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1. Introduction

Synthetic Aperture RADAR (SAR) is a promis-
ing imaging technology for the automotive in-
dustry [1]. To improve the standard RADAR
architecture, they increase the antennas density
by synthesizing virtual elements in a time in-
terval along the vehicle's trajectory. To e�ec-
tively produce sharp images the imaging algo-
rithm requires the knowledge of the RADAR's
position and velocity with a high degree of ac-
curacy within a synthetic aperture. The work
of this thesis is to implement a precise naviga-
tion system to aid the RADAR in focusing the
images, based on the architecture described in
[2]. The navigation algorithms we developed are
based on the Unscented Kalman Filter (UKF),
a nonlinear Bayesian estimator. Two variations
of the basic algorithm are proposed in order to
fuse more information from the motion models:
a standard Interacting Multiple Model (IMM)
and a threshold-based system. A second analy-
sis was made by using di�erent combinations of
correction sensors and their impact was evalu-
ated on the SAR images. The algorithms pro-
cess real data collected in an experimental cam-
paign. The results are validated by a Real Time
Kinematics (RTK) Global Navigation Satellite
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Figure 1: RADAR con�guration.

System (GNSS).

2. SAR Principles

SAR systems exploit the motion of the RADAR
to create a virtual array of antennas. The ele-
ments of the synthetic array correspond to the
position of the antenna in di�erent time instants.
We assume that the SAR sends and receives
echoes of a single pulse every slow time inter-
val τ , after which it moves once more (the "stop
and go assumption").
Let us now consider the 3D scenario of a single
antenna SAR mounted on a car moving along
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direction x and a target in x0 = [x0, y0, z0] as
depicted in �g. 1. Considering a Multiple In-
put Multiple Output (MIMO) SAR system the
MIMO image obtained with the Time Domain
Back Projection (TDBP) algorithm is given by
equation [2, eq. (11)] In order to improve res-
olution, a commonly used procedure is the so-
called autofocus. Low resolution MIMO images
are taken as input and with the aim to compen-
sate for the residual phase error. Once the esti-
mates of the residual velocities have been com-
puted [2], it is possible to �nd for each slow time
τ the estimated of residual phase ∆ψ̂(x, τ) =
(k(x)T∆v̂)τ and compute the N phase compen-
sated low resolution image:

Îm(x, τ) = Im(x, τ)e
−j∆ψ̂(x,τ) (1)

where k(x) = 4π
λ [sin θ cos θ, sin θ sin θ, cos θ]T

and∆v̂ is the velocity error. By coherently sum-
ming them along the synthetic aperture,

I(x) =
∑
τ∈T

Îm(x, τ), (2)

we get the �nal SAR image.

3. Tracking Filters

As a navigation algorithm we adopted the Un-
scented Kalman Filter (UKF). The �lter is based
on the Unscented Transform, a procedure to cal-
culate the statistics of a random variable which
is fed to a non-linear function by using a set of
points called sigma points. This tool is particu-
larly e�ective if compared to the EKF, which is
another alternative to use when the motion and
measurements models are non-linear. Indeed,
the UKF uses a deterministic technique that de-
termines points which, once passed through the
non-linear system, preserve the statistical de-
scription of the a-posteriori probability up to the
2nd order, at the same computational cost of the
EKF (O(L3) for both cases where L is the di-
mension of the state) [3].

3.1. Measurement Models

For the observation functions we introduce the
measurement models for the on-board sensors
equipped in the car. The car is equipped with
a GPS that provides the user's position. The
measurements are linked to the state variables

through the following equations:

yGPSp (k) = p(k) + nGPSp (k),

yGPSv (k) = v(k) + nGPSv (k),

yGPSθ (k) = θ(k) + nGPSθ (k),

(3)

(4)

(5)

where the measurement noise is an addi-
tive Gaussian random variable, i.e., np ∼
N (0,ΣGPS

p ), nv ∼ N (0, σGPSv
2
) and nθ ∼

N (0, σGPSθ
2
).

The Inertial Measurement Unit (IMU), mounted
on the vehicle's centre of gravity, provides iner-
tial navigation data from an accelerometer and a
gyroscope. The accelerometer provides the lin-
ear acceleration whereas the gyroscope the an-
gular velocity, both in the body frame. IMU's
measurements are modelled as:

ya(k) = a(k) + bIMU
a + nIMU

a

yω(k) = ω(k) + bIMU
ω + nIMU

ω

(6)

(7)

where nIMU
a ∼ N (0,ΣIMU

a ) and nIMU
ω ∼

N (0, σIMU
ω

2
). In equations (6), (7), bIMU

a and
bIMU
ω are the bias a�ecting the sensors.
From the car's electronic control unit we take
data provided by a Steering Angle Sensor (SAS).
The observation equation combines the car
speed, yaw rate and the constant term of the
wheelbase L ∈ R to obtain the wheel's steering
angle:

ySAS = − arctan
(Lω(k)

v
(k)

)
+ nSAS(k) (8)

In the former equation nSAS(k) ∼ N (0, σSAS
2
)

is the Gaussian measurement noise. The last
model we consider embeds the information com-
ing from four Wheel Odometers (WO), one per
wheel, once again embedded in the ECU. Its
measurement model is:

yWO
v (k) = v(k) + nodometerv (k), (9)

with nWO
v (k) ∼ N (0, σodometer

2
).

3.2. Motion Models

Each model best describes a driving scenario and
it is common practice to just use a comprehen-
sive model for a given trajectory. The state is
a column xk ∈ R11 composed by the following
elements:

x(k) = [p(k),v(k),a(k), θ(k), ω(k), ba(k), bω(k)]
T .

(10)
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In this work we considered the Constant Veloc-
ity (CV), Constant Acceleration (CA), Constant
Turn Rate and Velocity (CTRV), Constant Turn
Rate and Acceleration (CTRA) models [4].

3.3. Multiple Model Filters

In order to fuse information from all these mod-
els, two improvements were considered. The �rst
one is the Interacting Multiple Model (IMM) �l-
ter which creates di�erent instances of the mod-
els and uses them to perform separate estimates
that then get combined as a weighted sum. The
second relies on a threshold based switch which
chooses at every time sample k the model which
best �ts the driving scenario according to the
sensors measures. Even if the expected perfor-
mance of the latter approach should be slightly
inferior to the IMM, as propagating four mod-
els at a time retains more information on the
trajectory, this approach should be considered
an alternative in the cases where computational
cost is an issue.

4. Experimental Results

4.1. Experimental Campaign

Two experimental campaigns were carried out in
order to collect data for processing. The exper-
imental vehicle for the tests is an Alfa Romeo
Giulia Veloce, from the Move research group of
Politecnico di Milano. The car is equipped with:
(i) the Scanbrick® RADAR by Aresys® based
on the AWR1243 77-GHz FMCW transceiver by
Texas Instruments, with 8 channels (2 Tx and 4
Rx antennas) and 1GHz of bandwidth (result-
ing in a range resolution of 15cm) mounted on
the front bumper at about 0.5m from the ground
in a forward-looking con�guration; (ii) the RTK
system illustrated in section, comprising of the
INS Piksi board, mounted on the car's Center of
Gravity (CoG), the GNSS antenna, attached to
the car's roof and the Freewave radio, placed in-
side the car; (iii) the Inertial Navigation System
(INS) xProGPS_nano by Suchy Data Systems,
which includes a GNSS receiver, whose antenna
is mounted externally on the car's roof, and an
IMU, placed in the vehicle's CoG, providing lin-
ear acceleration and angular velocity.
Moreover, the employed vehicle is equipped with
measurements from several on-board built-in
sensors, whose measurements are made available

IMU
RTK

Odometers

SAS

Radar

Figure 2: The Alfa Romeo Giulia Veloce experi-
mental car used for the campaign, together with
graphical representation of the on-board sensors.

Table 1: On-board sensors parameters

Measurement
(sensor) fs [Hz]

Measurement
error (std)

Position
(GNSS)

10 1 [m]

Speed (GNSS) 10 0.1 [m/s]
Heading
(GNSS)

10 0.3 [deg]

Yaw rate (IMU) 100 0.1 [rad/s]
Wheel speed
(odometer)

50 0.01 [m/s]

Steering angle 50 0.1 [deg]

for research purposes by the car's manufacturer.
Among these, we collected the measurements of
the SAS, four wheel odometers which will be
referred to as INCA measurements. The RTK
base was placed in a �xed position in front of
the Electronic, Information and Bioengineering
Department (DEIB) of Politecnico di Milano at
about 15 m of altitude. Figure 2 illustrates the
sensors mounted on the vehicle.

4.2. Test 1

This section presents the results obtained by �l-
tering the data acquired during the campaigns
detailed with the conventional, the switch-based
UKF and a standard UKF employing the CTRV
motion model. The accuracy of the three �l-
ters is analysed by comparing the outputs to the
ground truth data provided by the RTK GNSS.
The �nite states �lter employs the thresholds re-
ported in table 2.The trajectory was collected on
the 22/05/2022 at 14:12 PM and lasts 142.4 s.
The test was conducted in a densely populated
area at a time with a high activity. These condi-
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Table 2: Finite states �lter thresholds values

Threshold value unit

aLT 0.25 [ m/s2]
aHT 0.5 [m/s2]
ωLT 0.4 [ deg/s]
ωHT 0.6 [deg /s]

(a) (b)

Figure 3: Relative position error ECDF com-
puted with di�erent motion models.

tions replicate the employment of Sensor-Aided
SAR in a urban scenario.
The ECDF of the relative position error relative
to a synthetic aperture As = 50 cm in the two
components is reported in �gure 3. We can ob-
serve that the position errors of the IMM and
the �nite states �lter are very close to the stan-
dalone GPS. The improvement is in the order
of 5 cm for the longitudinal component of the
IMM over the GPS, whereas no signi�cant im-
provement is noticeable in the lateral position.
Figures 4a and 4b show the ECDF of the rel-
ative velocity error in the two longitudinal and
lateral components. Again the IMM is the �lter
giving the best performance. For the longitudi-
nal component the IMM can provide a improve-
ment up to almost 0.05 m

s and the �nite states
�lters is around 0.1 m

s . Similar results are ob-
tained for the lateral component. The trend is
maintained in the velocity where again the IMM
is more accurate. As we can see by comparing
the performance of the traditional IMM to the
other model switcher, we can see that the IMM
deals a better performance in every situation.
This result is expected, as the IMM retains more
information than the other approach since four
di�erent instances of the model are deployed in

(a) (b)

Figure 4: Relative velocity error ECDF com-
puted with IMM and �nite states �lter.

Table 3: Di�erent sensors combinations

Sensors Observation eq.

Set 1 GNSS, IMU (3), (4), (5), (6), (7)
Set 2 GNSS,

IMU, SAS
(3), (4), (5), (6),(7),
(8)

Set 3 GNSS,
IMU,
ODOM

(3), (4),(5), (6),(7),
(9)

Set 4 GNSS,
IMU, SAS,
ODOM

(3), (4),(5), (6),(7),
(8), (9)

parallel and then fused together. This accuracy
enhancement, however, causes an increase of the
computational complexity.

4.3. Test 2

The results shown in previous section show
no signi�cant improvements brought by the
IMM and switch-based �lter with respect to the
CTRV. The latter is hence chosen as motion
model for the following analysis, in favour of
the computational cost. Then we considered
the four sets of table 3 corresponding to prob-
able sensor availability scenarios. This analysis
is carried out to search for the minimum num-
ber of measurements to enable sensor-assisted
SAR. The trajectory consists of a straight mo-
tion in front of DEIB and was collected on the
22/05/2022 at 14:09 PM. The measurements last
T = 24.03 s.
Figure 5 shows the ECDF of the position error
in the body frame, along the longitudinal lat-
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Figure 5: Position Error ECDF
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Figure 6: Velocity Error ECDF

itudinal components XbY b . In �gure 5a the
longitudinal component of the error shows two
opposite cases, i.e., Pro�le 1 and 4, which are the
sets with the least (GPS, IMU) and most (GPS,
IMU, SAS, WO) sensor corrections respectively.
The position error in a synthetic aperture for
pro�le 4 goes down to less than 10 cm in 95 %
of the cases, more than half the position error
of pro�le 1 which is around 20 cm. Similarly
we can say for the lateral component in �gure
5b where the amount of sensors used for correc-
tions is related to an improvement in accuracy.
We notice how introducing the SAS brings a neg-
ligible improvement to the longitudinal compo-
nents of both position whereas it is useful to es-
timate the lateral drifts in position. The WO
instead proves to be a very important sensor to
improve the position errors, in an opposite be-
haviour with respect to the SAS. The longitudi-
nal position error is more than halved in set 4
with respect to the �rst two sets, with 95 % of
the values in within 10 cm. In the lateral case
also set 2 gives the same performance of the po-

sition error by reducing it from 15 cm of pro�le
1 and 3 to almost 5 cm.
Finally, SAR images are focused over a synthetic
aperture of 50 cm. In �gure 7 are reported the
�nal images in longitudinal-lateral coordinates,
i.e. the XbY b plane of the body frame.
As we can see comparing the pictures, there are
not many signi�cant di�erences. The most no-
ticeable di�erence is highlighted in the green
box, i.e., a car parked in the side spots. We
can see that the images are consistent with the
navigation accuracy with the sets 3 and 4 deliv-
ering slightly sharper images. The low impact of
changing sensors on the �nal images is due to the
autofocus procedure employed to obtain the im-
ages. The latter corrects the velocity estimation
provided by the navigation to reach mm-level
accuracy. The autofocus procedure in fact uses
the navigation estimated velocity as an a-priori
information which gets re�ned by the WLS es-
timate of the residual phase. For this reason,
due to the increase in computational complexity
(though marginal with respect to the SAR im-
age processor) and economical cost brought by
the introduction of the WO and SAS sensors it
might not be worth to adopt them to improve
the image resolution. It is worth remarking that
these tests were performed at moderate speed,
in straight trajectories and in good satellite vis-
ibility. In a realistic scenario the trajectories
are more complex and often galleries and urban
canyons degrade the GNSS position. In these
scenarios, the SAS and WO could compensate
the loss of the GNSS signal as a correction source
for the navigation algorithm. Furthermore, in
this analysis no turns were considered. This in-
troduces various problems in the image focusing
procedures commonly employed. For this reason
we expect that the SAS could introduce valuable
correcting information bringing the robustness
needed to achieve a su�cient resolution.

5. Conclusions

To enhance the �lters performance, the calibra-
tion should be done on a much larger and diverse
set of trajectories. This applies both to measur-
ing the sensors bias and to �nding the threshold
values for the �nite states �lter. Future devel-
opments of this work will consider new experi-
mental campaigns with more complex trajecto-
ries and landscapes. In particular it is worth in-
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Figure 7: Velocity Error ECDF

vestigating the performance in curve trajectories
where the enhancement of navigation accuracy
brought by the SAS is expected to be more ev-
ident. Moreover it would be useful to develop
the navigation algorithm without providing the
GNSS corrections. This is because the GNSS is
the most likely sensor to fail in providing correc-
tions whereas the others are always available on
the vehicle.

References

[1] Christian Waldschmidt, Juergen Hasch, and
Wolfgang Menzel. Automotive radar � from
�rst e�orts to future systems. IEEE Journal

of Microwaves, 1(1):135�148, 2021.

[2] Marco Manzoni, Dario Tagliaferri, Marco
Rizzi, Stefano Tebaldini, Andrea Vir-
gilio Monti Guarnieri, Claudio Maria Prati,
Monica Nicoli, Ivan Russo, Sergi Duque,
Christian Mazzucco, and Umberto Spagno-
lini. Motion Estimation and Compensation
in Automotive MIMO SAR. IEEE Transac-

tions on Intelligent Transportation Systems,
pages 1�17, Nov. 2022.

[3] Eric A. Wan and Rudolph van der Merwe.
The Unscented Kalman Filter, chapter 7,
pages 221�280. John Wiley and Sons, Ltd,
2001.

[4] Robin Schubert, Eric Richter, and Gerd
Wanielik. Comparison and evaluation of ad-
vanced motion models for vehicle tracking.

In 2008 11th International Conference on In-

formation Fusion, pages 1�6, 2008.

6


	Introduction
	SAR Principles
	Tracking Filters
	Measurement Models
	Motion Models
	Multiple Model Filters

	Experimental Results
	Experimental Campaign
	Test 1
	Test 2

	Conclusions

