
Multi-Objective Optimal Design of Hybrid PPA Portfolios under Un-
certainty

Tesi di Laurea Magistrale in
Electrical Engineering - Ingegneria Elettrica

Lorenzo Zapparoli, 10612654

Advisor:
Prof. Filippo Bovera

Co-advisors:
Matteo Zatti

Academic year:
2022-2023

Abstract: In the recent years, governments have been progressively phasing out
support schemes to renewable energy resources (RES), leading RES developers to
look for alternative financing options. At the same time, due to sustainability
commitments, more companies are willing to cover their demand with renewable
energy and, especially after the 2022 energy crisis, they are looking for means to
edge against electricity price volatility. Power purchase agreements (PPAs) can
act as a synthesis of the three dynamics, and the interest towards such contracts is
increasing. Bundling multi-location, multi-technology renewable and storage PPAs
in hybrid portfolios has the potential of improving the financial performance while
reducing the risk of PPAs investments. The difficulty in evaluating the performance
and the risk of PPAs, especially when bundled in portfolios, is currently limiting
their adoption. This work presents a tool to assess and design, based on buyer
requirements, hybrid PPAs portfolios (including renewable and storage projects),
with the objective of maximizing the financial profit while minimizing the risk
from the off-taker perspective. Conditional value at risk (CVaR) is used for risk
assessment, and the uncertainty on the evolution of the energy markets and the
considered assets is accounted through a Monte Carlo simulation. The proposed
tool is composed of three sub-models performing different tasks: long term elec-
tricity price forecasting, definition of storage operation and portfolio optimization.
The three sub-models are solved in cascade to provide the final result from readily
available input data. The multi-objective optimization is handled through Pareto
fronts, which show the trade-off which may exist between financial return maxi-
mization and risk minimization. The optimal portfolio composition is chosen on
the Pareto front depending on the risk adversity of the off-taker. The performance
of the tool and the benefits of bundling multi-location, multi-technology renewable
and storage PPAs are assessed on five case studies representing a menu of avail-
able contracts with different PPA prices scenarios. The results showed that the
expected returns are maximized when the company invests in one or two renewable
PPA projects, which are the most convenient ones; on the other hand, the inclusion
of more renewable projects and storage contracts allows to reduce the risk, while
reducing the expected financial performance.

Key-words: power purchase agreements, portfolio optimization, conditional value at risk, electricity
price forecasting, renewable energy, ecological transition
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1. Introduction

In the recent years, the drop in the levelized cost of electricity (LCOE) of renewable energy sources (RES)
is making them competitive with respect to fossil fuel-based energy generation, leading governments to phase
out subsidy programs [1]. Renewable projects are strongly capital-intensive, and the high volatility of market
prices may make their financing risky in a purely merchant environment, therefore limiting their penetration.
Consequently, renewable energy producers require alternative market mechanisms to ensure stable revenue
streams and enhance financing options for RE projects. At the same, the increase in customers’ awareness
regarding the environmental impact of the products they buy, is leading an increasing number of companies to
achieve 100% renewable energy usage as part of their sustainability initiatives. Moreover, also companies, like
RE developers, look for tools for edging against the volatility of electricity prices, especially after the recent
energy crisis [2, 3].
In this framework, corporate Power Purchase Agreements (PPAs), as described by [4], can be seen as the
synthesis of these dynamics. Corporate PPAs are contracts between a seller and a buyer for the sale and purchase
of electricity at a fixed price structure. The buyer commits to purchasing a share of the electricity generated by
the seller at the PPA price, while the seller commits to procuring that same amount of electricity to the buyer.
The typical duration of a PPA can range from 10 to 20 years. They introduce the benefit of transferring part of
the risk related to the renewable investment from the developer to the corporate buyer, making RES projects
easier to finance, while allowing the corporate buyer to get the required renewable energy certificates (RECs)
and to edge against market risk. In principle this is a win-win solution, and this is demonstrated by strong
increase in volume of PPAs signed in the recent years [5]. The inclusion of multiple locations and technologies
in PPAs portfolios, including storage, has the potential of reducing the risk of the portfolio with respect to a
single RES project, potentially making the investment in PPAs more attractive to corporate buyers. On the
other side, the adoption of corporate PPAs is limited by the difficulty in evaluating the financial performance
and the risk related to such contracts [6], especially when they are bundled in a portfolio and their interaction
needs to be assessed.
The objective of this work is to develop a tool to determine the optimal composition of a corporate PPAs
portfolio. The tool will allow the inclusion of renewable and storage PPAs, which may represent a good
alternative to merchant investments for storage developers, despite not being currently widely adopted [7].
Starting from a menu of contracts, the tool defines the optimal portfolio composition, in terms of size of each
contract, to minimize the risk and maximize the financial performance. The concept of conditional value at risk
(CVaR) is used for the risk assessment [8].
The model is structured into three sub-models: an electricity price forecasting tool, a storage PPA modeling tool
and a portfolio optimization tool. The three sub-models interact to provide the final result through a stochastic
assessment starting from readily available historical data. Each of these sub-models have been investigated
separately in literature [7, 8, 9]; the novelty consists in merging such models together in a single tool and
modify them to fit the Italian case study, which has never been treated.
The paper is structured as follows. First, Section 2 introduces PPAs in general, defining the considered types of
renewable and storage PPAs. Then, Section 3 describes the portfolio optimization model, defining input data
and the aforementioned three sub-models. Section 4 presents the selected case studies to assess the impact of
the optimization tool on multi-technology and multi-location PPAs portfolios composition. Finally, Section 5
draws conclusions.

2. Power Purchase Agreements

In this section the characteristics of the adopted renewable and storage PPAs are described. In general, corporate
PPAs, independently from their nature, can be seen as long-term contracts between a developer (seller) and
a corporate buyer for the trade of a certain amount of energy at a fixed price structure. This definition is
very general and a wide variety of PPAs exist, for both storage and renewable energy trading [2]. Such level
of diversification comes from a lack of standardization in the PPAs market and from the flexibility of such
contracts, which allows to tune the amount of risk that is transferred from the developer to the corporate buyer.
For this study just one type of renewable and storage PPA is considered, namely the virtual pay-as-produced
renewable PPA and the proxy storage PPA, but the same methodology can be applied to any type of contract
by changing the way in which the revenues related to the contract are modeled.
Before describing the considered contract structures, the main financial risk factors affecting PPAs perfor-
mance need to be described. Considering a classic renewable PPA alone, various factors contribute to the risk
(uncertainty) from the off-taker perspective [6]:

• Price risk: it derives from the uncertainty associated with electricity prices, both in terms of long-term,
multi-year evolution and short-term, intra-day variability. If the future electricity price decreases below
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the reference price anticipated while subscribing the PPA, the off-taker incurs smaller-than-anticipated
revenues and, potentially, financial losses, in case the PPA price exceeds the future electricity price.
Conversely, the off-taker realizes higher than-expected revenues if the future electricity market price is
higher than the reference price.

• Volume risk: it derives by the uncertainty associated with RE generation. In particular it can reduce the
off-taker revenue and undermine the possibility for the off-taker to edge sufficiently against market price
risk.

• Shape risk: it derives from the interaction of electricity price and RE generation on a hourly basis. This is
also known as profile or captured-price risk, with low prices occurring during moments of high generation,
and vice versa. The off-taker commits to buy the generated electricity at the PPA price, but there is the
risk that the hours of maximum generation coincide with the ones of minimum market price (potentially
lower than the reference one), determining potentially large financial losses even if the average market
price is similar or higher than the reference one [10].

Each PPA contractual structure implies a different sharing of these risks between buyer and seller. Quantifying
such risk factors and their impact is crucial to determine the actual value of a PPA for the off-taker. An
approach for reducing the risk of PPAs consists of combining:

• Multiple energy generation technologies, i.e. wind and solar plants, which production profiles can be
considered uncorrelated [11].

• Multiple geographical locations, e.g. renewable energy projects in diverse regions and countries, for which
the same technology production profiles can be considered uncorrelated.

• Renewable PPAs with storage PPAs, where storage-related revenues can be seen as complementary to
solar-related ones; for example, if the prices during the day decrease, the solar PPA revenues will decrease
but the proxy storage ones will increase, as the intraday price differentials will result to be increased as
well.

The impact of multi-technology and multi-location PPAs on the risk factors is implicitly considered in the model
through a Monte Carlo simulation, in which J scenarios of electricity prices, renewable generation and storage
operation are generated to account for all the uncertainty contributions.

2.1. Virtual Pay-as-Produced Renewable PPAs

As mentioned, there are several contractual structures for renewable PPAs. In general a renewable PPA is a
contract in which a RES developer and a corporate buyer agree on the trade of a determined amount of energy
at a fixed price structure on a long term horizon of 10 to 20 years. The prevalent contractual structures are
physical and virtual PPAs [2]. In virtual PPAs energy is not physically transferred from the generator to the
off-taker; instead, the generator and the off-taker will trade energy on the wholesale electricity spot market,
then the difference between the electricity spot market price and the PPA is settled separately between the
off-taker and the generator, through a contract for difference (CFD) [3]. Physical PPAs, on the other hand,
involve direct wiring of electricity to the off-taker’s manufacturing facilities or industrial plants. This analysis
focuses on virtual PPAs, but the same methodology can be applied to of physical PPAs.
It is also possible to identify different rationale to define the volumes traded in the PPA, which allow different
level of risk sharing among buyer and seller. In particular two common structures are considered [8]:

• Pay-as-Produced PPA: the off-taker agrees to purchase all or a percentage of the volume produced by the
RE plant, independently of its electricity demand. In this way volume risk, shape risk and price risk are
fully transferred to the buyer.

• Baseload PPA: the off-taker agrees to purchase a predetermined volume of generated electricity (depending
on its electricity demand). In this configuration the volume and shape risks are fully transferred to the
seller through a proper contract referred as volume firming agreement (VFA), while the buyer holds the
price risk.

So, in the first approach, the traded quantity will depend on the production, while in the second case it will
depend on the demand.
To conclude, the considered renewable PPA contractual form is the one of pay-as-produced virtual PPA, in which
the financial value of the fixed price is recognized through a CFD and the traded energy quantity corresponds
to the energy produced by the renewable plant.

2.2. Proxy Storage PPAs

PPAs proved to be an effective instrument to address the major limitations of RE projects, such as high upfront
investment costs and lack of guaranteed revenues. With the same limitations being faced today by energy storage
technologies [12], PPAs might represent a valuable tool to foster their deployment [12]. In general, storage PPAs
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are contracts signed between a corporate buyer and a storage developer in which the buyer commits to pay a
certain fixed quota to the developer for a predefined period, and the developer recognizes the revenues generated
by the storage on the markets, with different rationales depending on the selected contract structure. These
contracts, differently from renewable PPAs, are still very rare, but are expected to increase in relevance in future
years, as the levelized cost of storage (LCOS) for most technologies is expected to strongly decrease [13].
In the literature three contractual structures for storage PPAs are identified [7]:

1. Tolling agreement: this grants the buyer the right to control the storage and to operate it on multiple
markets, while the seller receives energy payments to cover operational costs and capacity payments to
cover fixed costs. This setup is most suited for energy traders and utilities, which have extensive expertise
in energy markets, and it is applied to wind-charged storage projects in Germany [7].

2. Energy contract: here, the buyer pays a fixed price for the electricity injected by an RE plant coupled
with an energy storage technology. Both the storage and the plant are operated by the seller. These
contracts create an incentive mismatch, as the buyer only profits from day-ahead market revenues while
the seller can also profit from offering ancillary services and performing intraday speculation. Energy
contracts are currently adopted for several solar projects combined with battery storage in the US [7].

3. Proxy Storage PPA: the project developer and the energy buyer agree to sell and buy a predetermined
amount of electricity (e.g. the maximum energy discharged by the energy storage in one day) at a fixed
price, for a fixed time interval [7]. The cash flows for buyer and seller are:

• From the energy buyer perspective, the revenue flows are the speculation revenues that would have
been obtained in case of optimal operation of a virtual energy storage on the day-ahead market;
this amount is payed by the seller to the buyer. The expense is the payment from the buyer to the
seller of the fixed PPA premium.

• From the seller perspective the revenue flows are the income due to actual use of the storage facility
on the markets (day-ahead, intraday, ancillary services markets) and the fixed payment, while the
expenses are the cost of the storage and the payment of the optimal day-ahead speculation revenues
to the buyer.

In other words the buyer agrees to buy each and every day a certain amount of discharge energy at
the fixed PPA price; in exchange, it receives the revenues relative to the speculation of the optimally
managed virtual storage in the day ahead market. The optimal management criteria have to be agreed
by the parts. With this scheme the operational risk is fully transferred to the seller, and the seller can
manage the storage facility however he wants. On the other side, the PPA does not restrict the operation
of the storage asset in any market. Thus, it does not limit the potential market revenues for the project
developer. As other revenues could potentially be achieved by the seller through the storage asset, e.g.
performing intraday speculation and offering ancillary services, the total revenue for storage operators
can in principle exceed the one attained via proxy storage PPA, lowering the PPA price below the LCOS
of the storage and making such projects potentially more attractive for the sellers.

The selected model for this study is the one of proxy storage PPAs, being the most promising for the constitution
of a corporate PPA portfolio. On the one side, the corporate buyer does not have to operate the storage, so no
advanced knowledge is required, and benefits directly of the day-ahead market speculation revenues produced
by the storage, thus edging on the electricity price volatility. On the other side, it allows the storage owner to
operate the storage independently from the contract, allowing potentially higher revenues which could reflect
in a reduction of the PPA price. Moreover, since the revenues from the buyer perspective depend only on the
agreed operational scheme and on the day ahead market prices, their computation results to be simple, without
the need to care about many operational constraints, as described in Section 3.

3. Model Description

The tool aims at determining the optimal composition of a hybrid PPAs portfolio (renewable and storage)
maximizing the financial performance while minimizing the risk. The model takes as input readily available
data and, adopting a stochastic approach, determines the optimal portfolio composition from the corporate
buyer perspective among a menu of available contracts. The functional scheme of the model is described in
Figure 1.
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Figure 1: Portfolio optimization model functional scheme.

The tool can be seen as composed of three sub-models, each performing a different function and which are
solved in cascade for the definition of the optimal portfolio composition.

1. Price forecasting sub-model: this model takes as input the historical data regarding hourly day-ahead
market electricity prices, the yearly values of selected price drivers, and the forecast data regarding the
selected price drivers. Then, a data-driven approach is applied using the historical data to fit a regression
model correlating the price profiles to the price drivers, and applying the model the forecast of price drivers
to obtain the forecast hourly electricity prices profiles over the contract duration. Given J scenarios for
the future evolution of price drivers the model will provide J scenarios of the hourly future evolution of
the day ahead market prices.

2. Proxy storage operation sub-model: this model takes as input the forecast electricity prices profiles and
determines the operation of the storage according to the operation logic agreed between the parts. The
result of this model is, for each electricity price profile, the hourly profile of the proxy storage injection
over the contract duration. The injection is expressed in specific terms (MWh/MWh), as energy injected
in each divided by the selected storage contract size. Given J scenarios of electricity prices the model
will provide, for each proxy storage PPA, J operational scenarios.

3. PPA Portfolio optimization sub-model: given for each renewable PPA J specific hourly injection scenarios,
expressed in MWh/MW (energy injected in each hour divided by the renewable contract size), and the
fixed PPA price ki, given for each proxy storage PPA the J specific injection profiles scenarios and the
fixed PPA prices sk, and given the J scenarios of the electricity prices profiles, the model determines
the portfolio composition (type and size of each contract to insert in the portfolio) with two possible
objectives: maximizing the expected net present value (NPV) or maximizing the conditional value at risk
(CVaR). The multi objective optimization is than handled using Pareto fronts.

The input data and the algorithms adopted in each sub-model will be described in the remaining part of this
section. To facilitate the understanding of each sub-model, they will be presented from the last (Portfolio
optimization sub-model) to the first (Price forecasting sub-model), allowing the reader to understand first the
output data each model has to provide, and only afterwards going deep into its characteristics.

3.1. Portfolio Optimization Sub-Model

The goal of the portfolio optimization sub-model is to choose the best renewable and storage PPA mix which
mitigates the off-taker exposure to risk and maximizes the financial performance. The model, moving from the
one presented in [8], performs the optimization with a Monte Carlo simulation in which the uncertain variables
(electricity prices, renewable generation, storage operation) are introduced in J scenarios, generated according
to specific rationales; then the optimal portfolio composition is obtained through a Linear Program (LP) with
two objectives: maximizing the expected value of the NPV and maximize the conditional value at risk (CVaR)

5



of the portfolio.

3.1.1 Input Data

The input data of the multi-objective Linear Program are reported in Table 1:

Quantity Description Unit

pt,y,j Electricity price at hour t of year y in scenario j EUR/MWh

ki Fixed PPA price of renewable project i EUR/MWh

gi,t,y,j Specific generation of renewable project i at hour t of year y in scenario j MWh/MW

Si Nominal capacity of renewable project i MW

qk,t,y,j Specific injection of storage project k at hour t of year y in scenario j MWh/MWh

sk Fixed proxy storage PPA price of project k EUR/MWh

Ss
k Nominal capacity of storage project k MWh

r Annual discount rate −
Y Contract duration years

T Number of hours in a year hours

N Number of available renewable projects −
N s Number of available proxy storage projects −
α Confidence level adopted by the off-taker −
D Total off-taker demand over the contract duration GWh

J Number of considered scenarios −
ϵ Demand residual −

Table 1: Input data.

It is possible to observe in Table 1 that for each scenario J are defined:
1. The day-ahead market price pt,y,j for every hour and year of the contract duration. These scenarios are

generated by the price forecasting model based on the price drivers’ scenarios, as it will be clarified in
Section 3.3. The day-ahead market price is supposed the same for every contract, as the adopted price
forecasting tool is not designed to capture zonal differences.

2. The specific generation of each renewable PPA project gi,t,y,j for every hour and year of the contract
duration. Such scenarios are generated by means of random sampling of the historical time series of specific
production of the considered technology in the location in which project i will be realized. Historical
data are taken form online databases [14]. In other words, the future evolution scenarios of renewable
generation are obtained projecting in the future the randomly-sampled historical specific production data.
More advanced and accurate modeling could have been introduced to consider the expected long-term
production variation applying climatic correction terms and considering the aging of the plants.

3. The specific injection of each proxy storage PPA project qi,t,y,j for every hour and year of the contract
duration. qi,t,y,j assumes positive values when the storage is discharging and negative ones when it is
charging. Such scenarios are generated by the proxy storage operation model, shown in Section 3.2,
starting from the J electricity prices scenarios.

It should be noted that for each scenario j the electricity prices and storage injection profiles are fully correlated,
i.e. scenario j of electricity prices is used to generate scenario j of storage injection. On the other side the
renewable generation scenarios are randomly assigned to each price and storage scenario; this means that the
day-ahead market price is supposed to be uncorrelated with the generation of a single specific plant. The
parameters r, α, D and ϵ depend on the characteristics of the considered corporate off-taker. In particular ϵ
represents the share of the demand in excess with respect to D which the portfolio can cover. For instance, if
ϵ = 10% the total renewable production contained in the portfolio can exceed D by 10%.
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3.1.2 Decision Variables

The decision variables of the optimization problem are referred as C ∈ RN and Cs ∈ RNs

, with N being the
number of available renewable projects and Ns being the number of available storage projects, as defined in
Table 1. These two vectors contain all the capacities allocated to the available contracts, expressed in MW for
the renewable projects and MWh for storage projects. As mentioned, the size of a renewable contract represents
the contracted power, while the size of a proxy storage PPA contract represents the contracted daily discharge
energy. The production (in physical value) of renewable project i in scenario j in hour t of year y can be
expressed as:

Gi,t,y,j = Cigi,t,y,j (1)

The injection (in physical value) of storage project project k in scenario j in hour t of year y can be expressed
as:

Qk,t,y,j = Cs
kqk,t,y,j (2)

Where qk,t,y,j is the specific proxy storage injection as defined in Table 1.

3.1.3 Problem Formulation

The portfolio optimization is performed with two objectives: maximizing the net present value and maximizing
the conditional value at risk of the portfolio. First of all it is necessary to define the expression for the NPV
and the CVaR in each scenario j.
The NPV for each renewable project is defined as the sum of the actualized net cash flows produced by the
project over the contract duration [15], and can be expressed as:

NPVi,j =

Y∑
y=y0

T∑
t=1

(pt,y,j − ki)Cigi,t,y,j
(1 + r)y−y0

(3)

Basically, Equation 3 states that the net cash flows are defined as the difference between the market price
pt,y,j and the fixed renewable PPA price ki, multiplied by the production of the plant Cigi,t,y,j , since we are
considering a pay-as-produced PPA. Then the net cash flows are actualized and cumulated to find the NPV.
Then, the NPV for each proxy storage PPA project is defined as the sum of the actualized net cash flows
produced by the project over the contract duration, and can be expressed as:

NPVk,j =

Y∑
y=y0

T∑
t=1

pt,y,jC
s
kqk,t,y,j −

Cs
k

24
sk

(1 + r)y−y0
(4)

Basically, Equation 4 states that the net cash flows for a storage contract are defined as the difference between
the market price pt,y,j multiplied by the proxy storage injection (or withdrawal) Cs

kqk,t,y,j and the fixed proxy
storage PPA price sk multiplied times the amount of energy the buyer agreed to buy each and every hour within
the proxy storage PPA, equal to the daily energy Cs

k divided by 24 (number of hours in a day). Then the net
cash flows are actualized and cumulated to find the NPV.
Then, it is possible to sum the NPV generated by every renewable and storage project, defined in Equation 3
and Equation 4, to find the overall NPV of the portfolio in each scenario j.

NPVj =

N∑
i=1

Y∑
y=y0

T∑
t=1

(pt,y,j − ki)Cigi,t,y,j
(1 + r)y−y0

+

Ns∑
k=1

Y∑
y=y0

T∑
t=1

pt,y,jC
s
kqk,t,y,j −

Cs
k

24
sk

(1 + r)y−y0
(5)

Beside the NPV, it is necessary to define the other objective used in the optimization, the conditional value
at risk (CVaR), used as a measure of risk for portfolio optimization [16]. The CVaR is defined based on the
confidence level that the firm is willing to accept (α), as define in Table 1, so it will be referred to as α-CVaR.
Before introducing this quantity it is necessary to introduce another estimate, that is the value at risk (α-VaR),
defined as the percentile of the NPV distribution with a specified confidence level (α). This parameter represents
the value of NPV that has probability α of being higher than the realized NPV, or in other words the value of
NPV that is exceeded with probability 1 − α [17], as described in Figure 2. Then, it is possible to define the
conditional value at risk (α-CVaR) the expected value of the NPV for values of NPV distribution lower than
the α-VaR, as in Figure 2.
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Figure 2: α-VaR and α-CVaR example.

For continuous distributions, CVaR is defined as the conditional expected NPV under the condition that NPV
is lower than α-VaR [17].

α−CVaR = E(NPV|NPV < α−VaR) (6)

Let f(x, y) be the NPV associated to the decision variable x = [C,Cs]
T and the uncertain input data y.

• The decision variable x ∈ RNx can be considered ad the vector containing the share of each renewable
and storage project, with Nx being the number of available projects.

• The input data y ∈ RNy can be considered as the vector containing the quantities affected by uncertainty,
modeled as random variables, with J being the number of available scenarios, or in other words the
number of realizations.

For each x, f(x, y) is a random variable having a distribution in RNy dependant on the distributions of y.
Defining the probability of a realization (scenario) of y as P (y), the probability of the NPV (f(x, y)) not
exceeding a threshold ζ is:

Ψ(x, ζ) =

∫
f(x,y)<ζ

P (y)dy (7)

Now it is possible to define the α-VaR, that we will call ζα(x), as the minimum value of ζ which gives probability
Ψ(x, ζ) larger or equal than α [17].

ζα(x) = min(ζ ∈ R : Ψ(x, ζ) ≥ α) (8)

As we have already said it represents the α-percentile of the NPV distribution and it is function of the decision
variable x.
Then, it is possible to find the conditional value at risk (α-CVaR), that we call ϕα(x), applying the definition
in Equation 6 [17].

ϕα(x) =
1

α

∫
f(x,y)<ζα(x)

f(x,y)P (y)dy (9)

It represents the expected value (generalized average) of the NPV distribution, under the condition that the
NPV is lower than the α-VaR (ζα(x)).
As last step, since we are considering J realizations yi of the random vector y in a Monte Carlo simulation, it is
possible to reformulate Equation (9) in to a Linear Program (LP) by introducing the auxiliary variable z ∈ RJ ,
where J is the number of considered scenarios [17]. The linear formulation of the conditional value at risk is:

α−CVaR = ϕα(x) = ζ − 1

α

J∑
j=1

πjzj (10)

with 
zj ≥ ζ − f(x,yj)

zj ≥ 0

j ∈ {1, ..., J}
ζ ∈ R

(11)
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We should observe that πj is the probability of the j-th scenario, which is supposed to be always the same, since
a random sampling is performed, equal to πj = 1/J . The new expression of the α-CVaR is simply given by the
α-VaR minus the weighted average of the differences between α-VaR and NPV (loss) only for the scenarios in
which NPV < α-VaR. This is given by the first two constraints that impose that the auxiliary variable zj must
be the greater between 0 and ζ−f(x, yj) (the aforementioned loss); so when ϕα is maximized, zj are minimized
and assume value zj = 0 when scenario j gives an NPV larger than α-VaR, and zj = ζ− f(x, yj) when scenario
j gives an NPV lower than α-VaR. The variable ζ needs to be added as decision variables.
It should be observed that maximizing the α-CVaR corresponds to moving to the right (to high values) the
left tail of the NPV distribution, that is maximizing the NPV in the worst cases: this is why maximizing the
α-CVaR can be seen as equivalent to minimizing the risk of the portfolio. Instead, when the expected value
of the NPV is maximized, the generalized mean of the NPV distribution will tend to be maximized, but the
left tail of the distribution can still assume low values, representing a higher level of risk, but average higher
financial performance of the portfolio.
Once NPV and CVaR have been defined, it is possible to define the Linear Programs adopted for their maxi-
mization. First, the expected NPV maximization program is defined. The objective function to be maximized,
as said, is the expected value of the NPV of the portfolio, which, starting from Equation 5, is expressed as:

E [NPV] =
1

J

J∑
j=1

 N∑
i=1

Y∑
y=y0

T∑
t=1

(pt,y,j − ki)Cigi,t,y,j
(1 + r)y−y0

+

Ns∑
k=1

Y∑
y=y0

T∑
t=1

pt,y,jC
s
kqk,t,y,j −

Cs
k

24
sk

(1 + r)y−y0

 (12)

The expected value has been converted to the average of the scenarios, since each scenarios is considered to
have the same probability πj = 1/J , as they are randomly sampled in a Monte Carlo simulation. Then, it is
necessary to define the constraints, imposing at first that the demand residual from RE generation must go from
zero to ϵD, as defined in Table 1. For every scenario j ∈ {1, ..., J} the residual demand constraint is expressed
in Equation 13.

0 ≤
N∑
i=1

Y∑
y=y0

T∑
t=1

Cigi,t,y,j −D ≤ ϵD (13)

Then it is necessary to impose that the size allocated to each contract (renewable or storage) is bound between
zero and the nominal size Si and Ss

k, as defined in Table 1. Such constraint are represented in Equations (14),
(15) and hold for every contract: i ∈ {1, ..., N}, k ∈ {1, ..., Ns}.

0 ≤ Ci ≤ Si (14)

0 ≤ Cs
k ≤ Ss

k (15)

In conclusion the optimization problem can be formulated merging Equations (12), (13), (14), (15).

min
C,Cs

− 1

J

J∑
j=1

[
N∑
i=1

Y∑
y=y0

T∑
t=1

(pt,y,j − ki)Cigi,t,y,j
(1 + r)y−y0

+

Ns∑
k=1

Y∑
y=y0

T∑
t=1

pt,y,jC
s
kqk,t,y,j −

Cs
k

24
sk

(1 + r)y−y0


s.t. 0 ≤

N∑
i=1

Y∑
y=y0

T∑
t=1

Cigi,t,y,j −D ≤ ϵD j ∈ {1, ..., J}

0 ≤ Ci ≤ Si i ∈ {1, ..., N}
0 ≤ Cs

k ≤ Ss
k k ∈ {1, ..., Ns}

(16)

As it is possible to see the problem is formulated as a Linear Program with Ntot = N +Ns decision variables
and 2(J +N +Ns) inequality constraints.
Lastly, it is necessary to define the optimization problem for α-CVaR maximization. The objective function to
be maximized, as said, is α-CVaR of the portfolio, which, according to Equation 10, is expressed as:

α−CVaR = ζ − 1

α

J∑
j=1

πjzj (17)

The constraints are: the ones defined in Equation (11) for the definition of the auxiliary variable, the ones
defined in Equation (13) for the demand residual, the ones defined in Equations (14), (15) for the contract size
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and an additional constraint for the definition of the NPV in scenario j (f(x,yj) = NPVj), obtained from
Equation (5). The problem can be formulated as in Equation (18).

min
C,Cs,ζ

− ζ +
1

α

J∑
j=1

πjzj

s.t. zj ≥ ζ −NPVj j ∈ {1, ..., J}
zj ≥ 0 j ∈ {1, ..., J}

NPVj =

N∑
i=1

Y∑
y=y0

T∑
t=1

(pt,y,j − ki)Cigi,t,y,j
(1 + r)y−y0

+

Ns∑
k=1

Y∑
y=y0

T∑
t=1

pt,y,jC
s
kqk,t,y,j −

Cs
k

24
sk

(1 + r)y−y0
j ∈ {1, ..., J}

0 ≤
N∑
i=1

Y∑
y=y0

T∑
t=1

Cigi,t,y,j −D ≤ ϵD j ∈ {1, ..., J}

0 ≤ Ci ≤ Si i ∈ {1, ..., N}
0 ≤ Cs

k ≤ Ss
k k ∈ {1, ..., Ns}

(18)

As it is possible to see the problem is formulated as a Linear Program with Ntot = N+Ns+1 decision variables,
4J + 2(N +Ns) inequality constraints and J equality constraints.

3.1.4 Multi-Objective Optimization

In general it can happen that the higher the potential profits, in this case the expected value of the NPV, the
greater the risk of the portfolio represented by a lower value of the CVaR. In other words, when we install
capacities of the RE projects to achieve the highest expected value of the NPV, the projects are simultaneously
exposed to potentially lower values of NPV. This results in a reduction in the value of CVaR. To manage the
multi-objective optimization, Pareto fronts [18] are used. Here two objective functions are considered: one is
treated as the objective function of a single-objective optimization problem while the other is forced to take a
specified value. First, a maximum NPV optimization is performed to quantify the maximum value of expected
NPV, independent of risk. Then, a maximum CVaR optimization is performed to quantify the minimum
portfolio’s risk exposure, independent of the overall gains. The interval of CVaR is obtained with these two
optimizations, adopting as lower bound the CVaR found in the NPV maximization problem and as upper bound
the CVaR found in the CVaR maximization problem. This interval is divided into m intervals, corresponding to
m values of CVaR. Finally, the Pareto front is built by performing m optimizations that maximize the expected
value of the NPV while being subject to a constraint on the corresponding value of CVaR.

3.2. Proxy Storage Operation Sub-Model

The aim of this sub-model is to generate for each proxy storage PPA available the J scenarios of hourly specific
storage injection profile qk,t,y,j required for the PPA portfolio optimization model as described in Section 3.1.1.
The adopted storage PPA model is the one of proxy storage PPAs defined in Section 2.2, according to which
the buyer agrees to buy each and every day the discharge energy Cs

k at the fixed PPA price sk and, in exchange,
it receives the revenues relative to the speculation of the optimally managed virtual storage in the day ahead
market. The optimal management criterion has to be agreed by the parts, and therefore is not unique. The
operational model presented in the article is inspired to the one reported in [7]. This model defines the operation
of the storage as the one which maximizes the speculation revenues on the day-ahead market, subject to the
main storage technical constraints. The model is described by the functional diagram represented in Figure 3.
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Figure 3: Proxy storage operation model functional scheme.

In particular the model takes as input the hourly electricity price profiles and the main technical characteristics
of the storage, and outputs the specific injection profile according to the defined operational logic. Given
J scenarios of electricity prices pk,t,y,j the model will provide J scenarios of storage operation. The specific
injection is expressed in MWh/MWh, representing the energy injected (or withdrawn) each and every hour
normalized with respect to the size of the contract, which represents the maximum injected energy allowed to
the buyer (Section 2.2).

3.2.1 Input Data

The input data required by the model are reported in Table 2.

Quantity Description Unit

pt,y,j Electricity price at hour t of year y in scenario j EUR/MWh

Hk Energy-to-Power ratio of storage k h

ηck Charging efficiency of storage k −
ηdk Discharging efficiency of storage k −
nc
k Number of cycles per day of storage k −
T Number hours in a year (8760) h

Y Duration in years of the contracts k y

Table 2: Input data.

Considering the input data reported in Table 2, it is possible to observe that:
1. The day-ahead market price pt,y,j scenarios for every hour and year of the contract duration are generated

by the price forecasting model based on the price drivers’ scenarios, as it will be clarified in Section 3.3.
2. The energy-to-power ratio Hk and the charging and discharging efficiencies ηck, η

d
k of every storage are

defined based on the adopted technology and storage size.
3. The number of cycles per day nc represents the number of cycles with which the storage owner intends

to provide the buyer with the required energy. The concept is that, if the corporate buyer purchases
1MWh of discharge energy in the proxy storage PPA, the seller can virtually provide it with one cycle of
a 1MWh storage or two cycles of a 0.5MWh, and obviously the performance will be different. In other
words the number of cycles per day represents how much the storage is undersized with respect to the
daily energy traded in the contract.
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3.2.2 Problem Formulation

The operation of each proxy storage is defined through a Linear Program. The optimization algorithm de-
termines the optimal dispatch of the virtual storage that maximizes the revenue of the buyer (REV ) over
the considered time horizon (T ) while fulfilling the storage constraints. The revenues coming from day-ahead
speculation, i.e. the possibility of buying and selling electricity when it is most convenient, can be defined for
storage k in scenario j as in Equation (19).

REVk,j =

Y∑
y=1

T∑
t=1

pt,y,j(Vk,t,y,j − Uk,t,y,j) (19)

Uk,t,y,j is the charging energy of storage k in hour t of year y of scenario j and Vk,t,y,j is the discharging charging
energy of storage k in hour t of year y of scenario j. The energy for charging and discharging the virtual storage
is bought and sold at the known day-ahead market price (pt,y,j), supposed to be the same for every storage
contract, as described is Section 3.1.1. Uk,t,y,j , Vk,t,y,j and the state of energy Ek,t,y,j are the decision variables
of the optimization problem for all time steps; they can be grouped into vectors as: Uk,j ∈ RY×T , Vk,j ∈ RY×T

and Ek,j ∈ RY×T+1. In total the decision variables are 3(T + Y ) + 1 for each scenario j and for each storage
contract k. The additional decision variable represents the last state of energy of the storage Ek,T+1,Y,j .
The constraints are introduced to model the behavior of storage technologies. The energy stored within the
storage unit in the next time step (Ek,t+1,y,j) is expressed as a linear function of the energy stored in the
current time step (Ek,t,y,j), the energy charged into the storage (Uk,t,y,j), and the energy discharged from the
storage (Vk,t,y,j), during the current time step, and of the charging and discharging efficiencies (ηck and ηdk). Self-
discharging losses are neglected, as they are negligible when operating the storage with daily cycles. Accordingly,
the storage behavior is expressed through Equation (20), which applies for all time steps t ∈ {1, ..., T} and
y ∈ {1, ..., Y }.

Ek,t+1,y,j = Ek,t,y,j + ηckUk,t,y,j −
Vk,t,y,j

ηdk
(20)

The stored energy, and the charging and discharging ones are non-negative quantities. Furthermore, the energy
stored is constrained by the installed storage energy capacity, defined as the reference contract size divided by
the number of cycles per day Emax,k = Cs,ref

k /nc
k. Since the aim is to find the per-unit injection profile, Cs,ref

k is
supposed to be at the reference value Cs,ref

k = 1MWh. Then, the hourly charging and discharging energies are
limited by the maximum charging and discharging power of the unit (Emax,k/Hk), where Hk is the equivalent
duration of storage k, as defined in Table 2. These aspects result in the constraints described in Equations (21),
(22), (23), which apply for all time steps t ∈ {1, ..., T} and y ∈ {1, ..., Y }.

0 ≤ Ek,t,y,j ≤ Emax,k ⇒ 0 ≤ Ek,t,y,j ≤
Cs,ref

k

nc
k

(21)

0 ≤ Uk,t,y,j ≤
Emax,k

Hk
⇒ 0 ≤ Uk,t,y,j ≤

Cs,ref
k

Hknc
k

(22)

0 ≤ Vk,t,y,j ≤
Emax,k

Hk
⇒ 0 ≤ Vk,t,y,j ≤

Cs,ref
k

Hknc
k

(23)

The next constraint aims to impose that the amount of injected energy by the virtual storage each and every
day is lower or equal than the limit Cs,ref

k = 1MWh. This is imposed through Equation 24, for all periods
i ∈ {1, ..., T/24} and for all years y ∈ {1, ..., Y }.

24(i)∑
t=24(i−1)+1

Vk,t,y,j ≤ Cs,ref
k (24)

A periodicity constraint is imposed to force the same state of charge at the beginning and at the end of given
time intervals (e.g. a day); this is done to make the solution faster, as the problem can be solved independently
for each day, and also not to create any energy imbalance to the storage owner. For all periods i ∈ {1, ..., T/24}
and for all years y ∈ {1, ..., Y } this constraint is represented in Equation (25).

Ek,1,1,j = Ek,24(i)y,j (25)

The energy stored at the beginning of each period (Ek,1,1,j) is not predefined but is a decision variable.

12



In conclusion it is possible to formulate the problem which defines the storage operation for the virtual storage
k in scenario j as in Equation (26), merging the objective function defined in Equation (19) with the constraints
defined in Equations (20), (21), (22), (23), (24), (25).

min
Uk,j ,Vk,j ,Ek,j

−
Y∑

y=1

T∑
t=1

pt,y,j(Vk,t,y,j − Uk,t,y,j)

s.t. Ek,t+1,y,j = Ek,t,y,j + ηckUk,t,y,j −
Vk,t,y,j

ηdk
t ∈ {1, ..., T}, y ∈ {1, ..., Y }

0 ≤ Ek,t,y,j ≤
Cs,ref

k

nc
k

t ∈ {1, ..., T}, y ∈ {1, ..., Y }

0 ≤ Uk,t,y,j ≤
Cs,ref

k

Hknc
k

t ∈ {1, ..., T}, y ∈ {1, ..., Y }

0 ≤ Vk,t,y,j ≤
Cs,ref

k

Hknc
k

t ∈ {1, ..., T}, y ∈ {1, ..., Y }

24(i)∑
t=24(i−1)+1

Vk,t,y,j ≤ Cs,ref
k i ∈ {1, ..., T/24}, y ∈ {1, ..., Y }

Ek,1,1,j = Ek,24i)y,j i ∈ {1, ..., T/24}, y ∈ {1, ..., Y }

(26)

This Linear Program is solved for every proxy storage PPA k and for every scenario j, obtaining the specific
injection and withdrawals in hour t of year y, reported as Vk,t,y,j and Uk,t,y,j . Lastly, the specific storage
operation profile qk,t,y,i (considering injections as positive energy flows), is found according to Equation (27).

qk,t,y,i = Vk,t,y,j − Uk,t,y,j (27)

3.3. Price Forecasting Sub-Model

The goal of the price forecasting sub-model is to forecast the hourly day-ahead market prices profiles in different
scenarios, providing for every hour t, every year y and every scenario j an estimate of the electricity price pt,y,j
for the whole PPA contracts duration, required by the other sub-models as described in Sections 3.1.1, 3.2.1.
Two main types of electricity prices forecasts (EPF) exist [9]:

1. Short-term EPF: in the order of hours or days, data-driven approaches are most commonly applied. Such
forecasts are used typically for electricity trading and short-term operation scheduling. Such estimates
are able to provide hourly resolution or more [19].

2. Long-term EPF: in the order of months or years, they are mostly obtained using econometric, market-
based models [20, 21, 22, 23, 24], which capture the market dynamics by modelling the marginal cost
of electricity generators. This is due to the ability of market-based models to describe, and potentially
anticipate, long-term variations in the relationship between the electricity price and relevant quantities
(e.g. policy-driven variations not observed in the past) [9]. Such forecasts, typically, are provided as
average prices over a long time period, with low time resolution.

The adopted EPF model, inspired from the one described in [9], is data-driven and aims to provide finely-
resolved long-term prediction of the wholesale electricity market price. This objective requires the combination
of long-term and highly time-resolved predictions, from hourly to yearly to multi-year. The model does this
starting from historical data and from market-based predictions of the most relevant quantities influencing the
electricity prices profiles, namely price drivers (demand, generation, primary energy prices etc.).
This is addressed by adopting a prediction approach based on Fourier analysis, where the electricity price is de-
scribed through the sum of trigonometric functions with different amplitudes and frequencies. More specifically,
the hourly electricity price over a yearly horizon is decomposed into two terms:

1. Its base evolution, which is described through the dominant frequencies and is responsible for the main
price behavior.

2. Its volatility, which is described by all the residual frequencies and is responsible for extreme price values.
The main idea behind this approach is that the base evolution of the electricity price can be determined by
looking at the average annual values of the price drivers. The volatility of the electricity price, as well as its
extreme values, are accounted for by adding a random residual profile (i.e. residual frequencies) obtained from
historical hourly time series.
It is important to observe that the proposed approach does not aim at providing point forecasts of hourly market
prices for electricity trading or operation optimization purposes, but rather realistic hourly price profiles for the
evaluation of existing or planned assets.
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The uncertainty associated with the model input data, i.e. the price drivers, is characterized performing a Monte
Carlo simulation: first a probability density function is assigned to each price driver, then it is sampled to find
the J scenarios of electricity prices, which are lastly translated to J scenarios of electricity prices adopting this
model.

3.3.1 Input Data

The input-data set includes electricity prices, generation and demand, as well as fossil fuels and carbon prices,
and aims to reflect the most relevant factors defining the electricity price. For all price drivers, two types of
input data are collected:

1. Historical values, which are used to train and validate the model. Historical values of price drivers and
electricity price are available from 2010 to 2021 with annual resolution; also the historical hourly values
of electricity prices are available from 2010 to 2022. The sources of the data are described in Table 3.

2. Future predictions, which are used to determine future values of the electricity price. Regarding these
data, several scenarios are provided by different sources. Such scenarios do not always cover all the price
drivers and can span different time horizons. Here, the future prediction for the Italian energy sector are
taken from the Terna scenario description 2022 [25], covering the time horizon 2022-2040.

All the input data and the relative sources are reported in Table 3.

Quantity Unit Historical values Future predictions

Electricity Prices

National Uniform Price EUR/MWh GME [26] -

Total electricity sector

Electricity demand TWh Terna [27] Terna [25]

Electricity generation TWh Terna [27] Terna [25]

Electricity generation mix

Wind generation TWh Terna [27] Terna [25]

Solar generation TWh Terna [27] Terna [25]

Hydro generation TWh Terna [27] Terna [25]

Thermal generation TWh Terna [27] Terna [25]

Fossil fuel prices

Natural gas price EUR/MWh BP [28] Terna [25]

Oil price EUR/MWh BP [28] Terna [25]

Table 3: Input data.

An important observation is that the future predictions of the price drivers are reported by Terna [25] in only
two time shots: 2030, where two scenarios are reported ("Fit-for-55" and "Late Transition") and 2040, where
three scenarios are defined ("Distributed Energy IT", "Global Ambition IT" and "Late Transition"). In 2030
the scenario "Late Transition" represents the one with lower renewable sources penetration, while the "Fit-for-
55" represents the best case from the RES penetration standpoint. In 2040, the scenario "Late Transition"
represents also in this case one with lower renewable sources penetration, while the "Distributed Energy IT"
represents the best case. The price forecasting model, on the other side, requires as input the values of the price
drivers in each and every year from 2022 to 2040, and the generation of the J price scenarios for each yearly
price drivers evolution.
Considering the years 2030 and 2040, each price driver was considered to be uniformly distributed between
the "best" case and the "worst" case. The assumption of an uniform distribution was made according to the
principle of maximum entropy [29], not having any informative prior regarding the price drivers’ distributions.
Then J scenarios are created sampling the uniform distributions of each price driver in 2030 and 2040. The
sampling is designed in such a way that full correlation is present between the 2030 and the 2040 realization,
in other words, if sample j coincides with the "Late Transition" scenario in 2030 it will result in the "Late
Transition" scenario also in 2040. In this way a set of J scenarios for each price driver in 2030 and 2040 is
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created. Then an interpolation is made to obtain for every scenario j the yearly value of each price driver for
all year ranging from 2022 to 2040. The results for the most relevant price drivers, as defined in Section 3.3.2,
are depicted in the fan charts in Figure 4. It is possible to observe how the PV production and the demand
are expected to increase in every scenario, while the thermal generation is expected to decrease. Moreover it
is possible to observe how all the J gas price scenarios coincide: this happens because the Terna scenario [25]
provides a single long term estimate of gas price, set to the same value for every scenario.
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(a) PV Production.
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(b) Thermal generation.
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(c) Demand.
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(d) Gas price.

Figure 4: Fan charts of the most relevant price drivers.

3.3.2 Model Description

The main idea behind the proposed approach is that a correlation exists between the base evolution of the
electricity price and the average annual values of the price drivers. The base evolution of the electricity price
corresponds to its most relevant fluctuations, such as annual, weekly, daily, or intra-day fluctuations.
To illustrate, consider the so-called price cannibalization effect, namely the depressive influence on the elec-
tricity price at times of high output from intermittent renewable generation. For example, high shares of solar
penetration, which can be described by high values of annual solar generation, result into low values of the
electricity price in summer and during the day, and into a greater seasonal and intra-day variability of the
electricity price. In other words, a correlation exists between annual price drivers and the base evolution of the
electricity price, which can be decomposed into a limited number of spectral components.
Following this idea, the information on the annual average values of the price drivers can be used to predict
future trends of the hourly price profile. We apply Fourier analysis [30] to the hourly profiles of electricity
price over an annual time horizon. In the case of the electricity price profile, the trigonometric Fourier series
representation is given by Equation (28).

pt = a0 +
2

N

N/2∑
n=1

an cos

(
2nπt

N

)
+ bn sin

(
2nπt

N

)
(28)

The used terms are:
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• a0: mean value of the electricity price.
• an, bn: Fourier coefficients, defining the shape of the periodic functions at frequency n.
• n: frequency (number of periods per year).
• N : length of the considered time series.
• t: time instant in which the Fourier series is evaluated.

These coefficients are determined via fast Fourier transform (FFT). Since we apply FFT on annual time series
with hourly resolution, we have N = 8760 and t ∈ {1, ..., T} with T = 8760 is the total number of hours in a
year. The complete time series is described by a set of N coefficients, which are constant on the entire domain
of the sequence, i.e. on one year. To obtain the value of the original time series, the discrete Fourier series
is evaluated at time instant t. Therefore, the entire annual time series is described through a set of annual
coefficients.
To obtain the base evolution of the electricity price profile, only the frequencies of the Fourier series with the
largest amplitude are considered. These are denoted as main frequencies, nmain. Thereby, a smoothed profile
capturing only the major dynamics of the electricity price is obtained. We refer to this as price approximation,
which is defined in Equation (29).

ft = a0 +
2

N

∑
n∈nmain

an cos

(
2nπt

N

)
+ bn sin

(
2nπt

N

)
(29)

ft is the approximate (filtered) electricity price at time instant t, which consists of the main frequency compo-
nents. While the price approximation captures the base evolution of the electricity price, hence the most relevant
price dynamics, it is unable to describe fluctuations or times of extreme prices that go beyond the base patterns
of the price profile. These are described by a residual term, Rt, which consists of all the residual frequencies
not included into the price approximation. Thus, the electricity price can be expressed as in Equation (30).

pt = ft +Rt (30)

Overall the proposed approach is based on the following steps:
1. The Fourier coefficients describing the hourly profile of historical electricity price are determined.
2. Regression models are trained by using price drivers to predict the Fourier coefficients corresponding to

the price approximations.
3. Future values of the Fourier coefficients of the price approximation are predicted based on future values

of the price drivers
4. Future values of the residual term are obtained by sampling historical residual term time series.
5. The future values of the Fourier coefficients are anti-transformed to obtain the base evolution in time

domain, than the residual term is added to obtain the final hourly price profile forecast.
The adopted regression model takes as an input the annual values of the price drivers and produces as outputs
the Fourier coefficients of the price approximation for that year. The selection of the regression model for this
application is analyzed in literature [9]; in particular, the required steps are:

1. Identify the main frequencies in the historical electricity prices.
2. Select the most suitable regression model and the regressors subdividing the historical data regarding

price drivers and yearly Fourier coefficients into two set, a training set and a test set, on which the
performance of difference regression models are compared.

As mentioned, the first step consists in the identification of the most relevant frequency components in the
Italian price profile. To find such components it is possible to apply the fast Fourier transform (FFT) to the
historical price time series, reported in Figure 5a, and identify the most relevant components, including both
high frequency and low frequency dynamics.
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Figure 5: Most relevant frequencies selection.

The choice was to select the eight most relevant frequency components, defined as the ones with maximum
magnitude, the result is represented in Figure 5a. The selected frequencies are:

nmain = {0, 1, 2, 52, 365, 730, 1095, 1460}

Corresponding to: average price, yearly dynamics, half year dynamics, weekly dynamics, daily dynamics, half
day dynamics, eight hours dynamics and six hours dynamics. The Fourier coefficients corresponding to such
frequencies, according to Equation (28), are reported in Equation (31).

Cmain = {a0, a1, a2, a52, a365, a730, a1095, a1460, b1, b2, b52, b365, b730, b1095, b1460} (31)

Overall, the main price frequencies allow capturing the intra-day patterns given by morning and evening peaks,
as well as seasonal patterns given by lower prices in summer and higher prices in winter. A comparison between
the original price profile and the smoothed one, obtained just by the most relevant frequencies nmain is reported
in Figure 5b. It is possible to observe how, as expected, the main intra-day dynamics are properly represented.
The Fourier transform was applied for all years of the historical day-ahead market price time series, from 2010
to 2022, obtaining for every year the value of the Fourier coefficients relative to most relevant price frequency
components, reported in Equation 31.
Once the historical data of the main Fourier coefficients are obtained, it was necessary to perform the selection
of the regression model. The choice of the regression model aims to define the following aspects:

1. Which family of regression model to adopt.
2. Which historical data, among the available ones, to adopt as regressors.
3. What is the best regression model’s setup for each Fourier coefficient.

An in-depth investigation of the regression model to adopt for electricity prices time series is present in literature
[9]. In [9], a comparative assessment of different regression models is carried out, which includes linear regression,
Gaussian process regression (GPR) and artificial neural networks (ANN). For all models, two approaches are
considered:

1. Single-output: the Fourier coefficients describing the annual price approximation, i.e. an and bn with n ∈
Cmain, are predicted using separate models. The advantage of this approach stems from the potentially
different relationships between different coefficients and price drivers, where all these relationship can be
tuned individually.

2. Multi-output: the Fourier coefficients describing the annual price approximation are predicted using a
single model. The advantage of this approach derives from the possibility of taking into account the
potential interdependence of the predicted coefficients.

In the case of linear regression, various regressor configurations are investigated (linear, quadratic, and loga-
rithmic). In the case of GPR, different kernel configurations are compared. Concerning ANN, the number of
neurons and layers is varied and different activation functions are compared. All models are trained and selected
using historical annual values of the price drivers and historical values of the Fourier coefficients for different
European markets.
The MAPE (mean average percent error) of the price approximation function is used to assess the prediction
performance of the different models. It is defined as in Equation (32).

MAPE =
100

H

H∑
t=1

|f̂t − ft|
|ft|

(32)
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where f̂t s the t-th prediction of function f and ft its observed value.
The result, according to literature [9], is that the best regression model is Gaussian process regression (GPR),
in the single-output configuration. For this reason, the decision was to adopt GPR as a regression model also
in the Italian case study, supposing the correlation between price drivers and price profile features to be similar
in European countries. Under this assumption, fifteen GPR models need to be defined, one for each Fourier
coefficient.
Once the regression model to adopt is identified, it is necessary to define for each GPR model the kernel
function and the regressors to adopt. The selection of such features was performed dividing the historical data
(price drivers and Fourier coefficients) into two set: the training set, ranging form 2010 to 2019 and the test
set consisting of year 2020. The regression models are trained on the training set and their performance is
compared on the test set, adopting the MAPE as a key performance indicator (KPI), as defined in Equation
(32). It was chosen to discard the data relative to 2021 and 2022 because in these years, due to the energy
crisis, the long term (yearly or seasonal) dynamics of the price drivers were determined more by the intra-year
variation of the price drivers (e.g. gas price) than the yearly average value of the aforementioned drivers. This
leads the models relative to the lower frequency dynamics (a1, b1, a2, b2), to be wrongly trained. For this reason
it was chosen to discard years 2021 and 2022 from the evaluation and training of the models.
The selection of the regressors (price drivers) and the kernel functions was performed in an iterative fashion.
First, fixing the kernel functions and finding the price drivers which, used as regressors, provided the lowest
MAPE; then, fixed the regressors, finding the best kernel functions, and so on till the convergence. The kernel
functions that were investigated are: linear and squared exponential. Instead the investigated regressors are the
price drivers reported in Table 3. The result of the model tuning are reported in Table 4.

Fourier coefficient Kernel function Regressors

a0 Linear Gas Price, PV production, Thermal production, Demand

a1 Squared exponential Gas Price, PV production, Thermal production, Demand

a2 Squared exponential Gas Price, PV production, Thermal production, Demand

a52 Squared exponential Gas Price, PV production, Thermal production, Demand

a365 Linear Gas Price, PV production, Thermal production, Demand

a730 Squared exponential Gas Price, PV production, Thermal production, Demand

a1095 Linear Gas Price, PV production, Thermal production, Demand

a1460 Linear Gas Price, PV production, Thermal production, Demand

b1 Squared exponential Gas Price, PV production, Thermal production, Demand

b2 Squared exponential Gas Price, PV production, Thermal production, Demand

b52 Squared exponential Gas Price, PV production, Thermal production, Demand

b365 Linear Gas Price, PV production, Thermal production, Demand

b730 Squared exponential Gas Price, PV production, Thermal production, Demand

b1095 Linear Gas Price, PV production, Thermal production, Demand

b1460 Linear Gas Price, PV production, Thermal production, Demand

Table 4: Kernel functions and regressor choice.

The configuration of kernels and regressors defined in Table 4 is the one which provides the lowest value of
MAPE. In particular it results that MAPE = 20% for 2020 price profile, with models trained on 2010 to 2019
profiles. The actual 2020 price profile and the forecast filtered profiles can be visually compared in Figure 6.
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Figure 6: Forecast and actual price profiles comparison.

In particular, in Figure 6a the overall yearly profiles are compared, and it is possible to observe how the regression
model is capable of describing the main features. The same observation can be extended to Figure 6b, in which
the daily price profiles are compared; in particular, it is possible to observe how the model is capable also to
capture the main intra-day variations of the electricity price.
Once the regression models have been selected and validated, they can be applied to the scenarios of price drivers
described in Section 3.3.1 to obtain the scenarios of the most relevant Fourier coefficients. Then the scenarios
of the Fourier coefficients are transformed into filtered electricity prices scenarios ft, through Fourier anti
transform. Lastly the historical residuals Rt are randomly sampled and added the forecast filtered electricity
prices, as in Equation (30), to obtain the forecast electricity prices pt for every scenario j. The forecast is
performed for every scenario j and for every year y to obtain the prices scenarios pt,y,j , required as input data
from the other models, as described in Section 3.1.1, 3.2.1.

3.3.3 Results

In this section the forecast electricity prices scenarios are described. As mentioned in Section 3.3.1, the regression
model is trained on the historical data from 2010 to 2020 and then is applied to the price drivers scenarios to find
the hourly electricity prices scenarios from 2021 to 2040 over a 20 years horizon. A total of J = 100 scenarios
were generated. The results are represented in Figure 7.
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Figure 7: Forecast electricity prices scenarios.

Considering the box plot in Figure 7a, the red line in each box represents the average electricity price in the
considered year, the blue lines represent the 25th and 75th percentile and the black bars the extreme values
assumed by the data.
A first observation from Figure 7a is that the average electricity price tends to stay the same from 2025 to 2040;
this can be explained by the fact that the average electricity price can be seen as correlated to the gas price
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and, in the price drivers definition described in Section 3.3.1, the gas price is supposed to be the same in 2030
and 2040, as from Terna hypotheses [25]. Then, always considering Figure 7a, it is possible to observe how the
electricity price distribution tends to be more and more dispersed. This happens because the intra-day price
differentials between day and night tend to increase with the passing of time. The reason in that, according to
the price drivers scenarios, shown in Figure 4, the PV production will tend to increase with time to reach the
environmental objectives, and this causes the day-time prices to decrease and the night-time prices to increase
due to the cannibalization effect. The cannibalization effects arises when there are many renewable plants which
production is fully correlated: when they produce all together they cause a depression of the price due to the
drastic increase in the offer. With PV this effect is particularly evident, since all PV plant produce in day-time
and take energy from the same primary source.
Figure 7b represents the electricity day-ahead market price forecasting in July 2040 in two scenarios, defined
in Section 3.3.1: "Late Transition", which here for the sake of clarity is called "Low RES Penetration", and
"Distributed Energy IT", which here for the sake of clarity is called "High RES Penetration". These two
scenarios are the extremes of the uniform distribution defined in Section 3.3.1. It is possible to observe how
the "High RES Penetration" scenario the prices during the day tend to be lower and the prices during the
night tend to be higher than the "Low RES Penetration" scenario. The increase of the price differentials at the
increase of the PV penetration is again caused by the cannibalization effect.
Considering all the observations on Figure 7a, 7b, it is possible to conclude that the price forecasting model is
capable to capture the main effect of the price drivers on the electricity price profiles, like the cannibalization
effect and the correlation between the average electricity price and the gas price.

4. Simulations and Results

In this section the PPA portfolio optimization tool will be tested on a set of case studies to assess it’s validity
and appreciate the advantages of bundling portfolios of PPAs containing multi-location, multi-technology and
storage contracts. Moreover it will be possible to appreciate the trade-off between NPV maximization and
CVaR maximization through Pareto fronts.
The menu of contracts among which the portfolio optimization tool will be called to choose consists of a set
of eight renewable contracts and three storage contracts, modeling the main technologies and locations on the
Italian territory. Five different scenarios will be simulated varying the prices of each class of PPAs to perform
a sensitivity analysis of the optimal portfolio composition with respect to the PPA prices.
The scenarios are described in Section 4.1, and the portfolio optimization results for each are shown and
commented in Section 4.2, 4.3, 4.4, 4.5, 4.6.

4.1. Assumptions and Scenarios Description

In this section the main assumptions and scenarios adopted for the different simulations will be described. In
particular the aim is to define all the input parameters required by the different sub-models, as described in
Table 1, 2, 3. In particular, two input data classes are defined: the ones that are the same in all the simulated
scenarios and the ones which change from one scenario to the other, namely the PPA prices. First, the selected
contract menu will be described, then the characteristics of the selected corporate buyer and lastly the selected
PPA prices scenarios adopted for the sensitivity analysis.

4.1.1 PPA Contract Menu

All the simulations share the same menu of renewable and storage PPAs, among which the tool can select the
contracts for the portfolio composition. The choice was to adopt N = 8 renewable PPAs and Ns = 3 storage
PPAs, representative of different generation and storage technologies and of different locations in the Italian
territory.
In the selection of the renewable projects the choice was to select four utility-scale PV projects and four wind
projects, two on-shore and two off-shore. This was done to introduce in the menu all the main renewable
technologies which are expected to be developed in Italy. Regarding the localization of each project, the choice
was made looking at the cumulated power of connection requests presented to the Italian transmission system
operator (TSO) [31], placing the projects in those places which show the maximum amount of connection-
requested power for each selected technology. This placement logic aims to locate the considered contracts in
the places where most of the new generation is expected to be developed. One exception was made: the logic
would have selected all the four PV projects in the south, but it was chosen to introduce also a PV plant in the
north of Italy, to stress the multi-location nature of the menu. Such location was selected as the one with the

20



maximum connection-requested power in the north of Italy. The selected locations are reported in Table 5 and
in Figure 8.

Contract name Technology Location (Region)

PV Contract 1 Solar Catania (Sicily)

PV Contract 2 Solar Foggia (Apulia)

PV Contract 3 Solar Sassari (Sardinia)

PV Contract 4 Solar Voghera (Lombardy)

Wind Contract 1 Wind onshore Foggia (Apulia)

Wind Contract 2 Wind onshore Sassari (Sardinia)

Wind Contract 3 Wind offshore Lecce (Apulia)

Wind Contract 4 Wind offshore Trapani (Sicily)

Table 5: Renewable projects menu.

PV Contract 4

PV Contract 3

PV Contract 1

PV Contract 2

(a) PV location map.

Wind Contract 3

Wind Contract 2

Wind Contract 4

Wind Contract 1

(b) Wind location map.

Figure 8: RES projects location maps.

For each selected location, the specific production historical data were taken from [14] using the MERRA-2
database. In particular, for the solar projects single-axis tracking was supposed with an azimuth of 180 deg and
a balance of system efficiency of ηbos = 90%. For wind projects a standard Vestas V90 2000 turbine with hub
height of 80m was adopted. All the plants were supposed of unity size of 1MW to obtain the specific historical
production profile. Then, for each contract, the historical profiles were randomly sampled and projected in
the future, as described in Section 3.1.1, to obtain J = 100 scenarios of specific hourly renewable production
scenarios gi,t,y,j required as input to the portfolio optimization sub-model, as in Table 1. The box plots of the
equivalent hours of each renewable project is reported are Figure 9, in which the red line in each box represents
the average equivalent hours (heq) in the considered year, the blue lines represent the 25th and 75th percentile
and the black bars the extreme values assumed by the data.
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Figure 9: Equivalent hours of the renewable projects menu.

Considering the proxy storage PPA contracts, the choice was to select three contracts representative of the
two main currently available storage technologies: electrochemical storage (lithium battery based) and pumped
hydro. The parameters to define for each proxy storage contract k are reported in Table 2: the energy to power
ratio Hk, the charging efficiency ηck, the discharging efficiency ηdk and the number of cycles per day nc

k. The
selected proxy storage contracts are defined in Table 6. The data were found in literature [22].

Contract name Technology Hk nc
k ηck ηdk

Storage Contract 1 Electrochemical 4 h 2 95% 95%

Storage Contract 2 Electrochemical 8 h 1 95% 95%

Storage Contract 3 Pumped hydro 8 h 1 80% 80%

Table 6: Storage projects menu.

It was chosen to select two electrochemical storage contracts to model the fact that a storage developer can
provide to the corporate buyer the agreed daily discharge energy in two ways: with a storage of the same size
used for one cycle per day or with a storage of half size used for two cycles per day. Clearly the two approaches
will result in a different storage operation profile, and therefore in a different value of the contract. The technical
parameters are set as input to the proxy storage operation sub-model, described in Section 3.2, to obtain the J
scenarios of storage operation qk,t,y,j required as input by the portfolio optimization sub-model, as in Table 1.
The performance of the three storage contracts is represented through the box plots in Figure 10.
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Figure 10: Proxy storage contracts properties.
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The box plot in Figure 10a, expresses the distributions of daily speculation revenue produced by each storage
contract, expressed in specific term (EUR/MWh) with respect to the contract size. It is possible to observe
how Storage Contract 2 is capable of producing the highest daily revenues. This is explained by the fact that
Storage Contract 1, despite being the same technology and providing the injected energy every day, is half the
capacity, so the captured price differentials are reduced. On the other side Storage Contract 3 has the same
capacity of Storage Contract 2, but has sensibly lower efficiency, due to the technological differences.
The box plot in Figure 10b represents the evolution in time of the specific daily revenues distribution of Storage
Contract 2. It is observed that the revenues increase drastically over time, following the increase in daily price
differentials denoted in Figure 7a. Comparing the PPA price with the evolution of the daily specific revenues,
it is possible to understand at which point in time the storage starts to generate revenues: this happens when
the daily revenues exceed the PPA price.
The nominal (maximum) size of each contract is set to a reference value of Si = 10MW for each renewable
contract and Ss

k = 10MWh for each proxy storage contract. The contract duration for every storage and
renewable PPA is supposed to be the same and equal to T = 20 years, form 2021 to 2040. This value is
reasonable for renewable and pumped-hydro storage PPAs, as their useful life is longer than the contractual
duration. On the other side, the useful life of an electrochemical storage is typically lower than 20 years [13]:
the hypothesis is that, keeping the same contract, the storage developer revamps the battery when it is needed,
allowing to sign contracts for a time longer than the useful life of the specific plant. This option comes with
no additional risk for the corporate buyer, since its revenues are not correlated to the actual operation of the
storage, as described in Section 2.2.

4.1.2 Corporate Buyer Attributes

The attributes of the corporate buyer, required as input by the portfolio optimization sub-model, according to
Table 1 are:

1. D: demand of the corporate buyer over the contract duration of Y = 20 years.
2. r: annual discount rate adopted by the firm.
3. α: confidence level adopted by the off taker. This parameter is required for the computation of the CVaR,

as described in Section 3.3. It represents the adversity to risk of the corporate buyer, the higher α, the
higher the accepted risk, and vice versa.

4. ϵ: demand residual. It represents the maximum share of the demand D, by which the portfolio overall
renewable production can exceed the demand D over the contract duration.

The values adopted for such parameters are reported in Table 7.

Quantity Value

D 100GWh

r 4%

α 10%

ϵ 10%

Table 7: Corporate buyer attributes.

The choice of the parameters in Table 7 depends on the considered corporate buyer. In particular, typical values
have been selected for medium-sized industry, as typical of the Italian territory.

4.1.3 PPA Prices Scenarios

In Scetion 3.3.3, 4.1.1, 4.1.2 all the input data required in Table 1 have been defined, excluding the prices ki
of each renewable PPA and sk of each storage PPA. The definition of the contracts’ prices will be described in
this section. The price selection is performed generating five scenarios:

1. The first four scenarios adopt standard PPA prices found in literature [32], and consist in the four com-
binations of "high" and "low" renewable PPA prices and "high" and "low" storage PPA prices scenarios.
These four scenarios aim to investigate the effect of different renewable and storage PPA prices on the
portfolio composition.

2. The fifth scenarios defines the PPA prices based on the LCOE calculation for each plant. This scenario
allows to model the effect of the location (north-south) and the technology (onshore-offshore) on the PPA
prices, and therefore on the portfolio composition.
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At first, the first four scenarios will be described. In particular, the renewable PPA prices are described in the
LevelTen Energy 2023 Report [32]. This report defines the average PPA prices signed in different European
countries, divided by year (from 2020 to 2023) and by technology (PV or Wind). It should be observed that
PPA prices for wind are not defined for Italy in the report, because no wind PPA was signed in the considered
period; for this reason, France was considered as benchmark for wind projects. Moreover, the report does not
make any differentiation between onshore and offshore wind, so the price has been supposed to be the same
for both technologies. Regarding PV, average data for Italy are available, the PPA price is supposed to be the
same for all the contracts defined in Table 5. It should be observed that current PPA prices are inflated by
the recent energy prices, so 2023 PPA prices will be referred to as the high renewable PPA price scenario. On
the other side, 2020 prices represent the pre-crisis prices, and will be referred as the low renewable PPA price
scenario. The data reported in [32] are summarized in Table 8, 9.

Contract Technology PPA Price ki Year

PV Contract 1, 2, 3, 4 Solar 73EUR/MWh 2023

Wind Contract 1, 2, 3, 4 Wind (onshore and offshore) 100EUR/MWh 2023

Table 8: High renewable PPA price scenario.

Contract Technology PPA Price ki Year

PV Contract 1, 2, 3, 4 Solar 44EUR/MWh 2020

Wind Contract 1, 2, 3, 4 Wind (onshore and offshore) 77EUR/MWh 2020

Table 9: Low renewable PPA price scenario.

Considering, instead, proxy storage PPAs, no historical data are available, so the PPA price was supposed to be
equal to the levelized cost of storage (LCOS) of the three considered projects, as suggested in [7]. In literature
[13], the values of LCOS for the three considered technologies are reported as 2017 values and 2030 projections.
Regarding 2030 projections three cases for each technology are considered: "best case", corresponding to the
lowest LCOS; "base case", corresponding to the average LCOS; and "worst case", corresponding to the highest
LCOS. For this analysis, "best case" values are always adopted, in order to model a scenario in which storage
prices drastically drop, eventually thanks to subsidies [7]. Storage PPA prices (LCOS) in 2030 are expected to
be substantially lower than the ones in 2017; for this reason 2030 prices will be referred to as the low storage
PPA price scenario and 2017 prices will be referred as high storage PPA price scenario. The data regarding
proxy storage prices (LCOS) are summarized in Table 10, 11.

Contract Technology PPA Price sk Year

Storage Contract 1 Electrochemical 140EUR/MWh 2017

Storage Contract 2 Electrochemical 190EUR/MWh 2017

Storage Contract 3 Pumped hydro 80EUR/MWh 2017

Table 10: High storage PPA price scenario.

Contract Technology PPA Price sk Year

Storage Contract 1 Electrochemical 27EUR/MWh 2030

Storage Contract 2 Electrochemical 35EUR/MWh 2030

Storage Contract 3 Pumped hydro 80EUR/MWh 2030

Table 11: Low storage PPA price scenario.
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The two scenarios of renewable PPA prices and the two scenarios of storage PPA prices are combined, as
described in Table 12, to produce the four scenarios of prices for the whole menu of available contracts.

High renewable PPA price Low renewable PPA price

High storage PPA price Scenario 1 Scenario 2

Low storage PPA price Scenario 3 Scenario 4

Table 12: Simulated scenarios.

The portfolios resulting from the PPA prices scenarios in Table 12 are described in the following sections.
Lastly, scenario five needs to be described. In the previous scenarios the renewable PPA prices are supposed
to be the same for all the projects of the same technology, in this scenario, instead, a price differentiation is
introduced to model the effect of location and technology on the renewable PPA prices. The PPA prices were
calculated computing the levelized cost of electricity (LCOE) of the various projects and finding the PPA price
adding a risk premium of 10EUR/MWh for each. The LCOE was computed as described in [33], starting
from the capital and operational expenditures indicated for each technology in the IRENA report [34] for the
European market and the average yearly equivalent utilization hours of each project, represented by the red
bars in Figure 9. The results are reported in Table 13.

Contract Technology PPA Price ki

PV Contract 1 Solar 52EUR/MWh

PV Contract 2 Solar 51EUR/MWh

PV Contract 3 Solar 51EUR/MWh

PV Contract 4 Solar 53EUR/MWh

Wind Contract 1 Wind onshore 73EUR/MWh

Wind Contract 2 Wind onshore 70EUR/MWh

Wind Contract 3 Wind offshore 91EUR/MWh

Wind Contract 4 Wind offshore 92EUR/MWh

Table 13: Scenario 5 renewable PPA prices.

Lastly, in Scenario 5 the low storage PPA price scenario, detailed in Table 11, is adopted for proxy storage
prices.

4.2. Scenario 1

As described in Table 12, scenario 1 is characterized by high renewable PPA prices and high storage PPA prices,
and is representative of the 2023 market. The optimization of the portfolio among the eleven available contracts
led to the selection of 2.73MW of PV Contract 2 in case of expected NPV maximization, and led to the selection
of 2.61MW of PV Contract 2 in case of CVaR maximization. Since the two single-objective optimizations provide
different result, the multi-objective optimization is handled through a Pareto front, as described in Section 3.1.4.
The resulting Pareto front and the histograms of the two single-objective optimizations are depicted in Figure
11.
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Figure 11: Scenario 1 portfolio optimization results.

In Figure 11b it is possible to observe the difference between the distribution of the J = 100 scenarios of
NPV resulting from the two single-objective optimized portfolios. In particular the histogram relative to NPV
maximization shows a higher value of the expected NPV, as the distribution is slightly shifted to the right,
but also shows more samples in the left tail indicating a lower value of CVaR. On the other side the CVaR
maximization histogram shows a lower expected NPV with the advantage of having less samples in the left tail,
indicating higher CVaR and lower risk.
Considering the Pareto front in Figure 11a, it is clearly possible to see the trade-off between CVaR and expected
NPV. Moving on the front, at the increase of the CVaR the expected NPV tends to decrease and vice-versa.
The corporate buyer has to select a spot on the front depending on its risk adversion. The increase in CVaR,
in this case, is given by a slight reduction in the selected contract power for PV Contract 2.
In Scenario 1, the optimization tool composed a portfolio just with one renewable contract in all cases(PV
Contract 2): no storage or portfolio differentiation was introduced. It is worth observing that PV Contract 2
is not the solar contract with highest equivalent utilization, as it can be observed from Figure 9, but the model
selects it anyways as the best contract also for NPV maximization. This may seem counter-intuitive, but the
leading concept is that in a PPA the buyer pays the produced energy, not the installed power; for this reason, if
the PPA price is the same for all PV contracts, the portfolio optimization tool will select just the contract with
the profile which captures the highest prices, in this case being PV Contract 2. Clearly, the required power to
cover the corporate demand will be higher than the case in which PV Contract 1 were selected, but this make no
difference as long as the PPA energy price is the same. The effect of the equivalent hours of the plant typically
reflects on the PPA price, plants with higher equivalent hours show lower prices and vice-versa, this effect is
modelled in Scenario 5. Storage contracts are not selected because financially inefficient, as it is possible to
understand comparing the proxy storage PPA prices of this scenario with the storage-related revenues in Figure
10.

4.3. Scenario 2

As described in Table 12, scenario 2 is characterized by low renewable PPA prices and high storage PPA prices.
The optimization of the portfolio among the eleven available contracts led to the selection of 1.41MW of PV
Contract 1 and 1.26MW of PV Contract 2 in both cases of expected NPV and CVaR maximization. The
resulting Pareto front and histograms of the two single-objective optimizations are depicted in Figure 12.
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Figure 12: Scenario 2 portfolio optimization results.

As it is possible to observe in Figure 12a, since the two single-objective optimizations provide the same result,
the Pareto front degenerates into a point, and the two NPV histograms coincide, as in Figure 12b. This means
that the obtained portfolio configuration, composed of the mix of two contracts, is capable at the same time to
maximize the expected value of the NPV and minimize the risk.
As in Scenario 1, storage contracts are not selected because financially inefficient.

4.4. Scenario 3

As described in Table 12, scenario 3 is characterized by high renewable PPA prices and low storage PPA prices.
The optimization of the portfolio among the eleven available contracts led to the selection of 2.73MW of PV
Contract 2 in the case of expected NPV maximization and 1.61MW of PV Contract 1, 1.05MW of PV Contract
2 and 4.65MWh of Storage Contract 2 in case of CVaR maximization. The resulting Pareto front and histograms
of the two single-objective optimizations are depicted in Figure 13.
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Figure 13: Scenario 3 portfolio optimization results.

Considering Figure 13b, it is possible to observe how the dispersion of the histogram relative to the CVaR
maximization is lower than the one relative to the expected NPV maximization, resulting in a much higher
CVaR and a lower risk of the portfolio. This result is obtained mainly through the inclusion of storage in the
PV portfolio, which allows to edge against captured price risk. In the price scenarios in which the intra-day
price differentials are stronger, due to cannibalization effect, the revenues generated by the PV contracts is
lower, while the one related to the storage contract is higher; vice-versa, when price differentials are low, the
revenues of PV contracts increase and the ones of storage contracts decrease. These two opposite effects allow
to reduce the dependence of the NPV on the price differentials, this way reducing the related risk.
As it is possible to observe in Figure 13b, PV Contract 1 is included in the portfolio only in the last point of
the Pareto front, determining a strong decrease in NPV for just a slight increase in CVaR. For this reason the
global optimal solution could be the last-but-one point in the front, in which only Storage Contract 2 and PV
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Contract 2 are selected.
In this scenario, differently form the previous one, the storage is selected, as its prices are decreased and are now
compatible with the generated revenues. Among the three contracts, Storage Contract 2 was selected because it
is the one which produces the highest specific daily revenues, as in Figure 10a, and this compensates the lower
PPA price of Storage Contract 1.
An interesting analysis consists in the evaluation of the maximum storage PPA price (threshold price) for which
each storage contract is included in the maximum expected NPV portfolio. This threshold price represents
the maximum storage PPA price for which each storage is financially convenient on its own; in other words it
produces alone a positive NPV. Then, if no storage is included in the maximum NPV portfolio, while some
are included in the maximum CVaR one, it is possible to compare each considered proxy storage price with
its threshold price and understand the value given to storage’s risk-reduction effect in the CVaR maximization
portfolio. The threshold prices computed by the model are reported in Table 14.

Contract Treshold PPA Price

Storage Contract 1 20EUR/MWh

Storage Contract 2 34EUR/MWh

Storage Contract 3 17EUR/MWh

Table 14: Threshold storage PPA prices.

As expected Storage Contract 2 has the maximum threshold price, as it is the one able to produce the maximum
daily revenues. If we compare such values with the low storage PPA price for Storage Contract 2, it is possible to
see that the price is 35EUR/MWh, so 1EUR/MWh higher than the threshold price: this explains why Storage
Contract 2 in not included in the maximum expected NPV portfolio, and indicates that, in the portfolios in
which the storage is included, a premium of 1EUR/MWh is payed to achieve storage’s risk reduction effect.

4.5. Scenario 4

As described in Table 12, scenario 4 is characterized by low renewable PPA prices and low storage PPA prices.
The optimization of the portfolio among the eleven available contracts led to the selection of 1.41MW of PV
Contract 1 and 1.26MW of PV Contract 2 in the case of expected NPV maximization and 1.54MW of PV
Contract 1, 1.12MW of PV Contract 2 and 4.62MWh of Storage Contract 2 in case of CVaR maximization.
The resulting Pareto front and histograms of the two single-objective optimizations are depicted in Figure 14.
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Figure 14: Scenario 4 portfolio optimization results.

In this case the selection of renewable contracts is the same as in scenario 2, with which scenario 4 shares
the renewable PPA prices. Then, observing Figure 14a, 14b, the low storage prices determine the inclusion of
Storage Contract 2 in the portfolio at the increase of the CVaR, with the consequent reduction in the NPV
distribution dispersion, as observed for Scenario 3.
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4.6. Scenario 5

As described in Table 12, scenario 5 is characterized by low storage PPA prices and renewable PPA prices
obtained through the LCOE of the singe projects. The optimization of the portfolio among the eleven available
contracts led to the selection of 1.89MW of Wind Contract 2 in the case of expected NPV maximization and
1.89MW of Wind Contract 2 and 0.31MWh of Storage Contract 2 in case of CVaR maximization. The resulting
Pareto front and histograms of the two single-objective optimizations are depicted in Figure 15.
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Figure 15: Scenario 5 portfolio optimization results.

In this scenario the renewable project which results to maximize the expected NPV and the CVaR is Wind
Project 2; this because in this PPA prices scenario the price differential between PV projects and onshore wind
projects is reduced. Moreover, as it can be observed in Figure 15a, an increase in CVaR is achieved including
Storage Contract 2 in the portfolio. Differently from the previous scenarios, the inclusion of storage does not
have a big impact on the NPV distribution (Figure 15b). This can be explained considering that the storage
contract here is coupled with a wind project, so the cannibalization effect is less relevant and a daily-operated
storage has little means to hedge against it.

5. Conclusion

This work presents a tool for the optimization and assessment of PPA portfolios under uncertainty, including
multiple generation and storage technologies. The uncertainty is treated through a Monte Carlo simulation and
the optimal portfolio composition is defined through a multi-objective optimization, aiming to maximize the
expected revenues and minimizing the risk. The two objectives are investigated through two different objective
functions: expected NPV for profit maximization and CVaR for risk minimization. The multi objective opti-
mization is carried out building Pareto fronts in order to capture the trade-off between the different objectives.
The corporate buyer has to decide the portfolio composition as the one corresponding to the point on the front
best suiting its risk adversion. The proposed tool is tested on five different case studies, modeling different PPA
prices scenarios in the available contract menu.
We find that, in most of the cases, the portfolios resulting from revenues maximization and risk minimization
are different, meaning that a trade-off between expected revenues and risk is typically present. In other words,
if the corporate buyer is willing to reduce the risk of the portfolio, it has to accept a reduction in the expected
revenues, which can be seen as a premium payed for risk mitigation, originated by the inclusion of inefficient,
but risk-reducing, contracts in the portfolio. The portfolios which maximize the expected NPV are typically
composed of just renewable contracts and the level of differentiation is scarce, typically one contract, maximum
two, in each portfolio. The portfolios which maximize the CVaR, instead, can show the inclusion of storage
and a higher level of differentiation. This means that storage contracts on their own are not convenient, but
their coupling with renewable contracts (especially solar ones) introduces a strong risk reduction effect which
may make their inclusion a viable option, depending on the risk adversion on the buyer. Risk mitigation is also
achieved, as in scenario 3, including multi-location contracts in the portfolio. In the considered case studies a
multi-technology portfolio (PV and Wind) is never observed, but this does not prove in general that technology
diversification does not bring any advantage in terms of risk mitigation, this just means that the considered PPA
prices scenarios and the selected contract menu do not create an opportunity for technological diversification.
The study also shows that storage, at the current LCOS, is never included, because it is too economically

29



inefficient to justify its volatility mitigation effect. In the future, LCOS of the main storage technologies is
expected to decrease, and the possibility guaranteed by proxy storage PPAs to the storage developer to freely
operate the storage in any market and keep the revenues, has the potential to reduce the storage PPA prices
below the LCOS. In such scenarios the inclusion of storage in PPA portfolios may become a viable option, and
storage PPAs may become a valuable solution for financing and fostering the spread of storage systems.
To summarize, the developed tool allows the corporate buyer to design and evaluate PPA portfolios under
uncertainty. It allows to capture the value and the risk associated to each contract and is capable of assessing
the effect of bundling more contract in portfolios. These capabilities are exploited to design the portfolio which
best suits the requirements of the corporate buyer. The modularity of the tool makes it scalable and prone
to improvements, e.g. it is possible to replace the data-driven price forecasting sub-model with a potentially
more accurate econometric model, or it would be possible to select different kind of PPA contractual structures
modifying just the way in which their revenues are computed. In conclusion, the purpose of this work is to
contribute to the energy transition proposing a tool that company can use to design a tailored PPA portfolio,
which would allow the decarbonization of their demand while producing a positive economical return.
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