
Executive Summary of the Thesis

Robustness in Multi-Agent Pickup and Delivery with Delays

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Giacomo Lodigiani

Advisor: Prof. Francesco Amigoni

Co-advisor: Prof. Nicola Basilico

Academic year: 2020-2021

1. Introduction
In Multi-Agent Pickup and Delivery (MAPD) [6], a set
of agents must jointly plan collision-free paths to serve
pickup-delivery tasks that are submitted at run-time.
MAPD combines the resolution of a task-assignment
problem, where agents must be assigned to pickup-
delivery pairs of locations, with Multi-Agent Path Find-
ing (MAPF) [10], where paths for completing the as-
signed tasks must be computed. A particularly challeng-
ing feature of MAPD problems is their long-term and
dynamic nature that allows for new tasks to be submit-
ted at any time and location in the environment.
Despite studied only recently, MAPD has a great rele-
vance for a number of real-world application domains.
Automated warehouses, where robots continuously fulfill
new orders, have arguably the most significant indus-
trial deployments [14]. Beyond logistics, MAPD appli-
cations include also the coordination of teams of service
robots [13] or fleets of autonomous cars, and the auto-
mated control of non-player characters in video games [9].
Recently, the MAPF community has focused on robust-
ness [1, 2, 6], generally understood as a property of solu-
tions that can withstand real-world-induced relaxations
of some idealistic assumptions made by the models. A
typical example is represented by the assumption that
paths are executed without errors. In reality, however,
paths execution is subject to delays and other issues
that can hinder some properties (e.g., the absence of
collisions) of a solution. In contrast, robustness in the
long-term setting of MAPD has not been yet consistently
studied.
In this paper, we study the robustness of MAPD to the
occurrence of delays by defining a variant of the prob-
lem that we call MAPD-d (MAPD with delays). In this
variant, agents, like in standard MAPD, are assigned to
tasks (pickup-delivery locations pairs), which may con-

tinuously appear at any time step, and paths to accom-
plish those tasks avoiding collisions are computed. Dur-
ing path execution, delays can occur at arbitrary times,
causing one or more agents to halt at some time steps,
thus slowing down the execution of their planned paths.
We devise a set of algorithms to compute robust solu-
tions for MAPD-d. The first one is based on a decentral-
ized MAPD algorithm, Token Passing (TP), to which we
added some recovery routines that provide replanning in
case collisions caused by delays are detected. TP is able
to solve well-formed MAPD problem instances [8], and
we show that, under some assumptions, the introduction
of delays in MAPD-d does not affect well-formedness.
We then propose two new algorithms, k-TP and p-TP,
which adopt the approach of robust planning, computing
paths that limit the risk of collisions caused by potential
delays. k-TP returns solutions with deterministic guar-
antees about robustness in face of delays (k-robustness),
while solutions returned by p-TP have probabilistic ro-
bustness guarantees (p-robustness). We compare these
algorithms by running experiments in simulated environ-
ments and we evaluate the trade-offs offered by different
levels of robustness.
In summary, the main contributions of this paper are:
the introduction of the MAPD-d problem and the study
of some of its properties (Section 3), the definition of two
algorithms (k-TP and p-TP) for solving MAPD-d prob-
lems with robustness guarantees (Section 4), and their
experimental evaluation that provides insights about how
robustness and solution cost can be balanced (Section 5).

2. Preliminaries and Related Work
In this section, we present the MAPD problem, we dis-
cuss the different concepts of robustness from the MAPF
and MAPD literature, and finally we illustrate some al-
gorithms for MAPD problems.

1



Executive summary Giacomo Lodigiani

2.1. MAPD
Informally, a MAPF problem [10] involves a set of agents,
each one with a starting vertex and a target vertex in
a graph representing the environment, and asks for a
set of paths, one for each agent, such that, when the
agents follows such paths they reach their targets without
collisions. The paths could be also required to minimize
some cost function.
A MAPD problem [6] consists of:
• A finite connected undirected graph G = (V,E),

whose vertices V represent locations and whose
edges E represent connections between locations
that the agents can traverse.

• A set of ℓ agents A = {a1, a2, . . . , aℓ}.
• A task set T that contains the unexecuted tasks in

the system. The task set changes dynamically as,
at each time step, new tasks can be added to the
system. Each task τj ∈ T is characterized by a
pickup vertex sj ∈ V and a delivery vertex gj ∈
V and is added to the system at an unpredictable
(finite) time step. A task is known to the agents and
can thus be executed from the time step at which it
is added to T .

Time is discrete and starts from time step 0. At time
step 0, each agent starts from an initial vertex. Initial
vertices are all different.
Agents move in the environment represented by G along
paths.

Definition 1. A path πi = ⟨πi,t, πi,t+1, ..., πi,t+n⟩ for
agent ai starting at time step t and ending at time step
t + n is a finite sequence of vertices πi,h ∈ V that satis-
fies the following condition: the agent either moves to an
adjacent vertex or does not move, that is, for any vertex
πi,h in πi, (πi,h, πi,h+1) ∈ E or πi,h+1 = πi.

An agent is called free when it is currently not execut-
ing any task. Otherwise, it is called occupied when it is
assigned to a task. If an agent is free, it can be assigned
to any task τj ∈ T (thus becoming occupied), with the
constraint that a task can be assigned to only one agent.
When a task is assigned to an agent, it is removed from
T . To execute a task τj , the assigned agent has to plan
and follow paths to move first from its current location
to the pickup vertex sj of the task and then from there
to the delivery vertex gj . When the agent arrives at the
delivery vertex gj , the task is completed and the agent
becomes free.
We call plan the current set of paths computed by the
agents. Paths in a plan are required to be be collision-
free, namely two (or more) agents, when following their
paths, cannot be in the same vertex or traverse the same
edge at the same time step. Solving a MAPD problem
means finding collision-free paths that complete all the
tasks in T . Due to the dynamic and online nature of
MAPD, the paths cannot be fully planned in advance,
but they are planned as soon as the tasks appear. The
quality of a solution for a MAPD problem is measured
according to service time or to makespan.

Definition 2. The service time is the average number of
time steps needed to complete each task, measured from
the time step it is added to T .

Definition 3. The makespan is the earliest time step
when all tasks are completed.

Since MAPD is a generalization of MAPF, and MAPF is
NP-hard to solve optimally [11, 15], also MAPD is NP-
hard to solve optimally, either using the service time or
makespan objective function.

2.2. Robustness
In the context of MAPF, a robust solution allows to
follow all the paths even when some unexpected event
forces a deviation of the execution from what originally
expected. In real applications, this behaviour is typically
caused by delays afflicting agents’ executions of planned
paths. When an agent, following its path, intends to
move to an adjacent vertex, a delay leaves the agent at
its current vertex, thus slowing down the execution of the
path. In the MAPF setting, different kinds of robustness
have been considered.
The idea of k-robustness, introduced by Atzmon et al. [2],
is defined as follows.

Definition 4. A plan is k-robust iff it is collision-free
and remains collision-free when at most k delays for each
agent occur.

To create k-robust plans, an algorithm should ensure
that, when an agent leaves a vertex, that vertex is not
occupied by another agent before k time steps. In this
way, even if the first agent delays k times, no collision
occurs.
The concept of p-robustness [1] is an alternative to k-
robustness. Assume to know the delay probability pd,
which is the probability that an agent is delayed at a
given time step. Assume also that delays are independent
of each other and that the delay probability is fixed across
all agents, locations, and time steps (this last assumption
can be easily generalized). Then, p-robustness is defined
as follows.

Definition 5. A plan is p-robust iff the probability that
it will be executed without a collision is at least p.

Note that p-robustness offers a probabilistic guarantee
on the absence of collisions in presence of delays, while
k-robustness offers a deterministic guarantee.
Robustness for MAPD has been less studied. A first re-
sult comes from the fact that not all MAPD problem
instances are solvable. According to Ma et al. [8] some
characteristics of the problem environment, summarized
under the term well-formedness, are a sufficient condition
to enable long-term robustness, that is the guarantee to
complete a finite number of tasks in a finite time. The un-
derlying idea is that agents could be forced to idle only at
specific vertices, called (non-task) endpoints, where they
do not block other agents. A MAPD problem instance is
well-formed when:

1. the number of tasks is finite;
2. the agents are less or equal than the endpoints (ar-

bitrary vertices designated as rest locations);
3. for any two endpoints, there exists a path between

them that traverses no other endpoints.
In this paper, we contribute to the study of robustness for
MAPD by extending the concepts of k- and p-robustness
from MAPF to the long-term setting of MAPD.

2.3. MAPD Algorithms
Some algorithms have been proposed to address the
MAPD problem. Given the dynamic and online nature

2



Executive summary Giacomo Lodigiani

of the problem, they interleave planning and execution.
Ma et al. [8] illustrate different algorithms able to solve
well-formed MAPD problem instances, divided in two
categories: decentralized (where each agent assigns itself
to tasks and computes its own collision-free paths given
some global information) and centralized. From experi-
mental results [8], centralized algorithms offer better re-
sults in terms of service time and makespan, but require
higher computational costs. A decentralized algorithm,
Token Passing, proves instead suitable for real-time long-
term operations.
Token Passing (TP, Algorithm 1) is based on a token, a
synchronized shared block of memory that contains the
current paths πi of all agents, the current task set T , and
the current assignment of tasks to the agents. When the
algorithm starts, the token is initialized with trivial paths
in which agents rest at their initial locations (line 2). At
each time step, any task that enters the setting is added
to the task set T (line 4). When an agent has reached the
end of its path in the token, it requests the token (at most
once per time step). The system then sends the token
to each requesting agent, in turn (line 5). The agent
with the token can assign itself (line 10) to the task τ in
T whose pickup vertex is closest to its current location
(line 9, in experiments we use Manhattan distance as
h()), provided that no other path already planned (and
stored in the token) ends at the pickup or delivery vertex
of such task (line 7). The agent then finds a collision-free
path from its current position to the pickup vertex and
then to the delivery vertex of the task and it eventually
rests at the delivery vertex (line 12). Finally, the agent
returns the token to the system and moves one step along
its path in the token (lines 18 and 20). If it cannot find a
feasible path it stays where it is or calls function Idle to
compute a path to an endpoint (see Section 2.2) in order
to avoid deadlocks and ensure long-term robustness (lines
14 and 16).
In this paper, we propose two new algorithms, based on
TP, able to produce solutions to MAPD problems, that
are not only long-term robust, but also robust to delays.

3. MAPD with Delays
In this section, we first introduce the problem of MAPD
with delays, then we discuss the conditions for its well-
formedness, and finally we present a simple variation of
Token Passing able to guarantee robustness to delays in
a mostly reactive way, during execution. In the next
section, we propose our algorithms that address delays
when planning.

3.1. MAPD-d
Delays are typical problems in real applications of MAPF
and MAPD and may have multiple causes. For example,
robots can slow down when following paths due to some
errors occurring in sensors used for localization and co-
ordination [4]. Moreover, real robots are subject to phys-
ical constraints, like minimum turning radius, maximum
velocity, and maximum acceleration, and, although algo-
rithms exists to convert time-discrete MAPD plans into
plans executable by real robots [7], small differences be-
tween models and actual agents may still cause delays.
Another source of delays is represented by anomalies oc-
curring during path execution and caused, for example,

Algorithm 1: Token Passing

1 /* system executes now */;
2 initialize token with the (trivial) path ⟨loc(ai)⟩ for

each agent ai (loc(ai) is the current location of
ai);

3 while true do
4 add new tasks, if any, to the task set T ;
5 while agent ai exists that requests token do
6 /* system sends token to ai and ai

executes now */;
7 T ′ ← {τj ∈ T | no path in token ends in sj

or in gj};
8 if T ′ ̸= {} then
9 τ ← argminτj∈T ′ h(loc(ai), sj);

10 assign ai to τ ;
11 remove τ from T ;
12 update ai’s path in token with the path

returned by PathPlanner(ai, τ, token);
13 else if no task τj ∈ T exists with

gj = loc(ai) then
14 update ai’s path in token with the path

⟨loc(ai)⟩;
15 else
16 update ai’s path in token with

Idle(ai, token);
17 end
18 /* ai returns token to system, which

executes now */;
19 end
20 agents move along their paths in token for one

time step;
21 /* system advances to the next time step */;
22 end

by partial or temporary failures of some agent [3].
We define the problem of MAPD with delays (MAPD-d)
as a MAPD problem (see Section 2.1) where the execu-
tion of the computed paths πi can be affected, at any
time step t, by delays represented by a time-varying set
D(t) ⊆ A. Given a time step t, D(t) specifies the sub-
set of agents that will delay the execution of their paths
(lingering at their currently occupied vertex) during time
step t. An agent could be delayed for several consecutive
time steps (but not for indefinitely long to preserve well-
formedness, see next section). The temporal realization
of D(t) is unknown, so a MAPD-d instance is formulated
as a MAPD one: no other information is available at
planning time. The difference lies in how the solution is
searched: in MAPD-d we compute solution accounting
for robustness to delays that might happen.
More formally, delays affect each agent’s execution trace.
Agent ai’s execution trace ei = ⟨ei,0, ei,1, ..., ei,m⟩1 for a
given path πi = ⟨πi,0, πi,1, ..., πi,n⟩ corresponds to the
actual sequence of m (m ≥ n) vertices traversed by ai

while following πi and accounting for possible delays. Let
us call idx(ei,t) the index of ei,t (the vertex occupied by
ai at time step t) in πi. Given that ei,0 = πi,0, the

1For simplicity, we consider a path and a corresponding execu-
tion trace starting from time step 0. The generalization to paths
starting at a generic time step t is intuitive, but requires a more
complex notation and is not reported here.

3



Executive summary Giacomo Lodigiani

execution trace is defined, for t > 0, as:

ei,t =

{
ei,t−1 if ai ∈ D(t)
πi,h | h = idx(ei,t−1) + 1 otherwise

An execution trace terminates when ei,m = πi,n for some
m.
Notice that, if no delays are present (that is, D(t) = {}
for all t) then the execution trace ei exactly mirrors the
path πi and, in case this is guaranteed in advance, the
MAPD-d problem becomes de facto a regular MAPD
problem. In general, such a guarantee is not given and
solving a MAPD-d problem opens the issue of comput-
ing collision-free tasks-fulfilling MAPD paths (optimizing
service time or makespan) characterized by some level of
robustness to delays.
The MAPD-d problem reduces to the MAPD problem as
a special case, so the MAPD-d problem is NP-hard.

3.2. Well-formedness of MAPD-d
The fact that delays only affect execution does not harm
long-term robustness (namely, the guarantee that a finite
number of tasks will be completed in a finite time), since
the property is guaranteed by well-formedness that de-
pends mostly on the environment (see Section 2.2). The
only possible exception is when an agent cannot move
anymore (namely when ei,t+1 = ei,t for all t ≥ T or,
equivalently, when the agent is in D(t) for all t ≥ T ).
In this case, the agent becomes a new obstacle in the
environment, potentially blocking a path critical for pre-
serving the well-formedness of the environment. In a real
context, this problem can be solved by removing or re-
pairing the blocked agent. So it is reasonable to add the
following assumption: if an agent fails permanently, it
will be removed (in this case its incomplete task will re-
turn in the task set) or repaired after a finite number of
time steps. This guarantees that the well-formedness of
a problem instance is preserved (or, more precisely, that
it is restored after a time interval).
Hence, an instance of the MAPD-d problem is well-
formed and, consequently, long-time robust when, in ad-
dition to conditions (1)-(3) from Section 2.2, we have:
(4) any agent that cannot move anymore is removed or

repaired after a finite number of time steps; if the
agent is removed, at least one agent survives in the
system (e.g., ℓ ≥ 1).

In what follows, we implicitly consider well-formed in-
stances of MAPD-d problems.

3.3. TP with Recovery Routines
From the previous discussion it follows that algorithms
able to solve well-formed MAPD problems, like Token
Passing (TP), are in principle able to solve well-formed
MAPD-d problems as well. The only issue is that these
algorithms return paths that do not consider possible
delays occurring during execution. Delays cause planned
paths to possibly collide, although they did not at the
time they have been created. Note that, according to
our assumptions, when an agent is delayed at time step
t, there is no way to know for how long it will be delayed.
In the original TP algorithm (Section 2.3), only agents
that have reached the end of their paths in the token can
request the token to plan again. To address the pres-
ence of delays, we add a simple recovery routine to the

Algorithm 2: TP with recovery routines

1 /* system executes now */;
2 initialize token with the (trivial) path ⟨loc(ai)⟩ for

each agent ai;
3 while true do
4 add new tasks, if any, to the task set T ;
5 R ← CheckCollisions(token);
6 foreach agent ai in R do
7 retrieve task τ assigned to ai;
8 πi ← PathPlanner(ai, τ, token);
9 if πi is not null then

10 update ai’s path in token with πi;
11 else
12 recovery from deadlocks;
13 end
14 end
15 while agent ai exists that requests token do
16 proceed like in Algorithm 1 (lines 6 - 18);
17 end
18 agents move along their paths in token for one

time step (or stay at their current position if
delayed);

19 /* system advances to the next time step*/;
20 end

TP algorithm such that, when a collision is detected be-
tween agents following their paths in the token, it assigns
the token to one of the colliding agents to allow replan-
ning of a new collision-free path. This TP with recovery
routines algorithm (Algorithm 2) will be a baseline for
experimentally evaluating the algorithms we propose in
the next section. In addition to the other information
(Section 2.3), we also store in the token the current exe-
cution traces of the agents. The algorithm checks if there
will be a collision at the current time step using the func-
tion CheckCollisions in line 5: a collision occurs at time
step t if the path πi of an agent ai that is not delayed
(ai ̸∈ D(t)) tells ai to move to a vertex occupied by a
delayed agent aj (aj ∈ D(t)). The function returns the
set R of non-delayed colliding agents that try to plan
new collision-free paths (line 8). Note that PathPlanner
considers as constraints the current paths of other agents
in the token.
A problem may happen when multiple delays occur at
the same time; in particular situations, two or more de-
layed agent may prevent each other to follow the only
paths to complete their tasks. In this case, the algo-
rithm recognizes the situation and implements a dead-
lock recovery routine. In particular, although with our
assumptions agents cannot be delayed forever, we plan
short collision-free random walks for the involved agents
in order to speedup the deadlock resolution (line 12).

4. MAPD-d Algorithms
In this section we present two algorithms, k-TP and p-
TP, able to plan paths that solve MAPD-d problem in-
stances with some guaranteed degree of robustness in face
of delays. In particular, k-TP provides a deterministic
degree of robustness, while p-TP provides a probabilis-
tic degree of robustness. For developing these two algo-
rithms, we took some inspiration from the corresponding
concepts of k- and p-robustness proposed for MAPF (see

4



Executive summary Giacomo Lodigiani

Section 2).

4.1. k-TP Algorithm
As we have discussed in Section 3, TP with recovery
routines just reacts to the occurrence of delays, ensur-
ing that long-term robustness is preserved. The k-TP
algorithm proposed here, instead, plans considering that
delays may occur, reducing the need of replanning during
execution.
Since it is not a one-shot problem, a k-robust solution
for MAPD-d is a plan which is long-term robust and
avoids collisions due to at most k consecutive delays
for each agent, not only considering the paths already
planned but also those planned in the future. This is
what our proposed k-TP algorithm does (see full thesis
for pseudocode). The basic structure is similar to TP
with recovery routines, but the path planning is sub-
ject to additional constraints. A new path πi, before
being added to the token, is used to generate the con-
straints (the k-extension of the path, also added to the
token) representing that, at any time step t, any vertex in
{πi,t−k, . . . , πi,t−1, πi,t, πi,t+1, . . . , πi,t+k} should be con-
sidered as an obstacle (at time step t) by agents planning
later. In this way, even if agent ai or agent aj plan-
ning later are delayed up to k times, no collision will
occur. For example, if πi = ⟨v1, v2, v3⟩, the 1-extension
constraints will forbid any other agent to be in {v1, v2}
at the first time step, in {v1, v2, v3} at the second time
step, in {v2, v3} at the third time step, and in {v3} at
the fourth time step.
The path of an agent added to the token ends at the
delivery vertex of the task assigned to the agent, so the
space requested in the token to store the path and the
corresponding k-extension constraints is finite, for finite
k. Note that, especially for large values of k, it may
happen that a sufficiently robust path for an agent ai

cannot be found at some time step; in this case, ai simply
returns the token and tries to replan at the next time
step. The idea is that, as other agents advance along
their paths, the setting becomes less constrained and a
path can be found more easily. Since delays that affect
the execution are not known beforehand and an agent
could be delayed more than k consecutive time steps,
recovery routines are still necessary.
Note that k-TP is an extension of TP with recovery rou-
tines, so it is able to solve all well-formed MAPD-d prob-
lem instances.

4.2. p-TP Algorithm
The idea of k-robustness considers a fixed value k for the
guarantee, which could be hard to set: if k is too low,
plans may not be robust enough and the number of re-
plans could be high, while if k is too high, it will increase
the total cost of the solution with no extra benefit (see
Section 5 for numerical data supporting these claims).
An alternative approach is to resort to the concept of
p-robustness (Section 2). A p-robust plan guarantees
long-term robustness and keeps collision probability be-
low a certain threshold p (0 ≤ p ≤ 1). In a MAPD
setting, where tasks are not known in advance, the plan-
ner could quickly reach the threshold with just first few
paths planned, so that no other path can be added to the
plan until the current paths have been executed. Our so-
lution to avoid this problem is to impose that only the

collision probability of individual paths should remain
below the threshold p, not the whole plan.
We thus need a way to calculate collision probability for
a given path: in the p-TP algorithm (see full thesis for
pseudocode) we use Markov chains, a tool typically em-
ployed to model the future states of systems when transi-
tions are defined in term of probability [5]. A sequence of
states {Xt, t ≥ 0} is said to be a Markov chain if, for all
state values xi, P{Xt+1 = xt+1 | X0 = x0, . . . , Xt−1 =
xt−1, Xt = xt} = P{Xt+1 = xt+1 | Xt = xt}. In fact, p-
TP assumes that the set of possible execution traces {ei}
corresponding to a path πi of an agent ai is compactly
represented as a Markov chain, where we have a proba-
bility pd of remaining on the current vertex (probability
of being delayed) and a probability 1 − pd of advanc-
ing along πi. Our model assumes that transitions along
chains of different agents are independent.
p-TP inherits the structure of TP with recovery rou-
tines but, before inserting a new path πi in the token,
a Markov chain associated to the path is derived (states
of the Markov chain are the vertices composing the path
and transitions of the Markov chain are defined according
to pd, as explained before) and the collision probability
cprobπi

between path πi and paths already in the token
is calculated. Let us show the procedure in detail. The
properties of Markov chains [5] allows to calculate the
probability that an agent occupies a vertex at a time
step as follows. The probability distribution for the ver-
tex occupied by an agent ai at the beginning of a path
πi = ⟨πi,t, πi,t+1, ..., πi,t+n⟩ is given by a (row) vector s0
with length n that has every element set to 0 except that
corresponding to the vertex πi,t, which is 1. The prob-
ability distribution for the location of an agent at time
step t+j is given by s0P

j , where P is the matrix describ-
ing transition probabilities constructed considering that
an agent has probability 1− pd of advancing one step in
the path. Hence, for any vertex traversed by the path πi,
we calculate its collision probability as 1 minus the prob-
ability that all the other agents are not in that vertex
at that time step (i.e., the probability that at least one
of the other agents is in that vertex at that time step)
multiplied by the probability that the agent is actually
at that vertex in that given time step. All the probabil-
ities of the steps along the path are summed to obtain
the collision probability cprobπi

for the path πi. If this
probability is above the threshold p , the path is rejected
and a new one is calculated. If an enough robust path is
not found after a fixed number of rejections itermax, the
token is returned to the system and the agent will try
to replan at the next time step (as other agents advance
along their paths, chances of collisions could decrease).
Also for p-TP, since the delays are not known beforehand,
recovery routines are still necessary because p-TP pro-
vides only a probabilistic guarantee that collisions won’t
occur. Moreover, we need to set the value of pd, with
which we build that guarantee, according to the specific
application setting. Finally, notice that, since p-TP is an
extension of TP with recovery routines, it is able to solve
all the well-formed MAPD-d problem instances.

5. Experimental Results

5



Executive summary Giacomo Lodigiani

Table 1: Results of experiments in small warehouse with
task frequency λ=0.5 and 10 delays per agent

ℓ=4 ℓ=8
k or p tot. cost # replans runtime tot. cost #replans runtime

k
-T

P

0 1459.52 7.26 0.85 1876.72 16.04 2.11
1 1497.92 1.4 0.91 1925.52 3.85 2.27
2 1563.28 0.1 1.16 1929.12 0.73 2.15
3 1644.36 0.01 1.59 2075.04 0.09 3.12
4 1744.48 0.0 2.0 2226.64 0.04 4.49

p
-T

P
,
p
d
=
.1

1 1459.52 7.26 1.14 1876.72 16.04 2.63
0.5 1478.0 6.29 1.81 1898.16 12.59 5.0
0.25 1580.28 4.29 2.88 2041.68 5.63 6.11
0.1 1636.68 2.9 3.16 2151.92 3.23 6.32
0.05 1714.56 2.93 3.42 2234.08 2.76 6.48

p
-T

P
,
p
d
=
.0
2 0.5 1466.88 7.34 1.29 1910.64 12.81 3.87

0.25 1513.68 6.8 1.57 1889.68 10.21 4.38
0.1 1566.52 4.53 2.37 2003.12 6.73 5.57
0.05 1622.12 3.51 2.66 2049.92 4.25 5.34

5.1. Setting
Our experiments are conducted on a 3.2 GHz Intel Core
i7 8700H laptop with 16 GB of RAM. We tested our algo-
rithms in two warehouse 4-connected grid environments
in which effects of delays can be significant: a small one,
15 × 13, with 4 and 8 agents, and a large one, 25 × 17,
with 12 and 24 agents. (Environments of similar size
have been used in [8].) We create a sequence of 50 tasks
choosing the pickup and delivery vertices uniformly at
random among a set of predefined vertices. The arrival
time of each task is determined according to a Poisson
distribution [12]. We test 3 different arrival frequencies λ
for the tasks: 0.5, 1, and 3 (since, as discussed later, the
impact of λ on robustness is not relevant, we do not show
results for all values of λ). At the beginning, the agents
are located at the endpoints selected for well-formedness
(Section 2.2).
We measure the total cost of a solution as the sum of
the lengths of all the paths in a run (total cost is strictly
related to service time), the number of replans performed
during execution, and the total runtime of a simulation
(in s). Results are averaged over 100 runs. During each
run, 10 delays per agent are randomly inserted. A run
ends when all the tasks have been completed.
We test both k-TP and p-TP against the baseline TP
with recovery routines (to the best of our knowledge, we
are not aware of any other algorithm for finding robust
solutions to MAPD-d). For p-TP we use two different
values for the parameter pd, 0.02 and 0.1, modeling a low
and a higher probability of delay, respectively. (Note that
this is the expected delay probability used to calculate
the robustness of a path and could not match with the
delays actually observed.) For planning paths of individ-
ual agents (PathPlanner in the algorithms), we use an
A* path planner with Manhattan distance as heuristic.
All algorithms are implemented in Python2.

5.2. Results
Results relative to small warehouse are shown in Tables 1
and 2 and those relative to large warehouse are shown in
Tables 3 and 4. To keep readability, we do not report the
standard deviation in tables. Standard deviation values
do not present any evident oddity and support the con-
clusions about the trends that are reported below.
The baseline algorithm, TP with recovery routines, ap-
pears two times in each table: as k-TP with k = 0 (that

2Link to GitHub code: https: // github. com/ Lodz97/
Multi-Agent_ Pickup_ and_ Delivery. git

Table 2: Results of experiments in small warehouse with
task frequency λ=3 and 10 delays per agent

ℓ=4 ℓ=8
k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 1419.08 8.3 0.6 1742.32 14.67 1.93
1 1452.88 1.47 0.77 1758.96 4.01 1.81
2 1534.36 0.2 0.95 1814.0 0.58 1.89
3 1603.08 0.01 1.33 2001.84 0.12 3.02
4 1716.48 0.0 1.68 2107.76 0.01 4.32

p
-T

P
,
p
d
=
.1

1 1419.08 8.3 0.86 1742.32 14.67 2.53
0.5 1441.16 6.7 1.45 1794.48 11.06 4.93
0.25 1527.92 5.12 2.3 1961.92 6.46 5.83
0.1 1619.68 2.93 2.81 2011.36 3.55 5.66
0.05 1668.16 2.65 3.05 2101.84 3.65 6.11

p
-T

P
,
p
d
=
.0
2 0.5 1432.56 8.05 1.25 1756.64 13.19 3.61

0.25 1491.68 7.02 1.57 1826.0 10.93 3.77
0.1 1521.24 4.41 2.12 1871.76 6.89 4.65
0.05 1574.2 3.45 2.5 1956.96 4.81 4.98

Table 3: Results of experiments in large warehouse with
task frequency λ=0.5 and 10 delays per agent

ℓ=12 ℓ=24
k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 3403.44 17.18 2.8 6462.0 20.71 8.32
1 3320.4 3.88 3.27 6359.04 5.37 5.78
2 3423.84 1.18 4.89 6611.52 1.62 9.54
3 3648.6 0.24 7.54 7213.2 0.4 15.55
4 3727.08 0.01 10.9 7210.8 0.1 22.11

p
-T

P
,
p
d
=
.1

1 3403.44 17.18 4.12 6462.0 20.71 11.2
0.5 3443.4 10.02 11.3 7002.72 17.09 38.61
0.25 3661.56 5.38 17.26 7527.12 9.59 58.95
0.1 3966.96 4.51 19.6 7734.24 4.51 54.92
0.05 4047.96 3.56 20.27 8373.36 3.89 57.24

p
-T

P
,
p
d
=
.0
2 0.5 3478.32 14.51 7.41 6961.2 20.3 28.74

0.25 3452.64 9.92 10.19 6882.48 14.15 39.47
0.1 3732.0 6.53 13.76 7301.76 8.94 49.04
0.05 3760.56 6.41 14.91 7394.4 7.02 49.96

is the basic implementation as in Algorithm 2) and as
p-TP with pd = 0.1 and p = 1 (which accepts all paths).
The two versions of the baseline return the same results
in terms of total cost and number of replans (we use the
same random seed initialization for runs with different
algorithms), but the total runtime is larger in the case
of p-TP, due to the overhead of calculating the Markov
chains and the collision probability for each path.
Looking at robustness, which is the goal of our algo-
rithms, we can see that, in all settings, both k-TP and
p-TP significantly reduce the number of replans with re-
spect to the baseline. For k-TP, increasing k leads to
increasingly more robust solutions with less replans, and
the same happens for p-TP when the threshold proba-
bility p is reduced. However, increasing k shows a more
evident effect on the number of replans than reducing
p. More robust solutions, as expected, tend to have a
larger total cost, but the first levels of robustness (k = 1,
p = 0.5) manage to reduce significantly the number of
replans with a small or no increase in total cost. For in-
stance, in Table 4, k-TP with k = 1 decreases the number
of replans of more than 75% with an increase in total cost
of less than 2%, with respect to the baseline. Pushing
towards higher degrees of robustness (i.e., increasing k
or decreasing p) tends to increase cost significantly with
diminishing returns in terms of number of replans, espe-
cially for k-TP.
Comparing k-TP and p-TP, it is clear that solutions pro-
duced by k-TP tend to be more robust at similar total
costs (e.g., see k-TP with k = 1 and p-TP with pd = .1
and p = 0.5 in Table 1), and decreasing p may sometimes
lead to relevant increases in costs. This suggests that our
implementation of p-TP has margins for improvement: if

6

https://github.com/Lodz97/Multi-Agent_Pickup_and_Delivery.git
https://github.com/Lodz97/Multi-Agent_Pickup_and_Delivery.git


Executive summary Giacomo Lodigiani

Table 4: Results of experiments in large warehouse with
task frequency λ=3 and 10 delays per agent

ℓ=12 ℓ=24
k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 3182.76 18.96 2.91 6203.76 30.83 8.12
1 3237.36 4.22 3.28 6109.44 8.98 9.81
2 3297.36 1.19 4.75 6271.2 1.71 12.03
3 3348.24 0.18 7.31 6565.44 0.59 19.43
4 3487.08 0.04 10.76 6769.68 0.17 30.91

p
-T

P
,
p
d
=
.1

1 3182.76 18.96 4.16 6203.76 30.83 10.78
0.5 3224.88 11.31 9.04 6183.36 17.21 36.74
0.25 3576.12 7.39 14.58 6906.0 9.96 48.14
0.1 3820.44 5.3 16.33 7451.04 6.32 47.11
0.05 3973.2 3.83 16.83 8017.44 4.42 47.62

p
-T

P
,
p
d
=
.0
2 0.5 3115.68 12.47 7.22 5946.24 20.47 26.21

0.25 3477.0 12.05 9.23 6350.4 15.72 39.68
0.1 3360.84 6.78 11.59 6975.6 9.88 42.76
0.05 3580.08 6.21 12.98 7048.32 8.81 42.23

the computed path exceeds the threshold p we wait the
next time step to replan, without storing any collision
information extracted from the Markov chains; finding
ways to exploit this information may lead to an enhanced
version of p-TP (this investigation is left as future work).
It is also interesting to notice the effect of pd in p-TP: a
higher pd (which, in our experiments, amounts to over-
estimating the actual delay probability that, considering
that runs last on average about 300 time steps and there
are 10 delays per agent, is equal to 10

300
= 0.03) leads

to solutions requiring less replans, but with a noticeable
increase in total cost.
Considering runtimes, k-TP and p-TP are quite different.
For k-TP, we see a trend similar to that observed for to-
tal cost: a low value of k (k = 1) often corresponds to
a slight increase in runtime with respect to the baseline
(sometimes even a decrease), while for larger values of k
the runtime may be much longer than the baseline. In-
stead, p-TP shows a big increase in runtime with respect
to the baseline, but then it does not change too much, at
least for low values of p (p = 0.1, p = 0.05). Finally, we
can see how different task frequencies λ have no signif-
icant impact on our algorithms, but higher frequencies
have the global effect of reducing total costs since tasks
(which are always 50 per run) are available earlier.
We repeat the previous experiments increasing the num-
ber of random delays inserted in execution to 50 per
agent, thus generating a scenario with multiple troubled

agents. Both algorithms significantly reduce the number
of replans with respect to the baseline, reinforcing the
importance of addressing possible delays during planning
and not only during execution, especially when the de-
lays can dramatically affect the operations of the agents,
like in this case. The k-TP algorithm performs better
than the p-TP one, with trends similar to those discussed
above.
Finally, we run simulations in a even larger warehouse
4-connected grid environment of size 25 × 37, with 50
agents, λ = 1, 100 tasks, and 10 delays per agent. The
same qualitative trends discussed above are observed also
in this case. For example, k-TP with k = 2 reduces the
number of replans of 93% with an increase of total cost
of 5% with respect to the baseline. The runtime of p-TP
grows to hundreds of seconds, also with large values of
p, suggesting that some improvements are needed. Full
results are not reported here due to space constraints.

6. Conclusion
In this paper, we introduced a variation of the Multi-
Agent Pickup and Delivery (MAPD) problem, called
MAPD with delays (MAPD-d), which considers an im-
portant practical issue encountered in real applications:
delays in execution. In a MAPD-d problem, agents
must complete a set of incoming tasks (by moving to
the pickup vertex of each task and then to the corre-
sponding delivery vertex) even if they are affected by an
unknown but finite number of delays during execution.
We proposed two algorithms to solve MAPD-d, k-TP and
p-TP, that are able to solve well-formed MAPD-d prob-
lem instances and provide deterministic and probabilistic
robustness guarantees, respectively. Experimentally, we
compared them against a baseline algorithm that reac-
tively deals with delays during execution. Both k-TP and
p-TP plan robust solutions, greatly reducing the number
of replans needed with a small increase in solution cost
and runtime. k-TP showed the best results in terms of
robustness-cost trade-off, but p-TP still offers great op-
portunities for future improvements.
Future work will address the enhancement of p-TP ac-
cording to what we outlined in Section 5.2 and the exper-
imental testing of our algorithms in real-world settings.

7



Executive summary Giacomo Lodigiani

References
[1] Dor Atzmon, Roni Stern, Ariel Felner, Nathan R.

Sturtevant, and Sven Koenig. Probabilistic robust
multi-agent path finding. In Proc. ICAPS, pages
29–37, 2020.

[2] Dor Atzmon, Roni Stern, Ariel Felner, Glenn Wag-
ner, Roman Barták, and Neng-Fa Zhou. Robust
multi-agent path finding. In Proc. AAMAS, page
1862–1864, 2018.

[3] Pinyao Guo, Hunmin Kim, Nurali Virani, Jun Xu,
Minghui Zhu, and Peng Liu. Roboads: Anomaly de-
tection against sensor and actuator misbehaviors in
mobile robots. In Proc. DSN, pages 574–585, 2018.

[4] Eliahu Khalastchi and Meir Kalech. Fault detec-
tion and diagnosis in multi-robot systems: A survey.
Sensors, 19(18):1–19, 2019.

[5] David A Levin and Yuval Peres. Markov chains and
mixing times, volume 107. American Mathematical
Soc., 2017.

[6] Hang Ma. Target Assignment and Path Planning for
Navigation Tasks with Teams of Agents. PhD the-
sis, University of Southern California, Department
of Computer Science, Los Angeles, CA, 2020.

[7] Hang Ma, Wolfgang Hönig, T. K. Satish Kumar,
Nora Ayanian, and Sven Koenig. Lifelong path
planning with kinematic constraints for multi-agent
pickup and delivery. In Proc. AAAI, pages 7651–
7658, 2019.

[8] Hang Ma, Jiaoyang Li, T.K. Satish Kumar, and
Sven Koenig. Lifelong multi-agent path finding for

online pickup and delivery tasks. In Proc. AAMAS,
page 837–845, 2017.

[9] Hang Ma, Jingxing Yang, Liron Cohen, T. K. Ku-
mar, and Sven Koenig. Feasibility study: Moving
non-homogeneous teams in congested video game
environments. Proc. AIIDE, pages 270–272, 2017.

[10] Roni Stern, Nathan R. Sturtevant, Ariel Felner,
Sven Koenig, Hang Ma, Thayne T. Walker, Jiaoyang
Li, Dor Atzmon, Liron Cohen, T. K. Satish Ku-
mar, Roman Barták, and Eli Boyarski. Multi-agent
pathfinding: Definitions, variants, and benchmarks.
In Proc. SoCS, pages 151–159, 2019.

[11] Pavel Surynek. An optimization variant of multi-
robot path planning is intractable. In Proc. AAAI,
page 1261–1263, 2010.

[12] Kung-Kuen Tse. Some applications of the poisson
process. Appl. Math., 05:3011–3017, 2014.

[13] Manuela Veloso, Joydeep Biswas, Brian Coltin, and
Stephanie Rosenthal. Cobots: Robust symbiotic au-
tonomous mobile service robots. In Proc. IJCAI,
page 4423–4429, 2015.

[14] Peter R. Wurman, Raffaello D’Andrea, and Mick
Mountz. Coordinating hundreds of cooperative, au-
tonomous vehicles in warehouses. In Proc. IAAI,
page 1752–1759, 2007.

[15] Jingjin Yu and Steven M. LaValle. Structure and
intractability of optimal multi-robot path planning
on graphs. In Proc. AAAI, page 1443–1449, 2013.

8


	Introduction
	Preliminaries and Related Work
	MAPD
	Robustness
	MAPD Algorithms

	MAPD with Delays
	MAPD-d
	Well-formedness of MAPD-d
	TP with Recovery Routines

	MAPD-d Algorithms
	k-TP Algorithm
	p-TP Algorithm

	Experimental Results
	Setting
	Results

	Conclusion

