
Executive Summary of the Thesis

Evaluating Convex Solvers for Onboard Minimum-Fuel
Trajectory Optimisation

Laurea Magistrale in Space Engineering - Ingegneria Spaziale

Author: Leoluca Grilli

Advisor: Dr. Alessandro Morselli

Co-advisors: Alessandra Mannocchi, Andrea Carlo Morelli

Academic year: 2022-2023

1. Introduction
As we stand on the cusp of a new era in
space exploration, characterised by the auda-
cious prospect of interplanetary journeys under-
taken by CubeSats, new challenges and opportu-
nities unfold. With advances in computational
(CPU) capacities, the reality of autonomously
performing the guidance and control of a space-
craft onboard is becoming more tangent. In
the context of onboard trajectory optimisation,
two types of methodologies emerge: direct and
indirect methods. Indirect methods often ex-
hibit poor convergence, long CPU times, and
high sensitivity to the initial guess. At the
same time, conventional direct methods suffer
from CPU inefficiencies and poor robustness. In
this context, the effectiveness of convex opti-
misation has quickly taken centre stage due to
the presence of low computationally demanding
solvers which guarantee convergence in polyno-
mial time. Trajectory optimisation problems,
however, are naturally non-convex, and need to
be redefined through a convex subproblem that
then has to be solved iteratively through the use
of a Sequential Convex Program (SCP) and a
convex solver. Within this framework, under-
standing how convex solvers behave becomes of

the essence to investigate their use for onboard
autonomous guidance. This thesis embarks on
the evaluation of the performance of different
methodologies of convex solvers when applied to
fuel-optimal trajectory optimisation.

2. Convex Optimisation
The essence of convex optimisation involves the
minimisation of an optimisation function, o,
subject to equality (b) and inequality constraints
(g) defined in convex form. The optimisation
problem is defined as [1]:

minimise
w

o(w)

s.t. Cw = b ,

g(w) ≤ 0 ,

(1)

where w are the variables and C is the equal-
ity matrix. A maximisation problem associated
with Equation 1, called the dual problem, ex-
ists, and both problems are solved to obtain an
optimal solution. Optimality of the primal-dual
pair is guaranteed granted by the Karush-Kuhn-
Tucker (KKT) optimality conditions [1]. A du-
ality gap, represented by the difference between
the primal and dual solutions, drives the conver-
gence of the optimisation process.

1

Executive summary Leoluca Grilli

2.1. Methods
Active-set methods: In the context of con-
vex optimisation, three main methods exist.
Active-set methods (ASMs) emerged as early as
1963, stemming from an effort to solve con-
vex quadratic problems (QPs) by adapting the
widely used simplex method of that time. These
types of methods result in being extremely at-
tractive for small QPs, with good results in
terms of CPU time and accuracy. ASMs, work
by iteratively updating the "working set" (a col-
lection of the active constraints) by the addition
or removal of constraints as progress towards
the optimal solution is made [2]. Unfortunately,
these methods do not provide a priori bounds on
the number of iterations needed to find an opti-
mal solution, and only accept feasible inputs.
Interior-point methods: Within the realm of
optimisation techniques, interior-point methods
(IPMs) stand out as the most widely used ap-
proaches in convex optimisation, providing ef-
ficiency and accuracy. A major advantage of
IPMs is their constant CPU load (consistency)
when solving various instances of related prob-
lems [2]. The original convex problem is modi-
fied by removing inequality constraints by intro-
ducing a penalising term in the objective func-
tion [1]. The resulting problem is then solved by
navigating the interior of the feasible region us-
ing Newton’s method, with this step accounting
for the major CPU burden.
First-order methods: The evolution of first-
order methods (FOMs) went parallel to the rise
of data science and machine learning, where fast
solutions to large amounts of input data are
prioritised over high accuracy. These methods
reach the optimal solution by using only first-
order information, generally focused on gradi-
ents or sub-gradients. The splitting method is
the underlying concept of the most widely used
FOMs, which is focused on splitting o into two
functions. Minimising the two functions is in-
tended to be faster and simpler than minimis-
ing the single function o directly [2]. Although
FOMs are simple to implement in terms of the
amount of source code needed to build a solver,
their performance is highly dependent on the
characteristics of the problem being solved.
A comparison of the solver methods has been
carried out and can be seen in Table 1. A colour
code is used where, as for convention, green is

used for a positive behaviour, red for a nega-
tive one, and orange for a measure in-between.
The classification of the problem sizes has been
made using the number of variables, constraints,
and parameters of respectively 6, 15, and 18 for
small problems (S) and 500, 3000, and 2000 for
large problems (L). Using this classification, the
minimum-fuel trajectory optimisation problem
falls in the latter category.

Table 1: Comparison of convex solvers.

ASMs FOMs IPMs
Implementation Medium Easy Hard

Speed (S) Good Medium Medium

Speed (L) Worst Medium Best

Consistency Medium Worst Best

Accuracy (L) Low Medium High

Memory usage Medium Good Good

From this table, it is clear that key differences
exist for the solvers, and the most suitable one
depends on the problem characteristics and level
of accuracy required. IPM solvers are favoured
when the number of variables and constraints is
high. For small problems, because IPMs have
a fixed cost when solving for the factorisation
of the KKT matrix, the required CPU time to
reach optimality is higher, with ASMs represent-
ing the ideal choice. ASMs can provide results
with low accuracy for problems with large sizes,
while FOMs can guarantee low to medium accu-
racy, and for high-accuracy solutions the IPMs
are preferred. The data memory required to
solve the optimisation problem is worse for ASM
solvers as a large number of linear equations is
solved compared to IPMs and FOMs, requiring a
greater amount of memory to store the matrices.

2.2. Sequential Convex Programming
At the core every SCP lies the reformulation
of an original optimisation problem into a con-
vex subproblem. These subproblems are solved
sequentially by feeding an initial guess and us-
ing the solution of each iteration to update the
approximation for the next subproblem. Every
SCP algorithm is composed of three major steps
which include the generation of the initial guess,
the resolution of the subproblem using a convex
optimisation solver, and the termination of the
algorithm.

2

Executive summary Leoluca Grilli

2.3. Software selection
Following the review and the comparison of
the different methods, it was clear that the
poor scalability of ASM solvers for large prob-
lems, and their lack of a priori bounds on the
complexity certification make them less suitable
for the context of onboard trajectory optimi-
sation compared to the FOMs and IPMs. In
light of this, CVXPYgen1 resulted in being the
ideal candidate for this study, allowing to com-
pare the state-of-the-art solvers ECOS (IPM)
and SCS (FOM). This software allows to gen-
erate problem-specific solvers by incorporating
the problem defined in a convex formulation in
CVXPY2 with the selected solver.

3. Methodology
The minimum-fuel problem can be represented
by a two-point boundary-value problem, with
the states at initial and final time forming the
boundary conditions (BCs). The objective func-
tion, J , for fuel-optimal problems is defined in
Mayer form as [3]:

J = −m(tf) , (2)

where minimising the fuel consumption of a
single-stage spacecraft is equivalent to maximis-
ing its mass, m, at final time, tf .

3.1. Convexification
In order to define the optimisation problem in
convex form, the state of the spacecraft was de-
scribed in spherical coordinates as

x = [r, θ, ϕ, vr, vθ, vϕ, z]T , (3)

where r represents the distance from the cen-
tral body to the spacecraft, v the velocity, θ the
azimuth angle, and ϕ the elevation angle. z rep-
resents the pseudo-mass (z = ln(m)) introduced
by a change of variables. This technique was
also applied to the control, u, to decouple the
state and the control in the dynamics, and avoid
high-frequency jitters [3]:

u = [τr, τθ, τϕ, τ]T , (4)

1Available at: <https://github.com/cvxgrp/
cvxpygen> (last accessed on 12/10/2023)

2Available at: <https://github.com/cvxpy/cvxpy>
(last accessed on 12/10/2023)

where the control variable is τ = T/m, and T is
the thrust. The dynamics of the minimum-fuel
problem can be represented by a linearisation
with respect to a reference trajectory, x∗:

ẋ = f(x∗) +A(x∗)(x− x∗) +Bu , (5)

where f is the natural dynamics of the space-
craft, A is the derivative of f with respect to
x∗, and B represents the control matrix. The
objective function can be redefined as

J =

∫ tf

t0

τ(t) dt . (6)

Following the methodology defined in Ref. [3],
a convexification was applied to the control con-
straints and the dynamics to define the problem
in convex form. Moreover, a trapezoidal dis-
cretisation method was used, forming a set of
N − 1 equality constraints, where N represents
the number of nodes:

xi − xi−1 =
∆t

2
(ẋi − ẋi−1) . (7)

3.2. SCP Algorithm
To obtain a solution to the original optimisa-
tion problem, the convex subproblem needs to
be solved sequentially through an SCP, updat-
ing the reference trajectory at every iteration (k)
with the optimal solution of the previous step.
To prevent occurrences of artificial infeasibility,
slack variables were introduced to the linearised
dynamics and control. To improve the conver-
gence of the algorithm, a trust region was ap-
plied using a Cauchy sequence and the solutions
of the previous iterations:

∥∥∥x(k) − x(k−1)
∥∥∥
∞

≤ γ
∥∥∥x(k−1) − x(k−2)

∥∥∥
∞
,

(8)
where γ represents the trust region factor. At
the first iteration, having only the knowledge of
the initial guess x(0), a constant trust region,
δ, was applied. The convergence of the algo-
rithm was specified on the maximum constraint
violation (εc) and the relative change in pseudo-
mass at final time (εz) between successive SCP
iterations. The algorithm was stopped without
convergence, instead, if not enough progress was
made between SCP solution trajectories (εx) or

3

https://github.com/cvxgrp/cvxpygen
https://github.com/cvxgrp/cvxpygen
https://github.com/cvxpy/cvxpy

Executive summary Leoluca Grilli

if the number of iterations exceeded 50. Algo-
rithm 1 displays the logic behind the SCP along
with the convergence values adopted.

Algorithm 1 SCP Algorithm

1: generate a reference trajectory x(0)

2: for k in kmax do
3: x∗ = x(k−1)

4: solve the optimisation problem to find
x(k) and u(k)

5: if εc ≤ 10−6 & εz ≤ 10−4 then
6: optimal solution found: xopt = x(k)

7: uopt = u(k)

8: break
9: else if εx ≤ 10−7 then

10: progress is too small: break
11: end if
12: end for

The initial guess was generated using a third-
order polynomial, with the controls set to zero.

4. Results
All simulations were run on the same Microsoft
Surface Laptop 4, powered by an 11th Gen In-
tel(R) Core(TM) i5-1135G7 and with 16 GB
RAM. A Monte Carlo (MC) simulation of 100
samples was run, applying a standard deviation
of 10% to the required final position, xf , in or-
der to generate a perturbed initial guess. While
the trajectories produced might diverge drasti-
cally from the optimal solution, it was deliber-
ately designed to challenge the solvers to their
utmost capacity and provide a comprehensive
assessment of their performance.

4.1. Experimental Setup
Adopting the SCP scheme presented in Algo-
rithm 1, three test cases of increasing complex-
ity were used to evaluate the performance of the
solvers. These problems include an Earth-to-
Mars transfer with BCs taken from [3], a Cube-
Sat transfer from Sun–Earth Lagrange point L2

to near-Earth asteroid (NEA) 2000 SG344 taken
from [4], and finally an Earth-to-Venus trans-
fer, also taken from [4]. The simulation parame-
ters for the three problems are given in Table 2,
where m0 is the initial mass, Tmax the maximum
thrust, and Isp the specific impulse. Due to the
limits CVXPYgen presented on the number of
parameters that can be employed, the number

of nodes used for the three different simulations
were of 100, 125, and 150, chosen to reflect the
increasing time of flight (ToF) of the transfers.

Table 2: Simulation parameters.

Parameters Mars NEA Venus

ToF (days) 253 700 1000

m0 (kg) 659.3 22.6 1500

Tmax (N) 0.55 2.25e-03 0.33

Isp (s) 3300 3067 3800

N (-) 100 125 150

γ (-) 0.7 0.8 0.99

4.2. Parameter Selection
A parametric analysis was carried out to de-
termine the values of the trust region factor,
γ, which granted a fair comparison for the two
solvers, analysing accuracy, CPU performance
and complexity. The results showed a clear cor-
relation with problem complexity, with tighter
constraints imposed for the simpler cases as
shown in the table above. The limit on the max-
imum number of iterations for each solver was
also investigated, resulting in a higher limit of
2,500 for SCS compared to 100 for ECOS.

4.3. Trade-off Criteria Analysis

4.3.1 Complexity

The complexity of the solvers was measured
through the number of SCP and solver iterations
required to reach optimality. ECOS shows a con-
stant behaviour between problems, with SCS ex-
hibiting a more significant increase in complex-
ity when passing from the Mars case to the NEA
case. Moreover, the number of solver iterations
is much more significant for SCS, with values
reaching 37,500 for the Venus test case compared
to 118 for ECOS.

4.3.2 CPU Performance

The CPU toll of the solver was measured
through the total CPU time required to obtain
convergence and the average time required to
solve an SCP iteration, namely the burden and
efficiency. Both methods show a linear increase
in the CPU parameters, although the values of

4

Executive summary Leoluca Grilli

the FOM remain one order of magnitude higher.
ECOS was remarkably fast, with solutions span-
ning from 0.344 s for the Mars case to 0.711 s for
the Venus trajectory. In contrast, SCS results in
a change from 2.438 s to 18.938 s for the same
cases, with a more pronounced increase.

4.3.3 Memory

The compiled codes obtained through CVXPY-
gen show an increase in size with problem com-
plexity, and hence nodal number, with results
from ECOS being 18% larger, indicative of the
more complex operations performed by the IPM
solvers. The memory consumption of the solvers
during the SCP algorithm, on the other hand,
reveals a better behaviour for ECOS, with an
almost constant memory usage which increases
linearly from 164.979 MB for the Mars case to
170.527 MB for the Venus case. Results are
also very consistent between different runs, with
a maximum standard deviation of 37 kB. The
FOM, instead, has a larger sparseness of results
and a greater increase between cases as shown
by the error bars in Figure 1, reaching 291.414
MB for the Venus trajectory.

Figure 1: Memory of compiled code.

4.3.4 Accuracy

The accuracy of the solution, ϵ, was found by
propagating the optimised control vector, uopt,
using the scipy3 integrator odeint. As the val-
ues of uopt are known only at the nodes, the
control in between the nodes was obtained by
interpolating the control history. Due to the
discretisation used, there is a difference in so-
lution between the desired final state, xf , and
the propagated one, x̃, at final time:

3Available at: <https://scipy.org/> (last accessed
on 13/11/2023)

ϵ = |x̃(tf)− xf | . (9)

The values obtained for the two solvers are com-
parable, which is expected as the accuracy of
the optimal solution is dependent on the level
of tolerance set in the solver. The tolerance is
imposed on the relative and absolute values of
the duality gap (see section 2), which was se-
lected to be of 10−8 for this study. Both solvers
show a reduction in the accuracy with problem
complexity, which is attributed to the increase
in ToF. As trajectories become more prolonged,
small errors in the initial states can lead to larger
errors in the final state, when propagated, and
the interpolation error becomes more significant.

4.3.5 Optimality

As with the accuracy, the values of the opti-
mality (J) of the solvers increase with the ToF,
with very similar values for the IPM and FOM
solvers. Recalling the problem definition, the
objective of the minimum-fuel problem is re-
flected in maximising the final mass. It is there-
fore understandable that the final masses ob-
tained from the solvers are comparable, with a
maximum difference of 17 g between the median
MC results of the two solvers.

4.3.6 Reliability

The reliability of the solvers is defined as the per-
centage of converged optimal solutions among
all MC samples, and is shown in Figure 2 with
varying convergence tolerances on εc. The IPM
solver is superior, with consistently high success
rates for all cases. Tighter convergence criteria
highlight the discrepancies between the solvers,
showing a change in behaviour for the FOM.

Figure 2: Reliability of simulations.

5

https://scipy.org/

Executive summary Leoluca Grilli

4.3.7 Effectiveness

When judging the consistency of a method, it
is essential to observe how the parameters vary
between different runs and from one case to
another. The thrust profiles of the MC sam-
ples show an interesting behaviour. For simpler
problems, ECOS is more consistent, reaching the
same optimal solution over repeated simulations
while SCS shows a greater variance in profiles.
The Earth–Venus trajectory, instead, results in
extremely congruent bang-bang profiles for the
FOM solver, whereas the IPM solver obtains two
conflicting solutions. This can be seen in Fig-
ure 3, where the thrust profiles of the converged
MC samples are shown in grey and the mean of
the samples taken at every node in red.

0 200 400 600 800 1000
Time [days]

0.00

0.25

0.50

0.75

1.00

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(a) ECOS soultions.

0 200 400 600 800 1000
Time [days]

0.00

0.25

0.50

0.75

1.00

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(b) SCS solutions.

Figure 3: Earth–Venus thrust profiles.

SCS therefore behaves better for the most com-
plex scenario in terms of trajectory solution
compared to ECOS, and this is also reflected in
its lower variation of the final mass of 11.448 g
compared to 191.998 g for ECOS.

4.4. CVXPY Analysis
The CVXPY software was used to investigate
the solutions obtained with ECOS, using the
other available IPM solvers for the Earth–Mars
trajectory. All the simulations carried out with
the IPM solvers converged to an optimal solu-

tion, highlighting the consistency of these meth-
ods in terms of accuracy, complexity and mem-
ory usage. The simulations using ECOS and
SCS showed the benefit of using a compiled code
instead of a non-compiled one, with a total CPU
improvement from 45.836 s to 0.344 s for ECOS
and 55.898 s to 2.438 s for SCS when passing
from CVXPY to CVXPYgen.

5. Conclusions
In conclusion, the trajectories investigated show
a similar result in terms of accuracy and final
mass. The behaviour of the IPM solver remains
superior in terms of the computational toll, suc-
cess rate, and memory usage when compared to
the FOM solver. Moreover, it has been found
that for simpler problems ECOS results in be-
ing the preferred solver of choice, with consistent
bang-bang thrust profiles. For more complex
trajectories like the Earth–Venus case, instead,
although SCS exhibits a lower reliability of 82%
and a longer CPU time of 11.444 s, the stan-
dard deviation of the accuracy is smaller, with
much more consistent thrust profiles making it
an extremely attractive solution.

References
[1] Domahidi A. Methods and tools for embedded

optimization and control. Doctor of sciences
dissertation, ETH ZURICH, 2013. doi:10.
3929/ETHZ-A-010010483.

[2] Ferreau H. J. et al. Embedded opti-
mization methods for industrial automatic
control. IFAC-PapersOnLine, 50(1):13194–
13209, 2017. doi:10.1016/j.ifacol.2017.
08.1946.

[3] Wang Z. and Grant M. J. Minimum-fuel
low-thrust transfers for spacecraft: A convex
approach. IEEE Transactions on Aerospace
and Electronic Systems, 54(5):2274–2290, 03
2018. doi:10.1109/TAES.2018.2812558.

[4] Hofmann C., Morelli A. C., and Top-
puto F. Performance assessment of con-
vex low-thrust trajectory optimization meth-
ods. Journal Of Spacecraft And Rockets,
60(1):299–314, 01 2023. doi:doi:10.2514/
1.A35461.

6

https://doi.org/10.3929/ETHZ-A-010010483
https://doi.org/10.3929/ETHZ-A-010010483
https://doi.org/10.1016/j.ifacol.2017.08.1946
https://doi.org/10.1016/j.ifacol.2017.08.1946
https://doi.org/10.1109/TAES.2018.2812558
https://doi.org/doi: 10.2514/1.A35461
https://doi.org/doi: 10.2514/1.A35461

	Introduction
	Convex Optimisation
	Methods
	Sequential Convex Programming
	Software selection

	Methodology
	Convexification
	SCP Algorithm

	Results
	Experimental Setup
	Parameter Selection
	Trade-off Criteria Analysis
	Complexity
	CPU Performance
	Memory
	Accuracy
	Optimality
	Reliability
	Effectiveness

	CVXPY Analysis

	Conclusions

