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Abstract

Hyperspectral imaging (HSI) technology aims at recovering the full spectra of the

light coming from of each point of a 2-dimensional image. The analysis of the data

provided by this technique enables the user to retrieve physicochemical proper-

ties of the imaged object. Due to its characteristics of non-invasivity, reliability

and flexibility, hyperspectral imaging is nowadays being applied in a continuously

growing number of fields, both in the academic and industrial world. In particu-

lar the present work will concentrate on the applications of HSI in the food and

agriculture sector. The attention that nowadays customers put on the quality of

food they purchase, requires the companies a constant control over their prod-

ucts. Hyperspectral imaging technology offers them a fast and reliable mean to

monitor the condition of the whole production chain, enabling the producers to

fulfill customer’s standards. HSI has been implemented using various technolo-

gies. In particular, in the present work all the analysis have been carried out with

a hyperspectral camera produced by NIREOS: a spinoff company of the Politec-

nico di Milano. The technology of the HERA Iperspettrale camera is based on

Fourier-Transform spectroscopy, exploiting a patented ultra-stable common-path

birefringent interferometer. The main focus of this thesis is the employment of the

HERA hyperspectral camera to study the spectral signatures that characterize

the growing and senescence of leafy vegetables grown in a vertical farm. Fun-

damental nutrients inside the plants indeed, like chlorophylls and phenols, have

specific absorption regions in the VIS-NIR and information on their concentra-

tion can be retrieved by the analysis of the sample’s spectra. The technology of

the HERA Iperspettrale enables also to perform measurements of the fluorescence

spectrum of the leaves, from which it is possible to extract data on the photo-

synthetic potential of the plant. Two projects will be presented throughout the

work. The first one concentrates on the spectral features that indicate senescence

in leafy vegetables in three different conservation techniques. The way in which

the samples are stored will greatly influence their degradation process, leading to



different detectable signs of senescence in the spectra. The second study instead

tries to analyze the effect of biostimulants on leafy vegetables in their growth and

senescence process. The effect of these compounds is more difficult to distinguish,

rather the study will provide further information on the evolution of the plant’s

spectra during their growth or degradation.
Keywords: Hyperspectral Imaging; Fourier-Transform Spectroscopy; Absorption

spectrum; Reflectance spectrum; Fluorescence spectrum; Agriculture; Food





Estratto

La tecnologia dell’Imaging Iperspettrale volge alla ricostruzione dell’intero spettro della

luce proveniente da ogni punto di un’immagine bidimensionale. L’analisi dei dati forniti

da questa tecnica ci permette dunque di recuperare proprietà fisico-chimiche dell’oggetto

rappresentato. Grazie alle sue caratteristiche di non-invasività, affidabilità e flessibilità,

l’imaging iperspettrale oggi è applicato in un crescente numero di campi, sia nel mondo

accademico che industriale. Questo elaborato in particolare si concentra sull’applicazione

dell’imaging iperspettrale nel campo dell’agricoltura e degli alimenti. L’attenzione che

oggi i consumatori mettono nella qualità e nella scelta del cibo che acquistano, richiede

alle compagnie un controllo costante dei loro prodotti. La tecnologia dell’imaging iper-

spettrale offre loro un mezzo veloce ed affidabile per monitorare le condizioni di tutta

la catena di produzione, permettendogli di soddisfare le aspettative dei consumatori.

L’imaging iperspettrale è stato implementato con varie tecnologie, in particolare in

questo lavoro tutte le analisi sono state svolte con una camera iperspettrale prodotta da

NIREOS: una compagnia spinoff del Politecnico di Milano. La tecnologia della HERA

Iperspettrale è basata sulla spettroscopia a Trasformata di Fourier impiegando un in-

terferometro birifrangente common-path ultra stabile brevettato. Lo scopo principale

di questo elaborato è l’utilizzo della HERA Iperspettrale per studiare le caratteristiche

dello spettro che indicano segni di crescita e senescenza di verdure a foglia coltivate

con agricoltura verticale. Nutrienti fondamentali delle piante, come la clorofilla ed i

fenoli hanno specifiche finestre di assorbimento nella regione del VIS-NIR e informazioni

riguardanti la loro concentrazione possono essere ricavate dall’analisi dello spettro dei

campioni. La tecnologia della HERA Iperspettrale permette inoltre di effettuare misure

dello spettro di fluorescenza delle foglie, dal quale è possibile estrarre dati sulla capacità

fotosintetica della pianta. Due progetti verranno presentati nell’elaborato. Il primo si

concentra sulle caratteristiche spettrali che indicano segni di senescenza nei vegetali a

foglia in tre diverse condizioni di conservazione. Si vedrà che il modo in cui i campioni

sono preservati influenza in modo rilevante il loro processo di degradazione, portando a

diversi segni di invecchiamento osservabili negli spettri. Il secondo studio invece si pro-

pone di analizzare gli effetti dell’applicazione di biostimolanti ai vegetali a foglia sulla

loro crescita ed invecchiamento. L’effetto di questi composti è più difficile da distinguere,



piuttosto lo studio darà ulteriori informazioni sull’evoluzione degli spettri delle piante

durante la loro crescita o degradazione.

Parole Chiave: Imaging Iperspettrale; Spettroscopia a Trasformata di Fourier;

Spettro di assorbimento; Spettro di riflessione; Spettro di florescenza; Agricoltura; Ali-

menti
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Chapter 1

Introduction

Imaging is a powerful tool to remotely analyze samples in a non-destructive and reli-

able way. Among all the technologies available for this purpose, Hyperspectral Imaging

(HSI) is one of the most effective. HSI systems are indeed able to retrieve the full spec-

tra of the light coming from each point of the imaged object. In 2018 NIREOS s.r.l.,

a spinoff company of the Politecnico di Milano, developed the HERA Iperspettrale: a

hyperspectral camera based on Fourier-Transform spectroscopy. The present work aims

at investigating the possibilities of application of the HERA Iperspettrale in food and

agriculture. The employment of innovative technology in this sector is nowadays gaining

importance in the development of quality-checking automated techniques. Furthermore,

recent studies demonstrated the possibilities of retrieving physicochemical properties of

leafy vegetables from the analysis of their spectra [1],[2],[3],[4]. The HERA Iperspettrale

has been employed in this work to monitor the growth and senescence of leafy vegetables

in various conditions and investigate whether wellness or degradation signs are distin-

guishable in the spectra of the samples. The research projects have been carried out as a

collaboration between NIREOS and Agricola Moderna: a vertical farm based in Milan.

The original contribution of this thesis consists in the completion of the aforementioned

project, from the measurement campaigns to the development of algorithms to visualize

and analyze the collected hyperspectral data. In order to understand the functioning of

the HERA Iperspettrale and the managing of the hyperspectral data, some preliminary

measurements on different kind of samples have also been carried out.

1.1 Structure

In this section a brief outline of the subject matters of the next chapters is presented:

• Chapter 2 : the fundamental concepts of hyperspectral imaging will be outlined

1



together with the various methodologies to implement it. In particular, the tech-

nology underneath the HERA Iperspettrale will be deepened.

• Chapter 3 : how to manage the hyperspectral data will be the topic at the center

of this chapter. The most important algorithms employed later in the work will

be presented.

• Chapter 4 : the whole possibilities of application of the HSI technology will be

explained throughout this chapter. Finally the employment of these systems to

the food and agriculture field will be highlighted.

• Chapter 5: the results of the application of the HERA Iperspettrale to study

growth and senescence of leafy vegetables will be shown in this chapter.

• Chapter 6 : will present the main conclusions derived from the measurement ana-

lysis of the previous chapter. Finally some insights on future works and develop-

ments will be examined.

2



Chapter 2

Hyperspectral imaging: an

overview

In the next sections the basic concepts of Hyperspectral Imaging will be introduced.

Moreover, the most common technologies applied to this field are going to be reviewed

and finally the device at the center of the present work will be described: the HERA

Iperspettrale hyperspectral camera. The great advantages and possibilities of the camera

will be clear after the analysis of the theoretical basis of Fourier-Transform spectroscopy

and its technological implementation with the patented common-path birefringent inter-

ferometer TWINS.

2.1 Introduction to Hyperspectral Imaging

Hyperspectral imaging (HSI) is nowadays a powerful tool to be applied in the most var-

ious contexts, ranging from medical and biological imaging to conservation of cultural

heritage and agriculture. The HSI technology aims at measuring the spectrum of the

light coming from each point of the scene under analysis [5].

Common RGB cameras exploit a mechanism similar to the one of the human eye, which

has three kinds of cone cells that sense light, having peaks of sensitivity in the red, green

and blue spectral region. This kind of technology reconstruct images by combining the

amount of red, green and blue for each pixel of the scene of interest, indeed their com-

bination can give rise to any color [6].

More refined approaches are able to retrieve a bigger amount of spectral information

from the image, enabling, other than the color analysis, to acquire data on the chemical

composition of the scene or recover physical quantities of the sample. For example, a first

3



improvement to the RGB technology is multispectral imaging where, for each pixel of the

image, more than three bands (typically around 10 to 15) are acquired. By increasing

the number of bands up to almost a continuum it is possible to reconstruct the spectrum

of the light coming from each pixel with fine spectral resolution, not only in the visible

range but also in the infrared [5]. This approach is at the core of the Hyperspectral

Imaging technology.

Figure 2.1: Display of the acquisition bands for the mentioned imaging techniques.

2.2 The hyperspectral cube

The information that is retrieved from a hyperspectral measure is organized in the

hyperspectral cube: a (x,y,λ) matrix where for each pixel (x,y) of the scene of interest,

the values in the z direction represent the intensities for the k spectral bands (Figure

2.2).

Figure 2.2: Graphical representation of the hyperspectral cube.

These cubes contain a massive amount of information. In order to retrieve quantitative

parameters, relevant for the physical and chemical analysis of the sample, these data

have to be analyzed by means of numerical methods and specific algorithms, that will

4



be presented in Chapter 3. Also, this extensive amount of data enables the application

of machine learning techniques, supervised or unsupervised, to the hyperspectral cube,

which can be used to perform both clustering into different components of the image and

classification processes. These methods could be very useful in detecting finer patterns

and differences in the spectra, not visible with simpler numerical methods.

2.3 HSI technologies

Hyperspectral imaging has been implemented with various technologies, each one with

its advantages and drawbacks. In this section the most common techniques will be briefly

described.

Every HSI setup has to be composed by three main elements:

• Light source: different options are available depending on the application. A

broadband source, such as a halogen lamp, can be used for example in order

to cover a large portion of the spectrum. Otherwise many LEDs, combined if

needed with other halogen lamps, can be employed to cover an even wider range

of wavelengths: from the visible range to the infrared one. On the other hand,

some applications, such as remote sensing, simply exploit ambient light as a source.

• Optics: depending on the kind of acquisition required, different optical elements

are inserted in the acquisition chain. In some technologies, optical filters are

exploited to select subsequent wavelengths and cover the whole spectrum. In

other methods instead, a dispersive element, such as a prism or grating, is used

to separate the different components of the spectrum.

• Detection system: different kind of detectors enable the analysis of different

portions of the spectrum of the light coming from the sample.

Practically the measurement consists in collecting the diffuse reflectance coming from the

illuminated sample through suitable optical elements. By combining different sources,

optical elements and detectors, a variety of HSI setup systems can be developed [6]. The

most important configurations are presented in the next sections.

2.3.1 Point-scan or whisk-broom HSI

This configuration (Figure 2.3) acquires the whole spectrum for a single pixel of the

image. Clearly the sample or the source have to be moved to cover the whole matrix

of the pixels. This system provides very stable high resolution spectra, however the

5



repositioning of the sample is quite time consuming and limits the acquisition time:

that is the main drawback of this approach.

Figure 2.3: Point-scan measurement setup.

2.3.2 Line-scan or push-broom HSI

Figure 2.4: Line-scan measurement setup.
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Acquisition time is improved in this configuration, indeed light coming from a line of

the sample is detected through a slit placed before the detector as shown in Figure 2.4.

Finally, a dispersive element separates the wavelengths, and their relative intensity is

measured at the detector that is placed perpendicularly to the surface of the sample.

Also in this case either the sample or the source have to be moved in order to acquire

a plane of the hyperspectral cube at a time. This technique is widely used in industrial

and commercial applications, however, it implies high losses due to the presence of the

slit which limits the acquisition time.

2.3.3 Focal plane scanning imaging

In this configuration a set of bandpass filters is used to select the wavelengths and acquire

the intensities relative to all the 2D-matrix of pixels. Therefore, this method requires

a change of the filter for the acquisition of each plane of the hyperspectral cube, as

represented in Figure 2.5, while the position of the sample remains fixed. Selection of

wavelength can be implemented by using interference filters, like liquid crystal tunable

filters (LCTFs) or cousto-optic tunable filters (AOTFs). The change of filters in this case

can be implemented electronically. It is easy to understand that the image acquisition

time is quite lengthy for this configuration.

Figure 2.5: Focal plane measurement setup.

2.3.4 Snapshot HSI

Oppositely to the scanning techniques described previously (see Figure 2.6(a)), which

acquire only a portion of the data cube at a time, snapshot configurations enable one

7



to obtain the whole hyperspectral cube with a single measurement (Figure 2.6(b)) [7].

These methods are therefore characterized by a short acquisition time compared to the

previously presented systems.

Figure 2.6: Hyperpsectral cube acquisition for (a) scanning techniques (b) snapshot

techniques.

Snapshot techniques can be classified in two categories, based on their light-collection

capacity: ”full-throughput” and ”throughput-division”. Throughput-division techniques

lose some optical-throughput due to the presence of filters in their setup. These technolo-

gies have a similar functioning to the one of standard RGB cameras but more filters are

required to acquire a bigger number of bands. Figure 2.7(a) shows a Division of APer-

ture (DoAP) system. In DoAPs the detector is composed of an array of mini-cameras

each with its own spectral filter. This devices have the major drawback of acquiring a

number of bands which is limited by the number of filters on the detector. A different

throughput-division technology is represented Figure 2.7(b): the Division of Focal Plane

(DoFP). In this case a filter is placed over each individual pixel [8]. This acquisition

method limits the spatial resolution since pixels are employed to spectrally resolve light

of the imaged object.

Full-throughput snapshot techniques are technologically more complex, however they do

not employ filters in their configuration and guarantee a high efficiency and high optical

throughput. The adoption of these devices has become possible thanks to the recent

technological advances in fabrication of very small optical elements and systems with a

large amount of sensing elements.

Finally, in the next section, Fourier-Transform (FT) spectroscopy will be analyzed in

detail. This technology is indeed at the core of the HERA Iperspettrale hyperspectral

8



Figure 2.7: Throughput-division snapshot techniques: (a) Division of APerture (DoAP)

(b) Division of Focal Plane (DoFP).

camera.
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2.4 The HERA Iperspettrale

Figure 2.8: The HERA Iperspettrale hyperspectral camera.

All the hyperspectral analysis performed in this work were carried out with the HERA

Iperspettrale hyperspectral camera, produced by NIREOS s.r.l. 1: a spinoff company

from Politecnico di Milano. This device employs FT spectroscopy in order to obtain

hyperspectral measures; the basic principles of this technique will be deepened in the

next section. Finally, the functioning of the common-path interferometer at the basis of

the HERA technology will be presented.

2.4.1 Fourier-Transform spectroscopy

Optical spectroscopy can be divided in two broad categories: frequency domain (pre-

sented in the previous sections) and time domain. An example of the time domain

approach is represented by Fourier-Transform spectroscopy. This technique combines a

monochrome imaging sensor with an interferometer to retrieve the continuous spectrum

of a scene from the interferogram. To obtain the interferogram, the light coming from

the sample of interest is split in two collinear delayed replicas and their interference

1More information is available on NIREOS website: https://www.nireos.com/hera/
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pattern is measured as a function of the relative delay [9]. For a fixed time delay τ ,

the interferogram I(τ) is given by the the interference of E(t) and its delayed replica

E(t+ τ):

I(τ) =

∫
|E(t) + E(t+ τ)|2dt (2.1)

I(τ) = 2

∫
|E(t)|2dt+

∫
E(t)E∗(t+ τ)dt+ c.c. (2.2)

Only the second oscillating AC term in Equation 2.2 is relevant for the spectrum of the

electric field while the first component is a constant DC term that can be neglected.

Finally the spectrum can be obtained performing the Fourier-Transform of the interfer-

ogram I(τ), as stated by the Wiener-Khinchin theorem [10]:

F(I(τ)) = Ĩ(ω) = Ẽ∗(ω)Ẽ(ω) + c.c = 2|Ẽ(ω)|2= 2Ĩ(ω) (2.3)

The advantages of obtaining the continuous spectrum of light from the FT of the inter-

ferogram are numerous and already well-known [11]:

• Fellgett’s advantage: all the wavelengths in this configuration are measured simul-

taneously, leading to a higher number of photons at the detector and, consequently,

a higher signal-to-noise ratio in the system where the main source of noise is the

detector.

• Jaquinot’s advantage: in FT systems, the absence of slits, which, as stated in the

previous paragraph, cause losses, leads to a higher throughput.

• Connes’ advantage: high wavelengths accuracy, indeed the device is calibrated

through a laser beam.

• Variable spectral resolution: varying the maximum delay of the interferometer, it

is possible to adjust at will the spectral resolution. This is done without affecting

the throughput of the device.

• Variable spatial resolution: can be adjusted without affecting spectral resolution.

FT spectroscopy can be implemented either in a static or scanning approach [5]. In

the first case, the interferometer has no moving parts and the sample is moved at each

acquisition to obtain the interferogram along all the dimensions of the image. This

method is most suitable for applications in industrial fields where the object is moving

along a production line on a conveyor belt or in airborne remote sensing. Instead, in the

case of stationary objects, the scanning approach is more convenient. In this second case

there is no need to move the object relatively to the camera because the interferometer
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is equipped with a moving element that is scanned to vary the delay of the replicas. The

basic scheme of an interferometer adopted in the temporal approach is represented by

the Michelson interferometer [9], displayed in Figure 2.9.

Figure 2.9: Scheme of the Michelson interferometer.

The beam coming from the sample is split in two replicas by a beam splitter which reflects

half of the light towards a fixed high reflectance mirror; similarly, the transmitted light

is directed to another mirror which can be moved to obtain the desired delay. The two

replicas encounter again at the beam splitter after having covered a different optical

path and their interference pattern is measured at the detector. However, HSI systems

based on the Michelson or, similarly, Mach-Zehnder interferometer, where the beams

take two different paths, are highly sensitive to vibrations and it is difficult to achieve

the interferometric stability required to obtain high quality spectra. Indeed two essential

conditions must be met by a FT-spectrometer:

• the relative delay between the two replicas must be controlled within a fraction of

the optical cycle.

• for a given pixel, the bundle of rays giving the interferogram must have a high

degree of coherence.

At the basis of the HERA Iperspettrale lays a Common-Path birefringent Interferometer

[12]: the Translating-Wedge-Based Identical Pulses eNcoding System (TWINS) which is
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also able to overcome the limitation due to vibrations. The TWINS technology will be

presented in the next paragraph.

2.4.2 TWINS

The Translating-Wedge-Based Identical Pulses eNcoding System (TWINS) is a common-

path birefringent interferometer developed by a collaboration of the Politecnico di Milano

and the Centro Nazionale di Ricerca (CNR) [13]. Its scheme is represented in Figure

2.10. It is composed of two polarizers P1 and P2 and two birefringent blocks A and B

made of α-barium borate (α−BBO).

Figure 2.10: Scheme of the TWINS interferometer.

• P1 polarizes the incoming light at 45◦ with respect to the optical axes of A and

B.

• Block A is shaped as two wedges with the same apex angle where one of them is

mounted on a motorized translation stage in order to tune the relative thickness

of this first block with respect to B. It enables the creation of two replicas of the

incoming light which travel with perpendicular polarization along the two axis of

the material with a delay τ that can be tuned by the movement of the wedge.

• Block B is a plate with fixed thickness that introduces therefore a fixed phase

delay with opposite sign with respect to the one introduced by A since the two

blocks have perpendicular optical axis (see green arrows in Figure 2.10).
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• P2 projects again the two replicas on the same polarization, at 45◦ with respect to

the blocks’ axis and guarantees the interference of the two replicas at the detector.

It is clear that the technology underneath this device is able to meet both the demands

presented in the previous section to obtain high quality spectra: control of the delay of

the replicas and high coherence of the rays. Indeed, since the replicas travel along the

same path, they are subjected in the same way to vibrations and the overall measure-

ment will not be affected. Furthermore, the travelling replicas have small geometrical

separation, leading to a high coherence of the bundle of rays and a strong interference[14].

The final scheme for the HERA Iperspettrale is presented in Figure 2.11 [15].

Figure 2.11: Scheme of the HERA Iperspettrale.

In the hyperspectral camera the TWINS interferometer is combined with a lens with focal

length f = 25 mm and maximum aperture f/1.85 and finally a 1280×1024 monochrome

silicon CMOS sensor. The overall angular field of view of the system is of 16◦. The

hyperspectral cube is obtained by acquiring multiple images at different position of the

interferometer, obtaining for each pixel of the scene a broadband spectrum from the UV

to the Near Infrared (NIR) region (400 nm - 1000 nm) [5].

2.4.3 Fluorescence spectroscopy

Thanks to its high sensitivity and high light throughput, combined to the fact that mea-

surements are performed in a staring configuration, the HERA Iperspettrale is particu-

larly suitable for measurements performed in low light conditions and can also provide
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fluorescence measurements, unlike other hyperspectral cameras. In fluorescence mea-

surements, as it will be presented later in the work, the sample is excited through a

LED lamp and photons emitted by fluorescent substances in the specimen are recorded

at the detector. In detection, to cut off the excitation light, a long-pass filter is applied.

With this setup it is possible to recover the fluorescence spectra of every pixel of the

image, starting from a hyperspectral cube that has the same characteristics of the one

provided by standard measurements. However, fluorescence spectroscopy is particularly

useful and can provide very interesting information in applications related to biological

sciences. Fluorescence indeed is employed in cell identification, detection of nutrients

and chemical components in plants (as we will deepen later) and many medical tests are

based on this phenomenon [16].
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Chapter 3

Hyperspectral data analysis

As previously noted, the data emerging from a hyperspectral measure provide an ex-

tensive amount of information which have to be analyzed and manipulated through

numerical methods in order to retrieve relevant and understandable quantities. In the

current chapter the most important algorithms which have been applied to the hyper-

spectral measurements will be briefly explained. All the corresponding code has been

implemented using the MATLAB programming language and some simple lines of code

are reported to better understand some concepts. More detailed algorithms are reported

in the Appendix. Measurements performed with the HERA Iperspettrale provide a hy-

perspectral cube of dimensions (1024 × 1280 × 120). Indeed for each pixel (x, y) the

camera measures the intensities related to 120 bands.

3.1 Spectra analysis: absolute and reflectance

spectrum

Recovering the spectrum of a pixel or a portion of the hyperspectral image requires some

kind of manipulation of the hyperspectral cube. To retrieve the spectrum of a single

pixel, the corresponding portion of the 3-D data cube should be selected, the procedure

is performed in MATLAB simply as:

spectrum = hyperspectralCube(x, y, :) (3.1)

selecting all the bands corresponding to the desired pixel (x,y) in the image. In many

cases, in order to infer more significant information on the sample, the spectra that will

be taken into consideration in the present work will be referred to an area rather than

a single pixel of the image. These spectra are calculated by manually selecting an area

of the image and mediating over the single-pixel spectra.
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Also, it is important to consider that the intensity of the light coming from a real sam-

ple is subjected to its relative position and orientation with respect to the camera and

the light source. The object might present portions with different orientation that are

illuminated in a non-homogeneous way. To obtain relevant and meaningful quantities

and spectra that are comparable with each other, the measurements have to be nor-

malized. Ideally, this should be done by taking the absolute data cube of the specimen

and dividing it by the hyperspectral cube relative to the light coming from a lambertian

surface which has the same shape and orientation of the sample. A lambertian surface

is an ideal diffusive surface which reflects the incoming light in the same way in all

directions regardless of the observation angle. It is therefore a surface with isotropic

luminance. In the present work we will mainly refer to normalized quantities which are

called reflectance spectra. Later on also the experimental method to measure a lamber-

tian and a reflectance spectrum will be presented. Figure 3.1 shows the absolute and

reflectance spectrum relative to the selected area for a sample composed of different

species of lettuce.

Figure 3.1: Absolute and reflectance spectrum for the area highlighted in blue. The

spectrum has been calculated mediating over the spectra of all the pixels in the area.

The shaded area represents the standard deviation.
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Clearly a low intensity in the reflectance spectrum indicates that the corresponding

wavelength is absorbed by the sample, on the contrary a high reflectance intensity shows

that the wavelength is reflected.

All the previous considerations are valid also when we are referring to a fluorescence

spectra, which should be normalized as well to take orientation and illumination into

account and compare spectra of different samples.

3.2 Principal Component Analysis (PCA)

Figure 3.2: Scheme of the PCA matrix factorization.

When such a great number of information is provided like in hyperspectral imaging, it

is crucial to understand which one are relevant and distinguish them from the negligible

ones. The main goal of Principal Component Analysis is dimensionality reduction, a

feature that can be particularly useful in the context of hyperspectral imaging. The

hyperspectral cube is a matrix of dimensions [Nx×Ny×Nλ] which can be rearranged as a

matrix X = [m×k] where m = [Nx×Ny] represents the number of pixels. The rows of the

2D matrixX therefore, represent the spectrum of the corresponding pixel. Once obtained

the reshaped matrix, the central idea of PCA is to obtain dimensionality reduction for

the interrelated variables, retaining as much as possible the variation which is present

in the dataset. This is obtained by expressing our data with a new set of uncorrelated

variables, ordered in such a way that the first few retain most of the variation present

in the original ones [17]. Following this approach the matrix X can be factorized as [6]:

X = TP T (3.2)
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where T is a [m× p] matrix with mutually orthogonal columns. In T , for each pixel m

is reported the intensity for each p component. Instead, the P matrix has dimensions

[k × p] and orthonormal columns. P therefore represents the weights of the original

components with respect to the new principal ones. The graphical representation of the

previous matrix factorization in provided in Figure 3.2. In this method, the spectrum

of any pixel can therefore be expressed as a linear combination of the spectral basis

vectors in P. When we consider p = k, the PCA is an exact representation of the original

matrix X. On the other hand, if the matrix is truncated to p < k, assuming to keep

only the first components retaining the maximum variance, a dimensionality reduction

is obtained. Moreover, we can consider to perform this reduction of variables without

loss of information, since the remaining k − p components can be discarded as noise.

Later in the work, it will be clear why PCA is a useful tool in hyperspectral imaging

analysis. For example, it might indicate important features which enable classification

in different components of the same image or distinction of classes in different images.

What is important to note however, is that the physical meaning of what the principal

components represent is not trivial. The PCs are in general a mathematical tool to

maximize variance between data. Interestingly, a p-component PCA of a matrix is the

best possible rank p approximation of the data set [6].

To better understand how PCA can be performed on a hyperspectral image and how

information can be extracted from this calculations, the algorithm has been performed

on the lettuces’ image, already analyzed in the previous section. As explained earlier,

Figure 3.3: Weights for the first 5 Principal Components.
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Figure 3.4: (a) Variance of the PCs in a linear scale. (b) Variance of the PCs in a

logaritmic scale.

the algorithm constitutes the principal components as linear combinations of the original

bands with proper weights, in order to maximize the variance. This concept is made

clear by looking at Figures 3.3 and 3.4. In Figure 3.3, the weights of the considered

wavelengths in building up the first 5 principal components is represented. As pointed

out previously, the meaning of each component is not clearly understandable and has

no physical correspondence. Moreover, from Figure 3.4, it is noticeable that the first 3

PCs retain about the 99% of the variance of the sample, this means that they retain

all the relevant information for our analysis, reducing the number of channels to be

considered from 120 to only 3. As a final proof of the effectiveness of the algorithm

in dimensionality reduction, the original image has been reconstructed both in the red,

green and blue channel and in the first 3 PCs. The following images (see Figure 3.5)

are greyscale representation of the original one: meaning thay they are a 2D section of

the cube along a particular spectral component. The darkest parts of the image do not

contain the relative component, on the other hand, the lightest areas have a very high

value of that component in their spectrum. Clearly the RGB channels are not enough

to exhaustively describe the image, many details are not understandable. Differently,

the PC components provide a higher amount of detail and enable to distinguish more

features and differences in the image.

From this paragraph, the strength and possibilities of the Principal Component Analysis

are clear. It enables both the reduction the dimensionality of the problem, simplifying

it, and the detection of the main features of the data set. However, it has a difficult

physical interpretation.
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Figure 3.5: (a)-(b)-(c) Red, Green, Blue channel of the image. (d)-(e)-(f) First 3 PCs of

the lettuce’s image.

3.3 Spectral Angle Mapper (SAM)

The Spectral Angle Mapper is a supervised algorithm that allows to perform clustering

in a hyperspectral image. Its basic assumption is that each pixel can be assigned to a

single class and there is no overlap between different classes [18]. To assign a pixel to a

particular cluster the Spectral Angle Mapper algorithm aim at measuring the similarity

between the spectra. This is done by representing each spectrum as a vector in a k-

dimensional space, where k indicates the number of bands. The algorithm has to be fed

a reference spectra in order to calculate the angle in the k-space between each pixel’s

spectrum and the reference one. The spectral angle θ is computed mathematically by

performing the scalar product between the spectra and dividing it by the product of

their norm, finally the arccos of this quantity is computed [18].

θ = arccos (

∑nb
i=1 siri√∑nb

i=1 s
2
i

√∑nb
i=1 r

2
i

) (3.3)

where si are the components of the pixel’s spectrum while ri are the ones of the refer-

ence spectrum. To better understand the procedure underneath the calculations of the

spectral angle, a graphical representation of the vector’s in the k-space, together with

the spectral angle θ between them is reported in Figure 3.6.
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Figure 3.6: Vector representation of two spectra and spectral angle between them.

After calculating the spectral angle relative to the reference spectrum for each pixel,

clustering can be performed by setting a threshold for the value of θ and assigning to

the same class the pixel whose spectral angle is below the assigned threshold. Indeed,

the lower θ, the more the two spectra under consideration will be similar up to the limit

where θ = 0: the vectors are parallel in the k-space and the spectra are exactly equal.

Being a supervised algorithm, to perform clustering the SAM has to receive as an input

the reference spectra, which can be chosen from data provided from literature, previous

measurements or directly by selecting a point inside the hyperspectral image to be the

Figure 3.7: (a) RGB reconstruction of the samples and reference pixel. (b) Clustering

for a spectral angle threshold θ < 0.2.

22



reference one. An application of this procedure to the lettuces’ samples shown before is

presented in Figure 3.7. As a reference, the spectrum of a point inside a leaf belonging

to the radicchio species is taken. The algorithm (that is available in the Appendix)

performs the calculations of the spectral angles, providing a 2D matrix containing the

value of θ for each pixel of the original image. To select the threshold, the data can be

plotted in the form of a histogram to better visualize the distribution of the values of the

spectral angle in the picture and have a sort of representation of the different clusters

(Figure 3.8).

Figure 3.8: Histogram of the spectral angles calculated for the lettuce samples’ image.

In the case under consideration, by selecting a threshold θ = 0.2 it is possible to distin-

guish the leaves of the radicchio species from the other ones as shown in Figure 3.7. By

enlarging the value of the spectral angle threshold, more and more pixels will be included

in the same cluster of the reference pixel, also the ones referred to other lettuce species.

The algorithm can also be exploited, therefore, to distinguish the sample of interest from

the background and exclude it from the statistical analysis than can be performed.

The algorithms presented in this chapter have been widely used in the analysis that

follow in the work, in particular they have been very useful in detecting the important

features to be analyzed and distinguish them from the negligible ones.
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Chapter 4

Hyperspectral imaging

applications

The global market of hyperspectral imaging system is expected to reach USD 30.0 billion

by 2025, at a CAGR (Compound annual growth rate) of 19.3%. This prediction is

supported by the growing investments in the field and its employment in a continuously

extending number of fields. The numerous applications of HSI technology proof the great

flexibility of the technique. In the following sections the most relevant applications of

HSI are going to be briefly reviewed with a special focus on food and agriculture: the

industry at the center of this work. In particular, we will deal with the analysis of leafy

vegetables, which are going to be presented in the last section, together with their most

important features that are going to be relevant for the rest of the study.

4.1 Relevant applications

4.1.1 Cultural heritage

Imaging techniques have been employed in the cultural heritage field since the 1990s,

however the most conventional ones are not able to provide all the information needed by

restorers, curators or archaeologists. Usually these methods are employed as preliminary

analysis which are followed by invasive techniques requiring samples or micro-samples

from the investigated objects. The development of hyperspectral imaging made possible

the realization of very detailed non-invasive analysis and opened the path to various

applicative perspective. A first example is the mapping and characterization of pig-

ments of an artwork. In order to employ adequate restoration techniques and avoid

damaging the artifact it is crucial to understand the materials and techniques used by

the artist or previous restorers. Also, hyperspectral cameras can be employed to moni-
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tor the effectiveness of restoration and cleaning processes. When dealing with artworks

such as paintings, frescoes or more in general quasi-two dimensional artifacts, imaging

is obviously the preferred technique. Well-established traditional methodologies such as

ultraviolet-induced fluorescence (UVF), however, provide only partial information, on

the contrary HSI techniques can give detailed information on the pictorial materials and

their layering. Very interestingly, HSI technologies with suitable sensors, covering the

visible (VIS), NIR and SWIR (up to 2500 nm) spectral region, are able to recover hidden

layers in the paintings, highlightimg also the underdrawings and pentimenti [19]. It is

worth to notice that the HERA Iperspettrale has been applied numerous times in the

analysis of artworks to investigate the dating of paintings, their attribution and authen-

ticity. A 2020 study conducted by Pelosi et al. [20] for example, employed the HERA

camera to investigate the discussed attribution of the ”Viterbo Crucifixion” to Michelan-

gelo Buonarroti. The use of the hyperspectral technique enabled the detection in the

panel painting of precious pigments, such as ultramarine blue and vermillion, typically

employed in the 16th century. This was done by comparing the spectra of colored areas

inside the painting with reference spectra available in a public database. Figure 4.1(b)

shows a similarity map, obtained with the Spectral Angle Mapper algorithm, applied to

the figure of St. John. The red colored areas refer to St. John’s mantle, whose spectra

shows a strong similarity with vermillion pigment. The green channel considers as a

reference spectrum instead one in the fleshy pink tone of the right hand.

Figure 4.1: (a) RGB reconstruction of St. John’s figure. (b) Similarity map for St.

John. The red channel is referred to an area in the figure’s mantle. Green channel refers

to the pink tone in the right hand of St. John.
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The figure of St. John is particularly interesting in this painting since its face shows dif-

ferent features under different illuminations. This peculiarity was already demonstrated

in other publications [21] and seems an intentional choice of the author since it is only

present in this figure. The hyperspectral reconstruction of the image under visible (Fig-

ure 4.2(a)) and ultraviolet (UV) illumination (Figure 4.2(a)) highlights the change in the

face of St. John,. It appears more feminine with round cheeks under visible illumination

and shows a more masculine and thinner aspect when illuminated with UV radiation.

Figure 4.2: (a) RGB reconstruction of St. John’s figure under visible illumination.

(b)UV illumination reconstruction of St. John’s figure.

This example shows how hyperspectral imaging can provide very specific and detailed

analysis of artworks in a non-invasive way.

4.1.2 Environmental monitoring

The technological advances in producing small optical elements and building devices

with many sensing elements made possible the creation of portable and field-usable

HSI technologies. These devices can be exploited in environmental monitoring, either

placed on the ground or within UAV (unmanned aerial vehicle) systems. Aerial systems

can be employed for example to monitor areas of vegetation, detecting stresses such as

drought or pest outbreak. As we will see later, control of plant wellness can be carried

out through the examination of particular pigments such as chlorophylls. Applications

of UAV hyperspectral systems also include the control of protected environments, for

which the characteristic of non-invasivity is crucial, such as glacial regions. Ground-
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based HSI devices have instead been used for water quality and pollution monitoring or

for detecting micro-plastics contamination in water and soils [22].

4.1.3 Medicine

Figure 4.3: (a) Oxygen saturation map and (b) zero-order color image reconstruction of

the retina of a 29-year-old healthy male.(c) Oxygen saturation map and (d) zero-order

color image reconstruction of the retina of a 58-year-old healthy male.

Medical Hyperspectral Imaging (MHSI) is based on the fact that light propagating in

biological tissues undergoes multiple scattering events due to the heterogeneous nature

of the biological matrix. The absorption, fluorescence and reflectance characteristic of

the tissue can change due to the development of diseases, therefore HSI can be employed

as a diagnostic technique which can provide complementary information to the one re-

trieved from other existing methods. With absorption spectra for example, it is possible

to recover the concentration and oxygen saturation of hemoglobin, useful in cancer de-

tection. The potentiality of hyperspectral imaging for disease screening, detection and

diagnosis is given by the fact that biomarkers related to particular diseases have specific

absorption windows which can be monitored with HSI. As an example Johnson et al.[23]
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developed a snapshot HSI system in order to study oxygen saturation inside the human

retina. The result of functional mapping of the eye of two healthy subjects is shown in

figure 4.3. From these pictures it is possible to appreciate the spatial resolution provided

by HSI techniques. Veins, arteries and capillaries are clearly distinguishable from the

background. Through this system it is possible to monitor retinal ischemia and arterial

or vascular occlusions which are the main cause of untreatable blindness.

Also fluorescence imaging is very useful in this field since cells with different disease states

change their rate of metabolisms, giving rise to different fluorescence emission spectra.

Finally, providing real-time detailed images, HSI can help the surgeon in image-guided

surgery, enabling her/him to better identify ill or damaged tissue [24].

4.2 Food and agriculture

Modern lifestyle puts a lot of attention into the quality and production of the food

and goods that are purchased. This requires a constant control from the producer, in

order to satisfy the customer’s need which are more and more demanding. A primary

indicator of a product’s wellness is its appearance: size, color, shape, firmness. In order

to check on this features many producers still rely on visual inspection performed by an

operator. The evaluation in this case is however subjective and limited by human error.

The introduction of a reliable, reproducible and fast procedure for quality-checking is

crucial to fulfill today’s standards. Hyperspectral imaging proposes itself as a perfect

tool for the aforementioned needs, guaranteeing an even better source of information,

providing a complete and broad spectrum relative to the sample in analysis. An RGB

camera would be enough to simply analyze the visual features of the samples, however,

the attention of the customers nowadays is not only related to the appearance of the

product but also to its nutritional values, nutrients and chemical composition. These

features are usually controlled by means of physical or chemical analysis, which are in

general time-consuming and destructive, moreover, they refer only to a portion of the

sample. Through hyperspectral imaging it would be possible to control, all within the

same measurement, both the visual appearance and internal composition of the whole

product. That is because particular nutrients have specific absorption windows and the

light scattered on the sample provides information on its density and physical structure

[25]. Another advantage of the application of this technology in the food industry consists

in the fact that the device can be placed in any point of the production chain, enabling the

control of every stage of the process and the screening of a great number of specimens.

There is a great variety of examples of application of hyperspectral imaging for food

monitoring. It has been applied for example for the estimation of the maturity of red

and white grapes, which is linked to the concentrations of phenolic compounds in the

fruit’s skin [26]. The analysis has been carried out by registering the NIR spectrum of the
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samples between 900 nm and 1700 nm and applying PCA algorithms to distinguish the

spectral features characterizing the grapes with the best maturity stage. Hyperspectral

imaging is effective also in detecting the presence of defects before they become visible

by the human eye, indeed they might give rise to alterations in the density or texture

of the surface of the sample. For fruits and vegetables, defects detection is particularly

important, not only from the aesthetic point of view but also from the safety one.

A lesion on the skin indeed enhances the probability of pathogen contamination [27].

The fast removal of a damaged sample avoids the contamination of the other ones and

prevents the producer from throwing away a bigger amount of products. Examples of

this application are studies on the detection of bruises [28]-[29] or chilling injuries on

apples [30]. As a proof of the flexibility of this technique, studies with many kind of

food can be found in literature, from an analysis for intramuscular fat distribution in

beef [31], enabling to determine the quality of the meat, to a non-destructive test able

to determine the internal quality of eggs through hyperspectral imaging [32].

4.2.1 Leafy vegetables

In the following sections, the application of hyperspectral imaging to leafy vegetables will

be deepened. This kind of food is particularly delicate and highly perishable, the non-

invasivity of this technique is therefore especially important. To confirm the importance

of this kind of analysis it is interesting to note the growing number of papers that are

being published related to hyperspectral imaging applied to species such as spinach [4],

lettuce [3]-[2] and leafy vegetables in general [1]. The strength of this technique lays in

the fact that it is possible to detect senescence or illness signs in the sample spectra in

advance with respect to visual monitoring of the plant. By employing this technology

the producer might therefore be able to recover the health status of the vegetable or

change the growing conditions to make the plants stronger. Information about the

chemical composition and nutrients concentration can be retrieved from the spectrum,

such as the chlorophylls, anthocyanin and phenol concentration. These nutrients are

fundamental in the growing of the plant and give numerous information on its health

condition. Chlorophylls play an essential role in the photosynthesis of the plant, other

than being responsible for leaf greenness. These pigments indeed convert the energy

coming from solar light in chemical energy to be stored in the plant and the concentration

of chlorophylls give an estimation of the photosynthetic potential and nutrient status of

the vegetable. Anthocyanin instead, are pigments responsible for the red coloration of

plants, however they are also able to reduce the amount of solar radiation reaching the

photosynthetic apparatus. For this reason, their production is also linked to stress and

illness. From literature it is possible to see that these meaningful nutrients have specific

absorption peaks in the VIS-NIR spectral region: chlorophylls absorb at around 670-680
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nm while anthocyanin have an absorption peak at around 540-550 nm [33]. We are thus

able to link the intensity of these absorptions with the concentration of the corresponding

nutrient. For doing so, some indices have been developed throughout various studies and

are nowadays a common ground for the determination of important parameters that give

information on the wellness of the plant [34],[35]. The most important Vegetation Indices

(VI) [36] are listed hereafter where ρwavelength represents the value of the reflectance

spectrum at the specific wavelength:

• NDVI (Normalized Difference VI): indicates the general wellness and firmness of

the plant.

NDV I =
ρ800nm − ρ680nm
ρ800nm − ρ680nm

(4.1)

• mCARI (modified Chlorophyll Absorption Ratio Index): is related to the chloro-

phylls concentration in the plant.

mCARI =
1.5 ∗ [2.5 ∗ (ρ800nm − ρ670nm)− 1.3 ∗ (ρ800nm − ρ550nm)]√

(2 ∗ ρ800nm + 1)2 − (6 ∗ ρ800nm − 5 ∗ ρ670)− 0.5
(4.2)

• mARI (modified Anthocyanin Reflectance Index): indicates the anthocyanin con-

centration.

mARI = (ρ−1
Green − ρ

−1
Red) ∗ ρNIR (4.3)

• REP (Red Edge Position): indicates the position of the wavelength at which the

chlorophyll becomes transparent and does not absorb light anymore. Usually it is

located at around 700 nm and moves to higher wavelengths for degraded plants.

ρre =
(ρ670nm + ρ780nm)

2
(4.4)

REP = 700 + 40 ∗ ρre − ρ700nm
ρ740nm − ρ700nm

(4.5)

• CUR(Curvature Index):

CUR =
ρ675nm ∗ ρ691nm

ρ2683
(4.6)

All of these indices have been formulated by connecting some physical or chemical prop-

erties of the plant to some features of the spectrum, more commonly to some intensity

values in the reflectance spectrum of the leaf. Even if the relationship of the index with

the corresponding meaningful quantity is not always linear, it represents a good indi-

cator of the relative characteristic. In the following analysis the HERA camera will be

employed to analyze the health status of different species of leafy vegetables, both before

and after harvesting. The spectral range of the HERA Iperspettrale (400 - 1000 nm) in
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the VIS-NIR is useful in determining both the visual aspect of the leaves and their nu-

trients’ concentration. Moreover, we’re able to perform also hyperspectral fluorescence

measurement which are particularly relevant in plant analysis. Chlorophylls are indeed

fluorescent molecules and from these measurements we obtain the whole fluorescence

spectrum that is able to provide more information than a single value of chlorophylls

concentration obtained with more conventional techniques. As will be clear later, the

strength of performing a measure providing the full spectrum of the image is that, having

such a big amount of information which are related to different leaves at various health

condition, new indices similar to the one considered before can be developed, depending

on the specific case under consideration.

From literature, the general behavior of a healthy plant spectrum compared to a de-

graded one is know and is represented in Figure 4.4 taken from the study of Simko et al.

[3] on the decay of fresh-cut lettuce. The general trend for the spectrum of a senescent

leaf shows a decrease of reflectance in the NIR region (around 700 nm) and, for green

leaves, the vanishing of the peak in the green spectral region. We will see later, that

actually the evolution of the spectra due to senescence greatly depends on the species

taken into consideration and on their conservation technique.

Figure 4.4: In green the spectrum relative to a healthy leaf. In red is represented the

spectrum of a degraded one.
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Chapter 5

Results of HSI analysis in vertical

farming

In this chapter the main results of a collaboration project between NIREOS and Agricola

Moderna, a vertical farm based in Milan, are going to be presented. Different species

of leafy vegetables produced by Agricola Moderna have been analyzed with the HERA

Iperspettrale. The main goal of the study consisted in the detection of spectral fea-

tures characterizing the growth and senescence of the plants. The measurements were

performed with different growing and conservation techniques. Both reflectance and flu-

orescence measurements have been taken into account to evaluate the health status of

the specimens. These indices of well-being or stress of the leaves could be applied in the

future to monitor the life-cycle of the plants in Agricola Moderna’s facilities.

5.1 Leafy vegetables’ shelf life

A crucial parameter for food products is the determination of their shelf life: the maxi-

mum amount of time between production and consumption which guarantees its safety

without risks for the consumer. In this experiment, the senescence of three different

species of leafy vegetables has been monitored in different conservation techniques to

detect early signs of degradation in their spectra. The result of the data analysis is

presented in this section. Leaves belonging to the species under analysis are shown in

Figure 5.1: the green leaf on the upper left is a Celinet lettuce, while the one on the

right is a Wasabina leaf, the red leaf instead belongs to the Komatsuna species.
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Figure 5.1: Leaves of Celinet lettuce, Wasabina (on top) and Komatsuna variety (below).

In the following sections, hyperspectral data for three different conservation techniques

of the aforementioned leaves will be presented. The harvesting of all the samples in this

study took place the day before the beginning of the measurements: we were thus able

to follow the whole senescence process of the plants. The experimental setup presented

in the next section is common to all the measurements.

5.1.1 Experimental setup

Figure 5.2(a) shows the experimental setup for reflectance measurements. The HERA

camera is placed on a tripod and set above the sample, at about 130 cm distance.

The scene is illuminated with two 20-W halogen lamps, placed above the specimens

to guarantee the most homogeneous illumination possible. The lamps are placed at

a distance of around 1 m from the leaves in order to avoid heating and subsequent

damaging of the sample. The HERA camera is connected to a computer via USB and

measurements parameters can be set with an acquisition software. These parameters

include the integration time, the number of averages (meaning the number of images

taken for every step of the interferometer, which are then mediated to obtain the final

data) and the spectral resolution. Finally, on top of the HERA are placed two sliders

which enable the manual tuning of the focus and the iris aperture of the camera.
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Figure 5.2: Experimental setup for (a) reflectance measurements (b) fluorescence mea-

surements.

To obtain reflectance data, two measurements have to be carried out for each sample:

one on the specimen, to retriece the absolute data cube, and one of a lambertian surface

for the normalization. In practice the measurement of a lambertian is done on a white

paper which can be assimilated to an ideal diffusing surface. It is important to note that

to obtain a good normalization the sheet should be placed on the same focal plane of

the specimen.

Experimental setup for fluorescence measurements is shown in Figure 5.2(b). The posi-

tion of the camera remains unchanged while illumination changes. Samples are excited

via a 20-W blue LED at 400 nm placed at about 20 cm from them. A long pass filter is

placed in front of the camera in order to cut off excitation light. The fluorescence signal

is very weak compared to the reflectance one, therefore measurements in this second

case have to be performed in complete darkness apart from the LED source. Integration

times are longer to enable the camera overture to capture a higher amount of photons.

In the following sections, the evolution of the spectra due to senescence for the three

species in Figure 5.1 will be analyzed. The recognition of trends and spectral features
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relatable to physical changes in the sample will be the focus of the analysis. As we will

see, the type of senescence process will vary depending on the post-harvest conservation

technique of the samples. During the day which occurred between the harvesting and

the beginning of the measurements all the samples were conserved at low temperature in

a refrigerator. Three different preservation conditions have then been analyzed, varying

in particular the temperature of the conservation and the surroundings of the sampled

leaves:

• Conservation method 1: room temperature, separated leaves. The mea-

sured leaves were placed separately on a white paper and kept at room temperature

in the laboratory.

• Conservation method 2: low temperature, grouped leaves. The leaves

were kept together in a plastic box and stored in a refrigerator at +4◦C.

• Conservation method 3: low temperature, separated leaves. Samples were

positioned separately on a white paper and stored in the refrigerator at +4◦C
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5.1.2 Conservation method 1

Samples for these measurements were selected among the harvest from visual inspection,

picking leaves that seemed healthy and with a lively hue. A single leaf was selected for

each species under investigation and stored at room temperature. Hyperspectral images

of the samples were taken always in the same measuring conditions, until the vegetables

were visibly degraded and no more edible. Obviously this preservation method is not

adequate for perishable samples like leafy vegetables, therefore we expect them to have

a very fast degradation process and to show quite early signs of illness or senescence.

Moreover, since they’re kept isolated one from each other, we don’t expect a single leaf’s

degradation to be influenced by the presence of the others. In Figure 5.3, the reflectance

spectra referred to the three species at 0, 4, 24 hours after harvesting are displayed.

Figure 5.3: Reflectance spectra for the three species 0, 4 and 24 hours after harvesting

are represented respectively in blue, green and red. Shaded areas represent the standard

deviation of the spectrum.

Each spectrum has been calculated by performing the mean over the pixels of a manually

selected area inside the corresponding leaf. The portion of the leaf was chosen in order

to adequately represent the overall health condition of the sample. The first analysis
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performed on the obtained data consisted in the visual inspection of the spectra to detect

either common behaviours or evident differences.In the visible range it is possible to note

that the green peak of the Celinet almost vanishes in 24 hours, clearly representing a

senescence sign for this species. On the other hand the spectral behaviour of the other

species in the visible range seems unchanged. These trends suggest that the Celinet leaf

should present an altered hue due to degradation while the color of the others should

remain almost unchanged.

Figure 5.4: RGB reconstruction of the samples at 0, 4 and 24 hours in the senescence

process.

These predictions are actually confirmed by visual inspection of the samples, as can be

seen in Figure 5.4. The Celinet leaf on the top left becomes darker and darker with

time, meaning that the green wavelengths are more strongly absorbed. The Wasabina

and Komatsuna variety, on the other hand, retain almost the same color throughout

the senescence process. Going back to the spectral signature, a common trend for all

the species seems to be their behaviour in the NIR region. To better understand the

Figure 5.5: Representation of the NIR region for the Celinet species.
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following observations, an enlargement of the NIR spectral signature for the Celinet leaf

is shown in Figure 5.5. When looking at reflectance spectra, it is important to remember

that more than their relative intensity, it is their shape that matters. The intensity is

indeed related to the strength of the illumination. In the present case for example, it

is possible to notice that all the blue spectra remain flat in the NIR after 825 nm (see

Figure 5.5). Looking at the behaviour 4 hours after harvesting instead, we can note

an absorption signature in the infrared region with respect to the plateau in the 825

- 875 nm range. On the contrary, the red spectra all register an enhancement in the

reflectance intensity after the flat region around 825 nm.

As introduced in Chapter 4, the rule of thumb to connect spectral behaviours with

observables is to create a reproducible index. In order to quantify and try to confirm

the predictions obtained with visual inspection, an index has been developed to describe

the strength of the absorption in the region around 970 nm with respect to the plateau

around 825 - 875 nm:

NIRindex =
ρ825−875nm

ρ960−1000nm
(5.1)

Interestingly, it is known from literature that water has an absorption window around

970 nm. Figure 5.6 shows indeed the absorption coefficient of water (from Palmer and

Williams, 1974 [37]), where a peak at 970 nm is clearly distinguishable. The other

absorption peaks of water reside at longer wavelengths, we will see in Chapter 6 the

possibilities of analysis in the Infrared spectral region.

Figure 5.6: Water absorption coefficient from Palmer and Williams, 1974.
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Figure 5.7: NIR index calculations for the Celinet leaf obtained from the previously

collected hyperspectral measures.

We can therefore link the newly introduced NIR index with the presence or absence of

water in the plant, indicating its hydration condition. As shown in Figure 5.4, through-

out their degradation process the leaves lost their firmness and after 4 hour they appeared

wet. On the contrary, after 24 hours the samples were completely dehydrated and brit-

tle. This process is correctly represented by means of the NIR index which is reported

in Figure 5.7 in the case of the Celinet leaf. A similar trend was then observed for the

other species. A NIR index greater than 1 indicates absorption in the 960 - 1000 nm

spectral range, most likely linked to the presence of water. The increase of this quantity

between data collected at 0 and 4 hours after harvesting correctly suggests that in this

time interval the leaf releases the water contained in it. The sudden drop between the

index calculated 4 and 24 hours into the measurement campaign correctly reproduces

the observed dehydration of the leaves due to senescence.

The analysis of these first samples show that the spectra correctly represent the physical

process of senescence of the species. The kind of degradation varies depending on the

species, even if some common behaviour can be recognized. The development of the NIR

index finally enables the prediction of the hydration status of the plants. With respect
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to the shelf life, as expected the samples under consideration experienced a very fast

senescence process, indicating that clearly this conservation technique is not suitable for

a good preservation of leafy vegetables.
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5.1.3 Conservation method 2

In the second round of measurements the samples were stored together in a sealed plastic

box placed in a refrigerator at +4◦C which was extracted only for the measurements. In

this case we expect to obtain a longer shelf life since this conservation technique seems

adequate for the correct preservation of the leaves. We suppose also that there is some

kind of interaction in the senescence process of the leaves, since they are stored together.

Hyperspectral images were taken in the same measuring conditions as the ones of the

previous study at intervals of about 48 hours, monitoring the evolution of the whole

senescence process. Figure 5.8 shows the spectra referred to the 1st, 12th and 19th day

after harvesting.

Figure 5.8: Reflectance spectra for the three species collected on the 1st, 12th and 19th

day after harvesting are represented respectively in blue, green and red. Shaded areas

represent the standard deviation of the spectrum.

Similarly to the previous measurement campaign, the spectra represented in the figure

have been obtained by choosing a reference leaf in the box for each species and calcu-

lating the medium spectrum for a selected area in the sample. In this case only the
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Wasabina spectra show a variation in the visible range, characterized by an increase in

the reflectance in the green spectral region and a shift towards higher wavelengths of

the peak. The other species instead do not show significant changes in the VIS. Visual

inspection of the sample confirms the predictions of the hyperspectral analysis. The

Wasabina leaf indeed shows a gradual shift of its hue from greenish to yellowish. Inter-

estingly this shift is way more visible in the spectra than from the pictures as shown in

Figure 5.9.

Figure 5.9: RGB reconstruction of the Wasabina leaf on the 1st, 12th and 19th day in

the senescence process.

Focusing the attention on the NIR region, It is worth noticing that also in this case all

the specimens show a similar spectral trend, highlighted in Figure 5.10.

Figure 5.10: Representation of the NIR region for the Komatsuna variety.

The strong absorption in the region around 970 nm that characterizes the spectra related

to the 1st day post-harvest diminishes with time with respect to the plateau at 825 -

875 nm. Figure 5.11 plots the NIR index developed in the previous section related to
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Figure 5.11: NIR index calculations for the Wasabina leaf obtained from the previously

collected hyperspectral measures.

the spectra of the Wasabina leaf for five different measurements. The trend of the NIR

index confirms that the water-related absorption at around 970 nm diminishes as the

senescence process of the leaves goes on. This trend is observed also in the other species,

indicating that all of them undergo a process of dehydration. This result is again con-

firmed by visual inspection of the samples which on the last day of measurement present

themselves as very dry. However, they do not ever become as brittle as the samples

considered in the first measurement campaign, as can be understood by the fact that

the NIR index never reaches a value smaller than 1.

Also fluorescence measurements, with the experimental setup earlier described, have

been performed on this samples. These experiments showed very interesting results that

will now be presented. Figure 5.12 shows the fluorescence spectra for the Wasabina,

Celinet and Komatsuna variety on the 1st, 12th and 19th day of the measurement cam-

paign. As already pointed out in Chapter 4, important nutrients inside plants are also

fluorescent molecules. The principal peak around 750 nm indeed, highly visible in all the

species, is relatable to the concentration of chlorophylls in the leaves. All the spectra ex-

perience a decrease in the chlorophylls’ peak intensity as degradation goes on, indicating
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Figure 5.12: Fluorescence spectra for the three species collected on the 1st, 12th and 19th

day after harvesting are represented respectively in blue, green and red. Shaded areas

represent the standard deviation of the spectrum.

a lower photosynthetic potential and a clear sign of senescence. A secondary peak is also

noticeable in the spectra in the figure at around 550 nm. Interestingly, the three species

show different behaviour with respect to the evolution over time of the intensity of this

secondary peak: it increases in the Wasabina species while it has a decreasing trend for

the Celinet and Komatsuna leaves. Literature research shows that a fluorescence peak

around 550 nm is characteristic of phenolic compounds [38]. Phenols are responsible

for the antioxidant properties of many leafy vegetables, however their production is also

linked to plant stress and senescence. Spectra in Figure 5.12 therefore suggest that the

Wasabina species increases its phenols production during degradation, on the other hand

the phenolic compounds inside the Celinet and Komatsuna do not seem to have a major

role in the senescence process. Differently, the decrease of chlorophylls concentration

seems to be an important sign of degradation of the plant, moreover it is common to

both the species analyzed. To quantify the presence of chlorophylls inside the leaves, a

Chlorophyll Index, similar to the one introduced in Chapter 4 , has been employed. The

Chlindex links the intensity of the reflectance spectrum at around 670 nm (corresponging
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to a chlorophyll absorption peak) to the concentration of the nutrient:

Chlindex = 1− ρ660−680nm

ρ760−800nm
(5.2)

The equation above has been applied to a portion of the hyperspectral image correspond-

ing to the same Wasabina leaf displayed in 5.9. Figure 5.13 reports a reconstruction of

the leaf based on the value of the chlorophyll index on the 1st, 12th and 19th day post-

harvest. The color-bar on the right relates the color of the image with the value of the

chlorophyll index.

Figure 5.13: Reconstruction of the wasabina leaf based on the Chlindex intensity. The

colorbar shows the value of the index corresponding to colors in the figure.

Clearly the value of the chlorophyll index, related to the nutrient’s concentration in the

leaf, diminishes as the senescence process goes on. From Figure 5.13 we can also appre-

ciate the incredible spatial resolution of the HERA Iperspettrale. Indeed through this

visual reconstruction starting from the hyperspectral data we’re able to finely distinguish

the details of the different parts of the leaves, from the stem to the venation.

The second conservation method, analyzed in the current section, resulted very effective

in extending the shelf life of the samples which were preserved for around 20 days. The

different storage resulted in a different degradation process with respect to the one of the

previous technique. In particular, the common trend that characterized senescence in

this case was the dehydration process, correctly depicted by the NIR index. Fluorescence

analysis resulted particularly effective in detecting another important degradation index:

the decrease of chlorophylls concentration.
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5.1.4 Conservation method 3

For the last set of measurements, separated leaves were kept in the refrigerator at +4◦C

inside sealed plastic boxes and extracted only for the hyperspectral measures. The

conservation condition is therefore very similar to the previous one, apart from the fact

that the leaves are not stored together, therefore there is no interaction among them.

Also in this case we expect a long shelf life. The measurement campaign proceeded

simultaneously to the previous one and the measurements were executed during the

same days. Spectra for the three species referred to the 1st, 12th and 19th day after

harvesting are depicted in Figure 5.14. In this case more than one leaf was selected for

each species. The analyzed leaves are represented in Figure 5.15: the two Celinet leaves

are shown on the left, two leaves of the wasabina species are located in the middle while

three samples of Tatsoi leaves are represented on the right. The spectra in the following

figure are the result of the average over manually selected points inside the reference

leaves of each species.

Figure 5.14: Reflectance spectra for the three species collected on the 1st, 12th and 19th

day after harvesting are represented respectively in blue, green and red. Shaded areas

represent the standard deviation of the spectrum.

From visual inspection of the spectra, it is possible to note that the behaviour in the
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visible range of the three species is similar to the one obtained in the first conservation

condition. The peak in the green spectral region of of the Celinet species’ spectra

diminishes over time while there are no relevant changes in the VIS for the other two

species. Again the observation of the hyperspectral data correctly predicts the change

in the color of the Celinet leaf which gets of a darker shade of green as shown in Figure

5.15. The Wasabina and Komatsuna leaves, on the other hand, do not show a significat

change in the hue over the measurement period.

Figure 5.15: RGB reconstruction of the samples on the 1st, 12th and 19th day in the

senescence process.

By looking at the NIR behaviour of the three spectra, we can recognize a common trend

for all the species. The absorption in the spectral region around 970 nm with respect to

the flat region at the beginning of the NIR seems to increase as the degradation of the

leaves goes on. A highlight of this observation is depicted in Figure 5.16.

Figure 5.16: Representation of the NIR region for the Wasabina species.

To confirm this hypothesis, which would lead to an opposite behaviour with respect to
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the one observed in the previous set of measurements, the NIR index is plotted for five

measurements related to the Wasabina species in Figure 5.17.

Figure 5.17: NIR index calculations for the Wasabina leaf obtained from the previously

collected hyperspectral measures.

The general trend is confirmed by the behaviour of the NIR index which grows over time,

indicating an increase in the water-related absorption window. This spectral trend can

be connected to the physical observation of the leaves represented in Figure 5.15 which

resulted more and more moist throughout the measurement campaign.

Finally fluorescence measurements were performed on the same samples and the re-

trieved spectra are represented in Figure 5.18. Similarly to the case considered in the

previous section, in all the species it is possible to observe a diminished intensity of

the fluorescence peak related to chlorophylls concentration at around 750 nm. This

spectral behaviour indicates again that the reduced photosynthetic potential is a sign

of senescence for plants. To confirm this hypothesis, the chlorophyll index introduced

in the previous section was retrieved from hyperspectral data. A reconstruction of the

Wasabina leaf on the 1st, 12th and 19th day after harvesting is represented in Figure

5.19. The index retrieved from reflectance data confirms once again the prediction of

the fluorescence spectra for chlorophylls concentration. A clear decrease in the nutrient’s

value is noticeable.
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Figure 5.18: Fluorescence spectra for three species collected on the 1st, 12th and 19th

day after harvesting are represented respectively in blue, green and red. Shaded areas

represent the standard deviation of the spectrum.

Figure 5.19: Reconstruction of the wasabina leaf based on the Chlindex intensity. The

colorbar shows the value of the index corresponding to colors in the figure.

In this case the secondary peak linked to the phenolic compounds’ concentration di-

minishes over time for all the species and is almost absent in Komatsuna’s fluorescence

spectral fingerprint (see Figure 5.18). This behaviour suggests that the increase in the

phenolic peak shown in figure 5.12 for the Wasabina species is linked to the yellowing of
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its hue, which was only observed in the previous conservation method.

The conservation technique analyzed in this section led to a shelf life of the plants very

similar to the one shown for the previous samples of around 20 days. This observation

suggests that crucial parameters for a good preservation of leafy vegetables are low

values of temperature and humidity which characterize the refrigerated environment.

However the environment in which they were kept, meaning if they were isolated or stored

together, influenced their senescence process. Degradation was indeed characterized by

different spectral and physical features in the different conservation methods.

5.2 Biostimulants’ effects on the growth and senes-

cence of plants

In this section a further collaboration project between NIREOS and Agricola Moderna is

going to be presented. The effect of the application of biostimulants during the growth of

three species of leafy vegetables has been analyzed with hyperspectral imaging. Moreover

their effect on the shelf life is studied with techniques similar to the ones presented in

the previous sections. Final goal of this study was to understand whether the effect

of the biostimulants is relevant and detactable through the spectral fingerprint of the

samples. The plants have been grown inside Agricola Moderna’s R&D facilities inside

three different cells, each one characterized by a different concentration of stimulant

substances. All the other growing conditions of the plants were the same. They all

received the same amount of light, water and nutrients. We therefore expect that any

difference in the growing process would be due to the effect of the biostimulants. Three

species of leafy vegetables were taken into account in the study: Romaine lettuce, Green

lettuce and Tatsoi. First the analysis will concentrate on the growth of these samples

and later on their shelf life.

5.2.1 Biostimulated growth of leafy vegetables

Seeds of each species under consideration were grown in three different cells with de-

creasing biostimulants’ concentration:

• Cell 1: biostimulants’ concentration of 10 ppm (part per million);

• Cell 2: biostimulants’ concentration of 1 ppm;

• Cell 3: control, no stimulants were given to the plants in this cell.
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The growing of the samples started from the seeds which were initially kept in a condition

of darkness for uniform germination. The first measurements were taken when the plants

presented their first leaves, which happened after 7 days in the light. The subsequent

measurements took place with an interval of around 7 days in correspondence of the 14th

and 20th Day Under Light (DUL). The last measurement on DUL 20 was taken right

before harvesting of the samples therefore it was possible to monitor with hyperspectral

measures the whole growing process of the plants. In Figure 5.20 spectra referred to the

Green lettuce species are presented. Measurements taken on the 7th,14th and 20th DUL

of the samples are represented respectively in blue, green and red. Different cells instead

are distinguished with different type of lines: solid lines refer to the first cell with the

highest concentration of hormones, dashed-lined spectra are referred to the second cell

with a lower concentration of biostimulants while lines composed of both dashes and dots

indicate the spectra of the third control cell with no biostimulants. To better visualize

the data and their evolution in time they are represented all together in the graph on

top of the figure while measurements referred to different DULs are depicted separately

below.

Figure 5.20: Reflectance spectra of the Green lettuce species.

From visual inspection of the spectra referred to the same day, it is possible to note that

no obvious difference due to the presence of biostimulants is shown. Differently, when

observing the whole temporal evolution of the data, spectral features which characterize

the growth of the plants are noticeable. All the samples indeed, biostimulated or not,

show an increase of reflectance intensity in the NIR region, particularly between 750 and
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950 nm. It is worth noticing that the spectra shown in Figure 5.20 have been obtained

mediating over a very big number of leaves, meaning that they significantly represent

the overall effect of growth and biostimulants on the species. This was obtained by

exploiting the SAM algorithm on the hyperspectral cube (Chapter 3). The spectrum of

a manually selected leaf inside the analyzed image was employed as a reference. The

result of the application of this algorithm allows a fast selection of the significant pixels

in the image, excluding for example the ones referred to soil or background as shown in

Figure 5.21.

Figure 5.21: Extraction of the significant pixels with the SAM algorithm.

The spectra referred to the other two species under analysis, the Romaine lettuce and

Tatsoi species, are reported in Figure 5.22 and 5.23 respectively. Similarly to the Green

lettuce species it is not trivial to detect the effect of biostimulants on the spectra of

the samples under consideration. We are only able to distinguish changes in a species’

spectra over time which are most likely due to its growth: the increased reflectance in

the near infrared and the decrease of the peak in the green spectral region that indicates

a darkening in the plant’s hue (confirmed by visual inspection of the samples). These

trends seem common to all the species and all the samples, both stimulated and not.
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Figure 5.22: Reflectance spectra of the Romaine lettuce species.

Figure 5.23: Reflectance spectra of the Tatsoi species.

In order to carry out a more detailed analysis and detect the effects of the biostimulants

on the growth of the plants, some indices related to relevant spectral features have been

computed and their trend over time was plotted. In Figure 5.24 the behaviour of the
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mean value of the reflectance spectrum in the NIR region is plotted over the whole

measurement campaign for each sample. From the previous analysis of the spectra

indeed, we expected this value to increase due to the growth of the leaves and our

prediction is confirmed.

Figure 5.24: Mean value of the value of the reflectance spectrum in the NIR for the 3

species analyzed.

It is interesting to note that the blue line, referred to the cell with the highest value of

biostimulants’ concentration has the steepest slope in the time interval between DUL

7 and 14. Its increase is instead lower between DUL 14 and 20. When the data were

first analyzed this result seemed contradictory with the behaviour shown by the samples

of cell 2, where the biostimulants are lower, since the slope of the these data remains

higher than the control one for all the measurements (at least in the Romaine lettuce

and Tatsoi species). However later in the work it was found that on DUL 16 due to the

fact that the leaves experienced an excessive elongation in the first cell, the biostimu-

lants’ concentration for these samples was brought to zero, therefore their effect is no

longer visible in the growth of the samples. This observation shows that some effect of

the biostimulants on the sample’s growth is actually present. It also demonstrates that

these changes are detectable also in the spectral behaviour of the leaves.

Later the NIR index developed in the study presented in the previous section was plot-

ted, in order to investigate whether the biostimulant’s effect would be visible in the

behaviour of this index, related to water absorption. Figure 5.25 shows the results of

the calculations for the NIR index. Once again it is difficult to detect clear signs of

the effect of the biostimulants on the samples. A hint of their magnifying effect plants’

growth might be given by the higher slopes of the curves related to biostimulated leaves.

However, it is interesting to note that the behaviour of the species is similar in both the

indices, indicating that the growth process is very similar for the analyzed plants.

Finally, in order to simplify the problem, the PCA algorithm was employed as intro-

duced in Chapter 3. The principal components have been calculated over the whole
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Figure 5.25: NIR index behaviour for biostimulated and control samples.

dataset referring to a single species. This was necessary in order to obtain the principal

components maximizing the variance between different measurements. The weights of

the first 5 principal components are reported in Figure 5.26.

Figure 5.26: Weights of the first 5 principal components for the biostimulated samples.
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Among them PC2 was selected as new coordinate to represent the measurements over

time. This choice is motivated by the fact that PC1 in this kind of measurement give

information on the illumination of the sample, therefore the second principal component

will be the one retaining the highest variance related to other features in the image. For

doing so, the value of the second principal component has been calculated for all the

pixels in each image. In Figure 5.27 measurements are represented as the average PC2

value of the hyperspectral image. This value was calculated over the pixels belonging to

the leaves only, exploiting the SAM algorithm.

Figure 5.27: PC2 average value for the biostimulated and control samples.

What is most noticeable from the previous figure is the overall decreasing trend, common

to all the species both biostimulated and not. By looking at Figure 5.26 it is possible to

observe that the weight of the NIR region in the second PC is negative. This behaviour

therefore suggests either an increase over time of the reflectance intensity in the Near

Infrared or a decrease of reflectance in the visible region. This evolution of the spectra

corresponds to what was initially observed through visual inspection of the samples’

spectra. PCA analysis therefore confirms the fact that the most important differences

in the spectra of the samples analyzed are due to the growth process, while the effects

of biostimulants are not clearly distinguishable.

Unfortunately, from this initial hyperspectral analysis is very difficult to detect specific

spectral features that indicate the effect of biostimulants. This might be due to the fact

that the amount introduced in the plants was not enough to cause significant changes

in the concentration of nutrients inside the plant but rather it acted more on their ap-

peareance. The stimulated samples indeed at the end of the study resulted heavier and

with larger leaves compared to the others. On the other hand, from the investigation of

indices related to the growth of the plant, such as the one related to the NIR reflectance,

it is noticeable that their increase is faster, indicating that the biostimulants have a mag-

nifying effect on the growth of the samples. More detailed analysis, possibly employing
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finer techniques to distinguish differences in the spectra could be done to further analyze

whether the effect of biostimulants is fundamental in the growth of leafy vegetables.

5.2.2 Biostimulants’ effect on shelf life

From the same cells employed in the experiment on the effect of biostimulants on the

growth of leafy vegetables, samples of the Romaine lettuce and Tatsoi species have been

selected to investigate the effect of these biostimulants on their shelf life. In order to

guarantee the best preservation of the samples, based on the result of the previous study,

the leaves were stored in a sealed plastic box which was placed in a refrigerator at +4◦C.

Measurements were taken on the 5th, 12th and 19th day post harvest for both the species.

Following the same SAM algorithm employed in the previous part of the study, the mean

spectra for all the leaves in the box was calculated and the results are show in Figure

5.28 and 5.29 for the Romaine lettuce and Tatsoi species respectively:

Figure 5.28: Reflectance spectra on the 5th, 12th and 19th day post harvest for Romaine

lettuce species.
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Figure 5.29: Reflectance spectra on the 5th, 12th and 19th day post harvest for Tatsoi

species.

Similarly to what happened in the first part of the present study, from visual inspection

of the spectra, the effect of the biostimulants is not clear. On the other hand, a very

interesting spectral feature most likely related to senescence is clearly visible: a decrease

in the reflectance intensity in the NIR region around 750 - 800 nm. In order to detect the

effect of the stimulating substances on the degradation of the leaves, some known indices

which can be related to the senescence of the leaf, presented already in Chapter 3 have

been calculated. For example the REP (Red Edge Position) indicates the wavelength at

which clorophyll becomes transparent, leading to the high slope between the end of the

visible region and the beginning of the NIR in reflectance spectra. Generally the REP is

located around 700 nm and an increase in its value indicates senescence in the leaf. The

Figure 5.30: Evolution of the Red Edge Position over time for the biostimulated and

control species.
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representation of the behaviour of this index for the analyzed samples is represented in

Figure 5.30.Both the species show a similar behaviour of the blue and red data referring

to samples grown in the first and second cell. This similarity can therefore be linked to

the effect of biostimulants since their trend differs completely from the behaviour of the

data related to the control. Moreover, the stimulated samples experience an increase in

the REP as expected.

A second index that has been employed in order to recognize the difference in the senes-

cence process between the samples is the CUR index. Even if the curvature index is not

directly related to the degradation of the plant, in a study carried out by Jia et al. [34]

it resulted effective in predicting a parameter that is connected to the photosynthetic

properties of the plant: the Fv/Fm. Its value is the most used chlorophyll fluores-

cence measuring parameter, comparing the difference of the minimum fluorescence of

the plant with its maximum fluorescence. In general leaf stress is linked to a decrease in

the Fv/Fm parameter. The CUR index was found to adequately estimate the value of

Fv/Fm through the following equation:

Fv

Fm
= −0.3963 ∗ CUR+ 1.196 (5.3)

Estimations of the Fv/Fm value through the CUR index are shown in Figure 5.31:

Figure 5.31: Estimation of the value of Fv/Fm through the CUR index for the biostim-

ulated and control species.

Very interestingly it is noticeable again that both the species show a particular behaviour

in the biostimulated samples while the non-stimulated ones show a different behaviour,

again common to both the species under consideration.
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This study, focused on the biostimulants’ effects on leafy vegetables, testifies the diffi-

culties in analyzing hyperspectral data. It is clear that the spectra obtained with the

hyperspectal measures provide many information and, most importantly, that they are

able to reflect very fine differences in samples which are very similar. However, as this

study demonstrated, it is not always easy to detect the differences in spectral signatures.

More refined mathematical tool can help in the detection of the variations in the spectra

but still it might be difficult to link these features to physical or chemical characteristics

of the specimen. It was shown for example that the effect of biostimulants is reflected

in the behaviour of some indices related to the spectra of the plants, however we’re not

able to link that particular behaviour to a physical or chemical process happening in the

plants. Further studies focused on the biological processes happening in biostimulated

growth of plants could help in selecting the spectral regions that are subjected to the

most significant changes.

60



Chapter 6

Conclusions

The analysis presented in this work shows that the HERA Iperpettrale is able to repro-

duce with fine spectral and spatial resolution the spectral signaturs of leafy vegetables. It

is able to distinguishing not only the differences in the spectra between different species

of vegetables but also between leaves of the same species and even among different parts

of the leaf. This result clearly proofs the great possibilities of hyperspectral imaging

in the food and agriculture sector. In the first study on leafy vegetables’ shelf life, it

was shown that the conservation method greatly influences the senescence process of

the leaves. Different degradation paths caused different evolution of the spectra of the

plants. The overall picture therefore is more complicated than the one represented at

the beginning in Figure 4.4, found in a reference study from Simko et al. [3], depicting

a single senescence process. Interestingly, this degradation path is actually very similar

to the one experienced by the samples in the second study.

It was shown that the analysis of the VIS region correctly depicts the change of hue

of the leaves throughout their lifecycle and that the evolution of the spectral features

in this region are able to predict these color shifts even before they are visible by the

human eye. The NIR region, instead, resulted fundamental in the first experiments in

the distinction between different senescence processes and in particular on their effect

in the water content of the leaves. In the spectral range of the HERA Iperspettrale falls

indeed the characteristic absorption peak of water around 970 nm. In order to evaluate

the strength of this absorption, related to the hydration state of the leaf, the NIR index

has been developed. Similarly to the ones found in literature, it links the reflectance

intensity with a physical feature of the sample. This index resulted very effective in the

prediction of the behaviour of the samples and its trend correctly depicted whether the

leaves were undergoing a dehydration process or not.

The first project was also successful in extracting information on the nutrients contained

in the leaves both with reflectance and fluorescence data. The fluorescence spectrum of
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the leaves indeed was always characterized by two peaks: a bigger one around 750 nm,

connected to chlorophylls concentration, and a smaller one, related to the presence of

phenolic compounds, around 550 nm. While a decrease in the concentration of chloro-

phylls has been found as a sign of degradation of the plant, its phenols production does

not seem directly linked to senescence. Also in this case, the calculation of an index start-

ing from the intensities of the reflectance spectrum was very useful. The development

of the Chlorophyll index indeed was able to confirm the decrease of the concentration of

this nutrient in degrading leaves.

In the first study, similarities and differences among spectra were distinguishable by

visual inspection since senescence produces macro-changes in the samples. It was there-

fore easier to decide in which spectral region further analysis had to be implemented

in order to better visualize and quantify the differences among spectra due to degrada-

tion processes. In the second project, instead, the effect of biostimulants was found to

modify only slightly the spectral signature of the samples under analysis. It was shown,

therefore, that even if the hyperspectral images provide very reliable and numerous in-

formation, it is not always easy to manipulate the hyperspectral cube in order to obtain

easily interpretable data. Even if the differences due to biostimulants were not clearly

distinguishable, very interestingly instead the effect of growth and degradation on the

spectra of the samples were highly visible, similarly to the previous case study. In or-

der to understand whether the effect of stimulating substances influenced the growth or

senescence of the plants, well-known indices related to the wellness of the plant have

been plotted from the measured spectra. Interestingly, the behaviour of the biostimu-

lated plants was found to be similar in the evolution of the indices and differed from the

one of the control. In addition to this the presence of biostimulants seemed to magnify

the increase of values characterizing the growth of the plants. These results suggest that

the biostimulants do affect the lyfecycle of leafy vegetables, however not in a striking

way. The use of algorithms such as the Spectral Angle Mapper were fundamental in this

experiment, enabling us to distinguish the relevant parts of the hyperspectral image and

perform faster and more significant calculations.

6.1 Further developments

The overall good results obtained in the present work encourage further projects and

experiments involving the application of the HERA Iperspettrale in the food and agri-

culture field. First of all, the importance of the numerical methods for the analysis of the

hyperspectral cube resulted clear from the analyzed studies. The use of finer algorithms,

implying for example machine learning techniques, would enable to detect smaller differ-

ences in the spectra which are not distinguishable by visual inspection. These methods

would be able to provide more quantitative results in experiments or perform clustering
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to distinguish healthy from ill samples. In order to train the aforementioned algorithms

some preliminary studies should be performed to provide reference spectra of healthy

plants and characteristic spectra of specific illnesses to be identified.

The results of this work made also clear the importance of the Near Infrared spec-

tral region in the considered applications. Literature research also confirms that many

interesting molecules that characterize both the wellness and the nutritional value of

vegetables and food more in general, have their characteristic absorption peaks in the

SWIR (Short-Wave Infrared) region, up to 2.5 µm [39]. A further improvement of the

present thesis would be therefore to examine more in depth the spectral signature of

molecules detectable in the SWIR such as glucose and water [40]. A preview of a similar

study is presented hereafter. A prototype of a model of the HERA with an infrared

detector has been employed over a sample of degraded lettuce, which was kept in the

fridge for about 20 days in a sealed plastic box. Some of the leaves resulted very moist

and degraded, in Figure 6.1 the spectra of two point of the leaf highlighted in the image

are compared.

Figure 6.1: Reflectance spectra of the highlighted areas in the picture.

All the four known absorbance peaks of water (already presented in Figure 5.6) are

clearly visible in the reflectance spectra. The one referred to the blue area are more pro-

nounced, suggesting that the corresponding area of the leaf has a higher water content.

This hypothesis is actually confirmed both by visual inspection and by performing a

reconstruction of the image in correspondence of an absorption window (Figure 6.2). By

plotting the relative intensity of the reflectance at 1450 nm, where a peak is located, a

differently shaded area is recognizable in the analyzed leaf. This means that the relative

component has a weaker intensity in that area and the light at this wavelength is more
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strongly absorbed.

Figure 6.2: Reconstruction of the image at 1450 nm, corresponding to a water absorption

peak.

The potentialities of the examination of this spectral range are therefore already clear

from this preliminary example.

Regarding the more industrial-related application of this study, starting from hyperspec-

tral studies it would be possible to develop quality-checking systems specifically designed

for plants. Indeed, by selecting the most important spectral bands to monitor the well-

ness and growth of the products, such as the ones related to chlorophylls or the hydration

status, a simpler multi-spectral system could be designed. Multi-spectral imaging, as

explained in Chapter 2, retrieves the intensity of the spectra related to a smaller number

of bands, therefore is easier and cheaper to implement technologically a multi-spectral

camera.

As a final remark, further studies in close collaboration with experts in biology and

agriculture would enable a better understanding of the physicochemical properties that

underlie the spectral behaviours. Knowing which molecules or processes guide the growth
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and senescence of plants, would indeed help the selection of relevant spectral regions to

be monitored in the search for a particular behaviour. This awareness would enable a

more specific and detailed analysis, together with the use of more refined algorithms and

indices.
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Appendix A

MATLAB code

In the following section the MATLAB code employed for the calculation of the spectrum

of an area the sample is presented. Later on, the SAM algorithm and the PCA algorithm

performed as explained in Chapter 3 are reported in MATLAB code.

1 %% Spectrum of an area of the sample for different

images

2

3 % loading of the files

4 file_name = {'file_1.mat','file_2.mat','file_3.mat'};
5

6 color = {'#0072BD';'#77 AC30';'#D95319 ';...
7 '#EDB120 ';'#7E2F8E ';'#4DBEEE';'#A2142F '};
8 p = {[0 0.4470 0.7410] ,[0.4660 0.6740 0.1880] ,...

9 [0.8500 0.3250 0.0980] ,[0.9290 0.6940 0.1250] ,...

10 [0.4940 0.1840 0.5560] ,[0.3010 0.7450 0.9330]};

11

12 %select wheter the measures are in reflectance

13 refl = 1;

14

15 load('file_1_WavelengthAxis ')
16

17 wl = HERA_WavelengthAxis;

18

19 for i = 1: length(file_name)

20

21 load(file_name{i})
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22 hypdata = HERA_HSI;

23

24 %reconstruct the RGB image from the hyperspectral

data

25

26 RGB_image = RGB_reconstruction(hypdata ,wl,refl);

27

28 %calculate the average spectrum of a selected area

29 spectrum_area = AreaSpectrum(RGB_image ,hypdata ,wl,

...

30 color{i},p{i});

31

32 end

33

34 function RGB_image = RGB_reconstruction(hyp ,wl,refl)

35 %find the indices in the wavelength array

corresponding

36 to the RGB values

37

38 [~,lambda1] = min(abs(wl - 630)) ; %R

39 [~,lambda2] = min(abs(wl - 540)); %G

40 [~,lambda3] = min(abs(wl - 500)); %B

41

42 %Select the portions of the hyperspectral cube

43 if refl == 1

44

45 band_1 = hyp(:,:,lambda1);

46 band_2 = hyp(:,:,lambda2);

47 band_3 = hyp(:,:,lambda3);

48 else

49 % normalize if the data is not in reflectance

50 band_1 = hyp(:,:,lambda1)/max(max(hyp(:,:,

lambda1)));

51 band_2 = hyp(:,:,lambda2)/max(max(hyp(:,:,

lambda2)));

52 band_3 = hyp(:,:,lambda3)/max(max(hyp(:,:,

lambda3)));
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53 end

54

55 RGB_image = cat(3,band_1 , band_2 ,band_3);

56

57 end

58

59

60 function spectrum_area = AreaSpectrum(image ,hyp ,w,c1 ,c2)

61

62 %cut the area of the image to obtain the

63 data cube referring to it only

64

65 data_cut = cut_area(image ,hyp ,c1,c2);

66

67 [rows ,columns ,bands] = size(data_cut);

68

69 %reshape the hyperspectral cube as a matrix = pixels

x bands

70 the rows of the matrix constitute the spectrum of

the pixel

71

72 data_resh = reshape(data_cut ,rows*columns ,bands);

73

74 [i,j,k] = size(data_cut);

75 X = reshape(abs(data_cut),i*j,k);

76

77 % calculate the mean of the spectra over the

selected area

78 spectrum_area = mean(X,1);

79 %calculate the standard deviation

80 sd = std(X);

81 sd1 = spectrum_area + 0.5*sd;

82 sd2 = spectrum_area - 0.5*sd;

83

84 figure (2)

85 plot(w,squeeze(abs(spectrum_area)),'Color ',...
86 c1 ,'LineStyle ','--','LineWidth ' ,2)

68



87 title('Spectra of the selected areas');
88 xlabel('Wavelengths [nm]')
89 ylabel('Intensity ')
90 hold on

91

92 p = patch([w fliplr(w)],[sd1 fliplr(sd2)],c2);

93 set(p,'facealpha ' ,0.3);
94 set(p, 'EdgeColor ', 'None');
95 axis ([470 1000 0 1.1])

96 hold on

97

98 end

99

100 %% PCA

101

102 %Perform the matrix factorization shown in Chapter 3

103

104 [m,n,k] = size(hypdata);

105

106 X = reshape(abs(hypdata),m*n,k);

107

108

109 X(isinf(X)|isnan(X)) = 0;

110 [coeff ,~,variances] = pca(X(: ,1:93));

111

112 %calculate the PCA matrix

113 pca_matrix = X(: ,1:93)*coeff;

114

115 %retrieve the PC values of the image

116 pca_1 = reshape(pca_matrix (:,1),m,n);

117 pca_2 = reshape(pca_matrix (:,2),m,n);

118 pca_3 = reshape(pca_matrix (:,3),m,n);

119 pca_4 = reshape(pca_matrix (:,4),m,n);

120 pca_5 = reshape(pca_matrix (:,5),m,n);

121

122 figure

123 imagesc(pca_1)

69



124 title('PC 1')
125 colormap('gray')
126

127

128 % coefficients for the principal components

129 figure

130 plot(wl (1:93) , coeff (:,1),'LineStyle ','-','LineWidth ' ,2)
131 hold on

132 plot(wl (1:93) , coeff (:,2),'LineStyle ','-','LineWidth ' ,2)
133 hold on

134 plot(wl (1:93) , coeff (:,3),'LineStyle ','-','LineWidth ' ,2)
135 hold on

136 plot(wl (1:93) , coeff (:,4),'LineStyle ','-','LineWidth ' ,2)
137 hold on

138 plot(wl (1:93) , coeff (:,5),'LineStyle ','-','LineWidth ' ,2)
139 title('PCA coefficients ')
140

141 %Plot the variance relative to the principal components

142 figure

143 plot(variances/max(variances),'LineStyle ','-',...
144 'LineWidth ' ,2);
145 xlabel('Principal Component ')
146 ylabel('Variance ')
147

148 figure

149 semilogy(variances/max(variances),'LineStyle ','-',...
150 'LineWidth ' ,2)
151 xlabel('Principal Component ')
152 ylabel('Variance ')
153

154

155 %% SAM

156

157 % Calculate the reference spectrum

158 selecting from an area of the image

159

160 RGB_image_leaf = RGB_reconstruction(leaf ,wl,refl);
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161

162 area_leaf = cut_area(RGB_image_leaf ,leaf ,'None');
163

164 [i,j,k] = size(area_leaf);

165 X = reshape(abs(area_leaf),i*j,k);

166

167 spectrum_area_leaf = mean(X,1); %reference spectrum of

the leaf

168

169 %Perform the comparison

170

171 [rows ,columns ,bands] = size(leaf);

172 leaf_resh = reshape(abs(leaf),rows*columns ,bands);

173 num_pixel = rows*columns;

174 leaf_resh = leaf_resh ';
175

176

177 leaf_resh(isnan(leaf_resh))=0;

178

179 %calculate the spectral angle with

180 respect to the reference spectrum

181

182 sp_angle_leaf = zeros(1,num_pixel);

183

184 for i = 1: num_pixel

185 sp_angle_leaf(i) = acos(( leaf_resh(:,i) '*
spectrum_area_leaf ')/...

186 (norm(leaf_resh (:,i))*norm(spectrum_area_leaf)))

;

187 end

188

189 SAM_leaf = abs(reshape(sp_angle_leaf ,rows ,columns));

190

191 figure

192 histogram(SAM_leaf)

193 title('SAM with reference spectrum ')
194 xlabel('Spectral Angle ')
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195

196 %select the threshold for the spectral angle

197 threshold = 0.2;

198

199 % compute a mask to show only the pixels

200 in the cluster of the referencec spectrum

201

202 mask_leaf = zeros(1,num_pixel);

203 for i = 1: num_pixel

204 if sp_angle_leaf(i) <= threshold

205 mask_leaf(i) = 1;

206 end

207 end

208

209 mask_leaf = reshape(mask_leaf ,rows ,columns);

210

211 leaves = leaf.* mask_leaf;

212

213 RGB_leaves = RGB_reconstruction(leaves ,wl,refl);

214

215 figure

216 imagesc(RGB_leaves)

217 title('Leaf mask')
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