricultural droughts, another common indicator developed it is the 

so-called Crop Moisture Index (CMI) [25]. Enforcing the concept that a high 

number of indices exist because of the necessity of verticalization of drought study, 

this index is specifically suited for evaluating short-term moisture conditions for 

crop monitoring on a weekly basis exploiting precipitation and temperature data to 

compute a moisture budget. The reason why this index is applicable to weekly time 

scales is that, due to its rapid response in adapting to short-term changes, applying 

this index to long terms scenarios could bring misleading information. Table 3 

shows the different drought classes that can be identified according to the obtained 

CMI value. 
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Table 3: Classifications of Crop Moisture Index [26]. 

CMI CMI class 

CMI ≥ 3.00 Excessively wet 

2.00 ≤ CMI < 3.00 Wet 

1.00 ≤ CMI < 2.00 Abnormally moist 

-1.00 ≤ CMI < 1.00 Slightly dry / Favorable moist 

-2.00 ≤ CMI < -1.00 Abnormally dry 

-3.00 ≤ CMI < -2.00 Excessively dry 

CMI <-3.00 Severely dry 

 

 

Although the indices presented so far only take into account precipitation and 

temperature data, drought indices could, in general, take as input a greater number 

of parameters. An example is provided by the Surface Water Supply Index (SWSI), 

developed starting from the PDSI drought index and particularly suited for 

monitoring hydrological droughts [27]. This index acts as a proxy variable for 

anomalies in surface water supply sources and is based on four different input 

variables: snowpack, streamflow, precipitation, and reservoir storage [12]. 

 

In the literature, it is possible to find a vast number of other indices, each one with 

specific purposes, pros, and cons (e.g., Standardized Runoff Index (SRI) [28], Soil 

Moisture Deficit Index (SMDI) [29]). In general, the fundamental aim of these 

indices is to provide a univocal and interpretable picture of drought occurrence in a 

specific place and over a specific time. By doing this, a drought index act as a key 

tool to transform raw data into meaningful information thus enabling an improved 

decision-making process. 

 

2.2.4 Droughts over Europe 

The impacts of droughts events around the world are evident and well-documented 

(e.g., for Europe [30] [31], for East Africa [32], for western Mediterranean [33]). 

Drought events have been spotted on almost half of the terrestrial surface, which 

corresponds to the same part of the earth on which the majority of the agricultural 

effort is spent [34]. Their occurrence has an impact on numerous facets of society 
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in addition to the environment. Among the numerous extreme events increasingly 

taking place over the last two centuries all around the world, drought has been 

recognized as the one having the most negative impacts [35] [36]. 

Across Europe, during the last 40 years, several relevant drought events have been 

reported and estimates indicate that, since 1991, the economic impact of droughts 

in Europe is, on average, about €5.3 billion every year [37].  

In the period between 1975 and 1976, for instance, Europe experienced a relevant 

drought event. In that period, between the spring and summer seasons, a below-

average precipitation regime occurred, affecting the central-western European 

zone. During the summer season, the drought event started spreading toward the 

northeast creating a uniform heavily affected zone over central Europe. Dry 

conditions echoed until August, when cold air coming from Scandinavia started a 

mitigation process [38]. During this event, a meteorological drought peak by means 

of SPI-6 (i.e., Standardized Precipitation Index which cumulates precipitations over 

6 months) has been registered on July 27 (Figure 4) in almost every part of Europe 

except for both the Mediterranean zone and the coastal part of Norway.  

 

For what concerns the hydrological drought peak, instead, it has been registered on 

July 1st with the runoff across Europe below the 10th and 20th percentiles (red and 

orange respectively in Figure 5). The day of the hydrological drought peak is 

Figure 4: SPI-6 over Europe, meteorological drought peak, 1976 [35] 
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explainable by the approximate drought onset, estimated to be around November 

1975. 

 

 

Another severe drought event that affected Europe dates back to the period 1991-

1995. In the time period 1991-1992, frequent drought events affected the entire 

Mediterranean zone, and the period 1992-1995 has been defined as one of the driest 

that the Iberian Peninsula has ever experienced in the century [38]. From a 

meteorological point of view, the whole period has been characterized by below-

average precipitation conditions over southern Europe, with a focus on Spain and 

Portugal in 1992 and 1994. The meteorological drought peak by SPI-6 has been 

registered the 11/6/1993 affecting the southern European area (Figure 6) 

 

 

 

Figure 5: runoff - in red runoff values below 10th percentile, in 
orange below 20th percentile, 1976 [35] 
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From the hydrological point of view instead, the peak has been registered around 

5/5/1993 with a scattered configuration of runoff below the 10th and 20th percentiles 

(red and orange respectively in Figure 7) across central Europe. 

 

 

Among the several most recent events, it is possible to mention the droughts of 

2018 and 2022.  

Figure 6: SPI-6 over Europe, meteorological drought peak, 1993 [27] 

Figure 7: runoff - in red runoff values below 10th percentile, in 
orange below 20th percentile, 1993 [35] 
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Particularly, in 2018, a relatively short but intense drought event affected central 

and northern Europe starting from May. In that period, the persistence of 

anticyclonic conditions enabled the simultaneous occurrence of precipitation 

scarcity and above-average temperatures. These conditions have heavily affected 

the agricultural sector and have caused water supply disruptions or restrictions. On 

top of that, fire hazards increased in most of the European area and temperature-

related phenomena, such as high water temperatures, led to a reduction in water 

quality and fish population [39] [40]. 

 

More recently, a severe drought event has affected Europe starting from the 

beginning of 2022. The blend between the prolonged lack of precipitation and the 

sequence of heatwaves from May 2022 was responsible for the establishment of dry 

conditions. After the establishment of this condition, several sectors have been 

affected. From the hydrological point of view, a sensible decrease in river 

discharges all over Europe was registered. Among the consequences linked with 

the hydrological side of this drought event, the reduction of the stored water volume 

has to be mentioned due to its severe impacts on the energy sector (hydropower 

generation, cooling systems of other power plants, etc.). Also, the agricultural 

sector has been heavily affected by a reduction in summer crop yields [41]. 

 

Drought events are becoming more frequent with time and projection analysis [42] 

endorses this trend also for the next years. 

 
2.2.5 Drought forecasting 

Being able to forecast drought phenomena in advance enables the possibility to 

mitigate the effect of their impacts. Unfortunately, due to the multiple factors that 

contribute to their development and evolution, forecasting droughts is a complex 

task. In addition, the different drought categories are very much connected to each 

other. Furthermore, as already discussed, droughts can be triggered by different 

factors (e.g. precipitation deficit, increased evapotranspiration, anthropogenic 

factors), have different starting modalities, different duration and spatial extent [43] 

[44]. Due to all these layers of complexity, drought forecasting is and has always 

been a challenging research area. 
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In order to build a framework able to forecast drought phenomena, three key 

components have to be defined: target, predictors, and method.  

The target is the means through which it is possible to define a measure for drought 

conditions. It is typically a drought index (e.g., SPI), or one or multiple variables 

used to then compute one of the drought indices (e.g. cumulative precipitation over 

6 months).  

 

The predictor, or the predictors, is referred to the variables that are meaningful for 

forecasting a certain phenomenon. For forecasting in general, the identification of 

the appropriate set of predictors is essential for the good performance of the 

prediction framework developed. Since drought is a complex phenomenon chained 

with different atmospheric and climate components interacting with each other, the 

set of meaningful predictors is spread across different spatiotemporal scales. At the 

global scale, for instance, the Sea Surface Temperature (SST), has been recognized 

as one of the primary responsible for drought conditions at a large spatiotemporal 

scale and, for that reason, it has been widely used to improve drought forecasting 

capabilities [43]. Another important global-scale component that enabled a sensible 

improvement in drought prediction is the presence of teleconnection patterns 

linking hydroclimatic anomalies and global variables (e.g., SST, geopotential 

height, mean sea level pressure). These relationships are typically expressed in 

terms of climate indices and one major example of them is provided by El Niño 

Southern Oscillation (ENSO) [43]. Meaningful drought predictors are also present 

at the local scale, mainly for short-term forecasting. Several regional land surface 

features such as soil moisture, vegetation, and snow cover, have indeed shown an 

active role in enhancing or mitigating drought effects and persistency. Among the 

important predictors, it is also important to add external forcing factors such as 

variation in solar radiation and land use changes [43]. 

 

The most commonly used methods to perform drought prediction can be 

summarized in three main categories: statistical, dynamic, and hybrid methods. 

The main idea for statistical drought prediction is to (i) identify a set of relevant 

predictors and (ii) pass them as input to a context-tailored statistical model. 

Predictors for statistical models usually come from two sources: historical 

observations and dynamic forecasts. Among the vast number of available predictors 
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coming from these sources, it is fundamental to choose the subset that explains most 

of the variance of the predictand. This selection process can be performed with a 

physical-based approach, i.e. by analyzing and understanding the physical 

mechanisms underlying the development of drought phenomena, or with a 

statistical-based approach, i.e. by applying techniques such as correlation analysis. 

In particular, while applying correlation analysis, is extremely important to take 

into account plausible mechanisms between analyzed variables. The reason why is 

that brute-forcing correlation analysis through a big number of predictors with no 

plausibility-based pre-selection could lead to false correlation [45]. Also, a set of 

high-correlated plausibility-based predictors is not guaranteed to bring high 

predicting performances. An example of a statistical model could be a regression 

model, which aims at building a mathematical relationship between predictors and 

predictand thus enabling the inferential process. Typical regression models work in 

the continuous case, meaning that they are capable of predicting numeric quantities 

having an infinite number of values between any two values.  

Dynamical meteorological drought prediction is based on the so-called General 

Circulation Models (GCMs). The purpose of these models is to run a simulation of 

the physical processes taking place in the atmosphere, ocean, and land in order to 

allow inferential processes over climate events (e.g., droughts). The two 

fundamental pillars for the good performance of such models are climate system 

understanding and computational resources. Indeed, to obtain reliable results from 

these models a deep understanding and a good reproduction of the physical 

mechanisms underlying climate behavior are needed. On top of that, these types of 

models are particularly demanding from the computational point of view. 

The hybrid drought prediction approach is aimed at merging statistical and 

dynamical methods to take advantage of both. Numerous studies have shown how 

these two methods are complementary [43]. On one side, statistical methods are 

simple to implement and less computationally demanding but, at the same time, 

they do not consider physical processes; on the other side, dynamical methods 

account for physical processes (thus allowing for the exploitation of nonlinear 

interaction of atmosphere, land, and ocean [46]) but, at the same time, they are 

computationally demanding and affected by bias [47]. Therefore, the combination 

of these two methods, if well structured, can result in sensible performance gains. 

The way in which this merging process is performed is composed of a two-step 
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procedure: (i) climate forecast calibration, to correct the bias coming from GCM, 

and, subsequently, (ii) multiple forecast merging, to merge the predictions coming 

from both statistical and dynamical methods. As depicted in Figure 8, the merging 

step could be obtained with different techniques such as regression and Bayesian 

distribution and, once the merging has been performed, the result can be exploited 

to obtain a probabilistic prediction. 

 

 

An additional category for forecasting, often also classified as a subcategory of 

statistical methods, is Artificial Intelligence (AI). AI methods have been proven to 

be extremely helpful in establishing complex relationships among variables, and a 

great variety of them is used in the drought forecasting field (e.g., [48], [49]). Some 

well-known examples are: Neural Networks (NNs), able to model highly complex 

nonlinear relationships between inputs and outputs. Its structure is composed of an 

input layer, a hidden layer(s), and an output layer made of processing units called 

neurons. These neurons receive a set of values from the preceding layer, add up all 

these values, add a bias term, and shrink the result by means of an activation 

function. Finally, the output is multiplied by a weight and passed to the next layer. 

NN is one of the most used AI methods in the hydrologic forecasting research field 

[50] and some experiments showed, for instance, how for arid and semi-arid 

locations they are even outperforming statistical methods [51]. Moreover, their 

design complexity is much lower with respect to dynamical methods; Support 

Vector Machine (SVM), usually exploited to solve classification tasks, can also be 

used to solve regression problems in the form of a Support Vector Regressor (SVR). 

Figure 8: Hybrid drought prediction based on drought indicator Z. Merging 
step performed with function G applied on dynamical forecast (Yd) and 

statistical forecast (Ys) [40]. 
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The general concept of SVM is to maximize the distance between the supporting 

planes of different classes. An example of SVR application in drought forecasting, 

for instance, has been developed to predict drought indices in different locations in 

Australia and it turned out to be very efficient [52]; Extreme Learning Machine 

(ELM), structurally similar to NNs, is characterized by a reduced training time. In 

ELMs weights and biases are randomly initialized and the learning procedure 

consists of a simple mathematical operation instead of an iterative and 

computationally demanding process. 

 

2.3 Teleconnection patterns and climate indices 
The physical mechanisms underlying the evolution of climatic conditions take place 

as a consequence of the interactions of all the different Earth’s system components. 

These interactions often result in the creation of climatic patterns, such as pressure 

or temperature configurations, that are repeated and cyclical over time. These 

recognizable patterns are associated with specific meteorological implications such 

as above/below-normal temperatures or precipitations. Teleconnection patterns can 

be therefore defined as terms used to reference specific patterns of global climatic 

variables, such as pressure or temperatures, with the aim of formalizing causality 

between climatic configurations and meteorological events. Several teleconnection 

patterns have been formalized, each of them having different meteorological 

implications affecting specific regions of the planet. Moreover, all these patterns 

are characterized by “phases”, a term used to reference different instances of the 

same teleconnection pattern which translate into different meteorological 

consequences (e.g., two phases of a teleconnection pattern involving locations 𝑥 

and 𝑦 could be low-pressure over 𝑥 / high-pressure over 𝑦 and high-pressure over 

𝑥 / low-pressure over 𝑦). Among the most known teleconnection patterns, there are 

North Atlantic Oscillation (NAO), SCAndinavian oscillation (SCA), East Atlantic 

oscillation (EA), East Atlantic/Western Russian oscillation (EA/WR), and El Niño 

Southern Oscillation (ENSO). The term climate index is instead referred to the 

quantitative description of the teleconnection pattern (i.e., timeseries of values). 
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The NAO pattern is formally defined as the difference in surface air pressure over 

two specific regions: Iceland and the Azores. It is essentially characterized by two 

phases, positive and negative. The negative phase of NAO is characterized by 

moderately high pressure over the Azores and moderately low pressure over 

Iceland. The positive phase, instead, presents a very high pressure over the Azores 

and a very low pressure over Iceland (so that the pressure difference over the two 

locations is wider). The observed implications of positive NAO phases are, from 

one side, above-normal temperatures in the eastern United States and northern 

Europe and, from the other, below-normal temperatures across Greenland and 

southern Europe. They are also linked with above-normal precipitation over the 

northern European zone and below-normal precipitation over southern and central 

Europe. For what concerns negative NAO phases, they usually exhibit an opposite 

set of implications. NAO climate index can be computed and, starting from the 

timeseries, it is possible to associate positive phases with positive values and 

negative phases with negative values. As it is possible to observe from Figure 9 

(depicting the NAO climate index), the time span between the positive and negative 

phases is, on average, intra-annual.  

 

Figure 9: Oscillating trend (positive [red]/negative [blue]) of 
North Atlantic Oscillation.  [75] 
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The SCA pattern, also called SCAND, is composed of three main circulation 

centers. The main one is located over Scandinavia and the other two, weaker and of 

opposite sign, over eastern Russia / western Mongolia and western Europe. As 

mentioned for NAO, also SCA is mainly characterized by two phases. The positive 

phase of SCA is associated with high pressure over northern Europe and low 

pressure over southern Europe [53]. During SCA negative phases, instead, the 

pressure over northern Europe is low and the pressure over southern-central Europe 

becomes high (Figure 10). The observed implications of positive SCA phases are 

related to below-average temperatures over central Russia and western Europe. For  

what concerns precipitations, it is associated with above-average precipitations 

across central and southern Europe and below-average precipitation over the 

Scandinavian area. SCA climate index can be computed and, starting from the 

timeseries, it is possible to associate positive phases with positive values and 

negative phases with negative values. As it is possible to observe from Figure 11 

(depicting the SCA climate index), the time span between a positive and a negative 

phase is on average biannual / intra-annual.  

 

Figure 10: 500mb height during negative (left) and positive (right) SCA phases [50] 
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The EA oscillation, known as the climate pattern with the second lower frequency 

in its alternation over north Atlantic [54], is often associated with the NAO pattern 

due to its similar but down-shifted structure. If NAO, on one hand, is defined as the 

pressure difference between the Azores and Iceland, EA, on the other, is the 

difference in pressure between the northern and the tropical part of the Atlantic 

Ocean. It is characterized by positive and negative phases. The positive phase is 

associated with hot and dry air flow all over the Mediterranean area and with above-

average precipitations over the northern European zone. The negative phase 

instead, especially during winter seasons, is associated with low temperatures over 

the entire Mediterranean zone. EA climate index can be computed and, starting 

from the timeseries, it is possible to associate positive phases with positive values 

and negative phases with negative values. As it is possible to observe in Figure 12 

(depicting the EA climate index), the time span between a positive and a negative 

phase involves, on average, several years. However, in some short periods the 

switching frequency increase until becoming infra-annual. 

 

The EA/WR pattern, also called EATL/WRUS, is one of the most affecting patterns 

for the Eurasian region. It is composed of four main anomaly locations: Europe, 

Figure 11: Oscillating trend (positive [red]/negative [blue]) 
of SCAndinavian pattern [76] 
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Northern China, the Northern-Central Atlantic region, and the northern Caspian 

Sea. It is characterized by a positive phase occurring as a consequence of positive 

height anomalies over two of the four anomaly locations: the northern-Central 

Atlantic region, and the northern Caspian Sea. The negative phase, instead, is 

characterized by an opposite configuration. The meteorological implication of the 

positive phase consists of above-average temperatures for the eastern Asian region 

and below-average temperatures for western Russia and northeast Africa. For what 

concerns precipitation, it is usual to experience above-normal precipitation in 

eastern China and below-normal precipitation in central Europe. EA/WR climate 

index can be computed and, starting from the timeseries, it is possible to associate 

positive phases with positive values and negative phases with negative values. As 

it is possible to observe from Figure 13 (depicting the EA/WR climate index), the 

time span between the positive and negative phases for EA/WR is, on average, 

annual/intra-annual.  

 

Figure 12: Oscillating trend (positive [red]/negative [blue]) 
of East Atlantic pattern [77] 
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The ENSO oscillation pattern, probably the most well-known oscillation pattern, is 

a periodic fluctuation (i.e., every 2/7 years) in the Sea Surface Temperature (SST) 

and in the above pressure. The counterpart of this phenomenon is called La Niña 

and the interchanging mechanism between El Niño e La Niña is the following: the 

equatorial zone in the Pacific Ocean becomes warm and the SST in that region starts 

increasing. Due to the equatorial currents caused by the Coriolis’s effect, this warm 

water is pushed westward (in the vicinity of Australia), and this SST pattern 

composed of warm water at the west and cooler water at the east represents La Niña. 

When the equatorial currents start decreasing in intensity, instead, the warm zone 

shifts eastward forming the SST configuration corresponding to El Niño. During 

La Niña events, warm water is coupled with low pressure and high precipitation in 

the Australian zone, and cold water is associated with high pressure and dry weather 

in South America. 

Figure 13: Oscillating trend (positive [red]/negative [blue]) 
of East Atlantic / West Russian pattern [78] 



 35 

 

 

ENSO climate index can be computed and, starting from the timeseries, it is 

possible to associate positive phases with positive values and negative phases with 

negative values. As it is possible to observe in Figure 15 (depicting the ENSO 

climate index computed through the Multivariate Enso Index method), the time 

span between a positive and a negative phase is, on average, more than a year. 

 

Understanding climate patterns and the way in which they influence the occurrence 

of meteorologic events is fundamental for a better understanding of the mechanisms 

behind extremes such as droughts. The usage of some of these indices, coupled with 

Figure 14: Sea Surface Temperature pattern describing El Niño and La 
Niña [79] 

Figure 15: Oscillating trend (positive [red]/negative [blue]) 
of El Niño Southern Oscillation pattern [80] 
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climatic global variables, could represent a valid approach for the enhancement of 

drought prediction at subseasonal lead times by bridging climatic variables with the 

occurrence of meteorologic events. 
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3 Data and case study 
 
In this section, a context-related description of the problem is provided regarding 

the study area of Rijnalnd. After that, a careful and detailed description of the 

process of variable selection is provided along with the main pre-processing steps 

performed to prepare the data for the framework that will be introduced in the 

subsequent section. 

3.1 Case study 
The case study is the region of Rijnland, located in the Netherlands. It is a small 

sub-catchment of 1000 𝐾𝑚! at the end of the Rhine delta (Figure 16). More than 

70% of the area is below sea level, and, for that reason, it now has a highly 

monitored drainage system governed by the Rijnland water board. The drainage 

system includes a series of pumps and locks that are used to discharge the excess 

water into the Rhine River, shipping canals, or directly into the North Sea, but also 

to flush freshwater from the Rhine into the channels to counter salinity intrusion. 

The majority of the Rijnland land use involves agricultural crops among which 

some high-cash crops are also present. The area is not only exploited for agricultural 

purposes, as several cities, for a total of 1.3 million citizens, and strategic 

infrastructures, such as the international airport Amsterdam Schiphol, are located 

in Rijnland. 

 

Figure 16: Water system boundaries of the Rijnland water board 
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Rijnland is characterized by an average yearly amount of rain of 842 mm (Schiphol 

meteorological station), and by a temperature pattern consisting of much lower 

temperatures during winter than in summer. This relevant temperature difference 

makes the evapotranspiration rate increase during the summer season, such that it 

often exceeds precipitation. The yearly average Makkink evapotranspiration is 

estimated to be around 602 mm. 

The region is affected by summer drought events, which have been occurring more 

frequently in the past years. Droughts in the area are usually characterized by low 

flows in the Rhine, low precipitation, and high evapotranspiration rate. Over time, 

the Rijnland water board came up with its own context-specific definition of 

drought, which occurs when the two following conditions are simultaneously met: 

• Cumulative precipitation deficit greater than 150 mm. The cumulative 

precipitation deficit is computed as the difference between precipitation and 

potential Makkink evapotranspiration, and it is cumulated from the 1st of 

April to the 30th of September. The calculation stops during the remaining 

months of the year, when usually the precipitation rate is higher than 

evapotranspiration.  

• Discharge at Lobith station, where the Rhine enters the Netherlands, lower 

than 1100 m3 s) . 

The concurrent existence of these two conditions makes the amount of fresh surface 

water available decrease, causing salinity intrusion in the irrigation channels and 

dike instability issues. As a consequence, dike inspections have to be performed 

more frequently and an alternative supply of fresh water has to be planned in 

collaboration with the surrounding municipalities and water boards, which can 

provide more freshwater. 

To monitor and potentially issue early-warnings for the occurrence of droughts, the 

Rijnland waterboard produces weekly or monthly-based reports from April to 

October, with information related to the observed and forecasted streamflow in 

Lobith and cumulative precipitation deficit over the Netherlands. The forecasts are 

now available with a lead time of two weeks and are based on: 

• 2-week ensemble predictions of precipitation and temperature from 

ECMWF; 
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• 2-week discharge prediction of the Rhine at Lobith, provided by 

Rijkswaterstaat, the Directorate General of the Ministry of Infrastructure 

and Water Management of the Netherlands. 

In 2021 the Rijnland water board started to use SPI as a monitoring tool, although 

not yet for issuing warning, and included the SPI maps provided by the Royal 

Netherlands Meteorological Institute (KNMI) SPI in the summer reports. 

The current forecasting capability of the Rijnland water board does not allow for a 

timely early warning of drought occurrence. Indeed, in order to design more 

efficient maintenance plans for dikes and a more coordinated system of freshwater 

sharing among the surrounding municipalities, the water board would need to 

extend the current lead time of 2-week forecasts to a month.  

3.2 Dataset description 
The sub-seasonal lead time represents a critical horizon in weather forecasting in 

general, since it is a time window in which the relevance of all the potential 

predictors (global and local) is mixed across different spatiotemporal scales. When 

approaching sub-seasonal lead times, indeed, valid information for short-medium 

term forecasting such as atmospheric initial conditions start becoming less relevant, 

but their contribution is still present. At the same time, large-scale phenomena, for 

lead times between 10 and 46 days, start becoming more and more relevant [55], 

with the slow ocean variability affecting atmospheric circulation and becoming a 

relevant source of information for forecasting potential extreme events, such as 

droughts. Moreover, teleconnection patterns could also play a role in the genesis of 

extreme events and in atmospheric circulation at the sub-seasonal lead times [56]. 

For these reasons, the set of input variables selected for this work involves local 

initial atmospheric conditions, global climate variables, and climate indexes to 

search for the best compromise of predictors that is able to increase the model 

accuracy. The details on the set of climate indices, global variables and local 

variables selected as input for this study are presented in the following sections. 

 

3.2.1 Climate indices 

To select the teleconnection patterns and the related climate indices to use, first a 

summary of the teleconnection patterns with meteorological implications across the 
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northern European zone has been produced. Table 4 highlights the teleconnection 

patterns selected for the present work with information related to the switching 

phase frequency.  NAO, SCA, and EA are characterized by oscillations that can be 

kept in sub-seasonal time frames and with meteorological consequences over or in 

the surroundings of northern Europe. 

 
Table 4:summary table of the selected climate indices. NE surroundings and NE respectively represent the 
meteorological implications in the surrounding of Northern Europe and in Northern Europe. Annual/sub-
Annual refers to the alternation frequency between the positive and negative phases. Multi-annual * refers 
to alternation time greater than 2 years but that could be anyway interesting for seasonal/sub-seasonal 
forecasting 

 Implications Switch frequency 

 NE surroundings NE Annual/sub-Annual Multi-annual * 

NAO X X X  

SCA X  X  

EA X X  X 

ENSO     

 

All the climate signals falling in at least one of the two green columns are worth to 

be considered as a potential input variable. The ENSO as well, however, is 

considered among the selected indices, even if does not respect this condition. The 

reason for this is that ENSO is recognized as the dominant multiannual signal in the 

global climate context and little to no clue is provided in terms of effects over the 

European area [2]. Moreover, even though its switching frequency is between 2 and 

7 years, there is no reason to a priori exclude that such slow variability could affect 

sub-seasonal forecasting, especially while considering several decades of data as in 

the present work. The timeseries related to the climate indices associated with these 

four patterns have been obtained from the National Oceanic and Atmospheric 

Administration (NOAA) web platform [57] [58] [59] [60] and are in the form of a 

unidimensional timeseries of float values with a monthly time aggregation. 

 

3.2.2 Global variables 

After defining the most influential teleconnection patterns and associated climate 

indices for the case study, a set of global variables related to these phenomena was 

selected as well. For instance, as the NAO is a teleconnection pattern due to the 

difference of pressure in two different locations, the Mean Sea Level Pressure 

(MSLP) has been selected as one of the potential input variables. For a similar 
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reason, the Sea Surface Temperature (SST) was selected because of ENSO.  Table 

5 presents the list of the climate patterns/indices considered with their 

corresponding global variable. 

 
Table 5: couples climate indices / global variables based on the definition of the climate indices 

Climate signal Global variable 

 SST Pressure 

NAO  X 

SCA  X 

EA  X 

ENSO X  

 

In addition, the geopotential height at 500 hPa (Z500) was selected as the third 

global variable, since it is proven to be representative of the average state of the 

atmosphere. 

The global variables come from the fifth generation of ECMWF reanalysis data, the 

ERA5 dataset, and have been downloaded from the Copernicus Climate Data Store 

(CDS). They are gridded timeseries of data covering the entire Earth's surface and, 

for the purpose of the present work, have been selected with a daily temporal 

resolution and with a spatial resolution of 1.5 degrees. Even though the original 

spatial resolution of ERA5 is 0.25 degrees, the time series have been re-gridded on 

the coarser resolution of 1.5 degrees, to meet the spatial resolution of ECMWF 

forecasts, which are considered as the benchmark forecasts currently available. 

 
3.2.3 Local variables 

The initial atmospheric variables are, in this thesis, often referred to simply as local 

variables because of the intent of considering them only for the area of Rijnland. 

However, later in the manuscript, another instance of this exact same set of 

variables will take the name of “medium-scale” information, since their spatial 

extension will be increased. 

The local variables were initially selected following the work of Felsche et.al. [49]. 

This study dealt with the exploitation of Artificial Neural Networks (ANN) for the 

prediction of drought occurrence in Lisbon and Munich with a one-month lead time 

and it was chosen as an example to follow because of the similarity of the problem 

addressed.  
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Among the local variables considered by Felsche et al. [49], only a subset of 

variables that could be meaningful for the northern European context has been 

selected. Moreover, because the original study used data coming from the Canadian 

Regional Climate Model 5 Large Ensemble (CRCM5-LE), the subset of variables 

has been further filtered based on ERA5-translatable criterion. The ERA5 dataset 

was chosen instead of the CRCM5-LE to keep consistency with the global variables 

data source. Finally, a total number of ten variables was extracted, as presented in 

Table 6 and Table 7. Particularly, Table 6 is referred to the variables belonging to 

the ERA5 pressure level realization (with pressure level fixed at 500 hPa), and 

Table 7 refers to variables belonging to the ERA5 single levels realization. In this 

case, the choice also of the pressure level was needed and, for all the variables, has 

been decided to fix it ad 500 hPa. 

All these variables are taken at the daily resolution, in the period 1979-2021. In 

terms of spatial resolution and extension, in a first case (when called local 

variables), they correspond to simple unidimensional timeseries of float values 

located in Rijnland with a spatial resolution of 1.5 degrees, while when referred to 

as the medium-scale variables they are downloaded and extracted for the whole 

European region. 
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Table 6: CRCM5-LE variables coupled with respective ERA5 pressure levels variables. For each of the two 
data sources name and measurement unit is reported. In the first column, the abbreviation of the variables 
used in the present work. The column “pressure level” represents the reference pressure level for the selected 
variable 

 CRCM5-LE ERA5 pressure Levels Pressure level 

UW 
Eastward Near-Surface 

Wind 
𝑚/𝑠 

U-component of 

wind 
𝑚/𝑠 500 hPa 

VW 
Northward Near-Surface 

Wind 
𝑚/𝑠 

V-component of 

wind 
𝑚/𝑠 500 hPa 

RH 
Near-surface relative 

humidity 
% Relative humidity % 500 hPa 

SH 
Near-surface specific 

humidity 
1 Specific humidity 1 500 hPa 

 

 
 
Table 7: CRCM5-LE variables coupled with respective ERA5 single levels variables. For each of the two 
data sources name and measurement unit is reported. In the first column, the abbreviation of the variables 
used in the present work. 

 CRCM5-LE ERA5 Single Levels 

TCC Total cloud cover % Total Cloud Cover % 

MER Evaporation 𝐾𝑔	𝑚!/𝑠 Mean Evaporation Rate 𝐾𝑔	𝑚!/𝑠 

MSSHF 
Surface Upward Sensible 

Heat Flux 
𝑊/𝑚! 

Mean Surface Sensible Heat 

Flux 
𝑊/𝑚! 

TCWV Water vapor path 𝐾𝑔/𝑚! 
Total Column Water 

Vapour 
𝐾𝑔/𝑚! 

tp Precipitation 𝐾𝑔/𝑚!𝑠 Total precipitation m 

t2m Surface temperature K 2m temperature K 
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A final summary of the pool of considered variables is reported in Table 8. 

 
Table 8: Summary of the considered variables. For local variables, a double sample’s shape is specified in 
order to account also for their medium-scale instance 

Acronyms full name spatial scale sample's shape source 

NAO North Atlantic Oscillation Global 1 × 1 NOAA 
SCA SCAndinavian oscillation Global 1 × 1 NOAA 
EA East Atlantic oscillation Global 1 × 1 NOAA 

ENSO El Niño Southern Oscillation Global 1 × 1 NOAA 
SST Sea Surface Temperature Global 121 × 240 ERA5 

MSLP Mean Sea Level Pressure Global 121 × 240 ERA5 
Z500 Geopotential height at 500 hPa Global 121 × 240 ERA5 

TCC Total Cloud Cover Local 1 × 1 / 31 × 39 ERA5 

MER Mean Evaporation Rate Local 1 × 1 / 31 × 39 ERA5 

MSSHF Mean Surface Sensible Heat Flux Local 1 × 1 / 31 × 39 ERA5 

TCWV Total Column Water Vapour Local 1 × 1 / 31 × 39 ERA5 

UW U-component of Wind Local 1 × 1 / 31 × 39 ERA5 

VW V-component of Wind Local 1 × 1 / 31 × 39 ERA5 

RH Relative Humidity Local 1 × 1 / 31 × 39 ERA5 

SH Specific Humidity Local 1 × 1 / 31 × 39 ERA5 

tp Total Precipitation Local 1 × 1 / 31 × 39 ERA5 

t2m 2m Temperature Local 1 × 1 / 31 × 39 ERA5 

 

 

3.3 Data pre-processing and cleaning 
Before training the different machine learning models, a pre-processing and 

cleaning step is needed. Specifically, global and local variables have been submitted 

to the different and tailored pre-processing procedures described below.  

 
Global variables coming from ERA5, as also mentioned in section 3.2.2, have by 

default a spatial resolution of 0.25 degrees. For computational reasons related to 

specific steps in the processing pipeline and for compatibility with baseline 

forecast products (ECMWF Extended-range forecasts), it has been decided to use a 

coarser resolution of 1.5 degrees. On top of that, the ERA5 dataset makes available 

these global variables with a default temporal resolution of an hour, however, the 

temporal resolution needed for the development of the present work is of 1 day. 
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Thus, two main pre-processing steps have to be applied: (i) a grid upscaling from 

0.25 to 1.50 degrees, and (ii) a temporal aggregation from an hourly resolution to a 

daily-based one. To avoid the need to locally perform these two pre-processing 

steps for the whole timeseries of data going from 1979 up to 2021, it has been 

decided to exploit the Copernicus Data Store Toolbox (CDS Toolbox). This 

Toolbox allows for the specification of a set of instructions to directly obtain the 

set of pre-processed data without the need to add additional time-consuming 

processing layers to the pre-processing pipeline. 

 
For what concerns local variables, the pre-processing steps consist of considering 

only land-referred ERA5 grid cells, and re-gridding data with respect to the 

ECMWF Extended-range forecasts grid. As it was for global variables, a re-

gridding (upscaling) procedure from ERA5 to ECMWF has been performed. The 

process started by taking ERA5 grid cells over the Netherlands and by applying a 

Thiessen weighted average to determine the average rainfall. Specifically, since the 

study area is a small sub-catchment of 1000 Km2, and since most of the Rijnland-

located 0.25 degrees cells belonging to the 1.5 degrees ECMWF cell are on the sea 

- where no ground sensor is present – Thiessen was applied assuming zero weight 

for sea-located grid cells. The result after applying Thiessen was the upscaled 

Rijnland-referred cell. In this case, since the procedure is extremely tailored to the 

study area, all the data have been first obtained and then locally processed. For the 

medium-scale instance, instead, the only needed pre-processing steps were an 

upscaling of ERA5 data from 0.25° to 1.5° and a temporal aggregation from hourly 

resolution to a daily one. These operations were directly performed by means of the 

CDS Toolbox. 

 

Table 9 provides a summary of all the mentioned processing steps for each group 

of variables. 
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Table 9: pre-processing steps summary 

Data component Initial data Pre-processing steps Final data 

Global variable 
0.25 degrees, 

hourly resolution 

upscaling and time 

aggregation  

1.50 degrees, daily 

resolution 

Local variable 

0.25 degrees, 

 Equal weights,  

all Netherlands 

ECMWF regridding, 

sea cells weighting, 

Rijnland extraction 

ECMWF grid 1.5 degrees,  

sea cell zero weighted, 

Rijnalnd cell only 

Medium-scale 

variables 

0.25 degrees, 

hourly resolution 

upscaling and time 

aggregation 

1.50 degrees, daily 

resolution 
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4 Methodology 
The purpose of the present work is to forecast cumulative monthly precipitation 

using Machine Learning and investigate, at the same time, the importance of 

climate information for the forecasts. For this purpose, three ML branches have 

been designed, each considering a different level of detail in terms of climate 

information provided, ranging from providing information on teleconnection 

patterns and phases to not giving any teleconnection pattern information at all. 

Where no teleconnection information is provided, a different dataset structure is 

exploited in order to provide the specific model with more samples. This is aimed 

at investigating if an increased dataset size could counterbalance the absence of 

climatic information.  

The present work is based on the creation of a diverse set of models with quite 

different characteristics under several points of view: methodology for dataset 

creation, dataset structure, algorithm type, and architecture. Therefore, the usage of 

different types of ML algorithms does not correspond to a set of mirrored 

procedures with a simple algorithmic change. Instead, the different algorithms were 

provided with the needed specific care in terms of dataset and hyperparameters to 

allow them to work properly for the purpose of the work. Specifications about 

model-tailored pipelines will be provided in section 4.2, where each one of the used 

algorithms is explained in detail. 

The high-level structure of the work can be decomposed into three main ML 

algorithms and corresponding approaches used to forecast cumulative monthly 

precipitation: Extreme Learning Machine (ELM), Feed-Forward Neural Network 

(FFNN), and Convolutional Neural Network (CNN).  

 

The approach based on ELM builds up from the Niño Index Phase Analysis (NIPA) 

developed by Zimmerman et al [1] and the Climate State Intelligence (CSI) 

framework developed by Giuliani et.al. (2019) [2], which aims at exploiting 

information related to climate and teleconnection patterns to forecast precipitation. 

In this framework, 12 different ELM forecasting models are built (one for each 

calendar month) and trained with a set of climate variables, climate indices, and 

local atmospheric variables. Each ELM is trained with a different set of input 
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variables, i.e. the one that provides the highest model performance. This approach 

has the advantage of including a high level of climate information and of creating 

a tailored model for each calendar month, but at the same time, it has the drawback 

of having very few samples available for training the ELM models, thus reducing 

the possibility of including several input variables at the same time.  To investigate 

the benefits of having more climate information over higher number of input 

variables and samples, the framework with FFNN has been developed. 

 

The framework based on FFNN is aimed at creating a single model to predict 

precipitation all across the year, instead of having twelve month tailored models. 

As one only model is built for the whole time period, it is not possible to include 

information related to climate patterns (see details in sections 4.1 and 4.2). Different 

combinations of input variables (global climate data and local variables) are used 

to train the FFNN model and the combination which provided the best model 

performance was selected as the final input dataset to train and test the FFNN. This 

approach on the one hand has the advantage of sensibly increasing the number of 

available samples in the dataset but, on the other hand, it has the disadvantage of 

not including teleconnection patterns information and of having to incorporate the 

intrinsic diversity of the climatic processes occurring each month in one single 

model.  

 

Finally, to investigate if the loss of teleconnection patterns information could be 

balanced out by the addition of multiple local atmospheric variables as input 

features, the CNN approach has been developed. The approach based on CNN is 

very similar to the FFNN case, as it is aimed at developing one single model that 

exploits the same set of variables of the FFNN. The difference with the previous 

approach lies in the spatial extension of the input features considered, which is now 

extended to the whole Europe rather than to just one cell.  

 

Once the precipitation forecasts are obtained with the three above mentioned 

approaches, the cumulative precipitation is in turn transformed into drought classes 

according to the SPI index introduced in section 2.2.3.  

The details on the NIPA and CSI frameworks, on the models development and 

application to the case study are presented in the following sections. 
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4.1 Niño Index Phase Analysis and Climate State Intelligence 
The aim of the Climate State Intelligence (CSI) framework developed by Giuliani 

et.al (2019) [2] is to exploit the behavior of global climate variables during specific 

phases of teleconnection patterns to forecast seasonal precipitation in Lake Como, 

Italy. In this thesis, the original framework has been readapted to forecast the 

cumulative precipitation of the upcoming 30 days for the region of Rijnland, in the 

Netherlands. To do so, a chain of processing steps is involved. Firstly, the 

framework searches for the presence of relevant climate teleconnections through 

the Niño Index Phase Analysis (NIPA) framework developed by Zimmerman et al 

[1]. Then, the information extracted by NIPA is used to train 12 different Extreme 

Learning Machines (ELMs) – one for each month - targeted on seasonal local 

average precipitation on Lake Como.  

 

As already mentioned, the goal of NIPA is to detect which climate teleconnections 

could be relevant to predict the total precipitation of the upcoming month. In this 

sense, this framework operates as an input feature selection and dimensionality 

reduction method. The way in which it performs this operation is by (i) analyzing 

multiple climate indices, (ii) labeling and dividing the global and local variables 

according to the phase of the provided climate index, and (iii) identifying the 

regions of the Earth where the considered global variable is statistically 

significantly correlated with the local precipitation. The NIPA framework can be 

divided into six main steps: input data preparation, data extraction, phase 

segmentation, correlation analysis, Principal Component Analysis (PCA), and 

output reshaping. 

 

In order to run, the framework requires two kinds of data: data streams and setting 

parameters. Regarding the data streams, the framework asks for three main inputs: 

local target, global variable, and climate index. In this specific case, the local 

precipitation represents the target of the forecasting framework, i.e. the timeseries 

of monthly cumulative precipitation in the region of Rijnland. The climate index 

and global variable are those associated with the teleconnection pattern or climate 

state which may have an influence on the genesis of the local target. As discussed 

in sections 3.2.1 and 3.2.2, the NAO, SCA, EA, and ENSO were selected among 
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the teleconnection patterns, while SST, MSLP, and Z500 were selected among the 

global variables. It should be noted that NIPA processes one couple consisting of 

climate index and global variable at the time. Because the final goal of the 

framework is to define the (climate) input features to use in each monthly ELM 

model, also the analysis in NIPA is performed for each calendar month. Because of 

this and as the climate indexes of the selected teleconnections are available at a 

monthly resolution, also the global and local precipitation need to be at the same 

temporal aggregation. Therefore, the first step of the NIPA/CSI framework consists 

in preparing the input data, by aggregating to the monthly scale both local 

precipitation and global variables that originally had a daily temporal resolution. 

The aggregation has been carried out by means of a monthly cumulation for local 

precipitation and of a monthly average for SST, MSLP, and Z500.  Every single 

run of NIPA is referred to a specific month. Fixed the month, NIPA extracts 

meaningful information contained in the global variable for all the instances of that 

specific month across the provided timeseries. In each run NIPA searches for the 

correlation between the local precipitation of a certain month of the year and the n 

preceding month of the selected global variable, where n is the “aggregation level”. 

Both the month and the aggregation level are the parameters needed to run the NIPA 

framework. More specifically, the “month” parameter is referred to the month of 

the target precipitation. It can be a value between 1 and 12 (e.g., 1 = January, 2 = 

February, etc.), which defines for which month NIPA has to produce the output. 

The “aggregation level” parameter can be a number from 1 to 3 and it represents 

the number of previous months of the input variables to consider with respect to the 

month of the target. For instance, if for a NIPA run the setting parameters are month 

= 1 and aggregation level = 1, the method will look for correlation between the 

local precipitation of January and the selected global variable of December; instead, 

for month = 1 and aggregation level = 2, the method will take into account the local 

precipitation of January and the selected global variable of November and 

December. It should be noted that, when 𝑛 > 1, the considered global variable is 

averaged over the n months, and the same happens for the climate index. 

 

The second step of the NIPA/CSI framework is the data extraction, which is 

performed on the whole timeseries (e.g., 1979-2021) of climate index and global 

variable. In this phase, the climate index and the global variables of the n months 
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prior to the month stated by the month parameter are extracted and merged to form 

a tuple. The final result consists of 42 tuples (one for each year), each one 

containing two timely matched samples: one float value for the climate index and 

one gridded sample for the global data. Note that this is a year-based operation, 

therefore, from one side there will be a tuple for each year, but from the other, that 

tuple is representative of a specific month throughout the whole timeseries (e.g. all 

the Decembers). Figure 17 depicts the entire procedure. 

 

In the segmentation step, the just extracted data tuples are divided into two datasets, 

one for the positive and one for the negative phase of the climate teleconnection 

pattern considered. The division in phases is done by looking at the value of climate 

index and labeling the global variable with the same phase of the climate index, as 

depicted in Figure 18.  

 

The correlation analysis step aims at computing the correlation between the selected 

global variable and the cumulative local precipitation in Rijnland, and at filtering 

Figure 17: Data extraction step with month = 1 (light blue) and aggregation level = 1 (purple). 
In this picture the month parameter is only used as a baseline to extract the preceding data. 

Figure 18: Phase segmentation step. On the left: climate index data (phase-labeled) and global data. On the 
right: negative and positive sub-chunks of global data according to climate index labeling 
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the resulting correlation map with a set of three filtering conditions. Firstly, thanks 

to the month parameter specified in the inputs step, NIPA is able to perform the 

same data extraction procedure performed for global variables and climate index 

also for the local precipitation. Therefore, the local precipitation of all the instances 

of the same month across the timeseries is selected (e.g., month = 1, extraction of 

the local precipitation of all the Januarys) and temporally matched with the global 

data now divided into two different sub-chunks. As a consequence, two different 

datasets are now present: one containing positively classified global and local data, 

and the other containing negatively classified ones. For each of these two datasets, 

a correlation analysis between each grid cell of the global variable with the grid cell 

of the local precipitation is performed. The result consists of two correlation maps, 

one for each phase, as depicted in Figure 19. 

 

 

The two obtained correlation maps are then filtered by means of a triplet of filtering 

conditions: 

• 95% significance level: this condition was also applied by Giuliani et.al [2] 

in the CSI framework and consists in masking out all the correlation pixels 

with a significance level lower than 95%. 

• Minimum correlation threshold: after the 95% masking, all the remaining 

correlated pixels are checked against a fixed minimum correlation threshold 

and eventually masked out. During the development of the present work, 

two different minimum thresholds were tested out: 0.6 and 0.5. 

• 3x3 contiguous area check: the output of the previous two filters is then 

only checked for the presence of at least one 3x3 contiguous window of 

Figure 19: correlation maps for positive and negative phases before filtering. In the image the correlation 
has been computed between local precipitation in Rijnland and SST data according to ENSO. 
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correlated pixels. If the condition is verified, the process continues, 

otherwise, the process stops, and the output is not produced. This checking 

condition has been added to avoid considering results originating from 

spurious correlation. 

 

An example of the result of this process is shown in Figure 20. For each of the 

remaining correlated pixels (or cells) it will be extracted the corresponding time 

series of global climate variable selected.  

 

  

 The timeseries of the global variables are allocated into two matrices having a 

number of rows equal to the number of years falling in each of the two categories 

(e.g., positive or negative), and a number of columns equal to the number of 

correlated pixels. Once the two matrices are obtained, they are used to perform a 

Principal Component Analysis, which aims at reducing the number of considered 

features from the number of pixels to one. Finally, only the first principal 

component of each of the two datasets is considered. 

 

Finally, the output reshaping step is performed by concatenating in a single 

timeseries the two obtained principal components and by specifying for each of 

these values the corresponding climate index’s phase. Therefore, the resulting 

dataset is going to be composed of two features: one corresponding to the first 

principal component of the global gridded data provided as input, and the other 

corresponding to the phase of the climate index in which it was classified during 

the phase segmentation step. The NIPA framework is run for each month, for each 

Figure 20: correlation maps for positive and negative phases after filtering. In the image the correlation has 
been computed between local precipitation in Rijnland and SST data according to ENSO. 
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combination of local precipitation and global variable (e.g., SST, MSLP, and Z500), 

for each aggregation level of the global variable (e.g., 1,2, and 3), and for each 

climate signal (e.g., ENSO, NAO, SCA, and EA). Therefore, the total number of 

potential combinations for which NIPA performs the whole procedure given the 

data considered in this work is 432. 

However, of these 432 potential combinations, only those meeting the filtering 

conditions mentioned above were selected. 

4.2 Machine Learning algorithms 
In this section, each of the Machine Learning (ML) algorithms exploited in the 

present work is introduced by first providing a theoretical background and 

subsequently discussing their case study application. 

 

4.2.1 Extreme Learning Machine 
Extreme Learning Machine (ELM) is a machine learning algorithm that has been 

introduced with the aim of improving some of the limitations of classical Feed-

Forward Neural Networks (FFNN). The fundamental building block of an ELM is 

called “neuron” and can be interpreted as a processing unit progressively 

transforming inputs values into outputs values. This transforming process is based 

on a mapping between features and target that the algorithm learns and materializes 

by assigning weights to the connections between neurons. The training process of 

ELMs consists of a simple inverse operation used to compute the output weights 

connecting hidden and output layers. The one-time nature of this training procedure 

directly translates, for the majority of the cases, into a significantly higher learning 

speed. On top of that, further analysis showed how ELM have higher chances to 

reach the global optimal solution with respect to traditional Single-hidden Layer 

Feedforward Neural networks (SLFNs) [61]. 

Analytically, ELM can be expressed as follows: 

Given N training samples (xi, ti) where xi is the input and ti the target and given an 

ELM with 𝑁. hidden nodes, the output vector can be determined with 
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Equation 1 

oi=/ βj		f(xi· wj + bj	)
N#

j=1

   i=1, …, N 

 

Where wj and bj are respectively the weights connecting the input layer to the hidden 

layer and the biases of the hidden layer, βj is the vector containing all the links 

between the hidden layer and output layer and f(∙) is the activation function. 

Equation 1 can be compactly written as 

 
Equation 2 

Hβ=O 

 

Where: 

 

H = 3
𝑓(𝑤$ ∙ 𝑥$ + 𝑏$) ⋯ 𝑓(𝑤%# ∙ 𝑥$ + 𝑏%#)

⋮ ⋱ ⋮
𝑓(𝑤$ ∙ 𝑥% + 𝑏$) ⋯ 𝑓(𝑤%# ∙ 𝑥% + 𝑏%#)

=
%×%#

 

 

𝛽 = 3
𝛽$
⋮
𝛽%#
=
%#×$

	,				𝑂 = 3
𝑜$
⋮
𝑜%#
=
%#×$

 

 

H is the output matrix of the hidden nodes and contains all the input xi multiplied 

by the weights wj (connecting the input layer and the hidden layer) and summed to 

the biases bj of each hidden layer’s neuron. Each of these terms is then wrapped 

into the neuron’s activation function f(∙). In order to minimize the loss function 

during the ELM training process, weight and biases are randomly assigned without 

taking into account the input data. Therefore, Equation 2 becomes a linear system 

allowing the output weights vector 𝛽B  to be analytically determined with a least-

square solution as in Equation 3 

 
Equation 3 

𝛽B = 𝐻'	𝑇 
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with 𝐻' being the Moore-Penrose generalized inverse of the matrix H and T being 

the vector containing all the targets of the training set. 

In the past decades, FFNN has been widely used to model natural and artificial 

phenomena. One of the reasons why relates to their capabilities to adequately 

approximate highly non-linear relationships for contexts in which a parametric 

approach becomes hard to implement [62]. The majority of the learning algorithms 

used to train FFNN rely on iterative processes that are not guaranteed to reach the 

globally optimal solution due to the presence of local minima in which gradient 

descent approaches can get stuck [62]. Extreme Learning Machine (ELM) is aimed 

at improving the above aspects for SLFNs.  

 

4.2.1.1 Case study application 

In the present work, 12 different ELM models have been created, one for each 

month. The datasets used for the creation of the models are structured as a 

combination of the local variables described in section 3.2.3, and the global 

information extracted by NIPA from global variables and climate indices. As 

previously said, NIPA is a statistical framework that performs feature selection and 

dimensionality reduction on timeseries of data referred to all the instances of the 

same month across the whole period. Blending that information with the intention 

to build 12 different models as in the work of Giuliani et.al. [2] the drawback of 

using NIPA relates to the reduction of the total available samples for training. Each 

of the 12 models, indeed, results in having one sample for each year of the 

timeseries for a total number of 42 samples per model. Such a scarcity in the dataset 

size generates two main issues related to phenomena generalization and model 

testing. The first issue is addressed by considering ELM as the algorithm. One of 

the main advantages of using ELMs is indeed the reduced number of parameters 

that they need to learn in order to reach good generalization performances. For what 

concerns the testing part, in normal circumstances the procedure to be applied is 

quite straightforward: (i) divide the entire dataset into two chunks, one for training 

and one for testing purposes, (ii) further detach a part of the training set for 

validation purposes, (iii) perform the training, (iv) select the best-performing model 

based on validation error, and (v) perform the final test of the best-performing 

model. In the present scenario, it is clear that the reduced number of samples makes 
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unfeasible a proper training-testing splitting of the dataset. Thus, as in the work of 

Giuliani et.al. [2], the performance metrics of the 12 models have been determined 

with a Leave One Out Cross-Validation (LOOCV) procedure. Moreover, the 

datasets have been constrained to a maximum number of 4 variables (plus an extra 

feature indicating the phase label of the climate index if one or more global 

variables are considered). In these datasets, the maximum number of considerable 

global variables for a single dataset has been fixed to 2. The reason for that relates 

to the method in which more global variables are integrated into the same dataset. 

As mentioned in section 4.1, indeed, the output produced by NIPA is composed of 

two features: one corresponding to the first principal component of the global 

gridded data provided as input, and the other corresponding to the phase of the 

climate index in which it was classified during the phase segmentation step. In case 

more than one global NIPA output is considered in the same dataset, the two distinct 

phase label information of the two NIPA outputs are merged into a single one. The 

resulting labels provide, instead of the pure phase information, an integer 

representing the unique combination of the two different phase labels (i.e., climate 

state) as shown in Table 10.  

 
Table 10: merging methodology for more than 1 NIPA output belonging to the same dataset. N.B: the real 
dataset’s column is a time series of integers values; here phase names are used for ease purposes. 

Phase label 1 Phase label 2 Climate state 

Positive Negative PN 

Negative Positive NP 

Negative Negative NN 

Positive Positive PP 

 

This directly implies an internal segmentation of the set of data, which, if extended 

to more than two variables, can have a further mitigating effect on the semantic size 

of the dataset. 

 

4.2.2 Feed-Forward Neural Network 

The advancement in computational performances that took place in the previous 

decades has enabled the diffusion of several computationally demanding Machine 

Learning algorithms that were theorized in the past. One of the most evident 

examples of this computational enablement is represented by the highly cross-
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fielded application of Artificial Neural Networks (ANN) that took place in the 

recent past. ANNs are today widely exploited in many diverse contexts such as 

pattern recognition, classification, signal processing, and stock market prediction 

[63]. The basic building block composing an ANN is called “neuron” and can be 

thought of as a processing unit progressively transforming inputs values into 

outputs values. This transforming process is based on a mapping between predictors 

and predictand that the algorithm learns and materializes by assigning weights to 

the connections between neurons. Connected neurons are typically organized in 

different layers and, considering a Feed-forward Fully Connected Neural Network, 

each neuron is connected to all the other neurons of the preceding and subsequent 

layer. Each neuron belonging to the network receives, as input, a set of weighted 

information coming from the neurons of the previous layer and produces, as output, 

a value determined by passing the sum of all these inputs into an “activation 

function” just after the addition of a bias term. Once the information went through 

the whole network, it reaches the output layer which produces the final prediction. 

In order for that prediction to be meaningful, the set of weights (i.e., the connection 

between neurons) has to be properly tuned to allow the network to transform the 

input numerical values into output predictions. This tuning process can be achieved 

thanks to the usage of different learning algorithms of which the most popular and 

used is called “back-propagation”.  

The essence of back-propagation consists of the update of network weights based 

on a backward network propagation of a gradient vector where each item is defined 

as the derivative of a loss function with respect to a weight [63]. In order to compute 

the error based on a loss function, a set of “true” targets is needed, thus making the 

described setting a supervised learning approach. Back-propagation is an iterative 

process that progressively adjusts the network's parameters by means of a gradient 

vector, analytically this is translated in what follows: 

Defined the error ej(n) as the difference between the desired (true) output and the 

actual (predicted) output, and fixed the Residual Sum of Squares (RSS) as the loss 

function, it is possible to write 

 
Equation 4 

𝑅𝑆𝑆(𝑛) =
1
2/𝑒(!(𝑛)
(∈*

=	
1
2/I𝑦( − 𝑦K((𝑛)L

!

(∈*
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where yj represents the desired output for the neuron j,  yKj(n) the real output of 

neuron j with the network’s weight configuration at iteration n, and Q the set of all 

the outputs neurons. Supposing to exploit the backpropagation algorithm in a 

“sequential mode” (i.e., weight update after each training example provided during 

the training phase), the mathematical formulation of back-propagation can be 

described as follows: 

Considering the equation of the output of neuron j, 

 
Equation 5 

𝑦K((𝑛) = 𝑓 M𝑏( +/𝑤(+(𝑛)	𝑦+(𝑛)
,

+-$

N 

 

where f(∙) is the activation function, bj is the bias term of  neuron j and wji are the 

weights of the connections between neuron j and each of the m neurons i. The 

updates of all weights wji connected to the neuron j are proportional to the derivative 

of the RSS(n) with respect to the same weights: 

 
Equation 6 

𝜕𝑅𝑆𝑆(𝑛)
𝜕𝑤(+(𝑛)

 

 

Considering Equation 4 and Equation 5, and applying the chain rule to Equation 6, 

it is possible to obtain what follows: 

 

𝜕𝑅𝑆𝑆(𝑛)
𝜕𝑤(+(𝑛)

=
𝜕𝑅𝑆𝑆(𝑛)
𝜕𝑒((𝑛)

	
𝜕𝑒((𝑛)
𝜕𝑦K((𝑛)

	
𝜕𝑦K((𝑛)
𝜕𝑤(+(𝑛)

 

 

where 

 
Equation 7 

𝜕𝑅𝑆𝑆(𝑛)
𝜕𝑒((𝑛)

= 𝑒((𝑛) 
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Equation 8 

𝜕𝑒((𝑛)
𝜕𝑦K((𝑛)

= 	−1 

 
Equation 9 

𝜕𝑦K((𝑛)
𝜕𝑤(+(𝑛)

= 𝑓. P𝑏( +/𝑤(+

,

+-$

𝑦+(𝑛)Q𝑦+(𝑛) 

 

Replacing Equation 7, Equation 8, and Equation 9 in Equation 6, the result is 

 

𝜕𝑅𝑆𝑆(𝑛)
𝜕𝑤(+(𝑛)

= 	−𝑒((𝑛)𝑓. P𝑏( +/𝑤(+

,

+-$

𝑦+(𝑛)Q𝑦+(𝑛) 

 

Finally, the weight correction Δ𝑤(+(𝑛) to be applied to 𝑤(+(𝑛) can be defined by 

exploiting the delta rule as follows: 

 

∆𝑤(+(𝑛) = −𝛼	
𝜕𝑅𝑆𝑆(𝑛)
𝜕𝑤(+(𝑛)

 

 

Where 𝛼 is said to be the learning rate which determines the step size of the 

movement toward the loss minimization. 

 

4.2.2.1 Case study application 

This case study application is aimed at building one single Feed-Forward Neural 

Network (FFNN) with 30 days of lead-time. In contrast with the approach 

introduced in section 4.2.1.1, in this case, the aim is to produce one single model 

able to predict cumulative local precipitation in Rijnland all across the year 

exploiting the same set of input features. Therefore, the provided set of features 

should be carefully chosen to be informative enough to allow the model to 

generalize the mapping between features and target across all months of the year. 
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If considering the same dataset size as ELMs, the need for a fixed set of features 

covering the entire year reasonably pushes toward a decrease in generalization 

performances. This is due to the intrinsic seasonal variability affecting each month 

and to the higher difficulty in finding a set of features that is representative of all 

the months at one time. For that reason, an increase in the dataset size is needed. 

However, as mentioned in the data section, the timeseries of the considered climate 

indices have a monthly temporal resolution, meaning that it is not possible to 

temporally match them with data having a temporal resolution different from one 

month. The implications of that are twofold:  

• It is no more possible to explicitly embed climatic information in the pool 

of features; 

• It is no longer possible to exploit NIPA as a pre-processing framework due 

to the absence of climatic information.  

In order to compensate for the increased difficulty of the mapping task between 

predictors and predictand, and the complete absence of explicit climatic 

information, the dataset for the present work’s branch has been built based on a 30 

days moving aggregation thus increasing the number of samples. This aggregation 

window slides over the whole daily data timeseries producing a total number of 

samples greater than 15000. The base idea of this compensation process is to 

investigate if a considerably higher number of samples could counterbalance the 

complete absence of climatic information by allowing the FFNN to learn the 

underlying relationships solely based on local and global variables. 

As it is possible to infer, this work’s branch is not a simple mirroring of the 

monthly-based ELMs introduced in section 4.2.1. Here the complete pipeline is 

modified by: (i) considering just one model for prediction across the whole year 

instead of twelve different models, (ii) not considering the climate index in the pool 

of input variables, (iii) not exploiting NIPA as pre-processing framework anymore, 

(iv) having a considerably higher number of samples. Even if this approach could 

apparently seem disconnected with respect to the previous branch, it is actually 

meant to investigate if, at sub-seasonal lead times, the exploitation of a climatic pre-

processing framework such as NIPA brings some benefits to the final model by 

better bridging local and global climate contexts. 
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Since the aim is still to bridge local and global information and since FFNNs need 

1D timeseries as input features, careful planning of how to build the final datasets 

is needed.  

Starting from local Rijnland variables, they already come in the form of a 

unidimensional timeseries because referred to a single grid cell.  

Global data, instead, is still in the form of a timeseries of gridded data covering the 

entire world. To be able to embed these global data in the final datasets, a 

dimensionality reduction has to be performed to shrink these 2D timeseries into 1D 

timeseries. For doing so the global data are subjected to a Principal Component 

Analysis (PCA) after which just the first principal component is considered. In 

order to be as much consistent as possible with the pre-processing applied by NIPA 

in the previous branch, the mentioned PCA is performed just after a pseudo-

replication of the NIPA correlation step. Specifically, the applied pre-processing 

pipeline is the following:  

 

1. 2D timeseries of global data are considered. 

2. Pixel-wise means subtraction to center the data with respect to the mean. 

3. Application of the 30 days moving average on the 2D timeseries. 

4. Computation of spatial correlation between local Rijnalnd precipitation and 

global gridded variables (as performed in NIPA). 

5. Filtering of the resulting correlation map based on a 95% significance level 

(as performed in NIPA). 

6. Reshaping of the 2D timeseries - now masked based on the filtered 

correlation map - into a matrix with a number of columns equal to the 

number of correlated pixels and a number of rows equal to the number of 

considered timestamps. 

7. Application of PCA procedure. 

8. Selection of the first principal component (which will represent the global 

information in the final dataset). 

 

In essence, the performed process can be considered a simplified version of the 

NIPA framework in which no climatic information is provided. From now on it will 

be referenced with the name “pseudo-NIPA”. 
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Once clarified how different spatial scales are reconciled in the same dataset, it is 

finally possible to articulate the dataset structure with three main points. The dataset 

can indeed be composed of:  

 

• Timeseries of 30 days moving average for all the local variables (but total 

precipitation). 

• Timeseries of 30 days moving cumulation of total precipitation. 

• Timeseries of global data PCA values coming from pseudo-NIPA pre-

processing. 

 

Given the complex procedure underlying the reconciliation of different spatial 

scales inside the same dataset, a careful process has to be planned in order to allow 

for a coherent splitting procedure of training and testing data. Indeed, to be 

coherent, the mask derived after the correlation step has to be exclusively based on 

training data but equally applied to testing. On top of that, the PCA procedure 

applied in pseudo-NIPA must be exclusively applied to training data, and testing 

data have then to be reprojected in the same PCA space. This is because computing 

correlation or performing the PCA on the whole dataset and splitting afterward, 

intrinsically adds some latent information of the testing set in the training set and 

vice versa. This causes the final testing procedure to be not completely based on 

data that the model has never seen before. In addition to that, further issues can arise 

from the operational point of view since the pipeline is not going to be reproducible 

for new samples, and the training procedure has thus to be repeated. 

To accommodate a dataset creation process that considers all these steps, the 

blueprint in Figure 21 has been planned.  
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Firstly, once all the variables to be included in the dataset have been identified, the 

dataset is split into training and testing. At this point in the process, timeseries are 

still in their original form, meaning that global data are still 2D timeseries of gridded 

samples. The training data stream is then considered and further segmented into 

local data, global data, and target (i.e., cumulated precipitation in Rijnland). At that 

point, pseudo-NIPA computes the spatial correlation between global variables and 

the target in order to produce a correlation map subsequently filtered by applying a 

95% significance level mask. The global variables belonging to the test data stream 

created at the beginning are now considered for applying a filtering procedure based 

on the just obtained mask. At the end of the masking step, there are still two 

different data streams: masked training data and masked testing data. The (global) 

masked training data are then passed into the PCA step of pseudo-NIPA and the 

first principal component is extracted. Thus, the testing data stream is now 

considered and projected in the previously determined PCA space for the extraction 

of the first principal component for testing. Finally, for both streams, global and 

local variables, now dimensionally matching, are reconciled to create the final 

dataset. 

 

The final goal is to compare different ML algorithms coming from the different 

branches of the present work to gain some insight into which is a fair approach to 

Figure 21: dataset creation blueprint 
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follow while creating a model for sub-seasonal precipitation prediction. Given this, 

and remembering that the branch described in section 4.2.1.1 is composed of 12 

different models, appears evident that there is not an immediate fair comparison 

between the two settings. In order to enable the comparison of the single model 

against the twelve different monthly-based models, a proper structuring procedure 

of the test set has been embedded into the blueprint of Figure 21. As depicted in 

Figure 22, the training-test splitting divides the data into two main hyper-categories: 

“clean” and “dirty” samples. The term clean is used to reference samples averaged 

(or cumulated in case of tp) with the 30 days moving windows positioned such that 

it comprises the first day of a specific month and the following 29 days (i.e., it 

averages or cumulates the first 30 days of the month). Whatever other sample is 

instead said to be dirty. 

 

 

It is clear that if the aim is to perform a month-by-month comparison of the two 

branches, the test set of the present branch has to be randomly sampled with a high-

level pattern ensuring an even distribution of samples across all the months. At the 

same time, given that each sample of this branch is obtained through a moving 

average or cumulation, considering dirty samples could be misleading for the 

identification of the actual monthly-based performance of the model. Therefore, the 

monthly test procedure will be based on an equal number of clear samples spread 

Figure 22: definition of clear and dirty samples after the 30 days moving 
windows aggregation process 
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across the twelve months. The test set extracting procedure depicted in Figure 23 is 

straightforward: after the average/cumulation, each resulting sample is labeled with 

the day and month of the first element in the previously applied moving window. 

At that point, fixed at 80-20 the training-test split, for each month i : 

• all the samples labeled with month i and day 1 are selected and 20 samples 

out of 42 are randomly extracted.  

• all the samples labeled with month i and day j with j ≠ 1 are selected, and 

241 samples are randomly extracted. 

That results in having the exact same number of clean and dirty samples for each 

month.  

At the end of the training of the best-performing model, the testing procedure is 

therefore going to be twofold: on one side the “global” model performances over 

the whole year are tested with the entire test set, on the other, a month-by-month 

testing procedure based only on clear samples is performed to allow for the 

comparison with the branch introduced in section 4.2.1.1. 

 

 

The above-described dataset-building process is applied for all the combinations of 

variables with a number of features ranging from 5 to 10. Each of these datasets is 

then fit to a 2-layered FFNN whose hyperparameters are tuned according to a 

bandit-based optimization approach called Hyperband [64] based on the validation 

loss. The validation loss is computed on a further 20% detachment of samples from 

Figure 23: Training-Testing splitting procedure 



 67 

the training data. High-performing hyperparameter settings are founded for the 2-

layered FFNNs of each dataset, and the training of models based on these settings 

is performed. All these training processes are based on an early stopping condition 

monitoring validation loss to prevent it to rise after reaching its minimum. The best-

performing model is finally selected by looking at the last epoch of the validation 

loss. 

 

4.2.3 Convolutional Neural Network 
When thinking of classical FFNN, their structure is typically composed of the main 

elements introduced in section 4.2.2. Thus, the main building blocks are essentially 

one input and one output layer, plus one or more hidden layers in between. The 

input layer takes an input vector X, the network performs some function F on it, and 

the output layer returns the output vector Y as depicted in Equation 10 [65]. 
Equation 10 

F(X,W)=Y 

 

In the Convolutional Neural Network (CNN) setting, although the general idea and 

the information flow do not change, the building blocks are different. A CNN model 

mainly consists of a concatenated sequence of convolutional layers and pooling 

layers. In this layered structure, the convolutional layer takes a single or multi-

channeled image (e.g., grayscale or RGB) as input and applies the convolution 

operation by sliding on it a weight vector horizontally as well as vertically. This 

weight vector, most commonly named filter or kernel, is usually squared shaped 

(e.g., 3x3, 5x5, etc.) and, by sliding on the input image, produces the so-called 

feature maps [65]. Essentially, considering a squared kernel with dimension k, we 

can interpret the convolution operation as a single neuron sliding over the entire 

image and computing a weighted sum of all the pixels. The weights exploited in 

this operation are the value stored in the kernel itself. The just computed k × k 

weighted average is now a single value that will be stored in the feature map 

mentioned before. More than one kernel can be used in the same convolution layer, 

thus producing a number of different feature maps equal to the number of 

considered kernels. The output aij produced after a convolution operation and stored 
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in the feature position (i,j) of the produced feature map, is computed as in Equation 

11: 
Equation 11 

𝑎+( = 𝜎((𝑊 ⋆ 𝑋)+( + 𝑏) 

 

where ⋆ represents the convolution operation, X the input, W the kernel weights, 

and 𝜎 the activation function. 

At that point, the feature maps produced by the convolution layer are passed to the 

pooling layer. The general advantages of using this layer relate to the great 

reduction in the number of parameters and in the introduction of translational 

invariance [65]. The pooling layer simply takes the obtained feature maps, selects 

a window in each of them (i.e., pooling window), and applies a pooling function to 

the pixels of the feature maps lying in that window. Different pooling functions 

exist such as MaxPooling or AveragePooling. An example of the application of 

MaxPooling on a 4x4 feature map with a 2x2 pooling window is shown in Figure 

24. 

 

 

Filter weights, as happens for connection between neurons in the context of FFNN, 

are pre-initialized. The initial CNN prediction performances, based on these pre-

initialized sets of kernel weights, are expected to be low. The training process is 

aimed at adjusting these parameters thus allowing the model to learn an appropriate 

set of weights. Having a properly tuned set of weights enables the extraction of 

relevant features from the input images thus increasing prediction skillfulness. The 

learning process is performed in the same way as FFNN: the output of each layer is 

determined, and the error introduced by each of these outputs in the last layer is 

Figure 24: example of application of MaxPooling function. 
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computed. The network optimization is then executed by backpropagating the 

obtained gradients [65] as reported in section 4.2.2. 

 

4.2.3.1 Case study application 

The present work branch can be thought of as a mirroring of the FFNN branch 

introduced in section 4.2.2.1. Also in this case, indeed, the aim is to build a single 

model predicting cumulative precipitation with a 30 days lead time across all twelve 

months of the year. On top of that, since the CNN model training is highly 

computationally demanding, has been decided not to explore different 

combinations of variables as done in the case of FFNN. Therefore, CNN training 

will be exclusively performed on the set of features considered by the best-

performing model resulting from the FFNN branch.  

Although input variables are the same as the best FFNN, their structure is adapted 

to the new nature of the algorithm. A CNN, indeed, is meant to handle image data. 

In the present case, this translates in passing from considering local and global 

variables as unidimensional timeseries, to considering them in gridded form. 

Specifically: global variables are considered as gridded data covering the entire 

earth’s surface with a resolution of 1.5° × 1.5°; local variables, that for this branch 

are going to be called “medium-scale variables”, are considered as gridded data 

covering the European area with the same resolution of 1.5° × 1.5°. The aim of this 

branch is to map these global and medium-scale information to the same target as 

before: the 30 days cumulative precipitation in Rijnland. In the previously 

introduced branches, both NIPA and pseudo-NIPA were basically aimed at 

extracting the most relevant features from the global data image, and dimensionally 

reducing them with a PCA. The PCA output was then a unidimensional timeseries 

of global information to be used for FFNN training together with the local 

unidimensional timeseries. Since CNNs are meant to handle image data, the 

dimensionality reduction step is now no more needed, and no pre-processing 

framework such as NIPA or pseudo-NIPA is used. Since the set of variables used 

for the creation of the CNN model is derived from the best-performing FFNN, even 

in this case no explicit climatic information (i.e, climate index timeseries) is 

provided to the network. Reasonably, this can potentially increase the difficulty of 

the mapping process by leaving the model searching for a meaningful connecting 
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pattern between global and medium-scale variables. In order to compensate for the 

increased difficulty of the mapping task, the dataset for the present work’s branch 

is built with the same process as the FFNN case. The only difference relates to the 

exploitation of image data. The dataset is indeed based on a 30 days moving 

aggregation (i.e., cumulation for precipitation and average for the other variables) 

sliding over the whole daily timeseries and producing a total number of samples 

greater than 15000.  

The main idea behind the blend of removing explicit climatic information and 

increasing the number of available samples is the same as in the FFNN branch: to 

investigate if a considerably higher number of samples could counterbalance the 

complete absence of climatic information by allowing CNN to learn the underlying 

relationships solely based on medium-scale and global variables.  

As mentioned before, differently from the FFNN branch, the extension of the 

medium-scale variable comprises now a wider area. Local variables for FFNN were 

indeed exclusively referred to the Rijnland grid cell, while medium-scale variables 

are now referred to the whole European area. The reason for that originates from 

the idea of gradually shifting from the global context to the local one passing 

through a medium-scaled bridging point. In addition, as mentioned in section 3.1, 

in the pool of information that the Rijnland waterboard inserts in the drought 

reports, also meteorological observations related to other specific locations are 

present. Therefore, considering medium-scale information allows for the implicit 

consideration of variables not only related to Rijnland but also to its wider 

surroundings. 

The final goal is always to monthly compare the ML models coming from the 

different branches of the present work. To enable such a comparison the same 

structuring procedure of the test set used for FFNN has been implemented. 

Therefore, the data are divided into clean and dirty samples as shown in Figure 22, 

and randomly sampled with a high-level pattern ensuring an even distribution of 

samples across all the months as shown in Figure 23. The proportions are the same 

of the FFNN case.  

Moreover, to enable hyperparameter tuning of the model built on the only provided 

dataset, a further 20% of data is detached from the training set for validation 

purposes. The hyperparameters tuning process is performed by exploiting 

Hyperband [64], the same optimization approach used for FFNN. 
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Given the different extents of global and medium-scale gridded data, the input 

variables of the CNN cannot simply be stacked and passed to the convolutional 

layers. On one hand, global data are presented with a shape of 121×240, on the 

other, medium-scale information covering the European area has a shape of 31×39. 

In order to reconcile these two different data extents, a double-steamed CNN setup 

was thought. Therefore, as shown in Figure 25, global and medium-scale variables 

are passed as input into two distinct CNN streams for each of which a customized 

hyperparameters setting is performed. Moreover, for the global data CNN stream, 

4 distinct convolutional + max pooling layers are applied, for the medium-scale 

data CNN stream, instead, just 2 of these layers were used. Once both data streams 

have reached the end of their respective CNN, the final output feature maps are 

flattened and connected to a dense layer with n neurons to allow for a final merging 

of the features extracted from the global and the medium-scale context. Finally, the 

previous layer is connected to the last dense layer provided with a single neuron to 

produce the final prediction. In addition, in between the two dense layers, a dropout 

layer is inserted in order to add a regularization effect preventing possible 

overfitting phenomena. The operation performed by this dropout layer is to 

randomly set units connecting to the last layer to 0 at a frequency previously 

specified by a rate representing the fraction of the input units to be switched off  

(e.g.,  0.1 translates in switching off 10% of the units). This process is performed at 

each training step and inputs that have not been switched off are appropriately 

scaled by 1/(1 - rate) so that the sum over all inputs remains unchanged [66]. 

 

To adequately learn local weather patterns, it is important to provide CNNs with 

data standardized by accounting for the local spatial difference in variabilities [67]. 

In order to enable this accounting process, a proper standardizing procedure has to 

be applied. From this point of view, it is possible to identify two opposite 

standardization approaches: 

• Global standardization: consists of applying a single value for both mean 

and standard deviation over the entire area. This approach could be 

problematic thinking about the huge differences that different regions of the 

world (e.g., equator and poles) can have with respect to the same variable. 
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That could bring poor accuracy, especially for CNN which is translation-

invariant [3]. 

• Pixel-wise standardization: consists of applying different means and 

standard deviations coefficients pixel-wise thus having several sets of 

parameters equal to the number of pixels covering the area. This approach 

can translate into losing relevant information which would otherwise be 

represented through the local spatial differences in variability [3] 

 

Figure 25: structure of the CNN model. For each layer input and output shapes are specified. 
"None" is referred to the batch size. 
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In order to mitigate the drawbacks of these two opposite approaches, the Local 

Area-wise Standardization (LAS) procedure proposed by Grönquist et.al [3] has 

been applied (Figure 26). The first step of LAS is to apply moving average and 

moving standard deviation filters to the training set. The filter’s shape is matched 

with the shape of the kernel that will be used in the convolutional layers. The 

resulting mean and standard deviation maps have now reduced dimensions with 

respect to the original data. In order to make the two maps' dimensions match the 

data shape, LAS pads the latitude-related missing grid cells using edge values and 

wraps around the longitude [3]. Finally, a Gaussian filter is applied to the just 

obtained padded maps.  

Essentially, sequencing the just mentioned padding and blurring steps, the LAS 

approach allows for conserving the spatial differences in variability between pixels. 

 

 

4.3 Drought forecasting with SPI 
As anticipated in section 2.2.3 drought conditions can be estimated by exploiting 

drought indices. In general, the aim of these indices is to provide an interpretable 

picture of drought occurrence in a specific place, and to act as a key tool to 

transform raw data into meaningful information for an improved decision-making 

process. In order to create a direct mapping between the cumulated monthly-based 

precipitation predicted by all the previously described models, and the Rijnland 

drought conditions, the present work employs the Standardized Precipitation Index 

Figure 26: Local Area-wise Standardization (LAS) schematics. The depicted procedure is repeated two times, one 
for mean and the other for standard deviation filter thus obtaining two different "standardization maps" [54] 
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(SPI). The SPI, often identified with “SPI-n” where n corresponds to the rainfall 

accumulation period, is a statistical indicator that compares the total precipitation 

registered in a given place during a period of n months, against the long-termed 

precipitation distribution for the same location and time frame [68]. 

 

The main reason behind the choice of the SPI index relates to its capability to be 

determined thanks to the sole usage of cumulative precipitation data. Therefore, no 

further information with respect to the model output is needed to predict the drought 

class in the context of the present work. On top of that, in 2010 the World 

Meteorological Organization (WMO) recognized SPI as a key meteorological 

drought indicator that should be operationally generated by every meteorological 

center [68], and it has been recently included in the drought monitoring reports 

produced by the water board of Rijnland. The SPI computation process is 

articulated in the following steps: first, a Probability Density Function (PDF) is 

fitted to the frequency distribution of cumulative precipitation referred to a specific 

place and cumulation time range (e.g., 1 month). Then, the just obtained probability 

distribution is passed into the standardized normal distribution with zero mean and 

variance one to obtain the SPI value (Figure 27). Based on the SPI values, seven 

different classes can be identified, each describing a different precipitation 

condition. The SPI class is nothing but a value representing the units of the standard 

Figure 27: transformation of predicted precipitation into SPI class via 
Gamma Cumulative Distribution Function (CDF) and standardized normal 

variable [57] 
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deviation of the considered model output with respect to the long-term mean of the 

standardized distribution [68] (Figure 28).  

 

 

In the present case, to forecast drought conditions it is used the SPI-1, since the 

ML-based forecasts produced are referred to the total cumulative precipitation of 

the upcoming one month. Once all the best models for each of the three ML 

frameworks have been trained, the corresponding precipitation forecasts of the test 

set are used to assess the performances of drought forecasting by means of SPI-1. 

In this scenario, the ML-based forecasts, the target observations, and the ECMWF 

forecasts are converted to SPI drought classes and compared against each other to 

obtain the classification success rate for each month (i.e., number of correctly 

classified samples / number of total samples). 

To do so, the operative procedure followed consists of (i) fitting a gamma 

distribution to the timeseries of ERA-5 observed 1-month cumulative local 

precipitation; (ii) saving the parameters of the gamma distribution ; (iii) computing 

the probability of the forecasted precipitation values by using the parameters of the 

gamma distribution previously saved; (iv) transform the gamma probability into the 

normal distribution with 0 mean and variance 1 to obtain the SPI value. The 

procedure is repeated on the target and on the predicted vectors of each model test 

set and for each month. The classes obtained by the target are then used as true 

labels and are compared with the classes obtained from the vector of prediction to 

compute the success rate (# correct classification / # total test samples). 

 

  

Figure 28: Relationship between SPI classes and normal distribution [71] 
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5 Results and discussion 
This section presents the results of the precipitation and drought forecasts obtained 

with the three different frameworks based on machine learning. In the following 

sections, the results of the ML-based approaches and a comparison of models 

performances are presented first, followed by a discussion on the influence of 

climate information on the forecasting capabilities of the models. Then, a 

comparison of the produced forecasts against the baseline ECMWF products is 

shown, followed by the assessment of the forecasts in terms of drought prediction 

and by a final discussion. 

5.1 Machine Learning models’ performances 
In this study, three different machine learning models were created: a set of twelve 

ELMs models predicting cumulative precipitation of the upcoming month, for each 

month; a single FFNN model predicting cumulative precipitation across the entire 

year with a lead time of 30 days; a single CNN model predicting cumulative 

precipitation across the entire year with a lead time of 30 days. In the following 

sections, the results of the NIPA framework and in terms of machine learning 

models architecture are presented first, followed by a comparison of performances 

among all the models and a linear regression model.  

 

5.1.1 Niño Index Phase Analysis and Climate State Intelligence   

The Niño Index Phase Analysis (NIPA) has been applied as an input feature 

selection and dimensionality reduction method to detect climate teleconnection 

patterns that might be relevant to forecast one-month precipitation.  The outputs of 

the framework are the principal components (one per each teleconnection phase) of 

the global variables correlated with the precipitation of the target location, during a 

specific teleconnection pattern phase. 

As already discussed in section 4.1, in the application of NIPA, only the areas 

highly correlated with the precipitation of the target locations were considered to 

run the PCA on the global variables. More specifically, two different minimum 

correlation threshold levels were tested, first of ± 0.6, and second of ± 0.5. The 

application of these two different thresholds produced quite different results, both 
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in terms of correlated areas and of produced outputs, and hence of input feature 

combinations.   

The 0.6 minimum threshold trial resulted in a total number of produced outputs of 

34, meaning that more than 92% of the combinations were discarded due to a 3x3 

contiguous area check failure. Looking at Figure 29 and keeping in mind that the 

aim is to produce one model for each month, it is possible to observe how specific 

months have little to no presence of NIPA output. This means that in the months in 

which there is no output at all (e.g., January, May) it is unfeasible to exploit any 

kind of global information for the model training, causing the bridging between the 

global and local context to be inexistent.  

 

The coefficients in Figure 29, are Pearson coefficients coming from a linear 

correlation analysis between local precipitation and global variable. The reason why 

it has been decided to perform a second trial with a 0.5 threshold is precisely related 

to the linear nature of the Pearson coefficients. Indeed, the Machine Learning 

algorithm fed with the information coming from NIPA is going to search for 

relationships among predictors and predictand that could be highly non-linear. 

Therefore, imposing a high threshold could be unnecessarily severe, especially if 

resulting in a small to null pool of results. On the other side, completely removing 

the correlation threshold would increase the number of outputs issued by NIPA 

resulting in too many predictors among which choose to build the ELM models. 

Therefore, a middle ground approach has been applied. 

 



 78 

 

Figure 29: summary of the outputs issued by the NIPA run with 0.6 Pearson correlation threshold. The two 
groups of tables are organized in six main columns (one for each month) and three main rows (one for each 

possible value of the aggregation level parameter from 1 (top) to 3 (bottom)). Each table shows all the 
combinations between each phase of the considered climate indices and each global variable. Every cell 
shows the Pearson correlation value of a specific combination, if zero (red) NIPA has not produced the 

output for that combination, if different from zero (green shaded) the output for that combination has been 
produced. 
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As can be seen in Figure 30, the 0.5 minimum threshold trial resulted in a total 

number of outputs equal to 212, meaning that almost 50% of the total number of 

producible outputs have been issued by NIPA. The reason behind such a rising in 

the number of produced outputs is relatable to the widening effect that the lower 

correlation threshold has on the correlated areas remaining on the map, as it can be 

seen from Figure 31. Wider correlated areas directly translate in greater chances to 

positively pass the 3x3 contiguous area check condition and produce the output. 

Figure 30: summary of the outputs issued by the NIPA run with 0.5 Pearson correlation threshold. The two 
groups of tables are organized in six main columns (one for each month) and three main rows (one for each 

possible value of the aggregation level parameter from 1 (top) to 3 (bottom)). Each table shows all the 
combinations between each phase of the considered climate indices and each global variable. Every cell 
shows the Pearson correlation value of a specific combination, if zero (red) NIPA has not produced the 

output for that combination, if different from zero (green shaded) the output for that combination has been 
produced. 
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The results obtained in the 0.5 trial are going to be the ones considered in the design 

of the ELMs models. 

 
5.1.2 Extreme Learning Machine 

In the approach based on ELM, twelve models were produced to forecast 

precipitation for each calendar month. Each model is characterized by a specific 

configuration in terms of the number of neurons, activation function, set of input 

features, which has been determined in the training and validation phase. The 

summary of the hyperparameters and best sets selected for each month is provided 

in Table 11. 

  

Figure 31: widening effect of the correlated areas by considering a lower correlation threshold. The NIPA inputs 
considered in the plot are NAO index and MSLP global variable with aggregation level 1 in August. Results based on 

0.6 (left) and 0.5 (right) thresholds for both positive and negative phases. 
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Table 11: Hyperaparameters configuration of the 12 trained Extreme Learning Machines. In the "Dataset" 
column the global information is highlighted in orange and has the following syntax: climate index _ global 
variable – aggregation level. In the column named Activation, the different options for the activation 
functions are the sigmoid function (sigm) and the rectified linear unit (relu). 

Month Dataset Neurons Activation 

Jan t2m tp EA_Z500-2 SCA_Z500-1 8 relu 

Feb t2m TCWV ENSO_MSLP-3 SCA_SST-3 9 sigm 

Mar MSSHF SCA_SST-1 NAO_MSLP-1 10 sigm 

Apr tp NAO_Z500-3 NAO_SST-1 4 sigm 

May TCC TCWV EA_Z500-2 ENSO_Z500-1 8 sigm 

Jun EA_Z500-2 NAO_Z500-1 10 sigm 

Jul UW VW SCA_MSLP-1 NAO_Z500-1 8 sigm 

Aug SCA_MSLP-1 NAO_MSLP-2 9 sigm 

Sep MER EA_Z500-2 NAO_Z500-1 8 sigm 

Oct RH SH EA_MSLP-1 ENSO-mei_SST-1 8 sigm 

Nov SH SCA_MSLP-2 EA_SST-1 12 sigm 

Dec SD TCWV NAO_MSLP-3 EA_MSLP-3 8 sigm 

 

 
5.1.3 Feed Forward Neural Network 

For the approach based on FFNN, a single FFNN model predicting cumulative 

precipitation across the entire year has been produced. The best-performing model 

has been selected by building one 2-layered model for each possible combination 

of variables with a total number of features ranging from 5 to 10. The maximum 

number of input features was limited to 10 for two main reasons: (i) to reduce the 

computational effort. Indeed, a rising in the upper limit of considerable input 

features translates into more combinations to be considered and, therefore, more 

models to be trained; (ii) to maintain the number of input features in a reasonable 

range with respect to the dataset size to prevent overfitting. The hyperparameters 

of all these models are then tuned with the Hyperband implementation of keras-

tuner [69] in order to determine the customized best setting for each set of input 

variables. The degrees of freedom allowed during the tuning process are reported 

in Table 12 together with their best set according to Hyperband. 
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Table 12: degrees of freedom for the hyperparameters tuning process of Feed-Forward Neural Network and 
best-resulting setting according to Hyperband 

Hyperparameter 
Degree of freedom 

type 
Possible values Best values 

Activation function Choice Relu, Sigmoid Sigmoid 

Neurons layer 1 Integer 5 - 30 30 

Neurons layer 2 Integer 5 - 30 28 

Initial learning rate Choice 0.001, 0.01, 0.1 0.01 

 

After the execution of all the tuning processes, the best-performing model is 

selected based on the validation loss of the last training epoch. In order to enable 

this model selection approach, an “Early stopping” condition during training was  

 

 

used to prevent the validation loss to rise after reaching its minimum. The structure 

of the best-performing model is depicted in Figure 32 and is based on the dataset 

composed by the variables specified in Table 13. 

 
Table 13: Variables exploited for the training of the best Feed-Forward Neural Network model and their 
aggregation method 

Variable acronym Variable name 
Aggregation method (30 

days) 

MSLP Mean Sea Level Pressure Average 

Z500 Geopotential height at 500 hPa Average 

MSSHF Mean Surface Sensible Heat Flux Average 

SH Specific Humidity Average 

t2m 2m temperature Average 

TCC Total Cloud Cover Average 

tp Total Precipitation Cumulation 

UW U component of wind Average 

VW V component of wind Average 

 

Figure 32: Feed-Forward Neural Network structure. "None" corresponds to the batch size, 9 to the number of 
input variables, 30 and 28 to the number of neurons and 1 to the final output 
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5.1.4 Convolutional Neural Network 
In the approach based on CNN, a single model predicts cumulative precipitation 

across the entire year. As already mentioned in section 4.2.3.1, the best 

hyperparameter setting was searched with respect to the same set of variables 

provided in Table 13, hence no further investigation has been carried out to 

determine the best set of input features. The degrees of freedom for the search are 

in this case mainly referred to kernel number and size, learning rate, dropout rate, 

activation function, and number of neurons of the last but one dense layer (CNN 

structure is provided in Figure 25). Their summary, as well as the best-resulting 

setting, are reported in Table 14. 

 
Table 14: degrees of freedom for the hyperparameters tuning process of Convolutional Neural Network and 
best-resulting setting according to Hyperband 

Hyperparameter 
Degree of 

freedom type 
Possible values 

Best 

values 

Activation function Choice Relu, Sigmoid Relu 

Filter size - global Choice 3, 5, 7 5 (5x5) 

Filters ConvLayer 1 - global Integer 1 - 20 17 

Filters ConvLayer 2 - global Integer 1 - 20 17 

Filters ConvLayer 3 - global Integer 1 -20 17 

Filters ConvLayer 4 - global Integer 1 - 20 16 

Filter size - global Choice 3, 5, 7 3 (3x3) 

Filters ConvLayer 1 - medium Integer 1 - 20 16 

Filters ConvLayer 1 - medium Integer 1 -20 16 

Filters ConvLayer 1 - medium Integer 1 -20 9 

Dense layer neurons Integer 5-10 6 

Dropout rate Choice 0.1, 0.2, 0.3, 0.4, 0.5 0.1 

Initial learning rate Choice 0.0001, 0.001, 0.01, 0.1 0.0001 

 

 
5.1.5 Comparison against a naïve model 

Once the three approaches are developed, their performance is compared against 

each other but also against the performance of a naïve linear regression model, built 
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exploiting the exact same datasets, in order to understand if the higher complexity 

introduced by ML models is justified by a performance gain. Since the ELM setting 

is composed of monthly-based models, the comparison will be performed on a 

monthly basis. As shown in Figure 33, both FFNN and CNN models are meant to 

produce predictions across the entire year. In this case, as mentioned in section 

4.2.2.1, an even set of monthly-based samples have been randomly extracted to 

perform, in addition to the proper test, also a monthly-based testing procedure for 

model comparison. 

 

 

Table 15 reports all the model performances in terms of Mean Squared Error (MSE) 

with respect to the prediction of cumulative local precipitation [mm]. Thirteen 

different linear models to be compared against their ML counterparts have been 

built.  

Specifically, twelve of them are monthly-based models built on the same dataset as 

the twelve ELMs. As mentioned in section 4.2.1.1, given the restricted pool of 

available samples due to the pre-processing step performed by NIPA, the ELMs 

performances reported in Table 15 have been obtained with a LOOCV procedure. 

In order to allow for a fair comparison with linear models, the exact same procedure 

was performed to determine also their performances. The comparison of the two 

groups of models highlights how the whole set of ELMs outperforms all the linear 

models ensuring that the relationship bonding predictor and predictands can be 

skillfully mapped by exploiting models as ELM. 

The remaining linear model, one for the entire year, is built on the same dataset of 

the FFNN with 30 days moving aggregation. In this case, as mentioned in section 

4.2.2.1, the dataset was produced based on a high-level random sampling pattern 

ensuring an even distribution of samples across all the months. This splitting 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ELM 1 ELM 2 ELM 3 ELM 4 ELM 5 ELM 6 ELM 7 ELM 8 ELM 9 ELM 10 ELM 11 ELM 12

FFNN / CNN

Figure 33: temporal coverage of the three different branches of trained Machine Learning models: ELMs, 
FFNN and CNN. 
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approach enables a monthly-based testing procedure both for ML and linear 

models. The performances of the linear model are compared against FFNN and 

CNN since they both share the same set of input variables. Starting from the FFNN 

branch, it outperforms the linear model both in the yearly and monthly testing 

domain, ensuring that the exploitation of an ML model in this setting has been 

effective. For the CNN branch, instead, although most of the tests resulted in 

outperforming the linear model, the set of months comprising November and June 

obtained better results in the linear case. It must be noted also how in that case, 

given the complex nature of the data used for the CNN training (gridded data 

covering different spatial extensions), the benchmarking has been performed 

against a linear model built on the FFNN dataset. Therefore, although it is built on 

the exact same set of variables as the CNN, the linear model exploits 1D timeseries 

instead of gridded data. 

 
Table 15: model's MSEs across the twelve months. For yearly-based models (FFNN, CNN and related Linear 
model) also the global MSE is reported. MSE for ELM and related linear models are computed with a 
LOOCV procedure, for the remaining models a proper testing procedure with a separated set has been 
performed 

Testing 

period 
ELM 

Linear 

models 
FFNN CNN 

Linear 

model 

Year / / 538.19 796.72 921.39 

Jan 345.35 583.49 555.04 641,81 1379.66 

Feb 189.20 220.80 308.45 856,94 951.66 

Mar 344.41 546.88 512.22 723,75 763.67 

Apr 261.36 362.45 327.65 603,9 1139.72 

May 293.82 450.56 409.15 709,47 840.51 

Jun 242.66 412.92 495.77 947,97 743.96 

Jul 539.56 730.55 978.36 1176,39 1716.77 

Aug 333.38 453.24 353.21 1085,39 1166.03 

Sep 340.40 393.58 719.84 539,66 1332.39 

Oct 271.95 305.27 547.09 909,47 1415.54 

Nov 214.30 266.91 189.62 1027,37 386.66 

Dec 234.29 359.46 450.75 532,54 1145.63 

 

The comparison between ML models shown in Figure 34 at the bottom-left enables 

the following considerations. On average it is evident that FFNN results are worse 

than ELMs ones. The reason for that probably originates from the fact that the 
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FFNN branch has been thought of as one single model predicting precipitation 

across the entire year. This reasonably increases the difficulty encountered by the 

model in mapping inputs with target mostly because the generalization of the 

intrinsic variability of each month seems to be difficult to reach with a single model. 

On top of that, ELM models find much of their skillfulness inside the tailored 

monthly-based dataset configuration which sensibly reduces the error by 

considering a set of few and only relevant features for each specific month. This 

setting is of course inapplicable for the single FFNN model that, instead, has to rely 

on a fixed set of features to produce predictions all across the year. 

 

The results obtained with CNN are on average worse than the ones obtained with 

the other ML models. A potential reason for that relates to the blend between the 

number of considered variables and the data format used for CNN training. As 

Figure 34: comparison of the MSEs of each of the three ML models with each other (bottom left plot) and 
with their respective linear counterpart (rest of the plots). NOTE: the scale of the top-left and bottom-left 

plots are different from the others 
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acknowledged all across the scientific literature, CNNs are known for the sensible 

reduction in the number of needed parameters with respect to FFNN. This relates 

to the fact that, essentially, considering a squared kernel with dimension k, allows 

for interpreting the convolution operation as a single neuron sliding over the entire 

image and computing a weighted sum of all the pixels within the k × k kernel. This 

implies that the weights stored in the kernel are kept constant after the training 

process, meaning that there is no constraint of having a weight for each pixel of the 

image as would be to FFNN. Although this is factual, in the present case, while 

shifting from FFNN to CNN, the algorithmic change was accompanied by a 

complete dataset restructuring. Indeed, although the considered variables are 

exactly the same, the data structure exploited for the FFNN training was composed 

of unidimensional timeseries. This means that each variable, either global or local, 

was represented by a list of float values each one referring to a different time range. 

In the case of CNN instead, each sample was composed of a grid storing a float 

value for each location falling in it, and each of these values was therefore 

simultaneously referred to a specific location and time range. In other words, the 

two models are referred to the same set of variables but not to the same data, 

resulting in an overall increase in the number of features considered in the CNN 

with respect to the FFNN model. In addition, this features increase is not backed by 

any kind of increment in the number of samples. Therefore, the only way through 

work’s consistency was (i) to test if the number of available samples was 

appropriate for the training of a CNN model with a considerably higher number of 

features and, if not, (ii) to search for the best-performing hyperparameters 

configuration that could be obtained with that specific setting. The best 

configuration is reported in Table 14 and the testing MSEs are shown in Table 15. 

 

Looking at the results it can be noted how ELM outperforms all the other settings 

for all the months but November, which, instead, shows a lower MSE in the FFNN 

setting. Despite that, ELM can be identified, on average, as the best model setting 

for the present work. Moreover, looking at Figure 34, it is possible to recognize a 

common error pattern across the months for both ELM and FFNN. This can be 

further confirmed by looking at the MSE reported in Table 15. For the ELM case, 

indeed, the set of four worse results comprises July, January, March, and 

September. On the other side, FFNN presents his three worse results in July, 
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September, and January, highlighting a similar but scaled error distribution across 

the year.  

The CNN setting presents worse results than ELM for every month, and worse 

results than FFNN for all but one month. The only exception is referred to 

September, which, as mentioned, is also one of the worse results of the entire FFNN 

setting. 

 

Figure 35, Figure 36, and Figure 37 respectively depict monthly plots of predicted 

against observed precipitation on monthly-basis for ELM, FFNN, and CNN. 

 

 

Figure 35: ELMs Leave One Out precipitation predictions against true observed precipitation values. Each 
plot is referred to a specific month. 
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Figure 36: FFNN testing precipitation predictions against true observed precipitation values. Each plot is 
referred to a specific month. 

Figure 37: CNN testing precipitation predictions against true observed precipitation values. Each plot is 
referred to a specific month. 
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5.2 Influence of climate data and local atmospheric data 
The model selection processes performed on the different model branches resulted, 

in most cases, in simultaneously accounting for both global climatic and local 

atmospheric data. For instance, the model selection process performed on the FFNN 

branch has been planned to leave a degree of freedom also related to the type of 

considered variables. Indeed, no constraint was present based on the variables that 

should be used for training, and, therefore, the choice of training a model 

exclusively based on global or local variables was a possibility. Despite that, the 

best-performing model of the FFNN branch resulted in being based on a blend of 

information coming from both the global and local contexts, highlighting a certain 

convergence of the process toward datasets accounting for both information. This 

tendency was also confirmed by the ELM branch, where, for most of the months, 

the exploited training sets were merging local information and global data coming 

from NIPA. 

 

Although this tendency is on average quite evident, exceptions still arise in the 

context of monthly-based ELMs. In this case, indeed, two months resulted in being 

addressed by ELMs models exclusively based on global climatic information 

coming from NIPA: June and August. As can be observed from Table 11, the June 

ELM is trained on a set of two predictors (out of four possible) coming from NIPA. 

These two considered features, on one side, are based on two different climate 

indices (EA and NAO) and on two different aggregation levels (2 and 1 month(s) 

before the target), on the other, are based on the same global variable (Z500). 

Therefore, this setting shows how, apart from the variation in the considered climate 

index, just a single variable has been considered within the pool of the 13 possible 

global and local predictors. This behavior suggests the other considered variables 

as not relevant for the prediction of precipitation in June. Enforcing this line of 

reasoning, looking at Figure 34, the best-performing FFNN model, which considers 

Z500 among its two global features, presents performances aligned with the ELM 

branch (but scaled due to the error introduced by the yearly-based nature of the 

model). 

For the August ELM, the exact same pattern is repeated, this time by considering 

MSLP as the global feature (with NAO and SCA as climate indices, and  2 and 1 as 
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aggregation levels). Even in this case, FFNN performances are pretty aligned with 

the August-based ELM, and the second global feature considered in the best-

performing FFNN model is MSLP.  

At the same time, in the bottom-left part of Figure 34, it can be noted as for both 

the June and August ELM models, the predictive skillfulness is higher compared to 

the FFNN counterpart. This can be relatable to two main reasons: 

 

• The NIPA capability of embedding into global data also information related 

to different climatic patterns. Indeed, the consideration of climatic patterns 

can act as a bridging point for the mapping between global variables and 

local precipitation (target). 

• The yearly-based nature of the FFNN branch that increases the 

generalization difficulty by fixing a set of features to generate predictions 

across all twelve months. 

 

Always during the summer season, also July shows another interesting behavior. In 

this case, the MSE of both models increases if compared to the surrounding months. 

If looking exclusively at the July-based ELM, it is possible to note how the number 

of features matches the previously fixed maximum limit of allowed predictors for 

a single model (four). This, blended with the relatively high MSE (July produced 

the highest MSE of the ELM branch), pushes toward the idea that, in that specific 

month, an improvement in performances could be reached by considering a higher 

number of more informative features. Clearly, this cannot be done in the ELM 

context due to reduced dataset dimension and, therefore, to the risk of overfitting 

that adding further predictors brings. However, the consideration of a higher 

number of features can be performed in the FFNN case. By considering the July-

based testing results of the FFNN case, it is possible to realize how performances 

show the same pattern as the ELM counterpart (even if, again, scaled due to the 

error introduced by the yearly-based nature of the model). This enforces the idea 

that, among the pool of considered variables, some relevant July-related predictors 

are missing. 
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5.3 Comparison against baseline forecast products 
The benchmarking of the obtained results was done with respect to the ECMWF 

Extended-range forecasts providing cumulative precipitation predictions with a 

lead time of 30 days. As can be observed from Table 16 and Figure 42, all the 

trained ML models show sensible improvements with respect to the ECMWF 

benchmark for all the months. Specifically, ELM models stood out for all but one 

month as the best-performing models of the work. Just in November, the FFNN 

seems to be the most skillful. 

 
Table 16: comparison of the MSEs of the ML and linear models with respect to the ECMWF extended-range 
forecasts. The green column contains the ECMWF MSEs. Cells highlighted in orange are referred to the 
best-obtained results for each specific month. 

Testing 

period 
ELM 

Linear 

models 
FFNN CNN 

Linear 

model 

ECMWF 

subseasonal 

model 

Jan 345.35 583.49 555.04 641.81 1379.66 1103.93 

Feb 189.20 220.80 308.45 856.94 951.66 930.93 

Mar 344.41 546.88 512.22 723.75 763.67 550.90 

Apr 261.36 362.45 327.65 603.9 1139.72 958.27 

May 293.82 450.56 409.15 709.47 840.51 752.60 

Jun 242.66 412.92 495.77 947.97 743.96 812.00 

Jul 539.56 730.55 978.36 1176.39 1716.77 2201.04 

Aug 333.38 453.24 353.21 1085.39 1166.03 3702.95 

Sep 340.40 393.58 719.84 539.66 1332.39 1626.13 

Oct 271.95 305.27 547.09 909.47 1415.54 2310.86 

Nov 214.30 266.91 189.62 1027.37 386.66 1313.64 

Dec 234.29 359.46 450.75 532.54 1145.63 1922.19 

 

In Figure 38 and Figure 40 the comparison between ELM and ECMWF predictions 

is provided. Specifically, Figure 38 shows the prediction trend comparison of ELM 

and ECMWF for all the June instances across the period 2001-2020. The figure is 

divided into two different plots because of the different targets of ELM and 

ECMWF. ELM target is indeed the cumulative monthly precipitation, while 

ECMWF target is the 30 days cumulative precipitation. Although the target 

difference, the filling between prediction and target curves in the two plots 

highlights how ELM seems to be slightly more adherent to its target than ECMWF. 
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The same behavior can be observed in Figure 40, which depicts the same 

comparison of Figure 38 but focused on July.  

 

Figure 39 and Figure 41, instead, show the comparison of the ECMWF model 

respectively against FFNN and CNN. In this case, since the dataset of FFNN and 

CNN originates from a 30 days moving aggregation window, their target coincides 

with the ECMWF one. Therefore, only one plot per month (June and July) is created 

and the three trends are directly compared. 

 

 

  

Figure 38: June prediction trend comparison: ECMWF / ECMWF target (top) and 
ELM / ELM Target (bottom) 
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Figure 40: July prediction trend comparison: ECMWF / ECMWF target (top) and 
ELM / ELM Target (bottom) 

Figure 39: Prediction trend comparison: FFNN / ECMWF/ target. From top to 
bottom the plots are referred to June and July 
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June and July have been considered for the previous plots since they respectively 

represent the best and worse ML settings obtained in the range April-September 

(the range of interest for the Rijnland waterboard). Furthermore, the 2001-2020 

range of the plot originates from the ECMWF model instance considered in the 

present work. The considered ECMWF model, indeed, provides hindcast values 

only in that time range. 

Another interesting aspect to analyze is the comparison between linear models and 

ECMWF forecasts. Starting from the monthly-based linear models of the ELM 

branch, it is possible to note how they have lower MSEs than ECMWF forecasts 

across all the months. Even the yearly-based linear model setting shows better or 

aligned performances. The reason behind these results originates from considering 

different sets of variables tailored to the case study for the creation of the linear 

models. The tailored set of variables provided the models with meaningful and 

customized features thus allowing them to outperform the ECMWF benchmark. 

Figure 41: Prediction trend comparison: CNN / ECMWF/ target. From top to bottom 
the plots are referred to June and July 
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5.4 Performances of drought forecasting 
Exploiting the validation set of ELM, the test sets of FFNN and CNN, and the 

ECMWF prediction values, the methodology specified in section 4.3 was applied 

to compute the classification success rate. The rates of each model (columns of 

Table 17) are computed by comparing the drought classes obtained from the 

prediction with the ones obtained from the related target.  

In this case, the pattern of the best rates is more scattered across the branches with 

respect to the best MSEs of the cumulative precipitation presented in the previous 

section. Despite that, even in that case, the ELM setting seems to behave slightly 

better in terms of monthly predominance by outperforming the rest of the models 

for 6 months out of 12. Just after, the CNN setting presents the best results for 

March, April, July, and October and, finally, FFNN has produced the best rates for 

both January and August. Although the scattered results, the predominance of the 

ML models with respect to ECMWF is confirmed also in the drought prediction for 

all the months. 

  

Figure 42: comparison of the MSEs of ML and linear models with ECMWF Extended-range forecasts (right 
and left charts respectively) 
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Table 17: Rates of correct classification with respect to SPI categories for each month and model. The rate’s 
value ranges between 0 and 1 (where 1 corresponds to all correct classifications). Highlighted in orange is 
the best rate for each month; highlighted in green is the column containing the benchmark's rate 

month ELM FFNN CNN ECMWF 

Jan 0,41 0,55 0,45 0,35 

Feb 0,57 0,35 0,45 0,4 

Mar 0,46 0,4 0,5 0,45 

Apr 0,4 0,3 0,45 0,25 

May 0,46 0,45 0,25 0,35 

Jun 0,51 0,35 0,2 0,45 

Jul 0,43 0,45 0,65 0,5 

Aug 0,49 0,6 0,35 0,25 

Sep 0,46 0,3 0,35 0,3 

Oct 0,51 0,55 0,6 0,3 

Nov 0,58 0,55 0,3 0,35 

Dec 0,57 0,4 0,5 0,4 

 

5.5 Discussion 
The idea behind the creation of the three different model branches was based on the 

research for the correct balance among three main elements: model’s temporal 

domain, number of samples, and climatic information. On one side, ELMs were 

built on a short temporal domain, with few samples, and with explicit providing of 

climatic information by means of NIPA. On the other, FFNN and CNN were based 

on a much wider temporal domain and on a bigger dataset without climatic 

information. Each of the two configurations presents some pros and cons from the 

theoretical point of view. The ELM setting can benefit from the monthly-based 

configuration that enables the set of variables to be customized and more 

informative for each specific month. At the same time, the low number of samples 

composing the dataset can act as an obstacle to generalization. The FFNN and CNN 

settings were aimed at investigating the possible counterbalancing effect of having 

a much wider dataset for a much wider model’s temporal domain. 

The results discussed in this section highlight how both for FFNN and CNN, the 

sensible increase in the dataset size has not resulted in performance gaining if 

compared to the ELM branch (best-performing setting). The reason for this can be 

articulated in two main points: 
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• The yearly-based nature of FFNN and CNN models. Because it reasonably 

increases the difficulty of finding a proper set of input features able to 

generalize the problem. Therefore, the increased dataset size seems to not 

counterbalance the drawback introduced by keeping the set of predictors 

constant all over the year. 

• The absence of climatic information and of a proper climatic pre-processing 

framework as NIPA. Climate index data, as specified in section 2.3, could 

play a fundamental role in sub-seasonal precipitation forecasting since they 

act as bridging points between the local and the global climate context. The 

not explicit provision of that information during the training process leads 

models such as FFNN and CNN to not fully capture these links even with 

sensibly increased dataset sizes. 

 

Another interesting behavior can be derived from the bottom-left plot of Figure 34. 

Looking at the radar plot shape of the CNN model, it can be noted that it differs 

from the much more similar ELM and FFNN shapes. The reason why could be that, 

although the set of considered features is the same as FFNN, CNN exploits gridded 

data and an algorithmic structure that is conceptually more different. This brings 

the distribution of the model’s MSEs across the months to not follow the same 

pattern presented by the two other model branches. 

At the same time, ELM and FFNN seem to produce a similar but scaled distribution 

of MSEs. Even if the input features considered in the two branches are not the same, 

their structure is much more similar with respect to the CNN data. In both these two 

cases, indeed, variables are provided in the form of unidimensional timeseries. The 

wider FFNN error area is probably linked to the error added by the yearly-based 

nature of the model and to the absence of climatic information.  

 
Globally, all the produced models result in better performances than ECMWF 

extended-range forecasts, with the only exception of March and June of the CNN 

model. Even linear baselines are, for most of the months, outperforming the 

ECMWF model. These performance differences probably originate from the feature 

selection process performed in the present work with: 
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• A first preselection of global and local variables respectively based on 

climatic influence and Felsche et.al. [49]; 

• A model selection step performed on models based on all the combinations 

of variables. This allows for the selection of the best-performing subset of 

predictors. 

 

Therefore, the selection of context-related features resulted in being a useful step to 

ease and empowers the learning process carried out by the ML models. 

 

For what concerns the obtained SPI drought classification rates, they do not allow 

to identify an ML branch clearly outperforming the others (as it was for the results 

obtained from the testing of the ML models). Indeed, although ELM seems still to 

be the best performing setting, Table 17 shows a scattered pattern of best 

performing rates distributed across all the three different branches. The reason for 

these results can be related to a lot of different reasons. For instance, the structure 

of the test set of both FFNN and CNN, as specified in section 4.2.2.1, was 

specifically thought to be functional for an even testing across all the different 

months of the year. Structuring the test set with this ratio, clearly locks the degree 

of freedom related to an equal distribution of drought classes all over the months. 

Moreover, the uneven distribution of the drought classes has to be added to the 

already small size of the monthly-referred test set due to the “clear”/”dirty” sample 

logic introduced in section 4.2.2.1.  

Another reason could be also that the test sets of a specific month i for different 

models are, on one hand, composed of samples referred to the same month i but, on 

the other, these samples are not guaranteed to be referred to the same years. This is 

due to the randomness added to the train-test splitting procedure. Indeed, the 

monthly-referred test sets are randomly sampled to avoid the bias that could be 

introduced by a predefined selection. This attention with respect to the models 

testing procedure brings to the side of SPI classification some uncertainty. That 

uncertainty, for the structure of the present work, is unavoidable since the real target 

of the developed models is the cumulative monthly precipitation and not the SPI 

drought class. 
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6 Conclusions 
The aim of this work was to investigate the influence of climate information 

referred to different spatial scales (global and local) for the training of ML models 

with target monthly cumulative precipitation. The reason was to see if appropriate 

bridging of global and local climatic contexts could bring some benefits in terms of 

models' predictive skillfulness. The search for the meaningfulness of this bridging 

has been performed with respect to three main model branches: ELM, FFNN, and 

CNN. The main difference between ELM and FFNN/CNN branches is summarized 

into three points: model’s temporal domain (monthly for ELM and yearly for FFNN 

and CNN), dataset size (sensibly increased in FFNN and CNN), and provision of 

climatic information (only present in the ELM setting). Obtained results show how 

the best-achieved tradeoff among these three key points is obtained in the ELM 

setting, where the temporal domain of the model is fixed to a single month and the 

dataset dimension is restricted at one sample for each year of the considered 

timeseries. Moreover, another important peculiarity of ELMs with respect to the 

other branches is the provision of meaningful climatic information for training. The 

ELM setting is indeed backed by NIPA, a statistical framework able to embed 

climate indices information into global data and further transform them into 

unidimensional timeseries for ELM training. In this work, results highlight how the 

exploitation of such a pre-processing framework has led to the creation of a set of 

models able to outperform ECMWF extended-range forecast products all across the 

year. Another reason for the low ELMs MSEs can be founded in the tailoring 

capabilities of the monthly-based model setting. This setting allows for the choice 

of a customized set of monthly-related input features as well as for a customized 

hyperparameter configuration. Thus, it enables the creation of an ad hoc setting 

accounting for the endogenous monthly variability caused by seasonality.  

Acknowledged the good results, the drawback of using such a narrow temporal 

domain setting as ELMs relates to the small resulting dataset size. The NIPA pre-

processing step, indeed, creates a constraint in terms of the model’s temporal 

domain by imposing it on a single month. Therefore, this significantly reduces the 

dataset size and, with it, the number of maximum considerable input features. This 

makes prohibitive the usage of more complex models with a higher number of 
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parameters, which is the reason why, following the work of Giuliani et.al. [2] ELM 

was used. Additionally, the small dataset dimension does not allow for the 

application of a proper testing procedure, resulting in using LOOCV to determine 

model performances. 

For FFNN and CNN branches, the considerably higher number of samples seemed 

to not able to compensate for the lower tailoring capabilities caused by the yearly-

based model setting. In these two settings, indeed, the same set of input features has 

been used and kept constant all over the year. Higher MSEs scores can be also 

relatable with the complete absence of explicit climatic information provision, 

subtracting the model with a potential bridging point between global and local 

climate contexts. 

 
In summary, we investigated two pole-apart situations: monthly-based models with 

few samples and yearly-based models with increased dataset size.  

One further branch that could be interesting for future works, is to deeper 

investigates the in-between seasonal configuration. Creating a set of four models, 

each one referring to a specific season, could act as a valid tradeoff between all the 

before mentioned elements. If compared to the ELM setup, seasonal-based models 

may have access to a significantly higher number of samples while still retaining 

most of its customization capabilities by allowing the selection of different season-

related variables for each model. The higher number of samples can also allow for 

the application of a proper testing procedure and for the increase of the considered 

number of features. 

Interesting could be also to investigate the effect of considering the Madden Julian 

Oscillation (MJO) as a model feature. Its sub-seasonal influence is indeed 

recognized across the literature, making it known as one of the dominant modes for 

the variability of sub-seasonal climate at the global scale [56]. 

Finally, a further experiment could consist in building classification models instead 

of regressors. This would allow (i) having a direct mapping between input and 

drought class, (ii) would enable the possibility to use more sophisticated metrics for 

classification performance assessment, and (iii) would be beneficial for the 

reliability of the classification results since the entire procedure will be exclusively 

based on a classification logic. 
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