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1. Introduction
Let Ω ⊂ RN be a smooth bounded domain. We
deal with problems of the kind{

−∆u = λ1mu in Ω ,

u = 0 on ∂Ω .
(1)

The quantity λ1 denotes the principal posi-
tive eigenvalue of (1) and m(x) is a bang-bang
weight, i.e. a function of the form

m(x) = mXE −mXΩ\E ,

where m,m are two positive constants and E ⊂
Ω is Lebesgue measurable.
Such problems arise in the context of the het-
erogeneous Fisher-KPP model in population dy-
namics, where Ω represents the habitat, the
function u describes the population density, and
the weight m(x) describes the favourability of
the habitat: there exist a region E which is
favourable for the population, and vice-versa
for Ω \ E. The homogeneous Dirichlet bound-
ary conditions model the case of a habitat sur-
rounded by a completely hostile region.
It has been proved by Cantrell and Cosner in [1]
that the lower is λ1 = λ1(E,Ω), the higher are
the chances of population survival for long time.
Moreover, there exist optimal favourability pat-
terns of bang-bang type, i.e. that minimize λ1.

This is the main reason why we concentrate on
bang-bang weights only.
The questions we address in our work are the
shape and the positioning of the favourable re-
gions inside of Ω. In particular, imposing a vol-
ume constraint on their measure, denoted with
ε, we study such questions in the singularly per-
turbed asymptotic limit ε → 0+.
We study qualitatively the shape via blow-up
techniques inspired by Mazzoleni, Pellacci and
Verzini [4]. We are able to prove that, asymp-
totically, the favourable region is connected and
its boundary is squeezed between two concentric
spheres of collapsing radii. Namely, the shape
of the favourable region is asymptotically a ball.
For what concerns the positioning, we observe
that in the asymptotic regime the favourable re-
gions concentrate at some point of Ω. Nonethe-
less, the study of their position is quite deli-
cate. Due to a boundary effect, there is an inter-
play between the shape and the position of the
favourable regions. This implies that, to obtain
(sharp) results on the positioning, (sharp) quan-
titative estimates on the spherical asymmetry of
the favourable regions are needed.
To tackle this problem, we combine projection
and vanishing viscosity techniques developed by
Ni and Wei in [5] with non-sharp quantitative
isocapacitary estimates by Fusco, Maggi and
Pratelli in [2]. Doing so, we are able to ob-
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tain a non-sharp result on the positioning of the
concentration points, which bounds from below
their distance from ∂Ω.
To get acquainted with the general problem, we
carry out a preliminary analysis of the case in
which the favourable regions are assumed a pri-
ori to be spherical. In this simpler case, exploit-
ing analogous techniques, we are able to obtain
that the positioning happens at a point at max-
imum distance from ∂Ω. Further details on the
analysis with spherical favourable regions is con-
tained in the following section.

2. The case of spherical favor-
able regions

The study of the case with spherical favourable
regions, can be seen as an intermediate step for
the understanding of the original problem with
generic weights. Notice that in this simplified
version, the only question to be addressed is the
positioning of the favourable regions.
The introduction of the asymptotic limit ε → 0+

allows us to perform the analysis via a blow-up
technique. As usual in this procedure, it is fun-
damental to recognise a limit problem and study
its properties. This work has been undertaken
by Mazzoleni, Pellacci and Verzini in [4], and is
summarized in the following
Theorem 2.1 ([4]). Consider the class M′ of
bang-bang weights over RN with positive part
supported on a unitary measure set. The quan-
tity

λ̃0 := inf
m∈M′

inf
u∈H1(RN )∫
RN mu2>0

∫
RN |∇u|2∫
RN mu2

,

is a positive minimum, attained uniquely, up to
a translation by a spherical bang-bang weight,
and up to scaling by a function w ∈ H1(RN ).
Such function can be chosen positive, radially
symmetric and strictly decreasing.
To proceed in our discussion, we denote with uε
a family of eigenfunctions corresponding to the
optimized eigenvalues

λε := inf
Bε(x)∈Ω

λ1(Bε(x),Ω),

where (Bε(x) is the ball of measure ε and cen-
tered at x). Then, we introduce the blow-up
family of functions ũε, correspondent to uε, and

the blow-up family of eigenvalues λ̃ε, correspon-
dent to λε.
The first result we prove is qualitative, and con-
cerns the convergence of the blow-up family of
eigenfunctions and eigenvalues to the ones of the
limit problem. In particular, making use of the
famous concentration-compactness principle of
P.L. Lions [3], we prove the following
Proposition 2.1. For any sequence εn there ex-
ists a subsequence, still denoted with εn, such
that:
(i) λ̃εn → λ̃0,
(ii) ũεn → w in C1,α(K) for n → +∞, for any

0 < α < 1 and K ⊂ RN compact set,
(iii) ũεn → w in H1(RN ) for n → +∞.
We remark that the functions uεn and w are
chosen with the same L2(RN ) normalization.
In order to obtain results on the positioning of
the spherical favourable regions, however, such a
qualitative result is not sufficient and quantita-
tive results are needed. To this aim we make use
of the projection and vanishing viscosity tech-
niques developed by Ni and Wei in [5].
In order to state our next result, let us intro-
duce the quantity βε := ε−1/N , the centers of the
spherical favourable regions xε ∈ Ω, the blow-
up domains Ω̃ε, the function PΩ̃ε

w which is the
H1

0 (Ω̃ε)-projection of w and finally the function
Ψ̃ε := −kε log(w− PΩ̃ε

w). Then, we are able to
prove the following
Theorem 2.2. For any vanishing sequence εn
there exists a subsequence still denoted with εn
such that, for n → +∞:
(i) d(xεn , ∂Ω) → max

p∈Ω
d(p, ∂Ω),

(ii) Ψ̃εn(xεn) → 2

√
λ̃0m max

p∈Ω
d(p, ∂Ω),

(iii) λεn = ε−2/N
n

(
λ̃0 + (Φ + o(1)) e−βεn Ψ̃εn (xε)

)
,

where Φ is a positive constant.
(iv) ũεn = PΩ̃εn

w+e−βεn Ψ̃εn (xεn )ϕεn, with ϕεn ∈
H2(Ω̃εn) and ∥ϕεn∥H2(Ω̃εn )

≤ C uniformly
for n → +∞.

Without going deep into the details, point (i)
answers the positioning question: in particular,
it states that the favourable regions concentrate,
in the asymptotic limit ε → 0+ at a point real-
izing the maximum distance prof ∂Ω. Points
(iii) and (iv) display asymptotic expansions, up
to the second order, of the optimized eigenval-
ues and of the blow-up eigenfunctions. An im-
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portant, but somehow more hidden information,
is obtained combining points (i), (ii) and (iii),
namely the information concerning the position-
ing of the favourable regions is contained in the
second order of the asymptotic expansion of the
eigenvalue.

3. The case of generic favor-
able regions

To study the case of generic favourable region,
we follow a similar strategy to the case of spher-
ical favourable regions, namely we proceed with
a blow-up argument.
Notice however that, since the shape of the
favourable regions is not fixed a priori, now
there are three types of result to be obtained:
the first type concerns the asymptotic behaviour
of the eigenvalues, the second type concerns
the asymptotic behaviour of the eigenfunctions
while the third type concerns the behaviour of
the optimal favourable regions.
Remark 3.1 (on notations). During this sec-
tion, we introduce some quantities that also
have their counterparts in the case of spherical
weights (e.g. the blow-up points). Even though
in many cases the notations are identical, in the
course of this section they always refer to the
case of generic favourable regions, unless other-
wise explicitly stated.
We introduce a family of eigenfunctions uε, cor-
responding to the optimized eigenvalues

λε := inf
{E⊂Ω:L(E)=ε}

λ1(E,Ω),

attained by the optimal favourable regions Eε.
Then, we denote with ũε, λ̃ε and Eε the blow-
up families of eigenfunctions, eigenvalues and
favourable regions, corresponding respectively
to uε, λε and Eε.
The first result that we state is the counterpart
of Proposition 2.1 for the case of generic weights.
Proposition 3.1. For any vanishing sequence
εn there exists a subsequence still denoted by εn,
such that:
(i) λεn → λ0,
(ii) ũεn → w in C1,α(K) for n → +∞, for any

0 < α < 1 and K ⊂ RN compact set,
(iii) ũεn → w in H1(RN ) for n → +∞.
Our second result concerns the qualitative
asymptotic behaviour of the optimal favourable

regions (in the blow-up scale). Let α0 be
the unique positive real number such that
L ({w > α0}) = 1. Then, exploiting techniques
similar to those adopted by Mazzoleni, Pellacci
and Verzini in [4], we obtain the following
Theorem 3.1. For any sequence εn there exists
a subsequence still denoted with εn such that, up
to a set of zero Lebesgue measure:
(i) Ẽεn is a connected open set, for n suffi-

ciently large,
(ii) There exists a sequence of positive real

numbers δn → 0+ such that ∂Ẽεn is con-
tained in a δn-neighborhood of the α0 level
set of w.

Hence, the optimal favourable regions are
asymptotically connected and almost spherical.
This result assesses qualitatively the question on
the shape.
For what concerns the positioning of the opti-
mal favourable regions, the matter is more deli-
cate. Indeed, due to an interplay between shape
and positioning caused by ∂Ω, in order to obtain
results on the positioning we need quantitative
estimates on the spherical asymmetry of Ẽεn .
To this aim, we exploit the techniques developed
by Fusco, Maggi and Pratelli in [2] for the iso-
capacitary case. In particular, introducing the
Fraenkel asymmetry of the optimal favourable
regions, defined as

A(Ẽε) := inf
x∈RN

L
(
Ẽε∆(x+B1)

)
,

the spherical symmetrization Ω̃ε,∗ of Ω̃ε, i.e. a
ball centered at the origin and having the same
Lebesgue measure as Ω̃ε, and its associated op-
timized eigenvalue µ̃ε defined as

µ̃ε := inf
{E⊂Ω̃ε,∗:L(E)=ε}

λ1(E, Ω̃ε,∗),

we prove the following
Theorem 3.2. For any sequence εn → 0+ there
exists a positive constant C = C(N) indepen-
dent of n, such that

A(Eεn)
4 ≤ C(N)

(
λ̃εn

µ̃εn

− 1

)
. (2)

We remark that the right hand side of (2), can
be estimated by the second order in the asymp-
totic expansion of λ̃εn , which, as we have seen
in the spherical analysis, brings the information
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about the positioning of the favourable regions.
In other words, inequality (2) is fundamental
since it bounds the spherical asymmetry of the
favourable regions with a quantity depending on
their positioning. Morally, this implies the re-
duction of a problem depending on both shape
and positioning, to a problem depending only
on the positioning.
Hence, denoting with xε the blow-up points
for generic weights (always chosen inside the
favourable regions) and combining the tech-
niques of Ni and Wei in [5] in a similar fashion
to the spherical problem with the asymmetry
estimate (2), we are able to obtain the following
non-sharp result on the positioning.
Theorem 3.3. For any sequence εn → 0+ there
exists a subsequence, still denoted with εn, such
that

d(xεn , ∂Ω) ≥
1

4
max
p∈Ω

d(p, ∂Ω) + ε1/Nn O(1) (3)

for n → +∞.
Notice that the factor 1/4 appearing in (3) is
exactly the same appearing at exponent in (2).
Theorem 3.3 basically states that the optimal
favourable regions concentrate, in the asymp-
totic limit, at points with distance greater then
the inradius of Ω by a factor at least 1/4. This
gives a partial answer to the positioning ques-
tion.

4. Conclusions
The main conceptual result arising from our
work is the fact that, in the context of the
heterogeneous Fisher-KPP model with bang-
bang favourability patterns and completely hos-
tile surrounding regions, when the optimal
favourable regions are small they prefer to be
connected, almost spherical and to stay away
from the boundary of the habitat, at a distance
which is proportional to the inradius by a factor
at least 1/4 (see Theorem 3.3).
From the mathematical point of view, on the
other hand, the main result of our work is the
development of a strategy which allows to find
asymptotic quantitative estimates on the posi-
tioning (and thus indirectly also on the shape)
for the small optimal favourable regions when
there is an interplay between the two, due to a
boundary effect which is not negligible.

This is done combining the projection and van-
ishing viscosity techniques developed by Ni and
Wei in [5] with the techniques developed for
quantitative asymmetry estimates by Fusco,
Maggi and Pratelli in [2].
Briefly, for what concerns future developments,
a natural extension of our work is to obtain
a sharp quantitative estimate on the spherical
asymmetry of the favourable region.
Such a result and the techniques used to
prove it, might pave the way for asymp-
totic sharp quantitative asymmetry estimates,
at least when concentration phenomena occur.
The main advantage is to obtain sharp asymme-
try estimates (even though "only" asymptotic)
even in the case of non-spherical ambient do-
mains.
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