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ABSTRACT 

Changes occurring in mechanical properties of biological skeletal muscle are often related 

to the presence of severe diseases that terribly affect the lives of many. For this reason, pre-

emptive assessment of such changes has become a topic worthy of attention for medical 

doctors worldwide. In recent years, scientists have developed a new diagnostic tool, based 

on the MRI imaging technique, named Magnetic Resonance Elastography (MRE), a 

technique that is able to non-invasively assess tissue mechanical properties by relying on an 

initial mechanical excitation. 

As for this work, MRE had been previously put to a test by the author during experiments 

performed at the University of Illinois at Chicago: an assembled anisotropic muscle-

mimicking phantom was harmonically excited in a geometrically focused axial fashion, 

acquiring images of waves propagating inside the medium and eventually inverting 

displacement data to shear modulus values. This research study aims to provide a different 

point of view on the MRE technique, by reversing the common procedure steps, thus creating 

a Direct Formulation: mechanical properties do not represent the result of the process, rather 

the input for the study, performed via FE computational simulations in Abaqus; the software 

is fed with properties from the anisotropic phantom studied at UIC, and it eventually 

provides images of displacements. These are used as a source of comparison with those 

acquired during the experimental analysis of the phantom and are needed to validate both 

the numerical and the experimental procedure. Additionally, post-processing steps are 

performed starting from the application of a 2D Fourier Transform on the displacement data. 

These measures provide a qualitative and quantitative demonstration of the fact that 

anisotropy within tissues gives a substantial contribution to the way waves propagate. Still, 

some inequalities between numerical and experimental displacement images are present, due 

to the impossibility of having an exact match for the properties of the two works. An 

improvement in the accuracy of the selection of such values will elevate the analysis’s 

accuracy and its future applications. 

Overall, this work represents a further contribution to the wide panorama of research 

conducted on the MRE technique, providing an uncommon point of view on the technique 

itself. Together with many other works, it could be useful in extending knowledge on MRE, 

thus improving the accuracy and efficiency of diagnosis. 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

TABLE OF CONTENTS

 

ACKNOWLEDGMENTS............................................................................................... I 

ABSTRACT .................................................................................................................. III 

TABLE OF CONTENTS .............................................................................................. V 

LIST OF FIGURES................................................................................................... VIII 

LIST OF TABLES...................................................................................................... XII 

LIST OF ABBREVIATIONS ................................................................................... XIII 

SUMMARY ................................................................................................................ XIV 

SOMMARIO .............................................................................................................. XIX 

1 INTRODUCTION ................................................................................................ 1 

1.1 ELASTOGRAPHY ..................................................................................................................................1 

1.2 MAGNETIC RESONANCE ELASTOGRAPHY .................................................................................. 10 

1.2.1 MRI: THE BASIS TO MRE ............................................................................................................. 10 

1.2.2 THE MAGNETIC RESONANCE ELASTOGRAPHY TECHNIQUE ............................................... 16 

1.3 SKELETAL MUSCLE AS AN ANISOTROPIC MEDIUM .................................................................. 21 

1.3.1 ANISOTROPIC BEHAVIOUR OF SKELETAL MUSCLE .............................................................. 21 

1.3.2 WAVES IN ANISOTROPIC MEDIA ............................................................................................... 22 

1.3.3 WAVES IN TRANSVERSE ISOTROPIC MEDIA ............................................................................ 24 

2 PREVIOUS WORK AND MOTIVATION ...................................................... 29 

2.1 STUDIES AT UIC AND THEIR RATIONALE .................................................................................... 29 

2.1.1 THE INVERSE PROBLEM ............................................................................................................. 29 

2.1.2 THE NOVELTY OF THE TORSIONAL ACTUATION ................................................................... 32 

2.1.3 THE RESULTS................................................................................................................................ 33 

2.2 STATE OF THE ART AND MOTIVATION FOR THE PRESENT WORK ......................................... 36 

2.2.1 THE DIRECT PROBLEM ............................................................................................................... 36 

2.2.2 AN EXPLANATORY EXAMPLE REGARDING THE DIRECT FORMULATION .......................... 36 

2.2.3 MOTIVATION FOR THIS WORK .................................................................................................. 38 

3 MATERIALS AND METHODS ....................................................................... 40 

3.1 THE STARTING RVE GEOMETRY: ONE-ELEMENT-THICK CYLINDER .................................... 40 



vi 
 

3.2 MECHANICAL PROPERTIES ACQUISITION ................................................................................... 41 

3.2.1 A FIRST ATTEMPT: DERIVING GLOBAL PROPERTIES FROM THE SINGLE 

CONSTITUENTS ..................................................................................................................................... 41 

3.2.2 FITTING THE REAL EXPERIMENT TO THE COMPUTER SIMULATION: AN ACCURACY 

COMPROMISE ....................................................................................................................................... 43 

3.3 FREQUENCY DEPENDENT MATERIAL PROPERTIES: TAKING VISCOELASTICITY INTO 

ACCOUNT .................................................................................................................................................. 44 

3.4 MESHING THE GEOMETRY ....................................................................................................... 49 

3.5 HOMTOOLS: APPLYING PERIODIC BOUNDARY CONDITIONS TO THE RVE .................. 51 

3.6 LOAD ............................................................................................................................................. 54 

3.7 DIRECT SOLUTION STEADY-STATE DYNAMIC ANALYSIS ............................................... 55 

3.7.1 IMPLEMENTATION OF THE UMAT USER SUBROUTINE .................................................... 57 

3.8 A BETTER EVALUATION OF DISPLACEMENT IMAGES VIA FOURIER TRANSFORM ... 58 

3.8.1 SPLITTING THE GEOMETRY IN A QUARTER SEGMENT ......................................................... 59 

3.8.2 WAVE NUMBER VS. ANISOTROPIC RATIO: A QUANTITATIVE COMPARISON ................. 64 

3.9 BYPASSING THE PROPERTIES FITTING: A MORE PUNCTUAL ASSESSMENT OF THE WHOLE 

PROCESS .................................................................................................................................................... 67 

4 RESULTS AND DISCUSSION ......................................................................... 70 

4.1 VARYING FIBERS MECHANICAL PROPERTIES: APPLYING DIFFERENT MATLAB FITTINGS 

TO THE EXPERIMENTAL DATA ............................................................................................................. 70 

4.2  EXPERIMENTAL DISPLACEMENT DATA VS. SIMULATION DISPLACEMENT DATA: A 

VISUAL COMPARISON ............................................................................................................................ 74 

4.3 VARYING OF FIBERS ANISOTROPIC RATIO ................................................................................. 77 

4.4 COMBINING VARIATIONS IN FREQUENCY OF ACTUATION AND ANISOTROPIC RATIO ... 81 

4.5 FROM DISPLACEMENT IMAGES TO SHEAR MODULUS VALUES VIA FOURIER TRANSFORM

 ..................................................................................................................................................................... 82 

4.6 WAVE NUMBER VS. ANISOTROPIC RATIO: A QUANTITATIVE COMPARISON .............. 87 

4.7 BYPASSING THE PROPERTIES FITTING: A MORE PUNCTUAL ASSESSMENT OF THE WHOLE 

PROCESS .................................................................................................................................................... 89 

5 CONCLUSION AND FUTURE DEVELOPMENTS ...................................... 93 

CITED LITERATURE ................................................................................................ 97 

6 APPENDIX A: MATLAB CODES ................................................................. 101 

BARBERO CODE ..................................................................................................................................... 101 

FITTING VISCOELASTICITY PARAMETERS TO EXPERIMENTAL CURVES................................ 104 

MIRRORING THE DATA: FROM A QUARTER SLICE TO THE ENTIRE GEOMETRY .................... 105 

APPLYING FAST FOURIER TRANSFORM TO THE DISPLACEMENT DATA ................................. 106 



vii 
 

Mirroring ............................................................................................................................................... 106 

FFT_Fettina........................................................................................................................................... 107 

Insitu_DFT............................................................................................................................................. 108 

7 APPENDIX B: USER DEFINED FUNCTIONS ............................................ 110 

UMAT TO DEFINE VISCOELASTIC PROPERTIES OF THE SIMULATION MATERIAL ................ 110 

DISP.PY: THE PYTHON CODE TO EXTRACT DISPLACEMENT AND COORDINATES DATA FROM 

THE ODB FILE ......................................................................................................................................... 115 

 

 



viii 
 

LIST OF FIGURES 

  

Figure 1.1: MRI T1 and T2 parameters’ range VS range of shear modulus in human tissues. 

Adapted from Fung ................................................................................................................ 2 

Figure 1.2: Different elastographic modalities. Adapted from Klatt ..................................... 4 

Figure 1.3: Compression modality in a quasi-static ultrasound based elastography technique. 

Adapted from Gennisson ....................................................................................................... 6 

Figure 1.4: Top: transverse wave; Bottom: longitudinal wave ............................................. 7 

Figure 1.5: Main Ultrasound components. Adapted from Klatt ............................................ 8 

Figure 1.6: Behavior of magnetic moments of protons with and without an external magnetic 

field B. ................................................................................................................................. 10 

Figure 1.7: Bloch equation representation. Adapted from Prof Klatt ................................. 12 

Figure 1.8: a) spin motion during a spin echo sequence ..................................................... 13 

Figure 1.9: a) readout of k-space starting from bottom left point ....................................... 14 

Figure 1.10: Application of the Inverse Fourier Transform going from K-space to the image. 

Adapted from Prof Klatt ...................................................................................................... 15 

Figure 1.11: Schematic representation of intravoxel coherent motion ................................ 15 

Figure 1.12: synchronization between excitation signal and MEG starting point .............. 16 

Figure 1.13: Correction of phase wraps. Adapted from Prof Klatt ..................................... 19 

Figure 1.14: Length-Tension curve for skeletal muscle tissue ............................................ 22 

Figure 1.15: Sketch of skeletal muscle as a transversely isotropic material. X and y define 

the plane of isotropy. ........................................................................................................... 26 

Figure 2.1: Schematic visualization of the UIC setup ......................................................... 30 

Figure 2.2: The examined sample. From left to right: gelatin sample, anisotropic phantom, 

mouse muscle sample .......................................................................................................... 31 

Figure 2.3: Actuator systems. From left to right: piezoelectric actuator and stepper motor 

actuator ................................................................................................................................ 32 

Figure 2.4: Shear modulus trend as a function of frequency for an anisotropic phantom. 

Double arrows represent standard deviation values. Top: real part; Bottom: imaginary part

 ............................................................................................................................................. 34 

Figure 2.5: wave images for anisotropic phantom after torsional excitation ...................... 35 

https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435383
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435383
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435384
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435385
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435385
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435386
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435387
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435388
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435388
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435389
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435390
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435391
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435392
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435392
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435393
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435394
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435395
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435396
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435397
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435397
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435398
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435399
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435399
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435400
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435400
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435401
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435401
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435401
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435402


ix 
 

Figure 2.6: (left) sketch of the applied displacement on the outer boundaries of the Ecoflex 

phantom; (right) displacement profile on the cylinder top surface as a function of radial 

position. Image re-adapted from Yasar et al........................................................................ 37 

Figure 2.7: Displacement profiles acquired at 1500 Hz of the top surface of the cylinder 

along the radial direction spanning from -12.5 mm to 12.5 mm (because of axi-symmetry 

only half path is displayed). (Left) results from the numerical simulation; (right) results from 

the MRE experiment. Adapted from Yasar et al. ................................................................ 38 

Figure 3.1: Anisotropic phantom ......................................................................................... 40 

Figure 3.2:  Starting RVE geometry .................................................................................... 41 

Figure 3.3: Fitting of computational and custom-made results for the loss modulus with 

actual loss modulus values from experiments held at UIC ................................................. 44 

Figure 3.4: Stress-strain curve for a viscoelastic material. The blue area represents the loss 

of energy between a loading-unloading cycle (hysteresis) .................................................. 45 

Figure 3.5: Visualization of the experimental curve compared to the computational curve 

and relative viscoelastic parameters (first example)............................................................ 48 

Figure 3.6: Visualization of the experimental curve compared to the computational curve 

and relative viscoelastic parameters (second example) ....................................................... 49 

Figure 3.7: Visualization of the nodes distribution along the geometry ............................. 50 

Figure 3.8: Seeds built along the circular boundary ............................................................ 50 

Figure 3.9: (left) 3D visualization of the meshed part; (right) top/bottom face of the meshed 

parts: it is evident that nodes correspond on the two faces ................................................. 51 

Figure 3.10: Setting procedure for the Homtools toolbox. Each request must be filled as 

explained in the bulleted list above ..................................................................................... 52 

Figure 3.11: Visualization of the geometry after application of periodic boundary conditions 

(PBCs) ................................................................................................................................. 53 

Figure 3.12: (top left) Visualization of the Constraint Manager tab with equations for each 

point in the top face and its corresponding one in the bottom face; (top right) Detailed 

explanation of the applied equations for the boundary condition for the single couple of 

points in the geometry; (bottom) Visualization of the two matching points to which the 

equations are related (posteriorly highlighted in red) .......................................................... 53 

Figure 3.13: Representation of the first applied boundary condition .................................. 54 

Figure 3.14: Representation of the second applied boundary condition ............................. 55 

https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435403
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435403
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435403
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435404
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435404
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435404
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435404
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435405
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435406
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435407
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435407
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435408
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435408
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435409
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435409
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435410
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435410
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435411
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435412
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435413
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435413
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435414
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435414
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435415
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435415
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435416
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435416
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435416
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435416
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435416
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435417
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435418


x 
 

Figure 3.15: Setting of the Step tab in the ABAQUS simulation ........................................ 56 

Figure 3.16: Transfer of viscoelasticity parameter , shear modulus and direction values from 

the UMAT subroutine to ABAQUS property tab ................................................................ 57 

Figure 3.17: Slice of the global geometry that corresponds to ¼ of the total, meshed with a 

higher number of seeds. ....................................................................................................... 60 

Figure 3.18. Outline of the process that, starting from the output database given by the 

ABAQUS simulation ultimately allows the extraction of the k-space, via a Python and 

Matlab cod ........................................................................................................................... 63 

Figure 3.19: Visualization of the smaller geometry after mirroring operation. Picture arising 

from the 3rd simulation at 600Hz with an anisotropic ratio of 0.5 ...................................... 64 

Figure 3.20: Example of surface created from the evaluation of the Fourier transform matrix. 

Λx
-1 and Λy

-1 lay on the in-plane axes, while the vertical axis represents the power density

 ............................................................................................................................................. 65 

Figure 3.21: Power density as a function of λ-1 for both x (red line) and y direction (blue line)

 ............................................................................................................................................. 66 

Figure 4.1: First simulation: (left) the first seven mechanical properties represent the 

viscoelasticity parameters; (right) the corresponding curve fitting: the blue curve represents 

the computational simulation, the red curve represents the experimental data ................... 70 

Figure 4.2: Second simulation: (left) the first seven mechanical properties represent the 

viscoelasticity parameters; (right) the corresponding curve fitting: the blue curve represents 

the computational simulation, the red curve represents the experimental data ................... 71 

Figure 4.3: Third simulation: (left) the first seven mechanical properties represent the 

viscoelasticity parameters; (right) the corresponding curve fitting: the blue curve represents 

the computational simulation, the red curve represents the experimental data ................... 71 

Figure 4.4: Fourth simulation: (left) the first seven mechanical properties represent the 

viscoelasticity parameters; (right) the corresponding curve fitting: the blue curve represents 

the computational simulation, the red curve represents the experimental data ................... 72 

Figure 4.5: Fifth simulation: (left) the first seven mechanical properties represent the 

viscoelasticity parameters; (right) the corresponding curve fitting: the blue curve represents 

the computational simulation, the red curve represents the experimental data ................... 72 

Figure 4.6: Images resulting from properties of the first simulation, evaluated at 800Hz with 

an anisotropic ratio value of 0.6 .......................................................................................... 74 

https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435419
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435420
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435420
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435421
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435421
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435422
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435422
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435422
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435423
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435423
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435424
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435424
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435424
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435425
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435425
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435426
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435426
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435426
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435427
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435427
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435427
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435428
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435428
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435428
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435429
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435429
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435429
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435430
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435430
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435430
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435431
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435431


xi 
 

Figure 4.7: Images resulting from properties of the third simulation, evaluated at 600Hz with 

an anisotropic ratio value of 0.7 .......................................................................................... 75 

Figure 4.8: Visual explanation of the wave pattern inside a phantom with fibers aligned in 

the vertical direction ............................................................................................................ 76 

Figure 4.9: Fourier maps for the same simulation (third simulation at 600 Hz). On the left 

density value is 1.06E-09, on the right density value is 4.24E-09 ...................................... 86 

Figure 4.10: Plots from the 1st  simulation at 3000Hz. Left: anisotropic ratio of 1; Right: 

anisotropic ratio of 0.3. X axis represents alternatively values of λx
-1 and λy

-1. Y axis 

represents the power density................................................................................................ 87 

Figure 4.11: Visualization of displacement pattern for simulations run at 1500Hz adjusting 

the FE shear modulus values to the experimental values. Left: anisotropic ratio value of 1. 

Right: anisotropic ratio value of 0.1 .................................................................................... 89 

Figure 4.12: Comparison between FE simulation and MRE experiment. Frequency=1500Hz

 ............................................................................................................................................. 90 

Figure 4.13: Top row shows the power spectrum and plot for the simulation run at 1500Hz 

with an anisotropic ratio value of 1. Bottom row shows the power spectrum and plot for the 

simulation run at 1500Hz with an anisotropic ratio value of 0.1 ........................................ 91 

 

https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435432
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435432
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435433
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435433
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435434
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435434
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435435
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435435
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435435
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435436
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435436
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435436
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435437
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435437
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435438
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435438
https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc56435438


xii 
 

LIST OF TABLES 

 

Table 1.1: Impedance values as a function of density ........................................................... 9 

Table 3.1: : Parallel and perpendicular shear modulus values using both isotropic  assumption 

and transformation elastography theorem as a function of frequency for an anisotropic 

phantom ............................................................................................................................... 47 

Table 3.2: Results of shear moduli from UIC experiments ................................................. 68 

Table 4.1: Values of viscoelastic parameters for each Matlab simulation .......................... 73 

Table 4.2: Changes in the displacement images’ pattern as the anisotropic ratio value 

increases the mismatch between parallel and perpendicular (to the fibers) direction. ........ 77 

Table 4.3:  Changes in the displacement images’ pattern as the anisotropic ratio value 

increases the mismatch between parallel and perpendicular (to the fibers) direction evaluated 

for the smaller, more thickly meshed geometry. ................................................................. 80 

Table 4.4: Representation of displacement images from the first simulation at different 

frequencies (500 and 800Hz) and different anisotropic ratio (1 and 0.4)............................ 81 

Table 4.5: Comparison between displacement image and Fourier map of the whole geometry 

VS the sliced geometry for different anisotropic ratio values. Properties from the 3rd 

simulation (see paragraph above) at 600Hz and density value x 4. .................................... 82 

 

 

 

 

 

 

 

 

 

 

 

 

https://d.docs.live.net/e7ebe9ee64618158/TESI%20POLI_%20Chiara%20Gambacorta%20V(2).docx#_Toc55749614


xiii 
 

LIST OF ABBREVIATIONS 

 

MRE Magnetic Resonance Elastography 

MRI Magnetic Resonance Imaging  

US Ultra-Sound 

RF Radio-Frequency 

MEG Motion Encoding Gradient 

PBCs Periodic Boundary Conditions 

TE Transformation Elastography 

LFE Local Frequency Estimation 

AR Anisotropic Ratio 

UIC University of Illinois at Chicago 

 



xiv 
 

SUMMARY 

 

Background 

 

Magnetic Resonance Elastography (MRE) is an imaging technique that exploits propagating 

mechanical shear waves to probe mechanical properties of tissues. The most immediate 

effect of the technique is that such waves travel faster when going through stiffer tissues, 

while reducing their speed through softer tissues. After having provided mechanical 

excitation and having visualized the way in which waves move inside the tissue itself, the 

MRE technique has as third and last step the inversion of displacement data in order to 

retrieve quantitative values for the mechanical properties. 

Medical diagnosis on various body districts has pointed out the existing relation between 

tissues’ stiffness and the presence of an ailment: this is the case of fibrosis and cirrhosis for 

the liver, but many other examples exist. One of these is skeletal muscle tissue, which can 

be severely affected by a series of neuromuscular disorders, such as atrophy or Duchenne’s 

Muscular Dystrophy, that have an invalidating effect on the patient and exhibit as a first red 

flag the thickening of the tissue itself. MRE, in such context, becomes a useful and powerful 

tool to preemptively assess the presence of abnormal levels of stiffness in the tissues, thus 

allowing for an early diagnosis and treatment of severe conditions. 

The challenge for MRE of skeletal muscle is given by the intrinsic viscoelasticity and 

anisotropy of such tissue that makes inversion to shear modulus data of difficult 

implementation.  

This problem has been partly solved in a previous experimental work done at the University 

of Illinois at Chicago: an anisotropic phantom comprised of PDMS filaments inserted in a 

soft plastic matrix was designed in order to resemble structure of skeletal muscle tissue. 

Subsequently, it was harmonically vibrated in an axial fashion and displacement images 

were retrieved. To overcome the issue of intrinsic anisotropy of the phantom, an innovative 

technique named Transformation Elastography was proposed, which would simply distort 

the considered geometry allowing to have properties which would result isotropic in the 

newly created coordinate system. This would eventually allow for inversion and 

reconstruction of mechanical properties.  
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Aim of the present work 

 

The aim of this specific thesis work  is to provide further insight in the MRE world by  

reversing the usual  plan of  set passages,  thus introducing a “Direct Formulation” of the 

problem: this is done by creating a Finite Element simulation in Abaqus  where the material 

properties serve as inputs of the simulation and the result is given by the extraction of 

displacement images, whereas in a typical MRE procedure the starting point would be 

represented by the very same displacement maps. The work sets as its final goal the ability 

to better understand what role anisotropy and mechanical properties play in the propagation 

of waves inside skeletal muscle tissue and will eventually serve as a valuable tool to gain 

more knowledge  on the innovative and possibly beneficial MRE technique. 

 

Methods and Results 

 

As mentioned before, in order to create a Direct Problem, that would basically reverse the 

theoretical route followed by experimental MRE on the anisotropic phantom, the Abaqus 

simulation carried out in this study traces step by step the previously mentioned experiment 

that was carried out at UIC: for this reason, input properties are given to the simulation either 

directly by plugging the existing value of shear modulus in a UMAT subroutine, or thanks 

to a Matlab curve-fitting  sequence that implements equations that take viscoelasticity into 

account. All other Abaqus settings (Mesh, Step, Load, PBCs, etc.) were fit in such a way to 

be as coherent as possible with the MRE experiment. 

To sum up: 

• The sketched geometry represents a small part of the real phantom, thus it is called 

RVE (Representative Volume Element) and it has the shape of a very thin cylinder 

• Mechanical properties are given as inputs to the simulation either 

o Plugging UIC experimental values in a UMAT subroutine, that was linked 

to the Abaqus simulation 

o Creating a trial and error approach needed to fit the experimental curves 

to numerical curves that were the result of equations of various 

parameters, accounting for viscoelasticity of the material 
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• The mesh is created so to have one single node along the cylinder’s thickness: 

this guarantees to have nodes on the top circular face that are exactly overlapping 

nodes on the bottom circular face 

• The Homtools plug-in is used to apply boundary conditions on the geometry that 

can be periodic, since the RVE only represents a part of the real phantom 

• The load is created by means of Boundary Conditions and set to the value of 1µm, 

as in the real experiment 

 

Once FE displacement images are extracted, these can be compared with the ones coming 

from the experimental procedure, which in turn would give the properties that were now 

plugged as the input of the simulation. Simulations have been conducted for different 

frequencies of actuation and different anisotropic ratio values, in order to have a plethora of 

possible comparisons. 

 

When exploiting the Matlab curve-fitting sequence, the experimental curve, given by the 

relationship between acquired shear moduli data and the related frequency, tends to fall in a 

smaller area compared to the computational curve (provided by a trial and error process) 

which usually possesses a wider Gaussian shape. Thus, the results in terms of comparison 

between displacement images show some level of discrepancies with the experimental ones, 

albeit still being qualitatively comparable, with a higher degree of elongation with the 

increase in frequency and anisotropic ratio values. 

On the other hand, when directly plugging experimental values of shear moduli in the 

simulation via the UMAT subroutine, computational and experimental images are very much 

alike. This would represent a good validation of the experimental and numerical procedure.  

 

Subsequently, various post-processing steps are conducted on the FE displacement data:  

• Coordinates and displacement values are extracted by means of a Python 

sequence that recalls the Abaqus simulation  

• These are fed as input data to a Matlab sequence.  The sequence applies 2D 

Fourier Transform to the data and allows for visualization of the power spectrum 

of the given simulation where x and y coordinates are given by wave numbers in 
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the x and y direction, while the amplitude of the wave is represented by the color 

intensity.  

• A plot that describes the relationship between the power density and the wave 

number in the two in-plane directions is computed. The plot allows for the 

detection of the λ-1 parameter: by means of simple mathematical relations this 

leads to the acquisition of the wave number, needed to apply the LFE theory that 

could be implemented to easily acquire shear modulus values, given a precise 

knowledge of both the level of anisotropy and the density value for the real 

anisotropic phantom. 

 

Results acquired from these post-processing techniques highlight that the power spectrum is 

an effective tool to have an immediate visual representation of how different anisotropic 

ratio values affect the analyses, with high degrees of elongation when the shear moduli in 

the two main directions highly differ. 

Although being visually representative, this analysis lacks in quantitative accuracy: this is 

ultimately provided by the aforementioned plots, where changes between different 

simulation settings are not as easily identifiable, still are quantitively observed by simply 

scrolling on different points of the plot. 

 

 

 

Conclusions and future developments 

 

All the described processes are meant to be used as a starting point to harvest the vase of 

knowledge researchers have regarding the MRE technique. 

The displayed results show encouraging outcomes as far as the comparison between 

experimental and computational studies are concerned: this assures the presence of integrity 

in the choice of the various steps performed both in the simulation and in reality. 

Moreover, the post-processing steps on the displacement data point out the possibility of 

having further insight on the performed analysis and, if successful, may represent a 

numerical exact comparison between values of shear modulus plugged as input of the 

simulation and those re-acquired by the LFE. 
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However, discrepancies, such as diverse modes of vibrations in the computational images, 

are still present and this may be due to the fact that properties between the two works are not 

exactly the same. To have a more effective evaluation and comparison between the two, one 

should acquire mechanical properties values from the single components of the anisotropic 

phantom used at UIC and apply a homogenization procedure that would simulate the 

presence of a composite phantom in the Abaqus reproduction. 

Still, this work has set as its intention to be a stepping stone for a wider knowledge of a 

technique that could represent a major breakthrough in the field of early diagnosis and 

therapies of conditions that are severely affecting the lives of many.
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SOMMARIO 

 

Background 

 

L'elastografia a risonanza magnetica (MRE) è una tecnica di imaging che sfrutta la 

propagazione delle onde di taglio meccaniche per sondare le proprietà meccaniche dei 

tessuti. L'effetto più immediato della tecnica è che tali onde viaggiano più velocemente 

quando attraversano tessuti più rigidi, riducendo la loro velocità attraverso tessuti più 

morbidi. Dopo aver fornito l'eccitazione meccanica e aver visualizzato il modo in cui le onde 

si muovono all'interno del tessuto stesso, la tecnica MRE prevede come terzo ed ultimo 

passaggio l'inversione dei dati di spostamento al fine di recuperare valori quantitativi delle 

proprietà meccaniche. 

La diagnostica medica ha evidenziato su vari distretti corporei la relazione esistente tra 

rigidità dei tessuti e presenza di una patologia: è il caso della fibrosi e della cirrosi epatica, 

ma esistono molti altri esempi. Uno di questi è il tessuto muscolare scheletrico, che può 

essere gravemente colpito da una serie di disturbi neuromuscolari, come l'atrofia o la 

distrofia muscolare di Duchenne, che hanno un effetto invalidante sul paziente ed esibiscono 

come primo campanello di allarme l'ispessimento del tessuto stesso. La MRE, in tale 

contesto, diventa uno strumento utile e potente per valutare preventivamente la presenza di 

livelli anormali di rigidità nei tessuti, consentendo così una diagnosi precoce e il trattamento 

di condizioni gravi. 

La sfida per la MRE del tessuto muscolare scheletrico è data dalla viscoelasticità intrinseca 

e dall'anisotropia di tale tessuto che rende difficile l'implementazione dell’inversione per 

avere dati riguardanti il modulo di taglio. 

Questo problema è stato in parte risolto in un precedente lavoro sperimentale svolto presso 

la University of Illinois at Chicago: un campione di materiale anisotropo composto da 

filamenti di PDMS inseriti in una matrice di plastica morbida è stato progettato per 

assomigliare alla struttura del tessuto muscolare scheletrico. Successivamente, è stato 

vibrato armonicamente in modo assiale e sono state recuperate le immagini di spostamento. 

Per ovviare al problema dell'anisotropia intrinseca del campione, è stata proposta una tecnica 

innovativa denominata Transformation Elastography, che si limiterebbe a distorcere la 
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geometria considerata consentendo di avere proprietà che risulterebbero isotrope nel sistema 

di riferimento appena creato. Ciò consentirebbe eventualmente l'inversione e la ricostruzione 

delle proprietà meccaniche. 

 

Obiettivo del lavoro 

 

Lo scopo di questo specifico lavoro di tesi è quello di fornire ulteriori approfondimenti 

riguardo al mondo della MRE, ribaltando la consueta planimetria dei passaggi impostati, 

introducendo così una “Formulazione Diretta” del problema: ciò avviene creando una 

simulazione agli Elementi Finiti in Abaqus, dove le proprietà del materiale servono come 

input della simulazione e il risultato è dato dall'estrazione di immagini di spostamento, 

mentre in una tipica procedura MRE il punto di partenza sarebbe rappresentato dalle stesse 

mappe di spostamento. Il lavoro si pone come obiettivo finale la possibilità di comprendere 

meglio quale ruolo l'anisotropia e le proprietà meccaniche giocano nella propagazione delle 

onde all'interno del tessuto muscolare scheletrico e servirà infine come prezioso strumento 

per acquisire maggiori conoscenze su questa tecnica innovativa e possibilmente vantaggiosa. 

 

Metodi e risultati 

 

Come accennato in precedenza, al fine di creare un Problema Diretto, che sostanzialmente 

invertirebbe il percorso teorico seguito dalla MRE sperimentale sul campione anisotropo, la 

simulazione di Abaqus condotta in questo studio ripercorre passo passo l'esperimento 

precedentemente citato, condotto presso la UIC: per questo motivo, le proprietà di input 

vengono fornite alla simulazione o direttamente inserendo il valore esistente del modulo di 

taglio in una subroutine UMAT, o grazie a una sequenza Matlab di “curve-fitting” che 

implementa equazioni che tengono conto della viscoelasticità del materiale. Tutte le altre 

impostazioni di Abaqus (Mesh, Step, Load, PBC, ecc.) sono state adattate in modo tale da 

essere il più coerenti possibile con l'esperimento MRE. 

Riassumendo: 

• La geometria della simulazione rappresenta una piccola parte del campione reale, 

per questo si chiama RVE (Representative Volume Element) e ha la forma di un 

cilindro molto sottile 
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• Le proprietà meccaniche vengono fornite come input per la simulazione 

attraverso 

o L’inserimento dei valori sperimentali trovati a UICc in una subroutine 

UMAT, collegata alla simulazione Abaqus 

o La creazione di un approccio per “tentativi ed errori” necessario per 

adattare le curve sperimentali a quelle numeriche: quest’ultime erano il 

risultato di equazioni con vari parametri, che tenessero conto della 

viscoelasticità del materiale 

• La mesh viene creata in modo da avere un unico nodo lungo lo spessore del 

cilindro: questo garantisce di avere nodi sulla faccia circolare superiore che sono 

esattamente sovrapposti ai nodi sulla faccia circolare inferiore 

• Il plug-in Homtools viene utilizzato per applicare condizioni al contorno sulla 

geometria che possano essere periodiche, poiché l'RVE rappresenta solo una parte 

del campione reale 

• Il carico è creato tramite l’applicazione di condizioni al contorno ed è impostato 

al valore di 1µm, come nell'esperimento reale 

 

Una volta estratte le immagini di spostamento FE, queste possono essere confrontate con 

quelle provenienti dalla procedura sperimentale, che a sua volta darebbe le proprietà che 

vengono ora inserite come input della simulazione. Sono state condotte simulazioni per 

diverse frequenze di attuazione e diversi valori di rapporto anisotropo, in modo da avere una 

vasta gamma di possibili confronti. 

 

Quando si sfrutta la sequenza di adattamento della curva di Matlab, la curva sperimentale, 

data dalla relazione tra i dati dei moduli di taglio acquisiti e la relativa frequenza, tende a 

ricadere in un'area minore rispetto alla curva numerica (data da un processo di “tentativi ed 

errori”) che possiede una forma gaussiana più ampia. Pertanto, i risultati in termini di 

confronto tra immagini di spostamento mostrano piccole discrepanze con quelle 

sperimentali, pur rimanendo qualitativamente confrontabili, con un grado di allungamento 

maggiore all'aumentare dei valori di frequenza e rapporto anisotropo. 

D'altra parte, quando si inseriscono direttamente i valori sperimentali dei moduli di taglio 

nella simulazione tramite la subroutine UMAT, le immagini computazionali e sperimentali 
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sono molto simili. Ciò rappresenterebbe una buona validazione della procedura 

sperimentale. 

 

Successivamente, vengono condotte varie fasi di post-elaborazione sui dati di spostamento 

FE:  

• Le coordinate e i valori di spostamento sono estratti tramite una sequenza Python 

che richiama la simulazione di Abaqus 

• Questi sono inseriti come dati di input in una sequenza Matlab. La sequenza 

applica la trasformata di Fourier 2D ai dati e consente la visualizzazione dello 

spettro di potenza della simulazione data dove le coordinate x e y sono date da 

numeri d'onda nella direzione x e y, mentre l'ampiezza dell'onda è rappresentata 

dall'intensità del colore. 

• Viene calcolato un grafico che descrive la relazione tra la densità di potenza e il 

numero d'onda nelle due direzioni piane. Il grafico permette di rilevare il 

parametro λ-1: tramite semplici relazioni matematiche si ottiene l'acquisizione del 

numero d'onda, necessario per applicare la teoria LFE che potrebbe essere 

implementata per acquisire facilmente i valori del modulo di taglio,  

previa una precisa conoscenza sia del livello di anisotropia che del valore di 

densità per il campione anisotropo reale. 

 

I risultati acquisiti da queste tecniche di post-elaborazione evidenziano che lo spettro di 

potenza è uno strumento efficace per avere una rappresentazione visiva immediata di come 

i diversi valori del rapporto anisotropo influenzino le analisi, con alti gradi di allungamento 

quando i moduli di taglio nelle due direzioni principali sono molto diversi. 

Pur essendo visivamente rappresentativa, questa analisi manca di accuratezza quantitativa: 

questo è in definitiva fornito dai suddetti grafici, dove i cambiamenti tra le diverse 

impostazioni di simulazione non sono così facilmente identificabili, ma sono in ogni caso 

osservabili quantitativamente semplicemente scorrendo su diversi punti del grafico. 
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Conclusioni e sviluppi futuri 

 

Tutti i processi descritti sono pensati per essere utilizzati come fonte di alimentazione del 

vaso di conoscenza che i ricercatori hanno sulla tecnica MRE. 

I risultati visualizzati mostrano esiti incoraggianti per quanto riguarda il confronto tra studi 

sperimentali e computazionali: questo assicura la presenza di integrità nella scelta dei vari 

passaggi eseguiti sia nella simulazione che nella realtà. 

Inoltre, le fasi di post-processing sui dati di spostamento evidenziano la possibilità di avere 

ulteriori approfondimenti sull'analisi eseguita e, in caso di successo, possono rappresentare 

un confronto numerico esatto tra i valori del modulo di taglio inserito come input della 

simulazione e quelli riacquisiti dalla LFE. 

Tuttavia, sono ancora presenti discrepanze, visibili ad esempio nelle diverse modalità di 

vibrazione nelle immagini computazionali, e ciò può essere dovuto al fatto che le proprietà 

tra le due analisi non sono esattamente le stesse. Per avere una valutazione e un confronto 

più efficace tra i due lavori, potrebbe essere necessario acquisire i valori delle proprietà 

meccaniche dai singoli componenti del campione anisotropo utilizzato presso UIC e 

applicare una procedura di omogeneizzazione che simuli la presenza di un campione 

composito nella simulazione di Abaqus. 

In ogni caso, questo lavoro vuole dare un contributo per una più ampia conoscenza di una 

tecnica che potrebbe rappresentare un importante passo avanti nel campo della diagnosi 

precoce e della terapia per patologie che stanno gravemente influenzando la vita di molti.



 

1 

 

1 INTRODUCTION 

1.1 ELASTOGRAPHY 

Knowledge of hardness and softness of a tissue can be a useful tool to assess pathological 

status of a patient. This is no new discovery for medical doctors that for centuries have 

exploited traditional methods with senses such as hearing of sounds or auscultation, visual 

perception, and manual palpation and were able to characterize biological tissues by 

assessing their response to deformation1 2. An example of this may be given by the fact that 

many tumors affecting a variety of different tissues such as breast, thyroid and prostate3, that 

may be sometimes neglected by preoperative CT and MRI images, are easily detected by the 

physician’s touch4 5.  Nevertheless, limitations are present within these traditional “senses” 

methods as well, as they are restricted to the body surface, there is no precise identification 

of location inside the body, and perception is a qualitative measure subject to intra and inter 

observer variability6.  

On the other hand, conventional imaging modalities (CT, MRI for example) are incapable 

of determining elastic properties of tissue, since their depicted parameters span over a much 

narrower range with respect to the shear modulus of human soft tissue.  

An example of the different ranges of application of MRI parameters T1 and T2 and shear 

modulus of human soft tissue is depicted in Figure 1.1 7 8. 
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Figure 1.1: MRI T1 and T2 parameters’ range VS range of shear modulus in human 

tissues. Adapted from Fung 
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During the last thirty years scientists, engineers and medical doctors have recognized the 

importance and benefit of precisely assessing tissue’s mechanical properties and a 

cooperation began in order to overcome the aforementioned constraints, by developing a 

novel technique named “elastography”. 

Elastography has the final purpose of acquiring the value for the tissue’s Young’s Modulus 

E, visible by means of color maps; two consequences arise from the acquisition: first of all, 

different tissues that display different Young’s Modulus values, can be easily differentiated 

one from the other; the second consequence derives from the knowledge of E itself, which 

leads to the tissue’s stiffness’ characterization 9. Elastography, in such a way, is said to be a 

diagnostic technique that measures mechanical properties of tissues, amongst which stiffness 

plays a predominant role, through the use of images10. Harmonic vibrations are non-

invasively introduced inside the tissue thanks to an actuator system that contextually 

measures their velocity through the body component of interest. No needles are required in 

order to lead such vibrations, nor any other kind of aggressive and intrusive modality: for 

this reason, elastography has the advantage of being non-invasive and sensitive to 

pathological changes and sometimes referred to as a “remote palpation by imaging” 

technique11. 

A good example of tissue in which this technique can be used as a non-invasive alternative 

to the current most exploited diagnostic techniques is the liver; hepatic fibrosis is a severe 

disease that entails the stiffening of the tissue: this may be worsened reaching the state of 

cirrhosis that could eventually lead to the development of hepatocellular carcinoma and to 

liver failure with need for transplantation12 13: the diagnostic tool considered as the gold 

standard to determine the presence of such a condition is liver biopsy. However, this 

technique has several limitations and the big disadvantage of using a needle to obtain a 

sample of the tissue, resulting in the patient’s risk and discomfort14, which in turn can be 

cause for the patient’s refusal, along with morbidity and an alarming rate of mortality15,16. 

Moreover, the fact that liver tissue samples come in very small sizes and the analysis is 

subject to the doctor’s subjective and qualitative assessment has led the scientific community 

to raise questions on the accuracy and reproducibility of the technique17–19, while considering 

the option of an alternative, less invasive methodology20.  This is where elastography may 

take place, since it represents a better alternative to biopsy and in particular “Magnetic 
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Resonance Elastography” is the most rigorous technique to diagnose chronic liver diseases21–

23. 

Elastography finds its interpretation in a plethora of different techniques, that share the same 

theoretical basis (Figure 1.28). In this work, focus will be given to magnetic resonance 

elastography with brief mentions to ultrasound elastography.  

What differentiates these two modalities of elastography application is the imaging method 

they exploit to generate maps of displacement inside the examined tissue: they both lead to 

the reconstruction of mechanical properties of the examined piece.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Different elastographic modalities. Adapted from Klatt 
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Ultrasound elastography, alternatively named “ultrasonography”, falls simultaneously under 

the two different macro-categories of quasi-static and dynamic elastography. 

In quasi-static elastography a constant stress is applied to the tissue under examination: this 

test allows for the acquisition of the strain ε resulting from the stress σ. On a theorical basis, 

Hook’s Law could return the value for the Elastic Modulus E as a result of its simple linear 

formula 

 

𝜎 = 𝐸휀 [1.1] 

 

 

Nevertheless, practice lacks the familiarity with the value for the applied stress σ, which in 

turn prevents the identification of E; furthermore, these static approaches heavily depend on 

unknown boundary conditions.  

The final result of the quasi-static methods is an “elastogram”, which is the strain value ε in 

the form of a strain map: this eventually provides an indirect indication of the tissue’s 

stiffness 10. 

Ultrasound is one of those techniques retrievable at one stage under the elastographic 

category of quasi-static methods: first experiments and studies with these method were 

carried out by the Ophir Group 24  in the 1990s and the technique is now of wide 

implementation in the case of lesions occurring in the breast area; the tissue gets compressed 

and strain values are consequently extracted by means of derivation of the displacement 

calculated through conventional ultrasound images. Its limitations lie in the fact that the 

applied stress needs to be controlled by an operator and the unsophisticated compression 

modality allows for examination of superficial body components solely (see Figure 1.3) 9.  
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In dynamic elastography, on the other hand, a time varying input excitation is employed, and 

this travels through the body in the form of waves. Modalities of force application can be 

twofold: either by a transient stimulus or by a harmonic oscillatory actuation that stimulates 

the tissue: ultrasonography utilizes both the transient and the harmonic excitation, while 

magnetic resonance elastography is only feasible through the latter modality. 

With solid media, after propagation of mechanical waves two wave types are visible: 

longitudinal/compressional waves and shear waves. 

Longitudinal waves are able to travel through all types of mediums (liquid, solid and 

gaseous); their direction of wave motion (Vl) is parallel (both in the same and the opposite 

way) to the tissue’s displacement direction (u). 

Shear waves instead only proceed through solid bodies and their direction of propagation 

(Vs) is perpendicular to the oscillation (u) they provide (Figure 1.4). 

 

 

Figure 1.3: Compression modality in a quasi-static 

ultrasound based elastography technique. Adapted from 

Gennisson 
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Shear waves propagate inside the body with a velocity that spans from 1 m/s to 50 m/s and, 

much slower than what occurs with longitudinal waves (where it can get up to 1500 m/s and 

at high frequency values). Moreover, due to absorption at high frequency values, shear waves 

only get produced at low frequencies that get up to 2000 Hz.  

The velocity value is linearly associated with the shear modulus for the tissue µ and, in turn, 

by means of simplifying assumption of incompressibility inside biological matter the shear 

modulus can lead to identification of the Young’s Modulus E 9. 

 

𝜇 = 𝜌𝑉 [1.2] 

𝐸 = 3𝜇 [1.3] 

 

In these last years, research has mainly addressed shear wave propagation because of the 

greater dynamic range provided by shear modulus µ, with respect to the slimmer range (one 

order of magnitude) given by longitudinal waves 25.  

Figure 1.4: Top: transverse wave; Bottom: longitudinal wave 
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However, the Ultrasound technique belonging to the dynamic elastography group is used 

with both these types of waves (longitudinal and shear). 

Compressional ultrasound waves are largely used in diagnostic imaging: the waves are sent 

towards a transducer that has been positioned on the area of interest. Ultrasound transducers 

are devices that can, not only transmit, but also detect vibrations. These vibrations, after 

hitting the desired tissue or component of interest, get reflected back to the transducer in the 

form of echoes. Finally, a computer converts them into images26. This diagnostic modality 

allows for pregnancy detection as well as visualization of several body districts such as the 

heart, blood vessels, muscles and abdomen. 

 

Figure 1.5 shows main components needed for the diagnostic visualization via US8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What allows discrimination between different body components is the presence of contrast 

within the image itself: contrast is given by the impedance property (Z parameter) that 

characterizes different tissues, and that represents the resistance opposed by materials to 

sound. It also gives an estimation of the distance/depth of the surface where the sound wave 

gets reflected. 

 

Figure 1.5: Main Ultrasound components. Adapted from Klatt 
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𝑍 = 𝜌𝑐 [1.4] 

where ρ is the density of the material and c the compression wave velocity 

 

𝑑 =
𝑐 × 𝑡

2
[1.5] 

 

d represents distance from the transducer, c is the compression wave velocity and t is the 

wave travel time. 

 

Table 1.1 shows density and related Z values for different substances. 

 

 

 

 

 

 

 

 

 

Table 1.1: Impedance values as a function of density 
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1.2 MAGNETIC RESONANCE ELASTOGRAPHY 

1.2.1 MRI: THE BASIS TO MRE 

Magnetic Resonance Elastography is one of the aforementioned types of Elastography and, 

as hinted by the name itself, it is based on the well-known Magnetic Resonance Imaging 

technique. For this reason, before presenting conceptual explanations of this novel technique 

a brief overview on MRI will be provided. 

The starting point for an MRI diagnosis is the presence of nuclei (usually protons) inside the 

body: these possess a spin associated with a magnetic moment, whose vector sum produces 

a macroscopic magnetization M. The M magnetization vector can be sensed under the 

condition that spins possess a coherent direction: condition that gets observed only in the 

presence of an external magnetic field B. In this way, at thermal equilibrium the 

magnetization vector M becomes parallel to B (Figure 1.6). 

 

 

 

 

 

 

 

 

 

Figure 1.6: Behavior of magnetic moments of protons with and without an external magnetic field 

B. 
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Nuclei that possess a spin are able to precess on their axis with a certain frequency, which is 

given by merging the external magnetic field and the body magnetic moments. This results 

in the so called “Larmor frequency”, whose formulation is given by 

 

𝜔 = 𝛾𝐵 [1.6] 

 

where  𝛾 represents the gyromagnetic ratio, that is to say the ratio of its magnetic moment to 

its angular moment. 

The final goal of Magnetic Resonance Imaging is the retrieval of the transversal component 

of the M magnetization vector, by means of an RF coil system that possesses frequency equal 

to the Larmor frequency: this latter condition is known as the Resonance Condition 

 

Ω1 = 𝛾𝐵 [1.7] 

 

where Ω1 is the frequency of the RF pulse; this prerequisite is needed in order to flip with 

an angle of α the magnetization vector to reach its perpendicular component Mt. The α angle 

needs to be as large as possible, ideally with a value of 𝛼 = 90°: as a matter of fact, over 

time, the system is drawn to the condition of its thermal equilibrium; this means that the 

parallel component of M,  Ml, tends to acquire its initial value, while the perpendicular 

component Mt is driven to zero. The α value is determined both by the RF pulse duration τ 

and its amplitude B. 

The evolution of the magnetization vector over time is the combination of the rate of loss of 

Mt, caused by interaction between spins, and the rate of regain of Ml due to spin-lattice 

interaction, as follows 

 

𝑑𝑴

𝑑𝑡
= 𝛾(𝑴 × 𝑩) −

𝑀𝑥𝒆𝒙 +𝑀𝑦𝒆𝒚

𝑇2
−
𝑀𝑧𝒆𝒛 +𝑀0𝒆𝒛

𝑇1
[1.8] 

 

Spin-spin interaction is cause for the dephasing, which consequently leads to loss of signal. 

The dynamics of the presented formula are shown in Figure 1.7 8 
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Various sequences for The RF pulse can be implemented with several modalities, and each 

provides different behaviors of the transverse magnetization. The most used one for MRI 

diagnostic procedures is the “spin echo” sequence: here a 90° pulse drives the magnetization 

vector M into its transverse component Mt; then a 180° pulse corrects for the dephasing 

effect due to the inhomogeneities of the field. The actual MR signal is readout during an 

echo as seen in Figure 1.8.  

Figure 1.7: Bloch equation representation. Adapted from Prof Klatt 
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Three main components are comprised in the hardware setup for an MRI system: the magnet, 

the RF coils and the gradient coils. The RF coils not only determine the presence of the 

transverse magnetization but also serve as antennas to measure voltage changes; gradient 

coils (in all three directions of motion), on the other hand, are necessary to encode the spatial 

variation of the magnetic field , since different points in space entail different frequency 

Figure 1.8: a) spin motion during a spin echo sequence 

b) spin echo sequence in terms of RF pulse and corresponding signal. Adapted from 

Prof Klatt 
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values and consequently a change in the MR signal. The fact that these coils are active in all 

three directions allows for a diversification of the acquired signal: the gradient along the z 

direction allows to obtain the selection of a specific slice of the object that is being assessed, 

thus the value for Mt in that specific slice; as for the x direction, this is related to the phase 

encoding, which means that every x coordinate has a different phase, while the y direction 

is appointed to the frequency encoding, such that every y coordinate has a different 

frequency. 

In this way every voxel becomes singularly identifiable, because it has its specific frequency 

and accumulated different phase: eventually a 2D Fourier Transform is applied on the Mt 

transverse magnetization, which, in this way, allows for acquisition of the MR signal in the 

so called k-space. The signal is then read line by line starting from the bottom left point as 

seen in Figure 1.9 8 and each line is acquired in one Repetition Time TR until the whole k-

space is completed; the desired image will be finally given by an inverse Fourier Transform, 

that provides visualization of the MR signal in the form of two different images: one for the 

magnitude and one for the phase of the transverse magnetization Mt (Figure 1.10 8)27.  

 

 

 

 

 

 

Figure 1.9: a) readout of k-space starting from bottom left point 

b) spin echo sequence repeated for every TR. Adapted from Klatt 
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MRI is not restricted to one single modality, instead it can detect different kinds of motion. 

The oscillation considered in Magnetic Resonance Elastography is the “intravoxel coherent 

motion”, thus this will be the one here described. Within intravoxel coherent motion, voxels 

are capable of moving inside the matter; however, the relative position of spins one with 

respect to the other remains static. This results in the fact that, since they precess coherently, 

all spins within one voxel are in phase, bringing the macroscopic magnetization to its 

maximum. 

 

 

 

 

 

 

 

 

Figure 1.10: Application of the Inverse Fourier 

Transform going from K-space to the image. Adapted 

from Prof Klatt 

Figure 1.11: Schematic representation of intravoxel 

coherent motion 
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1.2.2 THE MAGNETIC RESONANCE ELASTOGRAPHY TECHNIQUE 

Magnetic Resonance Elastography differs from MRI because of the addition of two 

components that are essential for such a technique:  

1) A mechanical excitation signal: this is explicated by means of mechanical waves 

that travel inside the material 

2) A Motion Encoding Gradient (MEG), which can be defined as the mean through 

which vibration of voxels get encoded within a phase value φ.  

To clarify, a Motion Encoding Gradient is used for vibration estimation and it is 

not to be confused with the MRI gradients (Gz, Gy, Gx), which are used for 

position encoding instead.  

 

Fundamental prerequisite for a correct MRE analysis is that the wave motion excitation 

signal is synchronized with the MEG: in order to satisfy this condition, the MEG phase must 

be zero at its starting point in time (t=s). This is given by the relation 

 

𝛩𝑘 = 𝜔𝑘𝑠 [1.9] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: synchronization between excitation signal and MEG starting 

point 
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Reaching a steady state condition of the harmonic vibration is a further condition for the 

MEG application. In this way all voxels possess the same frequency. 

 

One of the fundamental goals for an MRE analysis is the acquisition of snapshots of the 

waves that move inside the tissue. This movement is expressed in the form of displacement 

values that are in units of micrometers: the MEG is important because it represents the 

starting point of calculations that can lead to this ultimate objective. 

As a matter of fact, the deflection (u) given by the vibrations can be combined with Motion 

Encoding Gradients to obtain the phase of the transverse magnetization. 

This last parameter can, in turn, lead to the extraction of the “Encoding Efficiency”  𝜉𝑛. 

Mathematical steps are hereby shown 

 

𝐾(𝑡) = 𝐾0 sin(𝜔𝑘𝑡 + 𝜃𝑘) [1.10] 

 

K is the Motion Encoding Gradient 

 

𝑢(𝑡) = 𝑌𝑛 𝑠𝑖𝑛(𝜔𝑛𝑡 + 𝜃𝑛) [1.11] 

 

u is the deflection 

 

𝜙(𝑠) = 𝛾∫ 𝑲(𝑡) + 𝒖(𝑡)𝑑𝑡
𝑠+𝜏𝑘

𝑠

[1.12] 

 

γ represents the gyromagnetic ratio,  𝜙 is the phase of Mt and it is a function of the start time 

s of the MEG. 

 

𝜉𝑛 =
𝜙𝑛
0

𝑌𝑛
[1.13] 

 

where 𝜙𝑛
0 is retrievable from the definition of phase  

 

𝜙(𝑠) = 𝜙𝑛
0 𝑠𝑖𝑛(𝜔𝑛𝑠 + 𝜃𝑛 + Δ𝜃𝑛) [1.14] 
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Encoding efficiency is the actual tool that allows for the transformation from MR phase 

images, expressed with radians, to displacements, that, as mentioned before, are expressed 

in micrometres. 

 

Sometimes the analysis may deal with the presence of mechanical vibrations that possess 

multiple frequency values: this approach also allows to increase spatial resolution. In this 

case, the value for the encoding efficiency must be high enough to include all the frequency 

values taken into consideration.  

 

Displacement values that result from these steps are provided by the system in the form of 

complex (with a real and an imaginary component) matrices, and from now on are going to 

be called with the name of wave images. Wave images are provided for each applied external 

frequency. 

 

Before finally reaching the identification of mechanical properties (stiffness, elasticity and 

viscosity values for a tissue), which is the ultimate objective of an MRE experiment and that 

we know to be possibly beneficial in the subsequent treatment of many diseases28, data 

processing right before and after acquisition of the wave images needs to be performed.  

This step comprises various passages, six in particular: 

1) The phase difference calculation: this is used to correct for static magnetic field 

inhomogeneities, that lead to the acquisition of an accumulated phase, since they 

entail the presence of differences in phase from one pixel to another.  Such a 

calculation can be performed by means of “complex division” 

2) The phase wraps correction: after application of complex division needed to 

minimize errors given by magnetic field inhomogeneities, the image may still be 

corrupted by the presence of wraps. The unwrapping procedure imposes that the 

difference between one pixel and the next one should be less than 2π.    
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3) The Fourier Transform along time: this is the fundamental step through which 

complex wave images (images of displacement U) are calculated for each 

frequency of applied vibration 

4) Application of a low pass filter as tool of spatial filtering: this helps attenuating  

errors that are present in derivatives of digital data 

5) Wave inversion: this represents the fundamental step. Images of complex shear 

modulus G are here acquired by means of the “Algebraic Helmholtz Inversion” 

algorithm. 

6) Fitting to rheological models: the experimental complex shear modulus G can 

now be compared to known rheological models. Viscoelastic biological models 

are usually described by the Springpot model; furthermore, this model only has 

two independent parameters and shows good reproducibility. The error function 

between the theoretical G and the experimental one can be defined as  

 

∑|𝐺𝑒𝑥𝑝(𝜔𝑛) − 𝐺𝑚𝑜𝑑𝑒𝑙(𝜔𝑛)|
2

𝑁

𝑛=1

[1.15] 

 

where N represents the number of given data and Gexp is the shear modulus resulting from 

the experiment. 

 

Figure 1.13: Correction of phase wraps. Adapted from Prof Klatt 
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Focus will now be given to the fifth step of inversion. The “Algebraic Helmholtz inversion” 

can be exploited only with samples that fall in the category of linear elastic solid with 

assumptions of local homogeneity and isotropy.  

The inversion procedure takes off from the equation of motion of a linear elastic solid  

 

𝜌
𝜕2

𝜕𝑡2
𝒖 = (𝜆 + 𝜇)𝛻(𝛻𝒖) + 𝜇𝛥𝒖 [1.16] 

 

where ρ is the density, u is the deflection, λ and μ are the 1st and 2nd Lamè constants. 

Equation 1.16 subsequently switches to the frequency domain, where derivatives are 

expressed in the form iω (where i is the complex unit) 

 

−𝜌𝜔2𝑼(𝜔) = (𝐺𝐿(𝜔) + 𝐺𝑆(𝜔))𝛻(𝛻 ∙ 𝑼(𝜔)) + 𝐺𝑆(𝜔)∆𝑼(𝜔) [1.17] 

 

GL and GS are respectively the complex moduli of the 1st and 2nd Lamè parameters (λ and μ). 

Under the assumption of incompressibility an exact solution for Gs(ω) is the one expressed 

in equation 1.20 

 

𝛻 ⋅ 𝑼 = 0 [1.18] 

 

−𝜌𝜔𝑼 = 𝐺𝑆𝛥𝑼 [1.19] 

 

𝑮𝑺(𝜔) =
−𝜌𝜔2𝑈(𝜔)

𝛥𝑈(𝜔)
[1.20] 

 

 

 

 

  

 

 

 



21 
 

1.3 SKELETAL MUSCLE AS AN ANISOTROPIC MEDIUM 

The MRE technique spans over a vast range of applications throughout the entire body. This 

research study focuses on its use to detect and analyze mechanical behavior of skeletal 

muscle: this tissue may be affected by several pathologies that have an effect on the 

mechanical properties of the tissue itself 29; furthermore, its ability to constantly contract and 

get released strongly affects these very same properties 30 31.  

Skeletal muscle tissue can also be considered a suitable representative for all soft tissues, as 

is shares with them several characteristics: more specifically, three of those are worth 

mentioning 

 

1. A density value near to the one of water 

 

𝜌 = 1𝑘𝑔/𝑑𝑚3 [1.21] 

 

2. Poisson’s coefficient as an incompressible medium 

 

𝜈 = 0.5 [1.22] 

 

3. This Poisson’s ratio value entails the presence of a linear relationship between 

the value for the Young’s Modulus E and the shear modulus µ, as 

 

𝐸 = 3𝜇 [1.23] 

 

 

1.3.1 ANISOTROPIC BEHAVIOUR OF SKELETAL MUSCLE 

Skeletal muscle’s organization is often defined as “hierarchical”: each layer is comprised of 

sublayers, that are made up of increasingly smaller components up to the point where the 

microscope reaches the intersections created by actin and myosin, the proteins which are 

responsible for the contraction ability of such a tissue, by means of the so called “cross-

bridge cycle”. As a matter of fact, each muscle is composed by fascicles, that create an 

envelope around little groups of muscle cells, called fibres. These present scattered nuclei 
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along their structure and their first microscope-visible element are the myofibrils which in 

turn are made up of myofilaments. At the myofilaments level myosin and actin are finally 

visible32,33. 

The hierarchical organisation is given by the repetition of geometrical patterns, which in turn 

provide the characteristic of anisotropy for this tissue, which is also viscoelastic and presents 

a non-Hookean behaviour under large deformations34. All of this is visible in the length-

tension curve for skeletal muscles (Figure 1.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anisotropy and viscoelasticity are major characteristics of such a tissue, that need to be taken 

into consideration when approaching any kind of study relating muscles: thus, it is clear that 

the theoretical Helmholtz inversion algorithm (that stands upon isotropy hypotheses) will 

need to be somehow modified in order to provide meaningful results in the muscle 

application. 

 

1.3.2 WAVES IN ANISOTROPIC MEDIA 

 

Anisotropy is a characteristic of materials that, when forced into different directions of strain, 

show different mechanical properties. In order to flank the wave discussion with the 

anisotropic world, analysis may start by considering a plane wave, presenting the form 

Figure 1.14: Length-Tension curve for skeletal muscle tissue 
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𝑢𝑖 = 𝑢0𝑖ⅇ
𝑖(𝒌𝒙−𝜔𝑡) [1.24] 

 

In this kind of formulation, waves, which in anisotropic media are present in the form of 

modes, are characterised by the presence of two main parameters: the direction of 

propagation k and the direction of displacement, also known as polarization u. 

Also, in the formula, u0i represents the initial polarization and amplitude of the wave; k is 

the wave vector defined also as │k│=ω/c, where c is the wave speed. 

 

Since assumptions of isotropy are not hereby respected, the two Lamè parameters (µ and λ) 

are not sufficient to resolve the wave equation; in order to find solution for a three 

dimensional space, the number of differential equations needed is equal to three. Up to now, 

no analytical solution has been found for such a configuration. When taking into account the 

plane wave, the existing relationship between its directions (of displacement and of 

polarization) allows for the presence of wavefields in anisotropic materials. 

Inserting this wave type into the wave equation we obtain 

 

𝑑ⅇ𝑡 ( ∑ (𝐶𝑖𝑗𝑘𝑙𝑘𝑗𝑘𝑘 − 𝜌𝜔2𝛿𝑖,𝑙)

3

𝑗,𝑘,𝑙=1

𝑢0𝑖) = 0 𝑓𝑜𝑟 𝑖 = 1,2,3 [1.25] 

 

𝛿𝑖,𝑙 = Kronecker delta 

 

𝜔 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟ⅇ𝑞𝑢ⅇ𝑛𝑐𝑦 

 

𝐶𝑖𝑗𝑘𝑙𝑘𝑗𝑘𝑘 = ⅇ𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑡ⅇ𝑛𝑠𝑜𝑟 

 

Non-trivial solutions are found for frequencies ω that satisfy the characteristic equation.  

In this case, having a 3D space, the solutions are three and those represents the modes by 

which the waves propagate: these three solutions allow for the existence of a relationship 

between [ω, k] pairs. For a given ω, k is the representation of waves that travel in different 

directions describing a surface35(chap1.4). 
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1.3.3 WAVES IN TRANSVERSE ISOTROPIC MEDIA 

This section is specifically intended to provide further insight on the specific type of wave 

propagation that occurs in skeletal muscle tissue.  

This kind of tissue falls under the category of the so called “transversely isotropic materials”. 

Transversely isotropic materials show properties which are isotropic on a plane, while being 

different on the perpendicular vector to the said plane. 

Isotropic materials can be fully described by the Lamè constants which are a total of 2 

independent parameters. This is not the case for transversely isotropic material that require 

five independent parameters (two Young Moduli, one shear stiffness, and two Poisson’s ratios) 

to be fully described. The elasticity tensor C provides a good representation for different 

kind of materials: in the transversely isotropic case C1212 gets substituted by a combination 

of C1111 and C1122: shear deformations and axial ones are described by the same constants in 

that plane, and the existence of some kind of isotropy on the plane described by direction 1 

and 2 is thus validated. In the out of plane direction (direction 3), instead, strains related to 

shear are described by C1313, which has no correlation with any other matrix element. Voigt 

notation allows for identification of the elasticity tensor C in this way 

 

𝑪 =

(

 
 
 
 

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0

0 0 0 0 0
𝐶11 − 𝐶12

2 )

 
 
 
 

[1.26] 

 

Here relationship between stress and strain values is presented: what links the two set of 

values is the S matrix, also known as the compliance tensor (C-1), that helps better 

understanding the concept of transverse isotropy. 

The S matrix acquires the C elasticity tensor: this is a positive definite matrix meaning it has 

the possibility to be inverted. 
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𝝐 = 𝑺 ∙ 𝝈 =

(

 
 
 

1/𝐸1 −𝜈21/𝐸1 −𝜈31/𝐸3 0 0 0
−𝜈21/𝐸1 1/𝐸1 −𝜈31/𝐸3 0 0 0
−𝜈13/𝐸1 −𝜈13/𝐸1 1/𝐸3 0 0 0
0 0 0 1/𝜇13 0 0
0 0 0 0 1/𝜇13 0
0 0 0 0 0 1/𝜇12)

 
 
 

∙

(

 
 
 

𝜎11
𝜎22
𝜎33
2𝜎23
2𝜎13
2𝜎12)

 
 
 
[1.27] 

 

The last three diagonal parameters (non-zero parameters) of the matrix show shear 

deformations, which are independent from axial deformation: µ represents the shear modulus 

values (in different directions) that associates stresses and strains. µ is also related to the 

Young’s Modulus and the Poisson ratio in such a way 35(pp74-80). 

 

𝜇12 =
𝐸1

2(1 + 𝜈21)
[1.28] 

 

Apropos of what was previously said about skeletal muscle, defined as a transversely 

isotropic material, the definition lays upon the presence of fibres in such a tissue. Their 

direction (fibres are visualized in the plane of symmetry) shows a preferential pattern, while 

in the orthogonal direction to the fibres alignment an unorganised bundle of material is 

present and this shows no preferential direction: forces acting along the direction of the fibres 

produce a preferred direction for the mechanical parameters. For this reason, rules related to 

transversely isotropic materials also work for the description of waves that travel in this kind 

of tissue. 
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To account for the viscoelasticity of skeletal muscle, MRE analysis needs to focus on shear 

waves. 

With shear waves the polarization direction is opposite (meaning perpendicular) to the 

propagation direction (on the other hand they would be named longitudinal waves). By 

considering the volumetric variations to be null (as a matter of fact this tissue has high water 

levels, thus making it almost incompressible), the number of independent parameters 

necessary to fully describe the behavior of the transversely isotropic material scales to three 

(one ratio of Young’s moduli, perpendicular and parallel to the fibers, and two shear moduli 31): 

in this way solutions for the wave velocity c are given by three different modes, that are the 

longitudinal one (not taken into consideration because of incompressibility assumptions), 

the ST mode and the FT mode. In the FT mode the wave polarization and the muscle fibres 

lay in the same, thus it does not concern shear waves that propagate along the fibers (as 

previously defined shear waves only allow for mismatched propagation and polarization 

directions); in the ST mode polarization has a perpendicular direction with respect to the 

fibers. 

The velocity c can be extracted for each of the two modes 

 

𝜌𝑐𝐹𝑇
2 = (4𝜇13 − 𝜇12 − 𝐸3)(𝑛3

4 − 𝑛3
2) + 𝜇13 [1.29] 

Figure 1.15: Sketch of skeletal muscle as a 

transversely isotropic material. X and y 

define the plane of isotropy.   
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𝜌𝑐𝑆𝑇
2 = 𝜇12(𝑛1

2 + 𝑛2
2) + 𝜇13𝑛3

2 [1.30] 

 

n= direction of propagation 

 

µ=shear modulus 

 

Looking at equation1.30, if waves propagated strictly in the fibers’ direction (n3=1; n1=n2=0) 

the slow mode wave velocity would be described solely by 𝜇13. 

Waves that propagate in the fibers’ direction only account for the slow mode velocity, while 

waves propagating in a direction perpendicular to the fibers (n1
2+n2

2=1; n3=0) can both be 

defined the slow mode wave and the fast mode wave equation. 

 

Further and alternative description of the behavior of transversely isotropic materials can 

start from the evaluation of the three independent parameters that, as hinted at before, could 

result as the combination of the parallel and perpendicular (with respect to the fibers’ 

direction) tensile and shear moduli (E┴; E║; µ┴; µ║). New simplifying parameters can then 

be defined, and these are named tensile anisotropy 휁 and shear anisotropy 𝜙  

 

휁 = 𝐸║/𝐸┴ [1.31] 

 

        

𝜙 =
𝜇 ∥

𝜇 ⊥
− 1 [1.32] 

   

 

 

The ζ and φ definitions allow for an additional way of defining velocity for slow and fast 

shear waves. These new formulas show the dependence on the angle  𝜗  that lays between 

the propagation direction and the fibers’ direction. 

𝐶𝑠
2 =

𝜇
┴

𝜌
(1 + 𝜙 𝑐𝑜𝑠2(𝜗)) [1.33] 
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𝐶𝑓
2 =

𝜇
┴

𝜌
(1 + 𝜙 𝑐𝑜𝑠2(2𝜗) + 휁𝑠𝑖𝑛2(2𝜗)) [1.34] 

 

From acquisition of velocity values, the wavelength is given by the velocity “c” over the 

applied frequency and the wavenumber is given by  

 

𝑘 = 2𝜋/𝜆 [1.35] 

 

The viscoelastic behavior of soft tissues (and skeletal muscle tissue in this case) can be 

analytically described exploiting the complex nature of the shear modulus (real parts are for 

storage modulus, while imaginary parts are for loss modulus), following extraction of values 

of c in the aforementioned way 36 37 

 

𝜇 ⊥= 𝜇 ⊥𝑅+ 𝑗𝜇 ⊥𝐼 [1.36] 

 

µ║ = µ║
𝑅
+ 𝑗µ║

𝐼
[1.37] 

 

 

The magnetic resonance elastography technique allows to decide for the direction of 

encoding and excitation, but also for the visualized image plane: wave fronts that arise from 

the heart of the Field Of View FOV exhibit different patterns depending on the a priori 

settings 38 39 40 35(pp106-109).
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2 PREVIOUS WORK AND 

MOTIVATION 

 

 

2.1 STUDIES AT UIC AND THEIR RATIONALE 

 

2.1.1 THE INVERSE PROBLEM 

The work that is intended to be presented in this written composition sets its ground basis on 

experiments that have been previously carried out by the author in collaboration with the 

Acoustics and Vibration Laboratory at the University of Illinois at Chicago for the period 

going from August 2019 up to May 2020. 

As explained in previous chapters (1.2.2) the conclusive step for the MRE analysis of a 

sample/phantom entails the use of an inversion algorithm that allows passage from 

displacement values to corresponding shear modulus values 8 and that brings about the 

resolution of the so called “Inverse problem”. 

A large range of inversion/reconstruction modalities have been presented by several authors 

throughout the years and these differ one from the other for inputs, physical assumptions and 

computational costs. 

Amongst these, the one technique employed for such experiments at UIC, has been the direct 

inversion (DI) method, that presents less of a computational cost with respect to iterative 

methods and shows heavier dependence on displacement data quality 41. As a matter of fact, 

direct methods (that also account for local homogeneity of stiffness values) allow for the use 

of least squares in order to retrieve stiffness values for each voxel i, performing an inversion 

of the harmonic viscoelastic equation pixel by pixel.  

 

𝑮𝒊(𝜔) =
−𝜌𝜔2(𝛥𝑈)𝑖𝑇𝑢𝑖
(𝛥𝑈)𝑖𝑇(𝛥𝑈𝑖)

 [2.1] 
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At UIC experiments were carried out onto three different specimens: a gelatin homogeneous 

and isotropic sample, a mouse-muscle sample and an anisotropic phantom. The latter had 

been previously customed by team members of the same Lab and consisted of an array of 

PDMS filaments comprised into a soft plastic matrix. This phantom was fabricated in order 

to have a biomimetic structure that could represent the one found in skeletal muscle 

tissue42,43. 

Each of the three samples (firmly positioned into a glass case) was inserted inside a 10mm 

vertical bore tabletop MR scanner (Researchlab, Pure Devices GmbH, Würzburg, Germany) 

with a 0.587T permanent magnet and the MRE analysis was performed by means of two 

diverse actuation modalities: a piezoelectric actuator, that provided axial harmonic vibration 

to the samples, and a stepper motor actuator, which was able to propagate torsional harmonic 

vibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inversion of displacement values found in the wave images, needed to retrieve shear modulus 

values, was performed differently for each of the samples: 

• Homogeneous isotropic gelatin served as a control variable and inversion was 

immediately performed by directly feeding data from the displacement maps as 

input inside the DI algorithm. 

Figure 2.1: Schematic visualization of the UIC setup 
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• As for the mouse sample and the anisotropic phantom, direct inversion yielding 

the Helmholtz inversion as a theoretical basis was not possible because of the 

intrinsic anisotropic properties of these two specimens. To be able to employ DI 

methods, a fictious isotropy has to be introduced and this has been done by means 

of application of a novel theory named Transformation Elastography (TE): in this 

way, wave images get distorted and their reference system switches from a 

circular to an elliptical one, allowing to have speed and wavelengths of the 

transmitted waves that are independent on their direction of propagation relative 

to the fibers’ direction inside the phantoms 36,38,39. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: The examined sample. From left to right: gelatin sample, anisotropic phantom, mouse muscle 

sample 
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2.1.2 THE NOVELTY OF THE TORSIONAL ACTUATION 

Apart from the implementation of the TE theory onto experimental data, the major novelty 

that was brought about during experiments at UIC was the introduction of a new kind of 

actuation. This was provided by means of a stepper motor actuator, able to transmit torsional 

vibration to the samples.  

MRE has proven to be a useful technique that can possibly be beneficial in case of presence 

of many severe conditions (e.g. neuromuscular disorders)28, being also able to penetrate 

deeply inside the tissue and to encode motion in all directions40; however, it had never been 

approached from a different perspective, that is to say in the assessment of the response of 

the tissue to torsional deformation. This response can be detected when using a stepper motor 

actuator, which is a DC motor that rotates on its axis. The key goal of the research study 

carried at UIC was to face such modality of excitation, maintaining a constant comparison 

with the axial excitation modality (given by the piezoelectric actuator). As in the case of 

axial excitation, vibrations were provided with the “geometric focusing” approach, that is to 

say starting from the outer boundaries converging to the centre of the phantom. 

 

 

 

Figure 2.3: Actuator systems. From left to right: piezoelectric actuator and stepper motor 

actuator 
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2.1.3 THE RESULTS 

Results following experiments done at UIC can be divided into two macro-categories: 

• Results given by piezoelectric actuation of the samples: in this first case the 

analysis started from the implementation of the setup that would provide an axial 

vibration to the three samples, moving on to the extraction of displacement maps 

in the form of wave images, and finally reaching the stage of inversion that 

ultimately led to the extraction of frequency-dependent shear moduli for each 

specimen. As mentioned before, inversion approaches were different depending 

on whether the samples were isotropic or anisotropic. 
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• Results given by stepper motor actuation of the samples: as for this case, final 

stage of the analysis reached the visualization of wave images, while inversion of 

displacement values was not finalized. As a matter of fact, when applying a 

torsional actuation perpendicular to the cylinder’s axis, fast shear waves get 

produced, whose velocity values depend on  the wave’s propagation direction 

with respect to the axis of symmetry38; thus a geometric distortion is needed as in 

the previous case and it is given by 

 

𝑟(𝜃) =
𝑟

1 + 𝜙𝑐𝑜𝑠2(2𝜃) + 휁𝑠𝑖𝑛2(2𝜃)
[2.2] 

 

However, the expression for such a distortion requires the presence of a further 

parameter, named Tensile Anisotropy (marked by ζ), that was not known at the 

time.  

The expression for the tensile anisotropy value is  

 

0,00E+00

1,00E+03

2,00E+03

3,00E+03

4,00E+03

5,00E+03

6,00E+03

7,00E+03

8,00E+03

0 500 1000 1500 2000 2500

SHEAR MODULUS VS FREQUENCY

TE PARALLEL IMAGINARY ISOTROPIC IMAGINARY TE PERPENDICULAR IMAGINARY

Figure 2.4: Shear modulus trend as a function of frequency for an anisotropic phantom. Double 

arrows represent standard deviation values. Top: real part; Bottom: imaginary part 
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휁 =
𝐸 ∥

𝐸 ⊥
− 1 [2.3]  

And this could be retrieved by means of mechanical tests directly performed on each sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: wave images for anisotropic phantom after torsional excitation 

Top: a)500Hz x direction 

b)500Hz z direction 

Bottom: a)900Hz x direction 

b)900Hz z direction 
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2.2 STATE OF THE ART AND MOTIVATION FOR THE 

PRESENT WORK 

2.2.1 THE DIRECT PROBLEM  

As mentioned in previous chapters, the MRE experimental procedure imposes the 

transformation from displacement values to mechanical properties: such a transformation 

yields the presence of an inversion. The inversion procedure, named Helmholtz inversion, 

has been theoretically presented, still it requires the existence of radical assumptions (of 

isotropy and homogeneity) that are not feasible in a biological medium, least of all in the 

skeletal muscle tissue5. 

For this reason, an alternative approach may result more beneficial in order to better 

understand the propagation of waves inside a viscoelastic and anisotropic material: this 

approach aims to reverse the typical MRE procedure and it is thus called “direct problem”. 

In the direct problem, mechanical properties are given as input to the formulation, rather 

than found as a result: the obtained outcome, instead, is the extraction of the displacement 

fields given the mechanical properties of the material. 

In this work, mechanical properties are not simply hypothesized, instead they are plugged in 

the direct problem formulation, starting from the results that were previously acquired with 

experiments that were held in the Acoustics and Vibrations Laboratory at the University of 

Illinois at Chicago. 

 

2.2.2 AN EXPLANATORY EXAMPLE REGARDING THE DIRECT 

FORMULATION 

 

In order to better elucidate what the direct formulation entails an experiment that has been 

carried out by Yasar et al. will be here presented44. 

In their experiment, the MRE procedure was applied over a range of frequency that spanned 

from 200Hz up to 7750 Hz on an Ecoflex phantom, which is a silicon material and was 

chosen because of its viscoelastic properties able to mimic those of soft tissues.  

The used phantom is homogeneous isotropic and cylindrical, the excitation is provided on 

its outer boundary with a displacement value of 1µm and, given the symmetry of the cylinder 

around its axis, the mechanical properties that were gained as a result of the MRE experiment 
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were plugged into a 2D computational problem. Eventually this allows the comparison 

between the experimental displacement fields with those obtained consequently to the 

simulation. 

Figure 2.6 shows a sketch of the applied vibration on the cylindrical phantom, as well as the 

acquired displacement profiles on the top face of the cylinder at 500Hz along the radial 

direction45 

 

 

This experiment shows that the numerical model was able to fit the experimental results in 

an appropriate way, despite the presence of little inaccuracies and differences between the 

two that are mainly given by reservations regarding the density value that has to be plugged 

in the numerical simulation. In this case a value of ρ=1 kg/dm3 was chosen applying a 

somewhat simplifying assumption. Unfortunately, density values give a major contribution 

to displacement values and little discrepancies with the real values for the density may lead 

to big errors in the visualization of displacements. 

Having said that, visualizing the peak to valley amplitude of the displacement profiles for 

the simulation and for the experimental results, four valleys and five crests are visible in both 

Figure 2.6: (left) sketch of the applied displacement on the outer boundaries of the Ecoflex phantom; 

(right) displacement profile on the cylinder top surface as a function of radial position. Image re-

adapted from Yasar et al. 
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cases, validating the simulation procedure over the experimental results and vice versa (Figure 

2.7)45. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

2.2.3 MOTIVATION FOR THIS WORK 

 

Skeletal muscle tissue can be affected by a series of pathologies and severe disorders that 

may represent a serious threat to the lives and well-being of people: such disorders are 

usually neurologically related and examples may be given by Duchenne’s muscular  

dystrophy, spasticity and atrophy. These pathologic conditions come with a structural change 

of the affected tissue, that may represent an alarm bell for the presence of the disease itself28. 

It is thus important to be able to monitor the progression of the ailment by tracking changes 

in the material properties, both from a diagnostic and a successive therapeutic point of view. 

Figure 2.7: Displacement profiles acquired at 1500 Hz of the top surface of the cylinder along 

the radial direction spanning from -12.5 mm to 12.5 mm (because of axi-symmetry only half 

path is displayed). (Left) results from the numerical simulation; (right) results from the MRE 

experiment. Adapted from Yasar et al. 
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The specific aim of this thesis work is to realize a computational finite-element simulation, 

that would mimic the anisotropic phantom, used during previous experiments at UIC, that in 

turn was constructed coherently with the fibrous structure of a real skeletal muscle specimen.   

The simulation follows the rules of the direct problem formulation, having mechanical 

properties given as input of the problem and visualization of wave images as the result.  

The mechanical properties used as input are not simply taken from literature works or 

inferred on the basis of know real muscle properties, instead they have been directly derived 

from MRE experiments on the anisotropic phantom and subsequently rearranged in different 

forms to fit the requests of the simulation software. 

This simulation will eventually help understanding the contribution of the material’s 

properties of anisotropy and viscoelasticity on the propagation of the waves in the very same 

material. Furthermore, it will serve as a source of comparison with the wave images that 

were extracted during the previous actual experiments and that were later used to extract the 

very same properties that are now going to be employed as input for the analysis.   

After visualization of the computational wave images, conclusions may be drawn on the 

experimental results obtained at UIC, of course after consideration of the differences in the 

basic setting of the two works.  
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3 MATERIALS AND 

METHODS 

 

The aim of this work is to recreate the geometry and mechanical features of the anisotropic 

phantom that is currently at the Acoustics and Vibrations Lab of the University of Illinois at 

Chicago, by means of a computational simulation, that would in turn provide the 

visualization of the wave displacement inside the phantom, subsequent to the insertion of 

the mechanical properties gathered from actual experiments. 

The computational simulation has been executed by means of a commercial finite element 

program named ABAQUS (Dassault Systems Simulia Corp., Johnston, RI, USA). 

 

3.1 THE STARTING RVE GEOMETRY: ONE-ELEMENT-

THICK CYLINDER   

 

The anisotropic phantom presents a circular cross-sectional area with a radius of r=4 mm. It 

is made up of a biomimetic muscle matrix of Alumisol Soft Plastic (ASP: low hardness, 

heat-activated silicone) and biomimetic muscle fibers of PDMS (Dow Sylgard 184); the 

fibers take up 1 cm in length along the height of the cylinder (Figure 3.1). 

 

 

 

 

 

 

 

 

 

 

The computational geometry that should represent the one of the anisotropic phantom is a 

representative volume element (RVE) which is slightly simplified by “cropping” a smaller 

Figure 3.1: Anisotropic 

phantom 



41 
 

slice of the cylindrical MRE phantom: it is a very thin cylinder with a radius of r=4 mm and 

a height of h=0.66 mm. The reason for such a reduced geometry is that the mesh will 

eventually need to have a single element on the cylinder thickness in order to be able to apply 

periodic boundary conditions on the top and bottom face of the cylinder as shown in Figure 

3.2. 

 

 

 

 

 

3.2 MECHANICAL PROPERTIES ACQUISITION 

3.2.1 A FIRST ATTEMPT: DERIVING GLOBAL PROPERTIES FROM THE 

SINGLE CONSTITUENTS 

 

ABAQUS requires to plug in the simulation the material properties for the sketched 

geometry; this is not divided in a twofold manner, having both the fibers and the matrix that 

are present in the actual phantom. As a first trial, instead, a homogenization procedure has 

been applied on the geometry which appears uniform.  The homogenization is needed in 

order to derive the global mechanical properties of the composite transversely isotropic 

material starting from the mechanical properties of the single components (matrix and 

fibers). 

Figure 3.2:  Starting RVE geometry 
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Professor E. Barbero has provided a Matlab code (see Appendix A) that eventually returns 

the elasticity matrix C for an orthotropic material46. This is created starting from the elasticity 

tensors both for the matrix and the fibers (Cm and Cf) and the fiber volume fraction Vf. 

Cm and Cf are obtained by inverting the S matrixes (Sm for the matrix and Sf for the fibers) 

which have been constructed by including the values of the Young Modulus, the Poisson 

ratio and the Shear Modulus for the two elements. These have been gathered by prior 

literature knowledge and both elements have been considered as isotropic (E1=E2=E3; 

nu21=nu12=nu13=nu31=nu21=nu23=nu12=nu32=nu23). 

Values for the shear modulus have been acquired considering  

 

𝐺12 =

𝐸12
2

1 + 𝑛𝑢12
[3.1] 

 

And then G13=G23=G12. 

Once the elasticity tensor C for the whole geometry has been extracted, this gets inverted to 

the corresponding S matrix and finally values for the Young Modulus, the Poisson ratio and 

the Shear modulus are acquired for each direction and can be plugged into ABAQUS. 

In this first trial, the direction of the fibers has been assumed to be the first direction (x 

direction), while the cylinder grows in height along the z direction. 

Dealing with transversely isotropic materials ABAQUS allows for a specific properties 

selection which is named Elastic-Engineering constants. 

As far as the fiber volume fraction is concerned, this has been calculated taking into account 

the actual anisotropic phantom geometry. 

The PDMS filaments each have a diameter of d=200μm and a length of l=7mm. 16 filaments 

are placed one next to the other and this is vertically repeated stacking 20 layers of filaments. 

This leads to a fiber volume (Vfibers) of 

 

𝑉𝑓𝑖𝑏ⅇ𝑟𝑠 = (200 ∗ 10−6)2 ∗  
𝜋

4
∗ (7 ∗ 10−3) ∗ 16 ∗ 20 = 7.0371 ∗ 10−8 [3.2] 

 

With a total volume of (Vtot) 
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(8 ∗ 10−3)2 ∗  
𝜋

4
∗ 0.01 = 5.02 ∗ 10−7 [3.3] 

 

 

The fiber volume fraction is then calculated as the ratio between Vfibers and Vtot 

 

𝑉𝑓 =
𝑉𝑓𝑖𝑏ⅇ𝑟𝑠

𝑉𝑡𝑜𝑡
= 0.1399 ≅ 0.14 → 14% [3.4] 

 

3.2.2 FITTING THE REAL EXPERIMENT TO THE COMPUTER 

SIMULATION: AN ACCURACY COMPROMISE 

 

Albeit the aforementioned approach allows to provide the computational simulation with the 

exact properties of the whole material (by homogenizing the properties of its two main 

components), it lacks in taking into account features that are beyond the Elastic moduli and 

Poisson’s ratios of the phantom: namely the presence of a viscoelastic nature and the 

necessity of conducting the analysis within a frequency range, to simulate the experiments 

performed at the University of Illinois at Chicago. 

In order to couple all these elements with the already retained experimental results, a Matlab 

code has been developed: this allows to compare experimental curves, visible thanks to the 

fitting of UIC experimental results (see Section2.1.3), with fictious curves created by the 

tuning of various viscoelasticity parameters. 

An example of such a comparison is hereby provided in Figure 3.3.  
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Extensive explanation of this methodology with a list of the relative employed viscoelastic 

parameters will be provided in the following section, while the whole Matlab code will be 

displayed in Appendix A.  

 

 

 

3.3 FREQUENCY DEPENDENT MATERIAL 

PROPERTIES: TAKING VISCOELASTICITY INTO 

ACCOUNT 

 

 

By definition viscoelasticity is the property that  a material has when it  shows an 

intermediate behavior between that of an entirely elastic material (only responds to normal 

deformations) and one of an entirely viscous material (only responds to shear deformations), 

Figure 3.3: Fitting of computational and custom-made results for the loss 

modulus with actual loss modulus values from experiments held at UIC 
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thus responding to both normal and viscous deformations. Moreover, the characteristic of 

viscoelasticity provides a strain rate that depends on time (Figure 3.4). 

 

 

 

 

 

 

 

 

 

 

Skeletal muscle tissue is known to be a viscoelastic material and consequently this property 

affects the way in which waves propagate in the medium; it is, thus, advisable to be taking 

this aspect into account by performing analyses in a dynamic range of frequencies. 

When considering viscoelastic materials, the correspondence principle can be applied: this 

allows for the transition from an elastic solution (if present) to the corresponding complexed-

value viscoelastic solution31,47.  Following this reasoning, the shear modulus is represented 

with its real and imaginary part, the latter accounting for the losses. 

 

𝐺∗(𝜔) = 𝐺𝑠(𝜔) + 𝑖𝐺𝑙(𝜔) [3.5] 

 

Gs=storage modulus (real part) 

Gl=loss modulus (imaginary part) 

 

The finite element modelling program ABAQUS allows to include this further material 

feature by means of the property tab that possesses tools able to describe the frequency 

domain viscoelasticity. This describes materials whose behavior is dependent on frequency 

and that, when undergoing small steady-state harmonic oscillations, are subject to dissipative 

losses because of internal damping effects.  

Figure 3.4: Stress-strain curve for a viscoelastic material. The 

blue area represents the loss of energy between a loading-

unloading cycle (hysteresis) 
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The frequency dependence can be expressed with different modalities: the one used in this 

work applies Prony series that give the definition of the storage and loss modulus (Gs and 

Gl) that depend upon frequency values and that have several parameters as visible hereby48. 

 

𝐺𝑠(𝜔) = 𝐺0 [1 −∑𝑔𝑖
𝑃

𝑁

𝑖=1

]  +  𝐺0  ∑
𝑔𝑖
𝑃𝜏𝑖
2𝜔2

1 + 𝜏𝑖
2𝜔2

 

𝑁

𝑖=1

 [3.6] 

 

 

𝐺𝑙(𝜔) = 𝐺0  ∑
𝑔𝑖
𝑃𝜏𝑖𝜔

1 + 𝜏𝑖
2𝜔2

 

𝑁

𝑖=1

 [3.7] 

 

 

 

N is the number of elements in the Prony series and it is user-defined. 

What needs to be plugged into ABAQUS are the different parameters that are visible in 

equations 3.6 and 3.7, depending on the chosen N value. 

These are given thanks to the presence of experimental results of shear storage and loss 

modulus as a function of frequency that were provided by tests carried out at UIC (see graphs 

in section 2.1.3) as in Table 3.1 

The parameters (G0, g1, g2, g3, τ1, τ2, τ3 for N=3) are qualitatively retrieved by several trial 

and error experiments in Matlab (see Appendix A), until the trial curves resemble, having a 

good fitting, the ones resulting from the experiments (Figure 3.5 and 3.6); finally, the 

parameters are inserted in the property tab in ABAQUS. 
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Table 3.1: : Parallel and perpendicular shear modulus values using both isotropic  assumption and 

transformation elastography theorem as a function of frequency for an anisotropic phantom 

 

 

 

More specifically the steps that were followed are: 

• Retrieval of values for the shear loss and storage modulus from experiments held 

at UIC. These are visible in Table 3.1 

• Creation of a scatter plot that relates frequency values in Hertz with shear modulus 

values in Pascals via the command loglog 

• Definition of storage and loss modulus as expressed in equations 3.6 and 3.7 

• Appointment of random values to the parameters present in equations 3.6 and 3.7. 

These are chosen in such a way that the computational curve resembles and 

follows the same path as the experimental curve: an iterative trial and error 

process is therefore implemented. An example of values is given 

 

 

a =      35000   

g1 =      0.05    

FREQUENCY PARAMETER ISOTROPIC 

ASSUMPTION 

ANISOTROPIC 

RATIO 

TE 

800 µ┴REAL 1.68E+03 1.44765 1.11E+03 
 

µ║REAL 1.68E+03 
 

1.61E+03 
 

µ┴IMAGINARY 4.97E+02 
 

4.61E+02 
 

µ║IMAGINARY 4.97E+02 
 

6.68E+02 

1000 µ┴REAL 6.20E+03 1.3015 2.79E+03 
 

µ║REAL 6.20E+03 
 

3.63E+03 
 

µ┴IMAGINARY 1.49E+03 
 

1.85E+03 
 

µ║IMAGINARY 1.49E+03 
 

2.41E+03 

1200 µ┴REAL 8.11E+03 1.30705 7.37E+03 
 

µ║REAL 8.11E+03 
 

9.63E+03 
 

µ┴IMAGINARY 2.93E+03 
 

2.52E+03 
 

µ║IMAGINARY 2.93E+03 
 

3.30E+03 
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g2 =      0.002    

g3=       0.5 

t1 =      0.085 

t2 =      0.5     

t3=       0.00009 

 

Examples of suitable fitting curves and related parameters are given in Figure 3.5 and 3.6 

 

Figure 3.5: Visualization of the experimental curve compared to the computational curve and relative 

viscoelastic parameters (first example) 
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3.4 MESHING THE GEOMETRY 

 

A mesh is a collection of geometrical features that define the shape of an object. Since the 

geometry part present in this study does not represent the whole (in length) anisotropic 

phantom the constructed mesh must be suitable in order to have a subsequent tool able to 

provide the “duplication” of the existing RVE as many times as needed to replicate the real 

geometry. 

For this reason, the nodes on the top surface must correspond to the nodes on the bottom 

surface of the cylinder and only one mesh element must be present along the thickness. 

To do so, a partition is drawn on the part: it consists of a little vertical line that connects the 

two ends of the thickness and it is necessary so that, in the mesh tab, one single node can be 

set on this feature (Figure 3.7). 

Figure 3.6: Visualization of the experimental curve compared to the computational curve and relative 

viscoelastic parameters (second example) 
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Moreover, in order to have corresponding nodes on the two circular faces, the mesh must be 

neatly organized with the possibility of including symmetry axes and slices on the geometry. 

In this case the number of seed for the circular boundary was set to 100: the result with 

matching nodes is visible in Figure 3.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Visualization of the nodes 

distribution along the geometry 

Figure 3.8: Seeds built along the circular boundary 
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3.5 HOMTOOLS: APPLYING PERIODIC BOUNDARY 

CONDITIONS TO THE RVE 

 

As mentioned before, the displayed geometry is simply used to represent the real one used 

in the MRE experiments (not surprisingly, it is called Reference Volume Element). Despite 

being effectively representative, a further tool is needed in order to simulate an infinite 

repetition of the RVE: this is provided by Homtools.  

Homtools is a ABAQUS downloadable plug-in which consists in a set of Python scripts that 

allow to apply periodic boundary conditions (PBCs) to the RVE. 

Subsequent to the creation of two reference points (RP-1 and RP-2), the plug-in allows to 

select the two circular geometries and create the periodicity feature needed to account for 

the whole real geometry. 

The necessary steps are (Figure 3.10): 

• Creation of two reference points (RP-1 and RP-2) 

• In the Macro Nodes section select first RP-1 and as a second Macro Node RP-2 

Figure 3.9: (left) 3D visualization of the meshed part; (right) top/bottom face of the 

meshed parts: it is evident that nodes correspond on the two faces 
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• In the Boundary Sets section select as a first set the first circular geometry, which 

is on the bottom face, and as a second set the other circular geometry which is on 

the top face 

• Remove the circular outline of the two circular faces from the entities that are 

going to be affected by the periodicity condition 

• In the Periodicity Vector section only apply periodicity along the thickness of the 

RVE: in this case x=0, y=0, z=0.66 (depth of the cylinder) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the Interaction tab, under the Constraint Manager selection, periodicity equations for each 

element of the top and bottom faces are created. 

Figure 3.10: Setting procedure for the Homtools toolbox. Each 

request must be filled as explained in the bulleted list above 
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Figure 3.11: Visualization of the geometry after application 

of periodic boundary conditions (PBCs) 

Figure 3.12: (top left) Visualization of the Constraint Manager tab with equations for each point in the 

top face and its corresponding one in the bottom face; (top right) Detailed explanation of the applied 

equations for the boundary condition for the single couple of points in the geometry; (bottom) 

Visualization of the two matching points to which the equations are related (posteriorly highlighted in 

red) 
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3.6 LOAD 

 

The applied load is represented solely by the boundary conditions applied on the geometry. 

This is made possible because of the previous application of periodic boundary conditions 

by means of Homtools (see section 3.5). 

 Firstly, on the outer boundary of the cylinder a boundary condition (BC-1) is applied, by 

imposing the displacements along the first and second direction to be null, while those along 

the third direction (z) to be equal to 1μm (Figure 3.13) 

 

 

 

 

 

 

 

 

 

 

 

 

The second boundary condition (BC-2) is applied on the first reference point (RP-1) that was 

previously created by means of the Homtools plug-in and its displacement in the z direction 

is set to 0 (Figure 3.14). 

 

 

 

 

Figure 3.13: Representation of the first applied boundary condition 
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3.7  DIRECT SOLUTION STEADY-STATE DYNAMIC 

ANALYSIS 

 

Since the aim of this project is to duplicate and compare experiments already performed at 

UIC, the applied kind of load of the simulation needs to be coherent to the mechanical 

stimulation that was proposed for the anisotropic phantom. The stimulation taken into 

consideration is the one supplied by the piezoelectric actuator that possesses a driver fed 

with a sinusoidal alternating current: for this reason, following the initial step, a somewhat 

harmonic stimulation needs to be put in place. This is made possible by the following 

selection in the Step tab 

Create Step → Linear perturbation → Steady-state dynamics → Direct. 

Steady-state dynamic analysis allows to evaluate the response of a system subject to 

harmonic excitation when it has reached the steady state both in amplitude and in phase.  The 

tool able to apply the load at different frequency sweeps is the one given by the direct steady-

state dynamic technique.  

This tool allows to choose the upper and lower frequencies of actuation and the number of 

considered points. Moreover, for more than three points, the bias value provides closer 

Figure 3.14: Representation of the second applied boundary condition 
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spacing of the results points either toward the middle or toward the ends of each frequency 

interval with points closer to the ends of the frequency interval with increasing values for 

the bias parameter. 

For the purposes of this work, the lower ever considered frequency has been set to 500Hz 

while the upper has been set to 2000Hz: when these two frequency values were set as part 

of a unique experiment, four points between them were taken into consideration in a linear 

fashion (alternatively a logarithmic spacing between the frequency values can be selected). 

Alternatively, experiments have been performed iteratively taking into consideration couples 

of adjacent frequencies. The bias parameter has been held to 1 for each simulation (Figure 

3.15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Setting of the Step tab in the ABAQUS simulation 
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3.7.1 IMPLEMENTATION OF THE UMAT USER SUBROUTINE 

 

ABAQUS/Standard in its most basic functionalities does not allow for a variety of 

applications that could be useful to the user: For our purposes, the computational simulation 

should be one that combines the presence of viscoelasticity in the material properties with 

an analysis held in the frequency domain: this is not made possible by means of the basic 

functionalities held by ABAQUS/Standard; for this reason, the software provides users with 

an extensive array of user subroutines that allow them to adapt ABAQUS to their particular 

analysis requirements. 

The one that successfully satisfies our requirements is a subroutine called UMAT, which is 

able to define any complex, constitutive model for materials that cannot be modeled with the 

available ABAQUS material models49.   

One particular UMAT is visible in Appendix B and was written specifically to take into 

consideration viscoelasticity properties as a function of frequency in order to satisfy the 

relations in equations 3.6 and 3.7 (red underlined section of Appendix B). 

 

Subsequently, ABAQUS is allowed to plug into its property tab those values that are 

specified in the UMAT subroutine and recalled by means of the function props. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Transfer of viscoelasticity parameter , shear modulus and direction values from the 

UMAT subroutine to ABAQUS property tab 
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Additionally, the subroutine defines the creation of the stiffness matrix C, the damping 

matrix D and the stress tensor. 

 

3.8 A BETTER EVALUATION OF DISPLACEMENT IMAGES 

VIA FOURIER TRANSFORM 

 

Once the ABAQUS simulation is completed, different kind of maps are available to the user: 

for the sake of this work we are interested in displacement maps that are found under the 

“Visualization” tab, by selecting “Primary” and subsequently U (u3 since we are 

investigating displacements in the z direction).  

One way to effectively analyze the pattern of displacement inside the anisotropic phantom 

is given by the use of the 2D Fourier Transform: as a matter of fact, spatial changes inside 

an image (occurring both in the x and y direction taking the cross-sectional area) can be 

better characterized by 2D spatial frequencies and the 2D Fourier Transform is a useful tool 

to determine the relation between the intrinsic anisotropy of the material and its response to 

forced external deformation given by the MRE experiment31. 

This approach is based on the extraction of local wavenumber from the displacement 

wavefields that result from the MRE experiment via Local Frequency Estimation (LFE); this 

methodology allows to avoid taking into consideration the equations for wave motion in 

order to perform an inversion, that yields the extraction of mechanical parameters. 

LFE ground basis is the relation between the wave speed and the wavenumber k 

 

𝑐 =
𝜔

𝑘
[3.8] 

 

 

In the case of fibers aligned along the in-plane direction, harmonic excitation and out of 

plane displacements, shear waves propagate with speed described as  

 

𝑐2 = 𝜇𝑙𝑐𝑜𝑠
2(𝜗) + 𝜇𝑡𝑠𝑖𝑛

2(𝜗) [3.9] 
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Which from equation 3.8 yields 

 

 

 

𝜔2

𝑘2
= 𝜇𝑙𝑐𝑜𝑠

2(𝜗) + 𝜇𝑡𝑠𝑖𝑛
2(𝜗) [3.10] 

 

 

Where μl is the shear modulus parallel to the fibers, μt is the shear modulus perpendicular to 

the fibers, θ is the angle between propagation direction and fibers’ axis and ρ is density. 

 

Once the value for the wavenumbers k has been extracted by Fourier Transform (in this case 

with the methodology explained below), it is fed to equation 3.10 to obtain the values for μl 

and μt
50. 

 

The 2D Fourier Transform will be applied via a Matlab code and the resulting k-space 

images will be compared to the displacement images given by the simulation. 

In order to perform this task,  further intermediate steps are necessary: this requires the use 

of a Python script (see Appendix B) that is able to read the .odb file (output database) coming 

from the ABAQUS simulation that contains the output data from the analysis. 

 

3.8.1 SPLITTING THE GEOMETRY IN A QUARTER SEGMENT 

 

In view of the last step that yields the visualization of displacement in the form of Fourier 

maps, one could argue that a thicker mesh needs to be seeded onto the geometry in order to 

better visualize peaks in the Fourier transform. 

Unfortunately, this does not seem to be possible on the existing geometry, because of the 

constraint of having an exact match of nodes on the two in plane faces. For this reason, the 

circular geometry has been split into four triangular slices and consequently meshed. 
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This shrunk geometry maintains the very same features of the bigger geometry, that is to say 

properties that are inserted in the “Mechanical constants” tab via the UMAT subroutine, a 

steady state dynamic step and a load with boundary conditions and periodic boundary 

conditions as those used for the complete circular figure. 

Once the geometry has been redefined and the mesh made more crammed, one can proceed 

with the extraction of values for the coordinates and the displacement data of the smaller 

slice via the Python code. 

The Python file “disp.py” contains a series of commands: 

• The .odb file for the desired simulation is imported and accessed 

• The main features of the .cae file are extracted and introduced into the Python 

code: this includes the time frame, the coordinates and the displacement data 

• Two text-based documents are created: the first one named “coord.txt” contains 

the x, y and z coordinates for each node of the geometry under examination; the 

second one named “tryout.txt” contains the displacement values in the x, y and z 

direction for each node of the geometry 

• The values for the coordinates and the displacements are visible via PuTTY, a 

serial console interface 

 

Figure 3.17: Slice of the global geometry that corresponds to ¼ of the total, meshed with a higher 

number of seeds. 
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Once the text files have been extracted from the simulation output, these are imported in two 

Matlab sequences (see Appendix A: the first sequence has been named “mirroring” because 

it implements the duplication of the sliced geometry in the vertical and horizontal direction: 

in this way, all for slices, that compose the whole geometry, are meshed equally and with 

many more seeds than in the original setup, which allows for more detailed analyses. 

Importing of x, y and z coordinates, in addition to displacement data in the z direction 

(coming from the text files) is required to correctly launch the code. Data from the text file 

is altered depending on the anisotropy direction (whether the laying direction for the fibers 

is along the x or y coordinate), consequently two couples of text files are present when the 

simulation is performed considering both directions for the anisotropy. 

The user needs can extract values for the coordinates in all three directions, by taking all the 

values along the rows and in turn the second, the third and the fourth column of the 

coordinates matrix, to account respectively for the x, y and z direction. The same extraction 

is done for displacement values in the z direction, this time taking items along all the rows 

and along the fourth column of the displacement matrix. This is feasible by Matlab 

commands. 

 

The outcome of this first Matlab code is the retrieval of x and y coordinates for the entire 

circular geometry, in addition to its displacement values in the z direction. Moreover, the 

code creates a Matlab mesh for the entire circular geometry after fitting the surface by means 

of the “griddata” command, in which the meaningful scattered parameters to be interpolated 

to produce gridded data are 

𝑢3𝑟 = 𝑓(𝑥, 𝑦) [3.11] 

 

 

Where u3r represents the displacement in the z direction for the smaller slice, while x and y 

represent x and y coordinates of the smaller slice. 

Once the values for the z displacement of the whole geometry have been fetched, these are 

fed into the second Matlab sequence that implements the 2D Fourier Transform.  

The code creates a regular grid onto which data from displacement, relative to the nodal 

coordinates, are organized, by taking into consideration the need for a compromise value 
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between xmax and dx in order to ultimately have logarithmic scale images with a narrow 

coordinates’ values range while keeping an acceptable level of visibility of the image itself.  

 

Finally, a 2D Fast Fourier Transform (FFT) is performed and the k-space for the images of 

displacement is acquired. The k-space can be defined as the spatial frequency information 

for an image (in our particular case) in terms of space, which is occupied by frequency and 

phase encoding data51. In this representation the position for each pixel corresponds to the 

wavelength while the color intensity is related to the wave amplitude. 

What could ideally come from the logarithmic Fourier maps is ratio between the two 

direction, that could be compared to the anisotropic mechanical ratio fed into the Abaqus 

simulation. 

Furthermore, this kind of evaluation could benefit from the increase in the density value for 

the material: as a matter of fact, the idea of using the Fourier Transform is to visualize clear 

elongated peaks in the map; sometimes these peaks are not visible in the standard 

configuration because of too high wavelength values. To that end, different measures can be 

adopted such as increasing frequency of actuation or increasing density. The latter has been 

embraced following the relations 

 

𝜆 =
𝑐

𝑓
[3.12] 

 

And 

𝑐2 =
𝜇

𝜌
[3.13] 

Thus 

𝜆 = √
𝜇

𝜌
∗
1

𝑓
[3.14] 

 

𝜆 ≅
1

√𝜌
[3.15] 

 

This means that, in order to halve the wavelength, the density ρ must be increased x4 times. 

Trials have been made with values of density multiplied by 4 and by 9. 
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The whole process is outlined in Figure 3.18 

Error! Reference source not found. 

 

Figure 3.18. Outline of the process that, starting from the output database given by the ABAQUS 

simulation ultimately allows the extraction of the k-space, via a Python and Matlab cod 
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For the sake of visualization of displacement data, this smaller geometry can be mirrored 

twice in order to recreate the initial circular geometry, this time having a thicker mesh. 

This can be done in the Visualization tab by selecting 

View → ODB Display Option → Toggle on the the XZ and YZ planes, needed to copy the 

model results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.8.2 WAVE NUMBER VS. ANISOTROPIC RATIO: A QUANTITATIVE 

COMPARISON 

 

The Matlab sequence provides the user with a final power spectrum map that displays the 

wave numbers in the x and y direction as axes, while the color intensity is related to the mean 

square amplitude of the wave. 

To have a more quantitative evaluation of these maps, one could create plots displaying the 

power density value on the y-axis and the value of λ-1 for both directions on the x-axis. 

This could be visualized either by a 2D plot or a 3D plot, by means of a surface. 

Figure 3.19: Visualization of the smaller geometry after mirroring 

operation. Picture arising from the 3rd simulation at 600Hz with an 

anisotropic ratio of 0.5 
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The application of the Fourier Transform has a result the creation of a matrix of 101x101 

complexed-valued elements. Such elements are the values of the power density for each 

point in space. In order to visually analyze them, their complex nature has to be somewhat 

simplified. For this reason, for each matrix element, its absolute value is computed. 

Furthermore, the Fourier Transform gets shifted so that the zero-frequency component goes 

to the center of spectrum. 

To create a surface from the Fourier Transform matrix the lines computed in Matlab are: 

 

𝑓2𝑠ℎ𝑖𝑓𝑡 = 𝑎𝑏𝑠(𝑓𝑓𝑡𝑠ℎ𝑖𝑓𝑡(𝑓2)) [3.16] 

 

𝑠𝑢𝑟𝑓(𝑓2𝑠ℎ𝑖𝑓𝑡) [3.17] 

 

 

where f2 is the matrix resulting from the Fourier Transform. 

A visual representation of such surface may be given by Figure 3.23  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Example of surface created from the evaluation of the Fourier transform 

matrix. Λx
-1 and Λy

-1 lay on the in-plane axes, while the vertical axis represents the power 

density 
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Alternatively, this very same surface could be differently visualized in this way: by means 

of a 2D “flattening” on the two planes, followed by a superimposition of the results. 

Matlab allows to do so by computing: 

 

𝑝𝑙𝑜𝑡(𝑓2𝑠ℎ𝑖𝑓𝑡(51, : ))  

ℎ𝑜𝑙𝑑 𝑜𝑛 [3.18] 

𝑝𝑙𝑜𝑡(𝑓2𝑠ℎ𝑖𝑓𝑡(: ,51))  

 

The parameter set to a value of 51 was chosen because of the shifting of the zero -frequency 

component to half of the spectrum (101x101 matrix). 

An example of this type of plot is provided in Figure 3.24 

 

 

 

 

Figure 3.21: Power density as a function of λ-1 for both x (red line) and y direction (blue line) 
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This kind of visualization, repeated for different fibers’ volume fraction values (i.e. 

anisotropic ratio values), allows for a numerical distinction between different degrees of 

anisotropy, by computing the value of the power density for the same value of λx
-1 and λy

-1. 

The creation of such plots represents the first step towards the implementation of the LFE 

technique (see Section 3.8). As a matter of fact, the quantitative visualization of λ-1 values 

yields to the extraction of the k parameter by means of the equation 

 

𝑘 =
2𝜋

𝜆
[3.19] 

 

Which by means of simplifications leads to the extraction of the shear modulus 

 

𝜇 =
𝜔2𝜚

𝑘2
[3.20] 

 

  

 

3.9 BYPASSING THE PROPERTIES FITTING: A MORE 

PUNCTUAL ASSESSMENT OF THE WHOLE PROCESS 

 

As visible in paragraph 3.2.2 the properties that are inserted in the Abaqus simulation result 

from a Matlab fitting that is not able to perfectly match the experimental curves. 

As a result of this, displacement images sometimes show several modes of vibrations, instead 

of a single radial one and are not always relatable to the experimental displacement images. 

For this reason, a further trial has been put in place, which consists in directly taking values 

of shear moduli from the UIC experimental results and conducting FE simulations at each 

frequency matched to the corresponding chosen value. 

This approach allows for a better visual comparison of displacement maps between the 

simulation and the experiment. However, it compels the user to execute one analysis at a 

time, instead of having a high range of exploitable frequencies for the same set of properties. 
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Table 3.2: Results of shear moduli from UIC experiments 

FREQUENCY 

(Hz) 
PARAMETER TE (Pa) 

600 µ┴REAL 3.89E+02 

 µ║REAL 5.69E+02 

 µ┴IMAGINARY 2.16E+02 

 µ║IMAGINARY 3.15E+02 

700 µ┴REAL 9.10E+02 

 µ║REAL 1.31E+03 

 µ┴IMAGINARY 3.85E+02 

 µ║IMAGINARY 5.55E+02 

800 µ┴REAL 1.11E+03 

 µ║REAL 1.61E+03 

 µ┴IMAGINARY 4.61E+02 

 µ║IMAGINARY 6.68E+02 

1000 µ┴REAL 2.79E+03 

 µ║REAL 3.63E+03 

 µ┴IMAGINARY 1.85E+03 

 µ║IMAGINARY 2.41E+03 

1200 µ┴REAL 7.37E+03 

 µ║REAL 9.63E+03 

 µ┴IMAGINARY 2.52E+03 

 µ║IMAGINARY 3.30E+03 

1500 µ┴REAL 8.56E+03 

 µ║REAL 1.17E+04 

 µ┴IMAGINARY 4.77E+03 

 µ║IMAGINARY 6.52E+03 

1800 µ┴REAL 6.11E+03 

 µ║REAL 7.86E+03 

 µ┴IMAGINARY 2.60E+03 

 µ║IMAGINARY 3.35E+03 
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2000 µ┴REAL 8.17E+03 

 µ║REAL 1.17E+04 

 µ┴IMAGINARY 2.14E+03 

 µ║IMAGINARY 3.07E+03 

 

Starting from Table 3.2, one value of shear modulus is chosen: in this work the highest value 

was selected, which corresponds to a frequency of 1500Hz. 

Subsequently the UMAT subroutine needs to be modified by commenting the lines which 

provide the definition of the shear moduli, through the use of several parameters (green 

underlined section of Appendix B), and the actual values of shear moduli simply get typed 

in. Everything related to the commented formulas in the UMAT subroutine will simply be 

disregarded in the Property Tab of the Abaqus simulation. 

 

In order to compare different anisotropic ratio values the parameter that needs to be 

alternated is amuR_per. 

Subsequently, the analyses conducted thus far for other simulation settings can be replicated 

in this particular case. 
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4 RESULTS AND DISCUSSION 

4.1 VARYING FIBERS MECHANICAL PROPERTIES: 

APPLYING DIFFERENT MATLAB FITTINGS TO THE 

EXPERIMENTAL DATA   

 

The material’s different reactions to the external application of a harmonic impulse is 

determined by the properties that are a priori inserted as input of the ABAQUS simulation. 

As mentioned before, these properties need to take into consideration the anisotropic and 

viscoelastic nature of the material whilst adapting the simulation to the frequency domain. 

This is made possible via the Matlab code (see Appendix A) that implements the equations 

(3.6 and 3.7) that relate the shear modulus values to the angular frequency ω. 

Five different trials have been recorded each of which presents different values for the 

viscoelasticity parameters that compose the equations 3.6 and 3.7. 

Five simulations are shown below: each presents different values for Go (a), g1, g2, t1, t2, 

t3 along with the plots of the simulation curve compared to the experimental curve. 

 

Figure 4.1: First simulation: (left) the first seven mechanical properties represent the viscoelasticity 

parameters; (right) the corresponding curve fitting: the blue curve represents the computational 

simulation, the red curve represents the experimental data 
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Figure 4.2: Second simulation: (left) the first seven mechanical properties represent the viscoelasticity 

parameters; (right) the corresponding curve fitting: the blue curve represents the computational 

simulation, the red curve represents the experimental data 

Figure 4.3: Third simulation: (left) the first seven mechanical properties represent the viscoelasticity 

parameters; (right) the corresponding curve fitting: the blue curve represents the computational 

simulation, the red curve represents the experimental data 
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Figure 4.5: Fifth simulation: (left) the first seven mechanical properties represent the viscoelasticity 

parameters; (right) the corresponding curve fitting: the blue curve represents the computational 

simulation, the red curve represents the experimental data 

Figure 4.4: Fourth simulation: (left) the first seven mechanical properties represent the viscoelasticity 

parameters; (right) the corresponding curve fitting: the blue curve represents the computational 

simulation, the red curve represents the experimental data 
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Simulations have been conducted via a trial and error approach and, by evaluating the 

difference in the curves between the different simulations, conclusions have been drawn 

regarding the role that most parameters play: 

• G0 (here named as “a”) shifts the curve to the top when increasing its value 

• By increasing g1 a further hump to the left of the main hump gets created 

• By increasing g2 the left hump (given by g1) vanishes, while the curve bursts to 

the top approaching the limit towards 0 

• t2 seems to have very little influence on the curve 

• By increasing t3 the curve shifts to the left 

 

Table 4.1 summarizes values of each viscoelastic parameter for each simulation 

 

 

Table 4.1: Values of viscoelastic parameters for each Matlab simulation 

Parameters 
Simulation

1 

Simulation

2 

Simulation

3 

Simulation

4 

Simulation

5 

G0 50000 25000 30000 30000 35000 

g1 0.006 0.04 0.05 0.05 0.05 

g2 0.09 0.06 0.04 0.04 0.002 

g3 0.4 0.7 0.45 0.55 0.5 

t1 0.09 0.09 0.09 0.09 0.085 

t2 0.7 0.7 0.7 0.7 0.5 

t3 0.0001 0.0001 0.0001 0.0001 0.00009 
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4.2  EXPERIMENTAL DISPLACEMENT DATA VS. 

SIMULATION DISPLACEMENT DATA: A VISUAL 

COMPARISON 

 

One of the  declared goals of this thesis work is to come up with a valid comparison between  

the images of displacement  acquired at the end of the ABAQUS simulation with those given 

by the experimental work carried out at the Acoustics and Vibrations Lab at  UIC. 

Initially computational simulation on the geometry was conducted by imposing the 

anisotropy direction along the x coordinate (direction 1) to the comparison purposes this 

would not have been useful: as a matter of fact, the actual anisotropic phantom used in the 

laboratory tests had fibers aligned in the vertical direction within the cross-section. 

For this reason, images shown below, are organized with experimental displacement data on 

the left and computational images resulting from geometries in which the fibers are aligned 

in the vertical direction on the right. 

 

 

 

 

 

 

 

Figure 4.6: Images resulting from properties of the first simulation, evaluated at 800Hz with an 

anisotropic ratio value of 0.6 
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The first and most visible feature in both couple of images is the presence of an elongated 

ellipsoidal shape in the horizontal direction. This is consistent with the fact that fibers are 

aligned in the vertical direction within the cross section, because of the wave propagation 

pattern that tends to be faster along the stiffest material direction, thus with a longer 

wavelength along the fibers direction, as depicted in Figure 4.8. 

 

 

 

 

 

 

 

Figure 4.7: Images resulting from properties of the third simulation, evaluated at 600Hz with an 

anisotropic ratio value of 0.7 
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The fact that both the experimental data and the computational data present the same 

elongation may represent a partial validation of both the simulation settings in ABAQUS 

and the experimental procedure. More quantitative comparison would be required for a more 

detailed validation. 

It is to be noted that properties between the actual experiment and the computational 

simulation are extensively different, despite the attempt of fitting the two curves in the 

Matlab plot, thus differences in the two displacement maps may be given by this property 

mismatch.  

 

 

 

 

 

 

 

 

 

Figure 4.8: Visual explanation of the wave pattern inside a phantom with fibers aligned in the 

vertical direction 
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4.3 VARYING OF FIBERS ANISOTROPIC RATIO 

 

To demonstrate the impact given by the presence of fibers within a homogeneous matrix, 

one could perform different attempts within a simulation: this would maintain the same 

mechanical and viscoelastic properties, while progressively changing the anisotropic ratio, 

namely the factor by which the shear modulus in the direction perpendicular to the fiber is 

scaled with respect to the shear modulus in the direction parallel to the fibers. 

In ABAQUS this can be modified in the Property tab, changing the 8th entry in the 

Mechanical Constants table. 

 

Table 4.2: Changes in the displacement images’ pattern as the anisotropic ratio value increases the 

mismatch between parallel and perpendicular (to the fibers) direction. 

Properties from the 3rd simulation (see paragraph above) at 600Hz  

ANISOTROPIC RATIO DISPLACEMENT IMAGE 

1 

 

0.9 
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0.8 

 

0.7 

 

0.6 

 

0.5 
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0.4 

 

 

 

From this simulation it is evident that the elongation in the x direction (having fibers aligned 

in the y direction, as in the real experiments) increases as the difference between the two 

shear moduli increases. 

 

 

 

Furthermore, to better visualize the effect that different fibers’ volume fractions have on the 

wave displacement pattern, one could exploit the presence of the newly created geometry 

(quarter slice), that displays a thicker mesh. 

Visual results for displacement patterns, in this case, would be feasible provided a mirroring 

of the geometry. 
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Table 4.3:  Changes in the displacement images’ pattern as the anisotropic ratio value increases the 

mismatch between parallel and perpendicular (to the fibers) direction evaluated for the smaller, more 

thickly meshed geometry. 

Properties from the 3rd simulation (see paragraph above) at 600Hz 

ANISOTROPIC RATIO DISPLACEMENT IMAGE 

1 

 

0.4 

 

 

 

It is evident that, shuttling from an isotropic case (value of anisotropic ratio of 1) to a highly 

anisotropic case (value of anisotropic ratio of 0.4) the wave mode strongly changes, going 

from concentric circles to elongated ellipses. 
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4.4 COMBINING VARIATIONS IN FREQUENCY OF 

ACTUATION AND ANISOTROPIC RATIO 

 

To further investigate the anisotropic behavior of the phantom, one could try another visual 

experiment, that consists in both varying the anisotropic ratio and the frequency of actuation. 

 

 

 

Table 4.4: Representation of displacement images from the first simulation at different frequencies (500 

and 800Hz) and different anisotropic ratio (1 and 0.4) 

 

The elongated ellipsoidal shape becomes more visible at high frequencies and when the 

mismatch between the shear moduli is higher: this is due to the fact that, as the stiff 

component increases the complex stiffness does too. 

 

 

 

A.R

/ 

Freq 

500Hz 800Hz 

1 

  

0.4 
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4.5 FROM DISPLACEMENT IMAGES TO SHEAR MODULUS 

VALUES VIA FOURIER TRANSFORM 

 

Table 4.5: Comparison between displacement image and Fourier map of the whole geometry VS the 

sliced geometry for different anisotropic ratio values. Properties from the 3rd simulation (see paragraph 

above) at 600Hz and density value x 4.  

AR 
DISPLACEMENT  

IMAGE 
FOURIER MAP 

0.7 

 

 

0.7 
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0.6 

 

 

0.6 
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0.5 

 

 

0.5 
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0.4 

 

 

0.4 

 

 

 

Table 4.5 clearly shows that postprocessing of the sliced geometry guarantees better results 

in terms of Fourier maps. As a matter of fact, a clear elongation in the y direction is visible 

in these maps, while the same cannot be said for the Fourier maps relative to the whole 

geometry: this may be due to the presence of a better mesh on the smaller feature that, thanks 

to the mirroring process, gets propagated and duplicated on a virtual circular cross section. 

As for the presence of peaks in the Fourier maps, these are more clearly visible also due to 

the fact that density has been increased by a factor of 4 with respect to the original setup, 

going from 1.06E-09 to 4.24E-09. A visual representation of the difference between the use 

of the two density values is shown in Figure 4.9 
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Figure 4.9: Fourier maps for the same simulation (third simulation at 600 Hz). On the left density 

value is 1.06E-09, on the right density value is 4.24E-09 
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4.6 WAVE NUMBER VS. ANISOTROPIC RATIO: A 

QUANTITATIVE COMPARISON 

 

After having delineated the power spectrum heatmap for each anisotropic ratio value within 

each simulation, one could create a series of plots that describe the relationship between the 

wave number and the power density, previously delineated by the different color intensities 

in the heatmap. 

 

 

 

 

 

 

 

 

 

 

 

 

Although the difference between the two plots is not pronounced, it is still possible to 

visualize variations between the two plots that represents phantoms that have different 

anisotropic ratio values. 

Figure 4.10: Plots from the 1st  simulation at 3000Hz. Left: 

anisotropic ratio of 1; Right: anisotropic ratio of 0.3. X axis 

represents alternatively values of λx
-1 and λy

-1. Y axis represents 

the power density  
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The left plot refers to the case in which shear moduli in the two directions have the same 

value, i.e. anisotropic ratio=1. The right plot refers to a value of anisotropic ratio value of 

0.3, referring to the fact that the two shear moduli are highly different. 

It is visible that the two colored lines tend to stick more tightly together when the AR=1, 

while slightly growing apart with AR=0.3 

Moreover, these plots represent the starting point for the extraction of shear modulus values 

(parallel and perpendicular to the fibers), via the use of the LFE technique that exploits the 

extraction of wave numbers. 

In this case, wave numbers may be directly taken from the plots following the relation 

 

𝑘 =
2𝜋

𝜆
 [4.1] 

 

And its extraction may provide value for the shear modulus 

 

𝜇 =
𝜔2𝜚

𝑘2
 [4.2] 

 

This last step represents the recovery of an inverse problem: care must be taken in the setting 

of the UMAT subroutine, making sure that the anisotropic ratio value results congruent to 

the fiber volume fraction of the real phantom. This had been calculated to be of 14%, 

meaning that (assuming a direct relationship between volume of the fibers and shear 

modulus) the ratio between the moduli in the two directions needs to be between 80% and 

90% approximately. 

Still, in order to perform this task, a correct density value for the real phantom needs to be 

known and used throughout the entire simulation. 
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4.7 BYPASSING THE PROPERTIES FITTING: A MORE 

PUNCTUAL ASSESSMENT OF THE WHOLE PROCESS 

 

A final analysis can be performed to determine which solution or merging of solutions works 

better for our purposes: this consists in plugging properties into the simulation in a slightly 

different manner with respect to what was previously done. Rather than creating a curve 

fitting of the numerical properties on the experimental ones, one could simply plug the values 

of shear modulus available from the experimental UIC results. 

Each frequency possesses four values, coupled two by two: two are related to the parallel 

modulus (real and imaginary), the other two are related to the perpendicular modulus (real 

and imaginary) (see Table 3.2). 

Hereby images resulting from the computational analysis carried out at 1500 Hz are 

displayed; shear modulus values are directly taken from Table 3.2. 

 

 

 

 

 

 

 

Figure 4.11: Visualization of displacement pattern for simulations run at 1500Hz adjusting the FE 

shear modulus values to the experimental values. Left: anisotropic ratio value of 1. Right: anisotropic 

ratio value of 0.1 
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Figure 4.11 shows a pronounced difference in the way waves propagate through the media 

when different amounts of fibrous structures are employed, having an elongated ellipsoidal 

pattern with an increasing difference between shear moduli in the two directions (parallel 

and perpendicular to the fibers). 

 

The latter image (anisotropic ratio value=0.1) can be further used as a source of comparison 

with the displacement maps provided by the experiments done at UIC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two images show the same kind of elongation; additionally, the color intensity wave of 

the two heatmaps shows a comparable pattern. 

All the passages that were conducted for the previous types of simulations can be performed 

in this case as well, going from the extraction of data for the displacement in the z direction, 

to the visualization of the power spectrum and the subsequent plot reconstruction. 

 

 

 

 

 

Figure 4.12: Comparison between FE simulation and MRE experiment. Frequency=1500Hz 
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Both the power spectrum images and the plots better delineate the differences in applying 

different anisotropic ratio values with respect to the images gathered from previous 

simulations. 

Figure 4.13: Top row shows the power spectrum and plot for the simulation run at 1500Hz with an 

anisotropic ratio value of 1. Bottom row shows the power spectrum and plot for the simulation run at 

1500Hz with an anisotropic ratio value of 0.1 
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However, this newly adopted methodology lacks in versatility, meaning that the values of 

shear modulus need to be changed in the UMAT subroutine whenever a new  frequency 

value is plugged in the Abaqus Step tab, preventing the user from a faster analysis. 
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5 CONCLUSION AND FUTURE 

DEVELOPMENTS 

 

This thesis work poses itself in the wide panorama of research on the topic of Magnetic 

Resonance Elastography: the technique has been proposed as an innovative and non-invasive 

solution for the healing of various and severe pathologies that affect different body districts. 

Focus has been set to skeletal muscle tissue that can be affected by a series of neuromuscular 

disorders; the overall visible effect of such ailments is the modification of properties within 

the tissue itself. MRE sets itself the objective of preemptively detecting and analyzing such 

changes, in order to stop the evolution of the disease. The technique is based on an inversion 

algorithm that, after having provided a harmonic excitation to the sample and having 

visualized the displacement pattern followed by mechanical waves inside the material, 

reverses the displacement results to data of shear moduli. Yet, the process is not so intuitive 

when anisotropic media, such as skeletal muscle tissue, comes into play. For this reason, the 

specific aim of this project is to implement an inverted approach of the traditional MRE 

technique, that is to say, the creation of a “Direct Problem” that would switch from data of 

shear moduli to displacement field images. In this specific case, the input shear moduli data 

has been provided (and subsequently rearranged) by a series of previous experiments that 

were carried out by the author in the Acoustics and Vibrations Lab of the University of 

Illinois at Chicago. The Direct Problem would thus serve as a source of comparison between 

displacement images coming from the simulation and the experimental ones, in addition to 

being a useful tool to assess the effect of material properties on the way waves propagate.  

 

Starting from the acquisition of mechanical properties for the simulation input, this work has 

explored different modalities to be fitting properties from the ones gathered from the UIC 

experiment: 

• The first analysis that provides good results is the Matlab fitting utilizing 

equations that take into account the viscoelasticity of the material (eq. 3.6 and 

3.7). The viscoelastic parameters have been set by means of a trial and error 

procedure: this methodology seems to provide curves for the simulation that do 

not quite match the experimental ones. Yet the result in terms of displacement 
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maps provides good and comparable images between those coming from the 

simulation and those coming from the experiments. As the anisotropic ratio and 

the frequency of actuation increase, the ellipsoidal elongation of the maps does 

too both for the FEA and for the UIC results. This demonstrates that the MRE 

technique and its computational imitation are able to highlight differences within 

anisotropic tissues, characterized by different levels of fiber volume fractions. 

This positive result is visible for all types of fittings carried out in the Matlab 

sequence, albeit the viscoelastic parameters employed differ. 

• Additionally, to provide a better assessment of the similarities between the two 

works, a second path has been followed: this consists of taking the input 

properties from the results provided by the experimental analysis and directly 

plug them in the simulation without any kind of rearrangement. This trial has 

resulted particularly successful in the visualization of displacement maps that, for 

the same set of frequencies, show a high level of similarity both in the displayed 

geometry and in the color intensity pattern, validating at the same time both the 

experimental and the numerical procedure. However accurate, this method has 

the disadvantage of forcing the user to iteratively change the coupling between 

frequency and shear modulus value, not exploiting the possibility of executing 

analyses simultaneously in a vast range of frequency. 

 

Employing the visualization of displacement images, this work has provided an alternative 

to what had been previously done by Yasar et al.: in their work, the differences between the 

numerical simulation and the experiment were provided by means of plots showing the 

displacement profile (for the two cases) on the cylinder top surface as a function of radial 

position; the comparison that is proposed in this work is somewhat more immediate to the 

reader, as it presents the actual displacement images, allowing for  fast detection of 

noteworthy differences. 

  

Another positive outcome of the work is the fact that different anisotropic ratio values do 

provide a substantial difference to the simulation results. This difference is highly visible in 

the displacement maps, thanks to the degree of elongation, that deviates from the concentric 

pattern visible for isotropic samples; still, it lacks in clearness in the power spectrum 
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heatmaps, retrieved thanks to a 2D Fourier Transform on the acquired displacement data. 

However, the heatmaps are needed in order to create wave number VS power spectrum plots 

where the discrepancies when using different anisotropic ratio values are not only visible but 

also quantifiable. 

The plots may represent the starting point for a less complicated extraction of mechanical 

parameters: as a matter of fact, the LFE technique states that values for the shear modulus 

can be calculated, provided the presence of a wave number, which, as mentioned before, has 

been extracted via a Fourier Transformation. This will be feasible when both the exact 

density value and the anisotropic ratio (quantity of fibers) for the phantom will be known. 

  

Overall this work has resulted successful in tracing the actual experiments and, given the 

comparable results,  has provided a validation to the employed MRE process: when plugging 

experimental values into a computational simulation (theoretically set as the given 

experiment) this returns the same result (displacement map) from which the experiment had 

started. It is thus certified the interchangeability of the inverse and direct problem in this 

particular scenario. 

Moreover, this work represents a further validation of the fact that anisotropy present within 

samples provides a tangible contribution to the wave transmission: as the stiff component 

increases, the complex stiffness does too. 

 

Although the analysis has been successful in providing what was intended for it as a first 

aim some issues are still present: 

The direct problem formulation entails as a final result the extraction of the displacement 

images: however, this has not been the last step of this analysis which continued with the 

numerical data extraction and the plotting of the power spectrum result. In this way, the 

problem turns out to be an inverse formulation of an initial different direct problem. 

Quantitative interpretation of the plots is still not clear and further study on the subject may 

be needed. 

Furthermore, when evaluating displacement images coming from simulations that were 

provided with properties taken by the Matlab fitting, different modes of vibrations are visible 

in the FE images; these were not present in the experimental analysis: this may be due to the 
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fact that properties of stiffness, density and anisotropy are not exactly those present in the 

anisotropic phantom, albeit the struggle of tracing them as precisely as possible. 

One should be able to plug in the simulation the exact properties of the used phantom, 

without resorting to the expedient of inserting as properties those that were results of an 

experiment and that may present errors, given by the nature of the experiment itself. To do 

so, one could exploit the “Barbero code” and apply a homogenization procedure between 

the properties of the matrix and those of the fibers. Unfortunately, no precedent literary work 

nor technical sheets presented the needed details for the two materials in terms of stiffness, 

Young’s modulus and density. 

Direct problems rest on their inputs, which are the material properties: the lack of detailed 

information on these or even a slight mismatch between density values may result in major 

differences and inaccuracies when analyzing results. 
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6 APPENDIX A: MATLAB 

CODES 

BARBERO CODE 

 

% FEAcomp. Solution of Example C.1 
% E. J. Barbero, WVU, 2007 
clear all,close all,  
% Input file ExampleC1.dat 
% Isotropic Matrix: Em, num, 
% Transversely isotropic Fiber: EA,ET,nuAT,nuTT,GAT 
% Fiber volume fraction: Vf 
%n_file = 'materialC1';disp(n_file); 
% OPEN I/0 FILES 
%fidinp = fopen([n_file,'.dat'],'r');    
%fidout = fopen([n_file,'_results.dat'],'w'); 
% READ PROPERTIES FROM INPUT FILE 
%prop = fscanf(fidinp,'%g'); disp(prop); 
%Vf = prop(8);  
Vf=0.14 
Vm = 1-Vf; 
% Matrix 
%E1 = prop(1); 
E1=65* 10e3; 
E2 = E1;        %%matrix is isotropic 
E3 = E2; 
%nu12 = prop(2); 
nu12=0.5; 
nu21 = nu12; 
nu13 = nu12; 
nu31 = nu21; 
nu23 = nu12; 
nu32 = nu23; 
G12 = E1/2/(1+nu12); 
G13 = G12; 
G23 = G12;                   
Gm  = G12; 
num = nu12; 
% COMPUTE S AND C 
Sm= [1/E1       -nu21/E2    -nu31/E3 0 0 0; 
    -nu12/E1    1/E2        -nu32/E3 0 0 0; 
    -nu13/E1    -nu23/E2    1/E3     0 0 0; 
    0   0   0   1/G23   0       0; 
    0   0   0   0       1/G13   0; 
    0   0   0   0       0       1/G12]; 
% 
Cm = inv(Sm) 
% Transversely isotropic fiber: plane of isotropy in dir 1 
% E1, E2=E3, nu12=nu13, nu23, G12=G13, G23=E2/(2*(1+nu23))   
%E1 = prop(3); 
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E1=1.8*10e6;     %Mpa 
%E2 = prop(4); 
%E2=24.8; 
E2=E1; 
E3 = E2; 
%nu12 = prop(5); 
nu12=0.311; 
nu21 = nu12; 
nu13 = nu12; 
nu31 = nu21; 
nu23 = nu12; 
nu32 = nu23; 
% nu21 = nu12*E2/E1; 
% nu13 = nu12; 
% nu31 = nu21; 
%nu23 = prop(6); 
%nu23=0.005; 
%nu32 = nu23*E3/E2; 
%G12 = prop(7); 
%G12=44.1; 

  
G12 = E1/2/(1+nu12); 
G13 = G12; 
G23 = G12;   

  

  

  
% G13 = G12; 
% G23 = E2/(2*(1+nu23)); 
% COMPUTE S AND C 
Sf= [1/E1       -nu21/E2    -nu31/E3 0 0 0; 
    -nu12/E1    1/E2        -nu32/E3 0 0 0; 
    -nu13/E1    -nu23/E2    1/E3     0 0 0; 
    0   0   0   1/G23   0       0; 
    0   0   0   0       1/G13   0; 
    0   0   0   0       0       1/G12]; 
% 
Cf = inv(Sf) 
% 
S1=0; S4=0; S8=0; S9=0; 
S3=0.49247-0.47603*Vf-0.02748*Vf^2; 
S2=S3; 
S6=0.36844-0.14944*Vf-0.27152*Vf^2; 
S5=S6; 
S7=0.12346-0.32035*Vf+0.23517*Vf^2; 
% Trial values 
% Initialize P 
P = [ 0 0 0 0 0 0; 
      0 0 0 0 0 0; 
      0 0 0 0 0 0; 
      0 0 0 0 0 0; 
      0 0 0 0 0 0; 
      0 0 0 0 0 0]; 
%Ptensor.m 12/25/06 
P(1,1)=S1/Gm-S4/2/Gm/(1-num); 
P(2,2)=S2/Gm-S5/2/Gm/(1-num); 
P(3,3)=S3/Gm-S6/2/Gm/(1-num); 
P(1,2)=-S9/2/Gm/(1-num);P(2,1)=P(1,2); 
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P(1,3)=-S8/2/Gm/(1-num);P(3,1)=P(1,3); 
P(2,3)=-S7/2/Gm/(1-num);P(3,2)=P(2,3); 
P(4,4)=(S3+S2)/4/Gm-S7/2/Gm/(1-num); 
P(5,5)=(S1+S3)/4/Gm-S8/2/Gm/(1-num); 
P(6,6)=(S1+S2)/4/Gm-S9/2/Gm/(1-num); 
P; 
% Initialize Reuter 
R = [ 1 0 0 0 0 0; 
      0 1 0 0 0 0; 
      0 0 1 0 0 0; 
      0 0 0 2 0 0; 
      0 0 0 0 2 0; 
      0 0 0 0 0 2]; 
% Initialize I(2) 
I2 =[ 1 0 0 0 0 0; 
      0 1 0 0 0 0; 
      0 0 1 0 0 0; 
      0 0 0 1 0 0; 
      0 0 0 0 1 0; 
      0 0 0 0 0 1]; 
% Calculate Af contracted 
Af = ((Cm - Cf)^(-1)) .* (((Cm - Cf)^(-1) - P)^(-1)); 
Am = (I2 - Vf * Af) / Vm; 
C= Cm - Vf*((Cm - Cf)^(-1) - P)^(-1) 
%it is the same as writing C=Cm-Vf*(Cm-Cf)*Af 
%Alternatively  
%C = Vf*Af*Cf + Vm*Am*Cm 
% WRITE SOLUTION IN A FILE 
% fprintf(fidout,'%10s\n','FIBER STRAIN CONCENTRATION');  
% for row=1:6 
%     fprintf(fidout,'%10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\t 

%10.4e\n',Af(row,1),Af(row,2),Af(row,3),Af(row,4),Af(row,5),Af(row,6));  
% end 
% fprintf(fidout,'%10s\n','MATRIX STRAIN CONCENTRATION');  
% for row=1:6 
%     fprintf(fidout,'%10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\t 

%10.4e\n',Am(row,1),Am(row,2),Am(row,3),Am(row,4),Am(row,5),Am(row,6));  
% end 
% fprintf(fidout,'%10s\n','SIFFNESS MATRIX');  
% for row=1:6 
%     fprintf(fidout,'%10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\t 

%10.4e\n',C(row,1),C(row,2),C(row,3),C(row,4),C(row,5),C(row,6));  
% end 
% fclose(fidinp); 
% fclose(fidout); 

  
S=inv(C) 
E11=1/S(1,1) 
E22=1/S(2,2) 
E33=E22 
G12=1/S(4,4) 
G13=G12 
Nu12=-S(1,2)*E11 
Nu13=Nu12 
Nu23=-S(2,3)*E22 
G23=E22/2*(1+Nu23) 
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FITTING VISCOELASTICITY PARAMETERS TO 

EXPERIMENTAL CURVES 

 

 

xl=[600*2*pi 
    700*2*pi 
    1000*2*pi 
    1200*2*pi 
    1500*2*pi 
    1800*2*pi 
    2000*2*pi]; 

  
yl=[315 
    555 
    2410 
    3300 
    6520 
    3350 
    3070]; %dati di loss modulus 

  
ys=[569 
    1310 
    3630 
    9630 
    11700 
    7860 
    11700]; %dati di storage modulus 

  

  
 a =      50000  %sposta la curva in alto (se aumenta) o in basso  
       g1 =      0.006   %aumentando crea un'ulteriore gobba sulla sx 
       g2 =      0.09   %aumentando elimina la seconda gobba a sx e fa 

schizzare il lim per 0 in su 
       g3=       0.4 
       t1 =      0.09 
       t2 =      0.7    %ha pochissima influenza sulle curve 
       t3=0.0001              %sposta la curva a sinistra se aumenta 

  

  
i=0; 
xv=linspace(0,2*pi*40000,40000) 
for i=1:40000 
    x=xv(i); 
g_loss(i)=a*((g1*t1*x)/(1+t1^2*x^2)+(g2*t2*x)/(1+t2^2*x^2)+(g3*t3*x)/(1+t

3^2*x^2)); %formula per Gloss 
g_storage(i)=a*(1-

(g1+g2+g3))+a*(((g1*t1^2*x^2)/(1+t1^2*x^2))+((g2*t2^2*x^2)/(1+t2^2*x^2))+

((g3*t3^2*x^2)/(1+t3^2*x^2))); %formula per Gstorage 
end 

  
loglog(xv,g_loss,xl,yl); legend('Loss modulus simulation','Loss modulus 

experimental'); title('Shear Modulus vs Frequency'); 
xlabel('Frequency (w)'); ylabel ('Shear modulus') 
figure 
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loglog(xv,g_storage,xl,ys); legend('Storage modulus simulation','Storage 

modulus experimental'); title('Shear Modulus vs Frequency'); 
xlabel('Frequency (w)'); ylabel ('Shear modulus') 

 

 

MIRRORING THE DATA: FROM A QUARTER SLICE TO THE 

ENTIRE GEOMETRY 

 

%%u3rz=u3r6000_11 
j=0 
for i=1:length(z) 
   if(z(i)==1) 
       j=j+1; 
       xr(j)=x(i); 
       yr(j)=y(i); 
       u3r(j)=zdisp1(i); 
   end 
end 
j 
xmax=2; 
dx=0.01; 
[xq,yq] = meshgrid(0:dx:xmax, 0:dx:xmax); 
vq = griddata(xr,yr,u3r,xq,yq,'cubic'); 
mesh(xq,yq,vq) 
ju=j; 
ju1=ju; 
plot3(xr,yr,u3r) 

  
for i=1:ju 

    
    xr(ju+i)=-xr(i); 
    yr(ju+i)=yr(i); 
    u3r(ju+i)=u3r(i); 

     

     
end 
ju=ju+ju; 
for i=1:ju1 

    
    xr(ju+i)=-xr(i); 
    yr(ju+i)=-yr(i); 
    u3r(ju+i)=u3r(i); 

     

     
end 
ju=ju+ju1; 
for i=1:ju1 

    
    xr(ju+i)=xr(i); 
    yr(ju+i)=-yr(i); 
    u3r(ju+i)=u3r(i); 

     

     
end 
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xmax=3; 
dx=2*xmax/100; 
[xq,yq] = meshgrid(-xmax:dx:xmax, -xmax:dx:xmax); 
vq = griddata(xr,yr,u3r,xq,yq); 

  
mesh(xq,yq,vq) 

  

  
%x=coordhor(:,2); 
%y=coordhor(:,3); 
%z=coordhor(:,4); 
%zdisp1=tryouthor(:,4); 

 
 

 

 

APPLYING FAST FOURIER TRANSFORM TO THE 

DISPLACEMENT DATA 

Mirroring 

% Code used to mirror the quarter sliced geometry on the xz and yz plane 

 

%%u3rz=u3r6000_11 
x=coordhorfettina(:,2); 
y=coordhorfettina(:,3); 
z=coordhorfettina(:,4); 
zdisp1=tryouthorfettina(:,4); 

  
j=0 
for i=1:length(z) 
   if(z(i)==1) 
       j=j+1; 
       xr(j)=x(i); 
       yr(j)=y(i); 
       u3r(j)=zdisp1(i); 
   end 
end 
j 
xmax=3; 
dx=2*xmax/100; 
[xq,yq] = meshgrid(0:dx:xmax, 0:dx:xmax); 
vq = griddata(xr,yr,u3r,xq,yq,'cubic'); 
mesh(xq,yq,vq) 
ju=j; 
ju1=ju; 
plot3(xr,yr,u3r) 

  
for i=1:ju 

    
    xr(ju+i)=-xr(i); 
    yr(ju+i)=yr(i); 
    u3r(ju+i)=u3r(i); 
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end 
ju=ju+ju; 
for i=1:ju1 

    
    xr(ju+i)=-xr(i); 
    yr(ju+i)=-yr(i); 
    u3r(ju+i)=u3r(i); 

     

     
end 
ju=ju+ju1; 
for i=1:ju1 

    
    xr(ju+i)=xr(i); 
    yr(ju+i)=-yr(i); 
    u3r(ju+i)=u3r(i); 

     

     
end 
xmax=3; 
dx=2*xmax/100; 
[xq,yq] = meshgrid(-xmax:dx:xmax, -xmax:dx:xmax); 
vq = griddata(xr,yr,u3r,xq,yq); 
mesh(xq,yq,vq) 

  

  
%x=coordhor(:,2); 
%y=coordhor(:,3); 
%z=coordhor(:,4); 
%zdisp1=tryouthor(:,4); 

 

FFT_Fettina 

% Code used to apply the 2D Fourier transform to the displacement maps 
close all 
zdisp=u3r; 
ut=zdisp;    
xmax=3; 
dx=2*xmax/100; 

 
% - an ordered coordinates grid is created and the displacement data 

(ALONG X,Y AND Z) ut are interpolated at the query points of the new 

ordered mesh 
[xq,yq] = meshgrid(-xmax:dx:xmax, -xmax:dx:xmax); 
vq = griddata(xr,yr,ut,xq,yq); 
[row, col] = find(isnan(vq)); 

 
%pause 
for i=1:length(row) 
for j=1:length(col) 
vq(row(i),row(j))=0; 
end 
end 
mesh(xq,yq,vq) 
pause 
f2=fft2(vq); 
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f2shift=abs(fftshift(f2)); 
clims = [0 0.1] 

 
% - the Fourier transform is rearranged by shifting the zero-frequency 

component to the center of the array 
figure 
imagesc(abs(fftshift(f2)),clims); 
 

% - the insitu_dft function, reported below, is recalled 
Xd=-xmax:dx:xmax; 
Yd=Xd 
[F,Xr,Yr] = insitu_dft(vq,Xd,Yd); 
figure 
%surf(f2) 
surf(f2shift) 

  
figure 
plot(f2shift(51,:)) %y for x=51 
hold on 
plot(f2shift(:,51)) %x for y=51 
legend('y values for x=51','x values for y=51'); 

 

 

Insitu_DFT 

% This .m file is meant to compute the Discrete Fourier Transform of an 
% image 

  
function [F,Xr,Yr] = insitu_dft(I,Xd,Yd) 

  
%% - set text options 
set(0,'defaulttextinterpreter','latex') 
fontname = 'Helvetica'; 
set(0,'defaultaxesfontname',fontname); 
set(0,'defaulttextfontname',fontname); 
fontsize = 12; 
set(0,'defaultaxesfontsize',fontsize); 
set(0,'defaulttextfontsize',fontsize); 

  
%% - compute DFT 
%%I = varargin{1}; 
[Ny, Nx] = size(I); 
%%Xd = 0:Nx-1; 
%%Yd = 0:Ny-1; 
debug = 1; 

  
%if nargin > 1 Xd = varargin{2}; Yd = varargin{3}; end 
%if nargin > 3 debug = varargin{4}; end 

  
% - define physical space grid 
dXd = Xd(2) - Xd(1); 
Nx = length(Xd); 
dYd = Yd(2) - Yd(1); 
Ny = length(Yd); 
% - compute Discrete Fourier Transform 
% I = mat2gray(I); % enhance image contrast 
F = fft2(I); 
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% - shift F to the center 
F = fftshift(F); 
% - cut at Nyquist frequence 
%%F = F(Ny/2 - Ny/8 : Ny/2 + Ny/8 , Nx/2 - Nx/8 : Nx/2 + Nx/8); 
F = abs(F); 

  
% - define reciprocal space 
Ksx = 1/dXd; 
dXr = Ksx / Nx; 
Ksy = 1/dYd; 
dYr = Ksy / Ny; 
Xr = -Ksx : dXr : Ksx; 
Yr = -Ksy : dYr : Ksy; 

  
%% - (if requested) display results 

  
if debug 

     
    % - create subplot to show Spectrum both in linear and logarithmic 
    % scales 
    figure('units','normalized','outerposition',[0 0 1 1]); 
    set(gcf,'Name','Surface fit results','NumberTitle','off','color','w') 

     
    % ... linear scale 
    subplot(1,2,1); 
    clims=[0. 0.00001] 
    imagesc(Xr,Yr,F/(Nx*Ny),clims); 
        axis equal 
    title('Power Spectrum - \textbf{linear} scale') 
    colormap jet; 
    colorbar 
    set(gca,'YDir','normal'); 
    xlabel('${\lambda_{x}}^{-1}$ [${mm}^{-1}$]','FontSize',15); 
    ylabel('${\lambda_{y}}^{-1}$ [${mm}^{-1}$]','FontSize',15); 

     
    % ... log scale 
    subplot(1,2,2); 
    imagesc(Xr,Yr,log(F+1)); 
    title('Power Spectrum - \textbf{logarithmic} scale') 
    axis equal 
    colormap jet; 
    colorbar 
    set(gca,'YDir','normal'); 
    xlabel('${\lambda_{x}}^{-1}$ [${mm}^{-1}$]','FontSize',15); 
    ylabel('${\lambda_{y}}^{-1}$ [${mm}^{-1}$]','FontSize',15); 

  

     

     
    %%close(gcf) 

     
end 
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7 APPENDIX B: USER 

DEFINED FUNCTIONS 

UMAT TO DEFINE VISCOELASTIC PROPERTIES OF THE 

SIMULATION MATERIAL 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS,2), 

     2 DDSDDT(NTENS),DRPLDE(NTENS), 

     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     5 JSTEP(4) 

      DIMENSION DSTRES(6),D(3,3) 

C 

C  EVALUATE NEW STRESS TENSOR 

C 

C      User material parameters definition.  

C          adir= anisotropy direction (1,2,3) 

C 

       amu0_par=props(1) !! mu_0 parallelo 

       apar=amu0_par 

       g1=props(2) 

       g2=props(3) 

       g3=props(4) 

       t1=props(5) 
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       t2=props(6) 

       t3=props(7) 

        

       amu0_per=props(8) 

       aper=amu0_per 

       

       anu=props(9) 

       adir=props(10) 

C 

C      frequency vector and Pi definition 

       x=time(1) !!! frequenza 

        

       anup=anu 

       Pi=3.141592 

C 

C      muR and muI definition 

C 

        

       amuR_par=apar*(1.d00-

(g1+g2+g3))+a*(((g1*t1**2*x**2)/(1+t1**2*x**2))+ 

     +  

((g2*t2**2*x**2)/(1+t2**2*x**2))+((g3*t3**2*x**2)/(1+t3**2*x**2))) 

C 

   

        amuR_per=aper*(1.d00-

(g1+g2+g3))+a*(((g1*t1**2*x**2)/(1+t1**2*x**2))+ 

     +  

((g2*t2**2*x**2)/(1+t2**2*x**2))+((g3*t3**2*x**2)/(1+t3**2*x**2))) 

        

        

C 

       amuI=apar*((g1*t1*x)/(1+t1**2*x**2)+(g2*t2*x)/(1+t2**2*x**2)+ 

     +  (g3*t3*x)/(1+t3**2*x**2)); 

C  amuR_par=11700*(10E-6) 

C   amuR_per=0.86*amuR_par 
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C  amuI=6520*(10E-6) 

C 

C      E' and E'' definitions 

       Ep=2*amuR_per*(1+anu) 

       Ez=2*amuR_par*(1+anu) 

       Ep2=2*amuI*(1+anu) 

       Ez2=Ep2 

C 

C      Delta definition 

       aD=(1+anup)*(1-anup-2*anup**2)/(Ep**2*Ez) 

       aD2=(1+anup)*(1-anup-2*anup**2)/(Ep2**2*Ez2) 

C 

C 

C Stiffness matrix C initialization  

C 

      DO K1=1,NTENS 

         DO K2=1,NTENS 

            DDSDDE(K2,K1,1) = 0. 

         END DO 

      END DO 

C 

C First quadrant 

      DO K1=1,NDI 

         DO K2=1,NDI 

            DDSDDE(K2,K1,1) = (anu+anu*anup)/(Ep*Ez*aD) 

         END DO 

      END DO 

C 

C 

C First quadrant diagonal  

C 

       DO K1=1,NDI 

            DDSDDE(K1,K1,1) = (1-anu**2)/(Ep*Ez*aD) 

       END DO 
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C 

       DDSDDE(adir,adir,1) = (1-anup**2)/(Ep**2*aD) 

C 

C Changing different components 

C 

       DO K1=1,NDI 

         DO K2=1,NDI 

            IF (K1.NE.adir.AND.K2.NE.adir.AND.K1.NE.K2) THEN 

               DDSDDE(K1,K2,1) = (anup+anu**2)/(Ep*Ez*aD) 

            END IF 

         END DO 

       END DO 

C 

C Fourth quadrant diagonal 

C 

       DO K1=NDI+1,NDI+NSHR 

            DDSDDE(K1,K1,1) = Ez/(1+anup) 

       END DO 

C 

C mu_perdepndicular  

       K1=adir+NDI 

       DDSDDE(K1,K1,1) = Ep/(1+anup) 

C 

C 

C Damping matrix D initialization  

      DO K1=1,NTENS 

         DO K2=1,NTENS 

            DDSDDE(K2,K1,2) = 0. 

         END DO 

      END DO 

C 

C First quadrant  

C 

      DO K1=1,NDI 

         DO K2=1,NDI 
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            DDSDDE(K2,K1,2) = (anu+anu*anup)/(Ep2*Ez2*aD2) 

         END DO 

      END DO 

C 

C 

C First quadrant diagonal  

C 

       DO K1=1,NDI 

            DDSDDE(K1,K1,2) = (1-anu**2)/(Ep2*Ez2*aD2) 

       END DO 

C 

       DDSDDE(adir,adir,2) = (1-anup**2)/(Ep2**2*aD2) 

C 

C Changing different components 

C 

       DO K1=1,NDI 

         DO K2=1,NDI 

            IF (K1.NE.adir.AND.K2.NE.adir.AND.K1.NE.K2) THEN 

               DDSDDE(K1,K2,2) = (anup+anu**2)/(Ep2*Ez2*aD2) 

            END IF 

         END DO 

       END DO 

C 

C Fourth quadrant diagonal 

C 

       DO K1=NDI+1,NDI+NSHR 

            DDSDDE(K1,K1,2) = Ez2/(1+anup) 

       END DO 

C 

C mu_perpendicular 

       K1=adir+NDI 

       DDSDDE(K1,K1,2) = Ep2/(1+anup) 

C 

C Stress definition 

          do is=1,NTENS 
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           STRESS(is)=0 

             do it=1,NTENS 

             stress(is)=stress(is)+DDSDDE(is,it,1)*STRAN(it) 

             end do 

          end do 

C 

C 

 1001 format(6f12.5)   

      RETURN 

       

      END  

 

 

DISP.PY: THE PYTHON CODE TO EXTRACT DISPLACEMENT 

AND COORDINATES DATA FROM THE ODB FILE 

 

import odbAccess 

#odb=session.openOdb('mre_homtools.odb') 

odb=odbAccess.openOdb(path='fettina2_CG.odb') 

timeFrame=odb.steps['Step-2'].frames[2] 

displacement=timeFrame.fieldOutputs['U'] 

coord=timeFrame.fieldOutputs['COORD'] 

pipenode=odb.rootAssembly.instances['PART-1-1'].nodeSets['SET-1'] 

pipenodeDIsp=displacement.getSubset(region=pipenode) 

pipenodeCoord=coord.getSubset(region=pipenode) 

myoutfile=open('tryouthor_fettina.txt','w+') 

myoutfile1=open('coordhor_fettina.txt','w+') 

myoutfile.write("Node  ") 

myoutfile.write("xdisp  ") 

myoutfile.write("ydisp  ") 

myoutfile.write("zdisp\n") 

myoutfile1.write("Node  ") 
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myoutfile1.write("x  ") 

myoutfile1.write("y  ") 

myoutfile1.write("z\n") 

for v in pipenodeDIsp.values: 

  print "Nodel label= %d",v.nodeLabel 

  myoutfile.write(str(v.nodeLabel)) 

  myoutfile.write(" ") 

  print "x disp=",v.data[0] 

  myoutfile.write(str(v.data[0])) 

  myoutfile.write(" ") 

  print "x disp=",v.data[1] 

  myoutfile.write(str(v.data[1])) 

  myoutfile.write(" ") 

  print "x disp=",v.data[2] 

  myoutfile.write(str(v.data[2])) 

  myoutfile.write("\n") 

myoutfile.close() 

for v in pipenodeCoord.values: 

  print "Nodel label= %d",v.nodeLabel 

  myoutfile1.write(str(v.nodeLabel)) 

  myoutfile1.write(" ") 

  print "x disp=",v.data[0] 

  myoutfile1.write(str(v.data[0])) 

  myoutfile1.write(" ") 

  print "x disp=",v.data[1] 

  myoutfile1.write(str(v.data[1])) 

  myoutfile1.write(" ") 

  print "x disp=",v.data[2] 

  myoutfile1.write(str(v.data[2])) 

  myoutfile1.write("\n") 

myoutfile1.close() 

odb.close
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