
POLITECNICO DI MILANO
Master of Science in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

Identifying binge-watching behavior on

serial content and exploring its relevance

in Recommender Systems

Supervisor: Paolo Cremonesi

Co-supervisors: Mario Scriminaci

Fernando B. Pérez Maurera

M.Sc. Thesis by:

Matteo Carretta, matriculation number 922378

Academic Year 2019-2020

To Astrid, my soulmate, forever

Abstract

With the growth of Over-The-Top media services, the way content is deliv-

ered to viewers changed dramatically. On such platforms, every episode of

TV-series seasons is released most of the time simultaneously. Consequently,

viewers’ behavior has evolved, and they often watch several episodes one

after the other in most of their watching sessions. This phenomenon is re-

ferred to as binge-watching, while binge-worthy series are series prone to

be binge-watched. Therefore, this thesis aims to provide methods to iden-

tify binge-watchers and binge-worthy series and explore the relevance of this

information as features of Recommender Systems.

First, we identify user-series watching sessions, and we extract binge-

watchers and binge-worthy series by applying high-level definitions of binge-

watching we find in the literature. Next, we outline how to introduce these

features into Recommender Systems. We use two approaches: for models

that do not use features by default, we extend the User Rating Matrix adding

this information as an extra user and item; for Factorization Machines,

we add features straightforwardly. We then train models weighting their

features so that their importance can be automatically learned during the

hyper-parameter optimization.

Our experiments show that Machine Learning models like SLIM and

Factorization Machines leverage the information on binge-worthy series and

improve their recommendation quality, both in terms of accuracy and be-

yond accuracy metrics. We also highlight that the models do not use binge-

watchers’ information as it does not lead to improvements in recommenda-

tion quality.

Finally, we outline possible use cases and research questions that can

benefit from the extraction of binge-watchers and binge-worthy series infor-

mation.

I

Sommario

Conseguentemente alla crescita dei servizi media Over-The-Top, il modo

in cui i contenuti sono trasmessi al pubblico è cambiato drasticamente.

In queste piattaforme, gli episodi delle stagioni delle serie-TV vengono ri-

lasciati simultaneamente di frequente. Di conseguenza, anche il compor-

tamento del pubblico si è profondamente evoluto: sempre più utenti di

queste piattaforme guardano diversi episodi di fila in ogni sessione. Questo

fenomeno è definito come binge-watching, mentre le serie-TV binge-worthy

sono serie che il più delle volte vengono guardate attraverso binge-watching.

L’obiettivo di questa tesi consiste nel fornire metodi per l’identificazione

dei binge-watcher e delle serie binge-worthy, e nell’esplorare la rilevanza di

queste informazioni all’interno di Sistemi di Raccomandazione.

Innanzitutto, identifichiamo le singole sessioni in cui un utente guarda

una certa serie, ed estraiamo sia i binge-watcher che le serie binge-worthy,

utilizzando definizioni di alto livello che troviamo nella bibliografia. Suc-

cessivamente, illustriamo come introdurre queste feature all’interno dei Sis-

temi di Raccomandazione. Adottiamo due approcci differenti: per quanto

riguarda i modelli che non prevedono l’utilizzo di features, estendiamo la

User Rating Matrix aggiungendo queste informazioni come se fossero un

utente e un oggetto extra; per le Factorization Machines, possiamo utiliz-

zare direttamente le features. In prosieguo, addestriamo i modelli pesando

le feature affinché la loro importanza venga automaticamente imparata du-

rante l’ottimizzazione degli iper-parametri.

I nostri esperimenti mostrano che i modelli di Machine Learning come

SLIM e le Factorization Machines sfruttano le informazioni sulle serie binge-

worthy e migliorano la qualità delle loro raccomandazioni, sia per quanto

riguarda le metriche di accuracy e beyond-accuracy. Inoltre, risulta che i

modelli non usino le informazioni sui binge-watchers, siccome non migliorano

la qualità delle raccomandazioni.

Infine, illustriamo possibili casi d’uso e sviluppi di ricerca che possono

trarre beneficio dall’estrazione di binge-watchers e serie binge-worthy.

III

Acknowledgements

First of all, I would like to thank Mario and Fernando, my supervisors, for

all the support they have given me during this work. Working with you has

been a wholesome experience, challenging but rewarding, which helped me

grow professionally and personally.

I would like to thank Professor Cremonesi and the whole ContentWise

Research team for the opportunity they have given to me, your patience,

and your precious insights: I will keep treasure of them forever.

To Elisa, for always being by my side, cheering me up in the most chal-

lenging moments, and taking care of me like no one ever did. You gave me

the strength to keep pushing forward no matter what, and I could never

have done this without you.

To my family, for supporting me through all these years and giving me

the possibility to study at Politecnico. You have always believed in me

through my successes and failures.

To Corda, Tom, and Alle, my brothers, and band-mates of Mother Au-

gusta, and to our manager Sad, for sharing with me some of the most award-

ing and beautiful experiences of my life.

To all of my friends, especially Fede, Umbi, Berto, Guido, Richi, Bea,

Marta, Fra, Rossy, Manu, and Giorgia, for their sincerity, loyalty, and for

always being there for me, through good and bad times.

To my “Brothers of Metal” Gimmy, Gianca, Kara, Rampi, Saylor, Dest,

for sharing our passion for music and the many marvelous times together.

To my “amici del mare” Alfre, Angi, Dido and Gio, for the unique and

lifelong bond I have with you, that goes through distances.

To Music, my deepest passion, my purest love, for giving me the energy,

the drive, the motivation to push through, and for being my constant study

companion.

To all the amazing and smart friends I met at Politecnico, sharing these

years of joy and pain with you has been a ride I will never forget.

V

Contents

Abstract I

Sommario III

Acknowledgements V

1 Introduction 1

1.1 Context: Recommender Systems in an industrial scenario . . 1

1.2 Scenario and problem statement 2

1.3 Contributions . 2

1.4 Definitions . 3

1.5 Thesis structure . 4

2 State of the Art 5

2.1 Recommender Systems . 5

2.1.1 Explicit and implicit feedback 5

2.1.2 User Rating Matrix 6

2.1.3 Collaborative Filtering 6

2.1.4 SLIM . 8

2.2 Context-aware Recommender Systems 9

2.2.1 Factorization Machines 9

2.3 Recommender Systems Evaluation 9

2.4 Binge-watching . 12

2.5 Correlation measures . 12

2.5.1 Pearson-r correlation coefficient 12

2.5.2 Spearman-r correlation coefficient 13

2.5.3 Kendall-τ correlation coefficient 14

3 Data and and preliminaries to feature crafting 15

3.1 Dataset . 15

3.1.1 Data description . 15

VII

3.2 Filtering . 16

3.3 Sequence reconstruction . 18

3.3.1 Pre-processing: readjusting the episode numbers . . . 19

3.3.2 Method . 19

3.3.3 Results . 24

4 Binge-watchers identification and feature crafting 27

4.1 Watching sessions . 27

4.1.1 Watching sessions extraction 27

4.2 Binge-watchers and binge-worthy series identification 29

4.2.1 User-series engagement table 29

4.2.2 Binge-watchers and binge-worthy thresholds definition 32

4.2.3 Series grouping . 33

4.2.4 Binge-watchers and binge-worthy series statistics . . . 33

4.2.5 Final remarks on binge-watching definitions 33

4.3 Binge-watching and binge-worthy features crafting 35

5 Approach 39

5.1 Extension of the User Rating Matrix 39

5.2 Models using the extended URM 41

5.2.1 User Collaborative Filtering 41

5.2.2 Item Collaborative Filtering 43

5.2.3 SLIM with contextual information 44

5.3 LightFM Factorization Machine 45

6 Experimental setup 47

6.1 Dataset processing . 47

6.1.1 User temporal splitting 48

6.1.2 URM splits description 48

6.1.3 Binge-watching and binge-worthy features built with

training set . 49

6.2 Models training . 49

6.2.1 Evaluation procedure 49

6.2.2 Models . 49

6.2.3 Keeping already seen items in recommendations . . . 51

6.2.4 Hyper-parameter tuning 51

6.2.5 Metrics . 52

VIII

7 Results 53

7.1 Random and Top Popular baselines 53

7.2 Collaborative Filtering . 54

7.2.1 User Collaborative Filtering 54

7.2.2 Item Collaborative Filtering 55

7.3 SLIM with contextual information 56

7.4 LightFM . 58

7.5 Popularity bias analysis . 59

7.6 Time benchmarks . 59

7.7 Final remarks . 60

8 Conclusion and Future Work 61

8.1 Outputs and Contributions 61

8.2 Limitations . 62

8.3 Future Work . 62

References 65

A Results 69

A.1 Time benchmarks . 70

IX

X

Chapter 1

Introduction

With the exponential rise in popularity of Over-The-Top media services

over the last 15 years, the way content is delivered and how it is consumed

changed dramatically. Originally, TV-series were broadcasted periodically

via cable, and the public needed to wait a certain amount of time for the

next episode to be transmitted. Nowadays, with platforms such as Netflix

or Prime Video gaining a terrific amount of popularity and new ones re-

leased daily, every episode of TV-series’ seasons is released simultaneously.

In addition to this, people can stream shows wherever they are through

these platforms and are not limited anymore to do it at home on TV. Con-

sequently, TV-series have become a worldwide phenomenon. People have

started to consume entire seasons as soon as they get released, watching

several episodes in a short amount of time. This behavior is referred to as

binge-watching [1].

One of these platforms’ main strengths is suggesting content tailored to

users’ preferences through Recommender Systems. Hence, the goal of this

thesis is to explore if determining which users are binge-watchers and which

series are prone to be binge-watched is relevant to improve the quality of

recommendations provided to users. We mainly focus on understanding how

to extract such information and introducing it into state-of-the-art recom-

mendation algorithms, checking how the performance metrics are impacted.

1.1 Context: Recommender Systems in an indus-

trial scenario

This thesis was developed during an internship at ContentWise. Content-

Wise is a software company working in user experience personalization for

video operators, digital publishers, and online retailers. It develops and

provides a UX Engine to Over-The-Top media services, tailoring the sub-

scribers’ experience to their tastes, both in terms of front-end and back-end

with personalized recommendations.

Historically, research on binge-watching has been very active in Sociology

and Psychology. It is not easy to find a definition that can help identify

uniquely what a binge-watcher is. Up to our knowledge, binge-watching has

not been explored nor exploited yet in the Recommender Systems literature.

This work of thesis proposes a rigorous approach to identify binge-watching

behavior and seeks to identify its impact on recommendation performance,

in continuity to research in the Recommender Systems field, which aims to

improve recommendations.

1.2 Scenario and problem statement

Having the highest amount of information possible on its users is crucial for

every platform. It is relevant to know which content a user consumes and

how it consumes it. As an example, Context-aware Recommender Systems

rely on this assumption, and they demonstrate that how, when, and where

the user interacts with the content improves the recommendation quality

significantly[22]. However, the literature lacks methods to extract binge-

watchers and binge-worthy series from a dataset. The definitions are highly

general and complex to apply to a real-life dataset. The main problem is

the absence of rigorous methods to identify the binge-watchers in a dataset.

The absence of well-defined approaches to identify such information in a

dataset leads to a consequent non-existent exploration of its significance. At

the moment, the research community does not provide any hints on whether

this behavioral pattern improves recommendation quality or not. With the

wide-spreading of binge-watching as an increasingly common behavior in

popular culture, we believe it needs to be assessed from the perspective of

evaluating its usefulness as side information of recommendation engines.

1.3 Contributions

We propose novel approaches to identify binge-watchers and binge-worthy

series in our dataset with the knowledge acquired by analyzing the state-of-

the-art definitions of binge-watchers and Recommender System algorithms.

We convert the extracted information into features to be introduced into

Recommender Systems. The extraction of binge-watching features in an

industrial dataset has not received attention yet from the research commu-

2

nity, as well as the exploration and exploitation of them into Recommender

Systems. Therefore, we hope to help the research and whoever may find

it helpful to gather and use such information in their systems with this

contribution.

First, we provide methods to prepare the data before the binge-watching

features extraction, and we test the dataset correctness. For this purpose,

we consider only serial content that has been watched up to a certain per-

centage. Next, we identify the watching session of each user for each series.

Watching sessions are the sequence of episodes of the same series a user

watches in a single sitting. Watching sessions are the preliminary entity

over which binge-watchers and binge-worthy series are defined, based on the

number of episodes watched in a single session. Therefore, we translate the

binge-watcher definitions in the literature to algorithmic procedures, which

we test on the extracted watching sessions. Finally, we identify the binge-

watchers and binge-worthy series and extract features that models will use.

Afterward, we describe the different models we have built using binge-

watching and binge-worthy features. We introduce a way to extend the

User Raring Matrix to inject such information into models. We provide a

detailed description of User Collaborative Filtering, Item Collaborative Fil-

tering, and a particular implementation of a SLIM ElasticNet model with

contextual information using the extended URM. Moreover, we explain how

we introduced these features into LightFM, an implementation of a Factor-

ization Machine model.

Finally, we carry out a performance study by training models with binge-

watching features alone, with binge-worthy features alone, and with a com-

bination of both, comparing the recommendation quality to the one provided

by baselines.

1.4 Definitions

• Over-The-Top media service: media service offered directly to the

viewers via the internet, without utilizing the normal broadcasting

mechanisms.

• User: the individual that interacts with the Over-The-Top media

service and watches content.

• Binge-watching: the act of watching serial content consuming mul-

tiple episodes in a single sitting.

• Binge-watcher: a user who binge-watches regularly.

3

• Binge-worthy series: a TV-series that is prone to be binge-watched

frequently by users.

1.5 Thesis structure

The rest of the thesis is structured as follows:

• Chapter 2 introduces the state-of-the-art techniques from which this

thesis starts. It presents them in-depth to provide the reader with the

essential knowledge to fully understand the topics presented.

• Chapter 3 presents a description and an analysis of ContentWise Im-

pressions dataset, together with the filtering strategies adopted to ex-

tract binge-watching information.

• Chapter 4 delineates the path from watching sessions extraction through

binge-watcher and binge-worthy series identification to the crafting of

features that will be used in models. It highlights statistics over the

features built as well.

• Chapter 5 outlines the adopted approach to introduce binge-watching

features into models, reporting their architecture and decisions that

lead us to implement our solution.

• Chapter 6 marks out the experimental setup, hence how the solution

is implemented and evaluated.

• Chapter 7 illustrates the obtained results and compares them to the

ones provided by baseline models.

• Chapter 8 sums up our work’s contributions and limitations and sug-

gests future research directions.

4

Chapter 2

State of the Art

2.1 Recommender Systems

Recommender Systems are a set of information filtering systems and tech-

niques that aim to provide suggestions for items to be of use for a user [18].

These suggestions relate to various decision-making processes, like what mu-

sic to listen to, what video to watch, or what item to purchase, for instance.

Recommender Systems are widely used in domains where content personal-

ization for each user is crucial, such as e-commerce websites, Over-The-Top

media services, social networks, or online advertising.

Recommender Systems use different models and approaches, but the

problem they solve is always the same: recommend items to users. Among

the different sub-classes of Recommender Systems, we identify and describe

one of the main ones: Collaborative Filtering [18].

2.1.1 Explicit and implicit feedback

To effectively develop a RS, user preferences need to be learned directly by

users evaluating the items or without any user involvement [7].

Explicit feedback requires the users to explicitly evaluate items [7], while

implicit feedback is derived from monitoring and analyzing users’ activities

[7]. On one hand, implicit feedback is easier to gather since it does not

require direct user involvement. It is generally much more abundant than

explicit feedback for the same reason, so it has become standard nowadays,

though explicit feedback is still present in many systems [7]. On the other

hand, explicit feedback allows the presence of negative feedback, since users

can express their preferences over items. In contrast, in implicit feedback,

users cannot express their preferences since only positive interactions are

present [7].

2.1.2 User Rating Matrix

The User Rating Matrix (URM) encodes users’ preference for items in the

catalog of a RS, with shape (number of users, number of items). It can

be explicit if the feedback it contains is explicit or implicit if it contains

implicit feedback.

URMs are usually the input of a recommendation algorithm. A RS can

learn the users’ preferences from the URM and predict the preference of the

items each user has not yet interacted with.

2.1.3 Collaborative Filtering

Collaborative Filtering is a class of Recommender Systems that leverages

the items preferred by other users as data to predict users’ preferences. The

core idea of Collaborative Filtering is to recommend to a user an item that

other users with similar tastes have liked in the past [18]. If two users u

and v both liked items i and j, the preferences of u and v are similar. If

two users u and v have similar preferences, and user u has liked item i, it is

likely that also user v will like that item.

There are two main sub-types of Collaborative Filtering Recommender

Systems, memory-based, and model-based approaches:

• Memory-based approaches use user’s rating data to compute the sim-

ilarity between users or items and predict the user preference accord-

ingly. We can further divide them into User-based or Item-based [18].

• Model-based approaches use models developed with different algo-

rithms to predict users’ rating on unrated items [18].

Memory-based approaches use a similarity measure to create the similarity

matrix between users or items. The most common ones are Cosine similarity

[18], Jaccard similarity [6], Dice similarity [2], Asymmetric similarity [4] and

Tversky similarity [21].

User-based Collaborative Filtering

User-based Collaborative Filtering is a memory based approach that predicts

the rating ru,i of a user u for a new item i using the ratings given to i by

user that are most similar to u, called nearest-neighbors. Supposing we

have computed a similarity measure between each user, wu,v represents the

similarity between user u and user v, given that u 6= v, the k-nearest-

neighbors (KNN) of u, denoted by N (u), are the k users v that have the

highest similarity wu,v to u. The ratings ru,i using only the k most similar

6

users that have rated the item i, Ni(u). The rating ru,i are estimated as the

average rating given to i by these neighbors: [18]

r̂u,i =
1

|Ni(u)|
∑

v∈Ni(u)

wu,vrvi (2.1)

Usually, these ratings are normalized:

r̂u,i =

∑
v∈Ni(u)

wu,vrv,i∑
v∈Ni(u)

|wu,v|
(2.2)

Item-based Collaborative Filtering

Item-based Collaborative Filtering method is the dual approach of the User-

based one, but instead of relying on the opinion of likely-minded users, they

look at ratings given to similar items. It is a memory-based collaborative

filtering approach. Again, some similarity measure needs to be computed,

but instead of computing it between user, wi,j will be the similarity between

item i and item j (such that i 6= j). Nu(i) denotes the items rated by user

u most similar to item i. Again, the predicted rating of u for item i will be

obtained as a weighted average of the ratings by u of items from Nu(i): [18]

r̂u,i =

∑
j∈Nu(i)

wi,jru,j∑
j∈Nu(j)

|wi,j |
(2.3)

Matrix Factorization

Matrix Factorization (MF) is a model-based approach that aims to char-

acterize both items and users with latent factors inferred from the dataset

itself. Considering a latent factor space of dimensionality f , MF maps all

user and items to vectors v ∈ Rf . Then, given N users and M items, we

consider U ∈ RN,f and V ∈ RM,f , two matrices respectively for users and

items [8].

We call each row vector vi for these matrices a latent vector, where i is

either a user or an item. Instead, columns of these matrices correspond to

latent factors. The main idea is to predict the rating of user i for item j

as a scalar product between user latent vector vi and an item latent vector

vj . By expanding this idea, as shown in Figure 2.1, we obtain each user has

predicted ratings for each item.

R̂ ≈ UV T (2.4)

7

Figure 2.1: Rating prediction in MF. The predicted ratings (R) are equal to the product

of the matrix with user latent factors (U) and item latent factors (V)

The main goal is to have matrix R̂ as an approximation of the User

Rating Matrix, the sparse matrix R ∈ RM,N whose elements are the ratings

ri,j of user i for item j.

2.1.4 SLIM

Sparse Linear Method (SLIM) is an algorithm to recommend the Top-N

items. Even though it builds a model, it mimics the functioning of a memory-

based Collaborative Filtering technique like the one described in Section

2.1.3, creating a model of the item-item similarity matrix learnt through the

following optimization criteria:

min
W

1

2
‖URM − URM ·W‖2F + λ ‖w‖1 (2.5a)

subject to W ≥ 0, (2.5b)

diag(W) = 0 (2.5c)

where ‖·‖F is the Frobenius matrix Frobenius norm, which acts as a

regularizer on the matrix, W is the item-item similarity matrix, ‖W‖1 is

the entry-wise l1-norm of W, and URM is the User Rating Matrix. The

optimization is subject to 2.5b because the similarity between two items

cannot be negative and to 2.5c because it is preferable to avoid a trivial

solution where the similarity matrix is an identity matrix [13].

Once the optimization problem is solved and W is found, the predicted

rating matrix is computed accordingly to the following equation [13]:

R̂ = URM ·W (2.6)

Finally, according to the predicted ratings, we can order in decreasing order

the Top-N items with which the user has not yet interacted and recommend

them.

8

2.2 Context-aware Recommender Systems

Context-aware Recommender Systems (CARS) are an extension of Recom-

mender Systems that considers users’ specific situations to tailor recommen-

dations accordingly and improve their quality [22]. CARS assumes that a

user’s item rating is not just a function of the user and the item but also of

the context under which it was rated [22]. A user’s preference on a given item

might strongly rely on the context and vary from one to another [22]. For

example, a user might give a different rating to a particular movie whether

it watches it alone or with friends, during the day or after dinner.

2.2.1 Factorization Machines

Factorization Machines are a general recommendation algorithm working

with any real feature vector, decomposing the rating matrix as a product of

user and item vectors containing features [17]. Like CARS, they introduce

contextual information into Recommender Systems [17]. They are similar

to traditional MF models, but they can estimate predictions in problems

with a high degree of sparsity and include other types of information, such

as time of day, region, and others. Moreover, they can do so in linear time

[17].

2.3 Recommender Systems Evaluation

Like any other Machine Learning sub-field, Recommender Systems require

some specific evaluation technique to understand the recommendations’ qual-

ity, and that is not a trivial task [5]. There are several metrics to evaluate

a RS. We define some commonly used metrics.

Precision

Initially, to define precision it is necessary to recall the well known con-

fusion matrix to evaluate classification problems [18], that also applies to

Recommender Systems. The confusion matrix is defined in Table 2.1:

Recommended Not Recommended

Relevant True Positive (TP) False Negative (FN)

Irrelevant False Positive (FP) True Negative (TN)

Table 2.1: Confusion matrix for Recommender Systems. It shows all the possible

outcomes of relevant and irrelevant items being recommended or not.

9

• True Positive (TP): the algorithm recommended a relevant item;

• True Negative (TN): the algorithm did not recommended an irrel-

evant item;

• False Positive (FP): the algorithm recommended an irrelevant item;

• False Negative (FN): the algorithm did not recommended a relevant

item.

Subsequently, Precision is defined as the number of relevant recom-

mended items divided by the total number of recommended items [5]:

Precision =
Relevant recommended items

Recommended items
=

TP

TP + FP

Precision is usually evaluated by computing the metric just on the first

K recommended items, Precision@K. Precision has values ranging from 0

(when no recommended item is relevant) to 1 (when every recommended

item is relevant).

Recall

Recall is the ratio between relevant recommended items and the total rele-

vant items. It is based on the definitions presented in Section 2.3.

Recall =
Relevant recommended items

Relevant items
=

TP

TP + FN

Like Precision, Recall is generally used considering the first K recommended

items, i.e., Recall@K. Its values range from 0 (no relevant item is recom-

mended) to 1 (all relevant items are recommended, there are no False Neg-

ative items).

Mean Average Precision

Mean Average Precision (MAP) is one of the most relevant and widely used

metrics for Recommender Systems [5]. First, let’s define AveragePrecision

at n (AP@n):

AP@n =

∑n
k=1 Precision@k ·Rel(k)

Relevant items
where Rel(k) = 1 if the item ranked at k is relevant, 0 otherwise. Sub-

sequently, we can finally define MAP@K, similarly to Precision and Recall:

MAP@K =

∑N
i=1APi@K

N
where N is the number of recommended lists of items. Values of MAP still

range range between 0 and 1.

10

Mean Reciprocal Rank

Mean Reciprocal Rank (MRR) is an evaluation metric that produces a list

of possible responses to a sample of queries, ordered by the probability of

correctness. Like MAP, it gives more importance to items ranked higher

than the ones ranked lower, specifically considering only the highest-ranked

relevant item for each list of recommended items. Defining N as the number

of recommendation lists a ranki as the rank of the highest-ranked relevant

item in recommendation list i, MRR is defined as follows:

MRR =
1

|N |

|N |∑
i=1

1

ranki

To conclude, MRR@K is defined as the Mean Reciprocal Rank com-

puted only on the first K recommended items per each list. MRR again is

defined in the range between 0 and 1.

F1

Precision and Recall can be simplified and merged into a single metric, called

F1, that weights each one equally, creating a unified metric [5]:

F1 =
2Precision ·Recall
Precision+Recall

Even though F1 makes the comparison between algorithms easier, it does

not facilitate scenarios where Precision is more important than Recall or

vice-versa. F1 ranges between 0 and 1.

Novelty

Novelty measures how “novel” a recommendation is, in terms of how popular

the recommended item was in the train set. The Novelty of an item i,

Noveltyi, is defined by the following equation:

Noveltyi = −
log2(

Popularityi
|Train|)

|Items|

where Popularityi is the popularity in the train set of item i, |Train| is the

number of interactions in the train set, and |Items| is the number of items

in the train set. To obtain the total Novelty, we sum each Noveltyi for every

recommended item and we average over the number of users:

Novelty =

∑
iNoveltyi
N

11

where N is the number of users. The Novelty ranges between 0 and 1.

A random recommendation will have the highest Novelty among every

other recommendation since most of the items it would recommend are not

the most popular ones on average: however, to build a good Recommender

System, we need to strike a balance between familiar, popular items and

discovery of new items the user has never heard of before [18]. The familiar

items establish trust with the user, and the new ones allow the user to

discover entirely new things that they might love [18].

2.4 Binge-watching

Generally speaking, binge-watching can be defined as the act of watching

content, usually episodes of the same TV-series, for an extended period [20].

Up to now, the literature has not yet converged on a single rigorous def-

inition to identify what is binge-watching [1]: some definitions take into

account the number of episodes watched in a single session, like TiVo, Net-

flix, or Trouleau [20], others take into account the length of each of these

sessions [16]. There may be a reason to part for both. For example, watch-

ing two episodes of an hour-long series would be classified in the same way

as watching six episodes of a 20-minutes-long series [16]. Still, only the sec-

ond would be considered a binge-watching behavior, to most people’s view.

There have been attempts to consider both the number of episodes watched

and the watching session’s length, which is arguably the most precise defi-

nition. Still, this has not been adopted by researchers [1].

The definitions in the literature are summed up in Table 2.2.

2.5 Correlation measures

2.5.1 Pearson-r correlation coefficient

Pearson-r correlation coefficient is a measure of linear correlation in two sets

of data [14]. It is the covariance of two variables, divided by the product of

their standard deviations; thus it is essentially a normalised measurement

of the covariance, such that the result always has a value between -1 and 1

[14]. Pearson-r coefficient is defined as shown in Equation 2.7:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.7)

12

Re-

search

Binge-watching defini-

tion
Statistics

Netflix

Watching 2-3 episodes of a tv

series in a single session every

few weeks

61% of users are regularly

binge-watchers

TiVo
Watching 3 or more episodes

in one day

91% of users report binge-

watching as a common behav-

ior,

of whom 40% and 69% re-

ported having at least one

binge-watching session

within a week and within a

month respectively

Trouleau

et al.

Normal behavior: 1-2

episode in a single sitting.

Binge-watching: 3-7 episodes

per sitting.

Hyper binge-watching: ≥ 8

episodes per sitting

64% of users binge-watched at

least once.

11% of users hyper binge-

watched at least once.

7.6% of users all sessions are

binge-watching ones.

20% of users binge-watch more

than half of their sessions

Table 2.2: Statistics from different surveys. For each research, we show the correspond-

ing binge-watching definition, and the statistics that presented in the paper/survey

2.5.2 Spearman-r correlation coefficient

Spearman-r correlation coefficient measures the rank correlation between

the rankings of two variables [11]. It is strongly related to Pearson-r, since

it can be defined as the Pearson correlation coefficient between two ranked

variables:

rs = ρrgX ,rgY =
cov(rgX , rgY)

σrgXσrgY
(2.8)

where X and Y are the unranked variables, rgX , rgY are respectively the

ranked variables of X and Y by appyling ranking operator rgV with V = X

and V = Y , rs is the Spearman-r correlation coefficient, and it is equal to

ρrgX ,rgY , the Pearson correlation coefficient applied to the ranked variables

rgX , rgY . Overall, it is the covariance of the ranked variables rgX and rgY
divided by the product between the variance of each of the two ranked

variables.

13

2.5.3 Kendall-τ correlation coefficient

Kendall-τ correlation coefficient is a statistic used to measure the quota of

couples that are in the same relative positions in both rankings, i.e., the

ordinal association between two measured quantities [9].

τ =
(number of concordant pairs)− (number of discordant pairs)(

n
2

) (2.9)

where (x1, y1), ..., (xn, yn) is a set of observations of the joint variables X

and Y (ties are eliminated by considering the unique values of xi and yi
for simplicity). Any pair of observations (xi, yi) and (xj , yj), where i < j,

are said to be concordant if either both xi > xj and yi > yj holds or both

xi < xj and yi < yj holds, otherwise are said to be discordant.

Tau-B

Tau-B is a variant pf Kendall-τ that makes adjustments for ties:

τB =
nc − nd√

(n0 − n1)(n0 − n2)
(2.10)

where

n0 = n(n− 1)/2

n1 =
∑
i

ti(ti − 1)/2

n2 =
∑
j

uj(uj − 1)/2

nc = Number of concordant pairs

nd = Number of discordant pairs

ti = Number of tied values in the ith group of ties for the first quantity

uj = Number of tied values in the jth group of ties for the second quantity

14

Chapter 3

Data and and preliminaries

to feature crafting

3.1 Dataset

In this thesis, we base our analysis and tests over the ContentWise Impres-

sions dataset, an industrial dataset collected from an OTT media service

[15]. This dataset’s peculiarity is that it is publicly available on GitHub1.

The data was collected throughout four months [15] and will be described

in detail throughout this section.

3.1.1 Data description

ContentWise Impressions is made of two separate datasets. For this thesis,

we used the interactions dataset, which is structured as follows [15]:

• Users: users are the registered accounts for the OTT. Each can share

its account with friends and family and use it on various devices. An

anonymous numerical identifier represents every user;

• Items: items represent the media content provided by the service to

the users of its platform. An anonymized numerical identifier identifies

each item. Items vary in four different types:

- Movies;

- Movies and clips;

- TV movies or shows;

- Episodes of TV series.

1https://github.com/ContentWise/contentwise-impressions

An integer identifier identifies these categories with values 0, 1, 2, 3,

respectively.

• Interactions with the item: User actions over the OTT. They are

associated with a timestamp, i.e., the date and time when each inter-

action occurred. Interactions can be of four different types:

- View : describe the fact that a user has watched a certain item.

They are associated with a vision factor, that describes the point

in which the user stopped viewing the item as a real number

between 0 and 1. If a user stops watching near the end, the

vision factor will be close to 1; instead, if a user stops watching

right after the beginning, it will be close to 0.;

- Access: the user accessed the item details;

- Purchase: a user has purchased the item in the catalog of the

relative interaction. In fact, some items need to be purchased;

- Rating : the item has been rated explicitly on a scale from 1 to 5

by the user.

These four categories are respectively identified with values 0, 1, 2,

and 3.

Now we present in Tables 3.1, 3.2 and 3.3, meaningful statistics over the

unfiltered dataset. Finally, in Table 3.4 [15] we describe how the dataset is

digitally represented. These tables are extracted from the dataset’s article

[15].

Interaction Type Count Percentage

View 6, 122, 105 58.54%

Access 4, 105, 530 39.26%

Purchase 221, 066 2.11%

Rating 9, 109 0.09%

Total 10, 457, 810 100%

Table 3.1: Number of interactions grouped by their type.

3.2 Filtering

As stated in Section 2.4, the concept of binge-watchers is defined over users

that consume serial content. Hence, we must consider only relevant inter-

16

Item Type Count Percentage

Episodes of TV series 9, 076, 428 86.79%

Movies 987, 518 9.44%

TV Movies and shows 162, 574 1.56%

Movies and clips in series 231, 290 2.21%

Total 10, 457, 810 100%

Table 3.2: Number of interactions grouped by the item type.

Item Type Count Percentage

Episodes of TV series 123, 831 85.36%

Movies 13, 733 9.47%

TV Movies and shows 5, 722 3.94%

Movies and clips in series 1, 788 1.23%

Total 145, 074 100%

Table 3.3: Number of items grouped by their type.

actions from which we can extract binge-watchers, discarding movies, or

purchase interactions, for instance.

Overall, the preliminary step to extract binge-watchers is to filter the

dataset accordingly to the definition of binge-watching. The relevant inter-

actions to keep for this type of serial bounded analysis are those with the

following characteristics:

• TV series: binge-watching is generally defined [20] as watching mul-

tiple episodes of a TV series in a short amount of time; hence for this

analysis, we should only keep the interactions that are episodes of a

TV series;

• series length ≥ 3: we set a threshold of at least three episodes since

there might be some outliers in the dataset. For example, there are

items labeled as TV series but with just 1 or 2 episodes: those are

most likely movies misclassified as TV series;

• view type: we keep view interactions since we are interested in the

content viewed by a user, not on the content purchased, rated, or for

which they accessed the details;

• vision factor ≥ 0.9: to identify a binge-watching session, we only

consider interactions where the user has viewed the episode completely.

17

Column name Description

utc ts milliseconds
UTC timestamp in milliseconds. Index of the

dataset

user id Numerical identifier of users

item id Numerical identifier of items

series id Numerical identifier of series

recommendation id
Numerical identifier of the impression. Set to -1

for rows where the impression is not present

episode number Episode number of the item

item type
Number ranging from 0 to 3, describes the cat-

egory the item belongs to

interaction type
Number ranging from 0 to 3, expresses the cat-

egory of the interaction

explicit rating
Rating from 1 to 5, with 0.5 step. Set to -1 for

interactions without an explicit rating

Table 3.4: How the dataset is digitally represented. We show its column names and a

qualitative description of what each column contains.

A vision factor of 0.9 means that the user stopped watching the episode

at 90% of its length. We consider that there are credits and sometimes

anticipations on the next episode at the end of each episode. It is a

percentage decided coherently to previous studies on the dataset[19].

For example, suppose a user watched the first two minutes of every

episode of a series in 2 hours without watching any episode completely.

In that case, we should not consider this as a binge-watching session;

neither could we conclude if the user is a binge-watcher or not based

on these interactions.

In Table 3.5, we show the number of interactions, users, and series re-

maining from the original unfiltered dataset, both in terms of absolute value

and percentage for the unfiltered dataset, when we apply the filtering de-

scribed in the first column of the table mentioned above.

3.3 Sequence reconstruction

We aim to test if episode numbers in the dataset are reliable through se-

quence reconstruction, for the algorithm we designed to extract watching

sessions relies strongly on the assumption that these numbers are correct.

Furthermore, we would like to understand more in-depth the user behavior,

18

Interactions Users Series

Original dataset
10.457.810

(100%)

42.153

(100%)

28.877

(100%)

TV series dataset
9.076.428

(86.79%)

39.430

(93.54%)

9.093

(31.49%)

TV series,

view interactions,

vision factor 6= -1,

series length ≥ 3

5.337.395

(58.81%)

38.327

(90.92%)

6.741

(23.34%)

TV series,

view interactions,

vision factor ≥ 0.9,

series length ≥ 3

4.040.335

(38.63%)

36.988

(87.75%)

6.399

(22.16%)

Table 3.5: On the first column, highlighted in bold, we show the filtering we are

applying. The table entries show the absolute number of interactions, users, and series

and the percentage with respect to the original dataset.

and with sequence reconstruction, we can extract a metric of how likely a

user watches a TV series from start to finish, watching all episodes sequen-

tially, without skipping episodes and without doing any re-watches. We refer

to this watching pattern as a perfectly sequential sequence (PSS).

3.3.1 Pre-processing: readjusting the episode numbers

Our analysis on the dataset found that no series had an episode number

equal to 1; every series had as a minimum episode number 2. Consequently,

the series length of each series did not reflect the actual number of episodes

of that series correctly, being it equal to the maximum episode number. The

cause of this is not described in the original paper of the dataset [15]. We

believe that episode number 1 was used during data gathering as a fictitious

episode that acted as a placeholder for the series object.

As a preliminary step for sequence reconstruction, which is shown in

the following section, we moved every episode number back by one. We

decreased the length of each series by one as well in the filtered dataset. We

now have episode numbers ranging from 1 to the actual length of the series

instead of ranging between 2 and the series length + 1.

3.3.2 Method

We considered all the interactions from the filtered dataset where users have

watched a series entirely. For each user-series pair, every episode number

19

between 1 and series length needs to be present at least one time. To ease

notation, we call this filtering over the dataset as the full view dataset. In

Figures 3.1(a) and 3.1(b) we show the number of users and series that the

dataset has if we consider interactions where users have watched a certain

percentage of series. Approximately 11K users have watched some series

entirely at least once (100% percentage), and 3.2K series have wholly been

watched at least once by some user.

(a) Number of users that have watched at

least % of any series

(b) Number of series watched at least %

by any users

Figure 3.1: Bar plots that show how users watches series 3.1(a) and how series are

watched by users 3.1(b)

We take users that have watched a series completely to test that the

episode number is reliable, and then we can infer that holds up as well for

all users and every interaction.

From a high-level perspective, the algorithm to test the correctness of

episode numbers starting from the dataset where every interaction is from

a user that has watched a series entirely works as follows:

1. For each series s:

(a) Create a square (series length, series length) count matrix with

row indices as the episode watched and column index as the po-

sition the episode was watched, and as an element the number of

times the i-th episode has been watched as j-th episode;

(b) For every user u that watched every episode of series s:

i. Extract the user-series watching sequences for the pair (u, s);

20

ii. For each of that sequence, update the count matrix of series

s.

(c) Normalize each row of the count matrix to obtain a probability

matrix: it will contain the probability that the i-th episode will

be watched as j-th episode;

(d) Create an identity matrix of size (series length, series length),

representing the probability matrix that s would have if it were

watched only in PSSs;

(e) Compute the Pearson-r correlation coefficient (presented in Sec-

tion 2.5.1) that will represent of much the probability matrix is

likely to be watched in a PSS.

We now present in detail the main steps, using an example to make

things easier more understandable.

Extracting watching sequences

First, we need to group by users and series pairs the full view dataset and

order each group by the interactions’ timestamp.

A group of user-series interactions looks like the list of episodes the user

has watched for that series, ordered temporally. For example, a group of

user-series interactions for a series of length 16 is shown in Table 3.6.

1 2 3 4 6 7 8 9 10 11 12 13 14 4 5 9 10 11 12 13 14 15 16 13 14 15 16

Table 3.6: Example of a group of user-series interactions for a series of length 16.

Every time the user “goes back”, hence watches a previous episode in-

stead of a subsequent one, it means a new sequence has begun.

In Table 3.6, we identify three different sequences, between episodes 1

and 14, 4 and 16, and 13 and 16. In Table 3.7, the separation between

different sequences is highlighted with a vertical border, instead when a

user skips some episodes, i.e., when they watch instead of the immediate

following one another subsequent episode, we highlight it in bold:

1 2 3 4 6 7 8 9 10 11 12 13 14 4 5 9 10 11 12 13 14 15 16 13 14 15 16

Table 3.7: Sequence extraction example. There are three different sequences, between

1 and 14, 4 and 16, 13 and 16. Values are highlighted in bold when the user skips an

episode.

21

Count matrix

For each series, it is initialized a square count matrix of size series length

and with all entries equal to zero. It contains as row indices the episode

watched, as column indices the position in the corresponding sequence where

the episode was watched, as elements the number of times the i-th episode

has been watched as the j-th episode.

The update rule for the count matrix, for every sequence of a (user,

series) pair, is the following:

for sequences ∈ sequences do

for pos ∈ (0, |sequence|) do

countmatrix[sequence[pos], pos]← [sequence[pos], pos] + 1

end for

end for

For the sequence considered in Table 3.7, the relative count matrix will

be the one in Table 3.8.

Watched as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Episode number

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

9 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

11 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

12 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

13 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

14 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

15 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

16 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

Table 3.8: Count matrix of the example sequence [1 2 3 4 6 7 8 9 10 11 12 13 14 —

4 5 9 10 11 12 13 14 15 16 — 13 14 15 16]. From the Table we can see that both

episode 1 and 4 has been watched once as the first episode in the sequence.

For example, following the count matrix update rule, the entry in posi-

tion 1 of the second sequence is 4, so we will increase the count matrix in

position (4, 1) by 1.

22

Probability matrix

The probability matrix is a normalization over the count matrix’s rows: we

divide each row by the sum of entry of the count matrix for that row. Each

row then adds up to one.

In the end, the probability matrix for pair (i, j) is the probability of

watching episode i as the j-th episode of a sequence.

In Table 3.9, we show the probability matrix for the example we are

showing.

Watched as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Episode number

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

9 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0 0 0 0

10 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0 0 0

11 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0 0

12 0 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0

13 0.33 0 0 0 0 0 0.33 0 0 0 0 0.33 0 0 0 0

14 0 0.5 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0

15 0 0 0.5 0 0 0 0 0 0.5 0 0 0 0 0 0 0

16 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0 0 0 0

Table 3.9: Probability matrix of the example sequence [1 2 3 4 6 7 8 9 10 11 12 13

14 — 4 5 9 10 11 12 13 14 15 16 — 13 14 15 16]. From the Table we see that the

episode 13 has a probability of 0.33 to be either the first, seventh, or twelfth episode

to be watched.

Pearson-r correlation coefficient as a measure of seriality

We define seriality as the likelihood of a series to be watched in the order

of its episode numbers. To have a measure of how a series is serial, we

recurred to Pearson-r correlation coefficient, as defined in Section 2.5.1: by

computing this coefficient between the probability matrix of a series and

an identity matrix of the same shape, which represents a PSS, we obtain

a measure representing if the series linearly correlates to one watched in a

PSS.

23

3.3.3 Results

First, we plot different probability matrix heatmaps for series with a high

amount of interactions. Here are two examples of how those heatmaps look

like:

(a) Probability matrix - 117K interactions

- Pearson-r = 0.961

(b) Probability matrix - 16K interactions -

Pearson-r = 0.858

Figure 3.2: Heatmaps showing the values of two probability matrices. The x-axis

represents the order in which the episode is watched in a sequence. The y-axis the

episode number. Both matrices are in logarithmic scale. Higher values in red tones and

lower probabilities in yellow tones.

In Figure 3.2(a) the probability matrix resembles a diagonal matrix;

consequently, it has a Pearson-r value close to 1. In Figure 3.2(b) instead,

we notice there are some interactions below the main diagonal. However,

the matrix density is still on the main diagonal, and we get a lower Pearson-

r-value than the one in 3.2(a), though mostly it has been watched in a PSS

fashion.

We compute the Pearson-r value for different chunks of the number of

interactions inside the full view dataset. Then, the Pearson-r is weighted

by the number of interactions to give more importance to series with many

interactions: each series’ Pearson-r is multiplied by the number of interac-

tions that series has in the full view dataset. We sum all this so computed

Pearson-r values. Finally, we divide this sum by the sum of all interactions

in the full view dataset. We show the results obtained in Table 3.10:

To conclude, the results shown in Table 3.10 highlight that series tend

to be watched from start to finish, following the episode sequence most of

the time. However, not every TV-series is episodic, i.e., have a story that

24

Weighted Pearson-r

All series in full view dataset 0.7533

Series with > 100 interactions 0.7581

Series with > 500 interactions 0.7653

Series with > 1000 interactions 0.7692

Series with > 10000 interactions 0.8306

Table 3.10: Weighted Pearson-r values of all series with at least a certain number of

interactions.

develops through episodes and seasons. Still, there exists also anthology

series that present different stories and different characters from episode to

episode, and so the order in which those are watched is not relevant. The

dataset does not include extra information about series, e.g., if they are

episodic not, but we can assume that a series with a low Pearson-r is likely

to be an anthology series.

A weighted Pearson-r value of 0.7553 for all series and 0.8306 for series

with more than 10K interactions make us safely assume that the episode

numbers are reliable throughout the dataset.

25

26

Chapter 4

Binge-watchers identification

and feature crafting

In Section 3.3.2, we showed that the episode number in the dataset is reliable,

based on the results shown in Section 3.3.3. These results are crucial for

watching session extraction, which is presented through this chapter, as it

strongly relies on the assumption that episode numbers are correct. Finally,

we describe how to extract binge-watchers and binge-worthy series.

4.1 Watching sessions

Watching sessions describe the act of watching one or multiple episodes of

the same TV-series in a single sitting. How many episodes are watched

in a single watching session will be the main element to distinguish binge-

watching sessions from normal ones.

4.1.1 Watching sessions extraction

In this thesis, watching sessions are extracted on user-series pairs. For each

user-series, the watching sessions will be an array of arrays. Every internal

array represents a single watching session, and it contains the sequence of

episodes watched in the watching order.

To understand what separates different sessions, we need to define a

session threshold, which expresses the hours that can pass between two fol-

lowing interactions to be considered part of the same session.

Choosing a session threshold of the right size is very important. For

example, suppose that a user watches consecutively two episodes in the

morning and two episodes in the evening. Realistically, we would identify

two watching sessions, each composed of two episodes. Considering a ses-

sion threshold too small, shorter than the episode length, we would extract

four sessions, each containing one episode. Considering a session threshold

too large, of 24 hours, for instance, we would extract a single session with

four episodes. Finally, considering a more balanced threshold, we would ex-

tract two sessions with two episodes that would correctly reflect the user’s

behavior.

We tested different session threshold values. Based on past experience,

through internal studies at ContentWise, we decided to proceed with a value

of 4 hours because it represents a well-balanced trade-off for the problems

mentioned above.

Example

We have a sequence of the various temporally ordered interactions for a user

with a series, with just the episode number and the relative timestamp for

simplicity.

Episode number Timestamp

1 01/01/2020 10:00

2 01/01/2020 12:00

3 01/01/2020 15:30

4 01/01/2020 20:00

5 02/01/2020 20:00

Table 4.1: Example of a sequence of user-series interactions ordered by their timestamp.

We set a session threshold of 4 hours. 2 hours pass between the inter-

actions with episodes 1 and 2, which is smaller than the session threshold.

Between the watching of episodes 2 and 3 pass 2.5 hours, so 1, 2, and 3

belong to the same watching session. Instead, the watching of episode 4

is 4.5 hours after the watching of episode 3, so it does not belong to the

previous watching session. Also, the watching of episodes 4 and 5 belong to

two different watching sessions.

In conclusion, the three sessions extracted in the example are the follow-

ing:

• [1, 2, 3]

• [4]

• [5]

The resulting array containing watching sessions is [[1, 2, 3], [4], [5]].

28

Episode number Timestamp

1 01/01/2020 10:00

2 01/01/2020 12:00

3 01/01/2020 15:30

4 01/01/2020 20:00

5 02/01/2020 20:00

Table 4.2: Watching session extraction for the example presented. The horizontal lines

in the following table separate the different watching sessions

4.2 Binge-watchers and binge-worthy series iden-

tification

The concept of binge-worthiness is not as vastly defined in literature as it

is the one of binge-watching. Consequently, we define a binge-worthy series

as a series prone to be binge-watched frequently by users.

In the following section, we define the user-series engagement table, a

table containing, for each user-series pair present in the dataset, the corre-

sponding watching sessions, alongside different statistics to have a complete

picture of how much a user is involved when watching a particular series.

4.2.1 User-series engagement table

The last preliminary step to extract binge-watchers and binge-worthy se-

ries is building a support user-series engagement table, which will act as a

supporting tool for building binge-watching features, as shown later in this

chapter. We build this table considering only user-series pairs where users

have watched at least 50% of episodes of the corresponding series: for each

user u and series s, we have a list of interactions iu,s, ordered by their times-

tamp. From iu,s we will compute every metric in the user-series engagement

table for the entry u, s.

This table contains different metrics and insights measured from the

dataset, grouped by categories. All the metrics shown are computed for

each user-series pair.

Time interval metrics

These metrics keep track of the difference between timestamps inside the

interactions for each user-series pair. These time intervals can be relative to

interactions or episodes. We compute:

29

• the difference between the first time the user watched the first episode

and the first time the user watched the last episode;

• the difference between the first time the user watched the first episode

and the last time the user watched the last episode;

• the difference between the first and the last time a user watched any

episode.

Time interval averages

For each time interval metric presented above, we compute the time that

passes on average between one episode and the other.

Episodes and interaction metrics

We also include the following metrics on the episodes:

• the total number of interactions n interactions;

• the number of episodes watched in terms of unique episode numbers

present in the interactions list episodes watched;

• the difference between the number of interactions and the unique

episodes watched n interactions− episodes watched;

• the percentage of episodes re-watched with respect to the unique episodes

watched n interactions−episodes watched
episodes watched .

View sequences insights

With the methods presented in 3.3, we included:

• the view sequences;

• the number of sequences;

• a list containing the first episode of each sequence;

• a list containing a categorical interpretation of the first episode of each

sequence. The possible values are first, middle, last, where first means

it is the sequence begins with episode number 1, last with the last

episode and middle with any episode in between.

30

Watching sessions elements

The watching session elements in the user-series engagement table are the

ones through which we will extract binge-watchers and binge-worthy series.

To extract watching sessions, we used a session threshold of 4 hours. It

contains:

• the watching sessions array;

• the number of watching sessions n sessions, i.e., the length of watching

sessions array;

• the length of each watching session, i.e., an array containing for each

watching session its length;

• the average length of the watching sessions;

• the time length of each watching session computed as the time differ-

ential between first and last episode within that session;

• the average time length of all watching sessions;

• an array that tells if each session is a PSS (for example, a session with

episodes [1, 2, 3] is a perfectly sequential sequence, in which episodes

are watched respecting their ordering; instead, sessions [1, 3, 4], [1, 1,

2], [1, 4, 3] are not);

• the percentage of PSSs with respect to the number of all watching

sessions n sessions.

We apply the definitions of binge-watching sessions presented in Table 2.2

to understand how many of all sessions are binge-watching for the definitions

mentioned above. We include:

• the number of watching sessions with length 3 or more (which corre-

sponds to TiVo’s definition [3]);

• the number of watching sessions with length from 2 to 6 (which cor-

responds to Netflix’s definition [12]);

• the number of watching sessions with length from 3 to 7 (which cor-

responds to Trouleau et al.’s definition [20]).

31

4.2.2 Binge-watchers and binge-worthy thresholds definition

We construct the user-series engagement table using user-series interactions

for users who watched at least 50% of that series and 4 hours of session

threshold. There, we express the number of watching sessions defined as

binge-watching sessions according to the literature definitions [3, 12, 20].

To distinguish if a user can be considered a binge-watcher or not, and if a

series can be considered a binge-worthy one, we set up two thresholds.

Binge-watcher threshold

The threshold is expressed in percentage. A user is a binge-watcher if the

ratio between the sum of all the binge-watching sessions for a specific def-

inition divided by the total number of sessions for the user is greater than

the binge-watcher threshold.

bingewatcheru,d =

 True, if
∑

s∈series(u) n bw sessionsu,d,s∑
s∈series(u) n sessionsu,s

≥ threshold

False, otherwise

where threshold is the binge-watcher threshold, bingewatcheru,d says if

user u is a binge-watcher with respect to definition d, n sessionsu,s is the

number of sessions of u for series s and n bw sessionsu,d,s is the number of

binge-watching sessions of u for series s and definition d.

Binge-worthy threshold

The threshold is expressed in percentage. A series is binge-worthy if the

ratio between the sum of all the binge-watching sessions of every user for a

specific definition divided by the total number of sessions for that series is

greater than the binge-worthy threshold.

bingeworthys,d =

 True, if
∑

u∈users(s) n bw sessionsu,d,s∑
u∈user(s) n sessionsu,s

≥ threshold

False, otherwise

where threshold is the binge-worthy threshold, bingeworthys,d says if

series s is a binge-worthy series with respect to definition d, n sessionsu,s is

the number of sessions of u for series s and n bw sessionsu,d,s is the number

of binge-watching sessions of u for series s and definition d.

The two threshold definitions are dual since binge-worthiness itself is

defined as a series that is binge-watched frequently.

32

4.2.3 Series grouping

The statistics on binge-worthy series are bonded to the series length. To

present those statistics, we divide the series into groups based on the series

length. We adopt two approaches to group the series:

• groups have the same number of interaction in the dataset;

• groups have the same number of series.

For each approach, we obtain three groups. In Table 4.3 we show how

the groups are composed.

Groups Number of elements within interval

Same number of interactions

3 - 15

16 - 38

≥ 39

1,433,699

1,366,412

1,266,914

Same number of series

3 - 11

12 - 24

≥ 25

2,220

2,385

2,048

Table 4.3: Division of series into series length groups. There are three series groups:

from 3 to 15, 16 to 38, and more than 39 episodes. In the table we show the number

of interactions and series within each group.

4.2.4 Binge-watchers and binge-worthy series statistics

We obtain three different metrics to identify binge-watchers and binge-

worthy series for each user-series pair, corresponding to each binge-watching

definition. In this section, we present how we converge to a single one and

use it to build features and the reasons beyond that choice. We base our de-

cisions on the Tables 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10. The first being the

binge-watchers statistics and the rest being the statistics of binge-worthiness

of each series group by interactions and number of series, respectively.

We test different values for binge-watcher and binge-worthy thresholds

presented in Section 4.2.2 and compare the percentage of binge-watchers

with respect to the ones we find in the literature.

4.2.5 Final remarks on binge-watching definitions

In conclusion, based on the results in Table 4.4, we decide to adopt Trouleau’s

definition for binge-watchers. It was the only definition that included the

percentage of users that binge-watched at a specific rate. We test and

compare those results with the percentages obtained from our dataset: for

Trouleau, 20% of users had at least half of their sessions as binge-watching

33

Binge-watcher

threshold %

Number of

users

Binge-watchers≥ 3

TiVo

Binge-watchers 2 ÷ 6

Netflix

Binge-watchers 3 ÷ 7

Trouleau)

10% 20432
18124

88.70%

18602

91.04%

16474

80.63%

30% 20432
13733

67.21%

15782

77.24%

9912

48.51%

50% 20432
9910

48.50%

9795

47.93%

4524

22.14%

70% 20432
5710

27.95%

3267

15.99%

1413

6.92%

95% 20432
2978

14.58%

1400

6.85%

954

4.67%

100% 20432
2887

14.12%

1399

6.84%

954

4.67%

Table 4.4: Binge-watcher statistics. Each row contains the threshold selected, the

total number of users in the dataset, the absolute number of binge-watchers, and its

percentage with respect to the total number of users, for each definition.

Binge-worthy

threshold %

Number of

series

Binge-worthy ≥ 3

(TiVO)

Binge-worthy 2 ÷ 6

(Netflix)

Binge-worthy 3 ÷ 7

(Troueleau)

10% 2142
2034

94.96%

1892

88.33%

1795

83.80%

30% 2142
1791

83.61%

1584

73.95%

1255

58.59%

50% 2142
1458

68.07%

1128

52.66%

647

30.21%

70% 2142
947

44.21%

441

20.59%

243

11.34%

100% 2142
444

20.73%

214

9.99%

159

7.42%

Table 4.5: Binge-worthy series statistics - Series length 3 ÷ 7 - Same number of

interactions - 1433699 interactions. Each row contains the threshold selected, the total

number of series in the dataset, the absolute number of binge-worthy series, and its

percentage with respect to the total number of series, for each definition.

ones [20]. Data shown in Table 4.4 share the same results with Trouleau

[20]. The same holds up as well for the 7.6% of users for whom all of their

sessions are binge-watching ones: in our dataset, we reach 4.67%, which is

close enough to assume that this definition is the best-suited one. Moreover,

it is the most restrictive one since it provides an upper bound and a lower

bound.

Consequently, we used Trouleau’s definition to commute binge-watching

and binge-worthiness information into features that will be plugged into

models.

34

Binge-worthy

threshold %

Number of

series

Binge-worthy ≥ 3

(TiVO)

Binge-worthy 2 ÷ 6

(Netflix)

Binge-worthy 3 ÷ 7

(Troueleau)

10% 1903
1893

99.47%

1710

89.86%

1673

87.91%

30% 1903
1812

95.22%

1537

80.77%

1276

67.05%

50% 1903
1562

82.08%

987

51.87%

349

18.34%

70% 1903
836

43.93%

150

7.88%

44

2.31%

100% 1903
287

15.08%

14

0.74%

9

0.47%

Table 4.6: Binge-worthy series statistics - Series length 16 ÷ 38 - Same number of

interactions - 1366412 interactions. Each row contains the threshold selected, the total

number of series in the dataset, the absolute number of binge-worthy series, and its

percentage with respect to the total number of series, for each definition.

Binge-worthy

threshold %

Number of

series

Binge-worthy ≥ 3

(TiVO)

Binge-worthy 2 ÷ 6

(Netflix)

Binge-worthy 3 ÷ 7

(Troueleau)

10% 338
336

99.41%

318

94.08%

311

92.01%

30% 338
319

94.38%

269

79.59%

230

68.05%

50% 338
293

86.69%

128

37.87%

47

13.91%

70% 338
175

51.78%

11

3.25%

3

0.89%

100% 338
27

7.99%

2

0.59%

0

0%

Table 4.7: Binge-worthy series statistics - Series length ≥ 39 - Same number of in-

teractions - 1266914 interactions. Each row contains the threshold selected, the total

number of series in the dataset, the absolute number of binge-worthy series, and its

percentage with respect to the total number of series, for each definition.

4.3 Binge-watching and binge-worthy features craft-

ing

We build binge-watching features starting from the user-series engagement

table. We now present two different versions for both binge-watching and

binge-worthy features, one with boolean values 0 and 1, called the implicit

feature, and the other with non-negative integers, called the explicit fea-

ture.

To compute those features, we proceeded in the following way:

• to build the explicit binge-watching feature, we count the number

of binge-watching sessions for each user u among every series ;

35

Binge-worthy

threshold %

Number of

series

Binge-worthy ≥ 3

(TiVO)

Binge-worthy 2 ÷ 6

(Netflix)

Binge-worthy 3 ÷ 7

(Troueleau)

10% 1239
1147

92.57%

1118

90.23%

1051

84.83%

30% 1239
971

78.37%

969

78.21%

757

61.10%

50% 1239
764

61.66%

726

58.60%

429

34.62%

70% 1239
494

39.87%

344

27.76%

176

14.21%

100% 1239
262

21.15%

179

14.45%

123

9.93%

Table 4.8: Binge-worthy series statistics - Series length 3 ÷ 11 - Same number of series

- 2048 series in the unfiltered dataset - 468204 interactions. Each row contains the

threshold selected, the total number of series in the dataset, the absolute number of

binge-worthy series, and its percentage with respect to the total number of series, for

each definition.

Binge-worthy

threshold %

Number of

series

Binge-worthy ≥ 3

(TiVO)

Binge-worthy 2 ÷ 6

(Netflix)

Binge-worthy 3 ÷ 7

(Troueleau)

10% 1987
1964

98.84%

1745

87.82%

1699

85.51%

30% 1987
1839

92.55%

1501

75.54%

1224

61.60%

50% 1987
1541

77.55%

1011

50.88%

432

21.74%

70% 1987
860

43.28%

198

9.96%

96

4.83%

100% 1987
340

17.11%

46

2.32%

42

2.11%

Table 4.9: Binge-worthy series statistics - Series length 12 ÷ 24 - Same number of

series - 2385 series in the unfiltered dataset - 1522736 interactions. Each row contains

the threshold selected, the total number of series in the dataset, the absolute number

of binge-worthy series, and its percentage with respect to the total number of series,

for each definition.

• to build the explicit binge-worthy feature, we count the number

of binge-watching sessions for each series s among every user;

• to build the implicit binge-watching feature, we divide the number

of binge-watching sessions by the total number of sessions for each user

u among every series. If this ratio, expressed in percentage, is greater

than the 50% binge-watching threshold, u is a binge-watcher, and the

value of the feature will be 1, otherwise 0;

• to build the implicit binge-worthy feature, we divide the number

of binge-worthy sessions by the total number of sessions for each series

36

Binge-worthy

threshold %

Number of

series

Binge-worthy ≥ 3

(TiVO)

Binge-worthy 2 ÷ 6

(Netflix)

Binge-worthy 3 ÷ 7

(Troueleau)

10% 1157
1152

99.57%

1057

91.36%

1029

88.94%

30% 1157
1112

96.11%

920

79.52%

780

67.42%

50% 1157
1008

87.12%

506

43.73%

182

15.73%

70% 1157
6045

2.20%

60

5.19%

18

1.56%

100% 1157
156

13.48

5

0.43%

3

0.26%

Table 4.10: Binge-worthy series statistics - Series length ≥ 25 - Same number of series

- 2048 series in the unfiltered dataset - 2049395 interactions. Each row contains the

threshold selected, the total number of series in the dataset, the absolute number of

binge-worthy series, and its percentage with respect to the total number of series, for

each definition.

s among every user. If this ratio, expressed in percentage, is greater

than the 50% binge-worthy threshold, s is a binge-worthy series, and

the value of the feature will be 1, otherwise 0.

Finally, we will obtain two feature arrays, one with binge-watching fea-

tures and the other with binge-worthy features, containing one entry for

every user and one entry for every series.

The next chapter will explain how those features are plugged into models

and how we evaluate their impact on recommendations.

37

38

Chapter 5

Approach

In Chapter 4 we described the road-map from the filtered dataset to fea-

ture extraction. In this chapter, instead, we describe the main approaches

adopted to build models that can leverage those features. We present how

we build models that can use binge-watching and binge-worthy features. We

propose methods to fit binge-watching and binge-worthy information in the

URM in Collaborative Filtering techniques. We then present a Context-

aware SLIM model to include the features, and finally, an implementation

of a Factorization Machine model.

5.1 Extension of the User Rating Matrix

As presented in Section 4.3, the binge-watching features are an array that

contains the number of binge-watching sessions of a user for all series. The

binge-watching features are an array containing the number of binge-worthy

sessions of each series through all users.

We include this information in the recommendation algorithms by ex-

tending the URM as shown in Figure 5.1. We append to the URM with N

users and M items the binge-watching array as a column array in position

M + 1, as a fictitious item, and the binge-worthy array as a row array at

position N + 1, as a fictitious user. In position N + 1, N + 1, we insert an

extra 0 as a rating for the fictitious user and item, to avoid dimensional

mismatches in the implementation. Consequently, we obtain an extended

URM of size N + 1,M + 1.

We also extend the URM with one feature array at a time, as shown

in Figure 5.2 and 5.3: the extended URM with binge-watching features has

size N,M + 1; the extended URM with binge-watching features has size

N + 1,M .

Figure 5.1: Including binge-watching and binge-worthy features in the URM

Figure 5.2: Including binge-watching features in the URM

Figure 5.3: Including binge-worthy features in the URM

We implemented three version of models that use the extended URM:

one using the binge-watching features, one using the binge-worthy features,

one combining both.

40

5.2 Models using the extended URM

In this section, we outline how the models compute the predicted ratings

using features, either by using the extended URM like SLIM, User and Item

Collaborative Filtering, or by directly fitting the features into models that

accept them, like Factorization Machines.

5.2.1 User Collaborative Filtering

User Collaborative Filtering with binge-watching and binge-worthy

features

The extended URM with binge-watching and binge-worthy features is plugged

into a User Collaborative Filtering model. It computes the user similarity

as described in 2.1.3 using the extended URM instead of the normal URM:

this leads to a similarity matrix of size N + 1, N + 1, where the extra user is

the binge-worthy array. To compute the predicted rating matrix, the model

computes the dot product between the user similarity and the extended

URM. The predicted rating matrix has the same size as the extended URM,

N + 1,M + 1.

Figure 5.4: A visual representation of how the predicted ratings are calculated for User

CF. Each square represents a matrix. The predicted ratings are the dot product of the

similarity and the extended URM with binge-watching and binge-worthy features.

Since we do not want the last item to be recommended, which corre-

sponds to the fictitious item representing the binge-watching feature array,

we remove the M + 1 column from the predicted ratings.

Finally, for each user u of the predicted rating matrix, we sort the items

in a decreasing order accordingly to the ratings. We then recommend the

top-k ranked items.

The fictitious M + 1 user’ scores corresponding to the binge-worthy fea-

tures will not be relevant, as shown in Chapter 6 when we will be describing

the evaluation methods.

41

User Collaborative Filtering with binge-watching features

Using only the binge-watching features means the extended URM has shape

N,M + 1. So the similarity will be the one of a regular User Collaborative

Filtering recommender, with size N,N . The predicted rating matrix has

size N,M + 1 then.

Figure 5.5: A visual representation of how the predicted ratings are calculated for User

CF. Each square represents a matrix. The predicted ratings are the dot product of the

similarity and the extended URM with binge-watching features.

Again, we remove the M +1 column from the predicted ratings and pro-

ceed with the recommendation phase as described for User CF with binge-

watching and binge-worthy features in 5.2.1.

User Collaborative Filtering with binge-worthy features

Instead, using only the binge-worthy features means the extended URM has

shape N + 1,M , and the similarity matrix will have size N + 1, N + 1. The

predicted rating matrix has size N + 1,M then.

Figure 5.6: A visual representation of how the predicted ratings are calculated for User

CF. Each square represents a matrix. The predicted ratings are the dot product of the

similarity and the extended URM with binge-worthy features.

We have no fictitious item since we have binge-worthy features only: no

pruning of the predicted rating matrix is required. We sort the items in a

42

decreasing order accordingly to the ratings and recommend the top-k ranked

ones.

5.2.2 Item Collaborative Filtering

Item Collaborative Filtering with binge-watching and binge-worthy

features

The extended URM with binge-watching and binge-worthy features is fed

into an Item Collaborative Filtering model. It computes the item similarity

as described in 2.1.3 using the extended URM instead of the normal one:

the item similarity matrix has shape M + 1,M + 1, where the extra item is

the binge-watcher feature array. To compute the predicted rating matrix,

we compute the dot product between the item similarity and the extended

URM. The predicted rating matrix has the same size as the extended URM,

N + 1,M + 1.

Figure 5.7: A visual representation of how the predicted ratings are calculated for Item

CF. Each square represents a matrix. The predicted ratings are the dot product of the

similarity and the extended URM with binge-watching and binge-worthy features.

Similarly to the User CF methods, we do not want the last item repre-

senting the binge-watching feature array to be recommended, so we remove

the M + 1 column from the predicted ratings.

Again, for each user u of the predicted rating matrix, we sort the items

in a decreasing order accordingly to the ratings. We then recommend the

top-k ranked items.

The fictitious M + 1 user’s scores corresponding to the binge-worthy

features will still not be relevant during evaluation.

43

Item Collaborative Filtering with binge-watching features

Using only the binge-watching features leads to an extended URM with size

N,M+1, the item similarity matrix accordingly has size M+1,M+1. The

predicted rating matrix has size N,M + 1 then.

Figure 5.8: A visual representation of how the predicted ratings are calculated for Item

CF. Each square represents a matrix. The predicted ratings are the dot product of the

similarity and the extended URM with binge-watching features.

Again, we remove the M + 1 column from the predicted ratings and

proceed to the recommendation phase as described for Item CF with binge-

watching and binge-worthy features in 5.2.2.

Item Collaborative Filtering with binge-worthy features

Finally, using only the binge-worthy features means the extended URM has

shape N + 1,M . The item similarity matrix will have the exact size of the

one described in 2.1.3, M,M . The predicted rating matrix has size N+1,M

consequently.

Like User CF with binge-worthy features, we have no fictitious item: the

predicted rating matrix does not need any adjustment, as this extra item will

ever be recommended. We sort the items in a decreasing order accordingly

to the ratings and recommend the top-k ranked ones.

5.2.3 SLIM with contextual information

We present a SLIM model with contextual information to include binge-

watching and binge-worthy features. SLIM with contextual information is a

SLIM model which takes as input the extended URM. The similarity matrix

W computed by SLIM is the same one obtained in Equation 2.5b, solving

an optimization problem, and it will have size M + 1,M + 1 if the extended

44

Figure 5.9: A visual representation of how the predicted ratings are calculated for Item

CF. Each square represents a matrix. The predicted ratings are the dot product of the

similarity and the extended URM with binge-worthy features.

URM contains binge-watching features, alone or alongside the binge-worthy

ones.

Besides how the similarity is computed, SLIM with contextual informa-

tion behaves like the Item CF with the extended URM presented in Section

5.2.2. The predicted rating matrix is built in the same way shown in Figure

5.7, but it uses its own computed similarity matrix W . Therefore, if we have

binge-watching features in the URM, we need to remove the extra M + 1

item from the predicted rating matrix. Otherwise, we directly rank each

user’s ratings and take the top-k ones.

5.3 LightFM Factorization Machine

We introduced binge-watching and binge-worthy features in LightFM, an

implementation of Factorization Machines 1 [10]. The model lets us define

user and item features. It computes the latent representation of users and

items as the sum of the features’ latent vector, then uses it in a Matrix

Factorization fashion to computer recommendations [10].

r̂u,i = f(qu · pi + bu + bi)

r̂u,i is the predicted rating of user u for item i, qu is the latent representation

of u, pi is the representation of i, bu and bi are respectively user and item

feature bias. The function f(·) used in our implementation is the identity

function, the default function of the library.

As for the models described previously, we tested these models using

binge-watching or binge-worthy features and combining both. Notably, we

1https://github.com/lyst/lightfm

45

do not need to extend the URM matrix because we can pre-process the

feature arrays with built-in tools in the LightFM library.

46

Chapter 6

Experimental setup

In this chapter, we describe the environment in which we run tests.

In the interaction dataset, we observe the interactions between users and

the catalog items, as described through Chapter 3. In particular, all items

are described with a series id and an item id: movies and documentaries

have a series id that coincides with the item id and are considered as series

with a unique item, even though they have different item types. TV-series

instead have a unique series id and multiple item ids, each referring to a

different episode. We chose to recommend series ids instead of item ids

because the extracted binge-watching and binge-worthy features are related

to series ids. We recommend movies, documentaries, and TV-series through

this approach, but we are not recommending single episodes.

6.1 Dataset processing

In Section 2.1.1 we summed up the main strategies to model user feedback

and build URMs: implicit and explicit feedback. Classic implicit feedback

approaches would assign 1 in the URM when the user interacted with the

series and 0 otherwise. It does not capture the nature of user-series inter-

action since we would be giving the same score to a user who watched just

one episode of a series and to one who saw all the episodes of a series twice.

Explicit feedback does not make our case either since it builds the URM

according to user-series ratings.

As previously stated, our goal is to recommend series. We create an

implicit URM that counts the number of interactions each user had with

a series, effectively capturing the preferences of the users with series. The

more the user watches a series, the higher the number of interactions.

6.1.1 User temporal splitting

Following previous works in the area [5], we split the dataset into three

different splits: train, validation, and test. After we split the dataset, we

build three different URMs, one for each set.

We filter the dataset based on the filtering approaches shown in Section

3.2. Moreover, we make sure to include not only serial content, such as

TV-series, but movies and documentaries as well.

We adopt a user temporal splitting, i.e., splitting the dataset tem-

porally for each user. The splitting process begins by ordering the users’

interaction by their timestamp in ascending order. Then, for each user, we

take the first 70% of their interactions as the training set, the next 10% as

the validation set, and the last 20% for the test set.

The corresponding URMs to each set are built as described in Section

6.1, but considering only the interactions of the considered set: for each pair

(user, series) of the set, the URM contains the number of interactions of the

user for the series within that set.

6.1.2 URM splits description

We present statistics over training, validation, and test set in Table 6.1. We

show the number of interactions, user and items in each one.

Interactions Users Items

Original dataset 10.457.810 42.153 28.877

Vision factor ≥ 90%,

view interactions

4.480.691

(42.84%)

41.120

(97.55%)

20.479

(70.92%)

Training
3.117.301

(29.81%)

38.875

(92.22%)

18.279

(63.30%)

Validation
448.586

(4.29%)

35.129

(83.33%)

9.251

(32.04%)

Test
905.440

(8.66%)

38.821

(92.10%)

11.302

(39.14%)

Table 6.1: Splits statistics, in terms of the absolute number of interactions, users

and series, and percentages with respect to the original unfiltered dataset. The items

presented correspond to the unique series ids present in each split. They do not

represent single episodes but entire series, movies, and documentaries.

We are in a setting where we are measuring if including binge-watching

and binge-worthy information generates improvements. Also, we want to

evaluate the recommenders in the most realistic scenario possible, where

the user has been interacting with a series for quite some time, and their

48

interactions can be in the three dataset splits. Moreover, recommending a

series again is not considered a mistake because we want to see if engagement

with it is reached.

6.1.3 Binge-watching and binge-worthy features built with

training set

In Section 4.2.4 we showed statistics over a filtered dataset to identify binge-

watchers and binge-worthy series. Coherently to the experimental splits de-

scribed in Section 6.1.1, we computed the binge-watching and binge-worthy

features array on the training set data, in the same way we described in

Section 4.3.

Min Max Mean Variance

Binge-watching 0 1 0.11490463 0.05384468

Binge-watching > 0 0.01408 1 0.4235 0.06778

Binge-worthy 0 1 0.06271 0.03220

Binge-worthy > 0 0.01370 1 0.46184 0.05282

Table 6.2: Minimum, maximum, average value, and variance for binge-watching and

binge-worthy feature arrays built over the training set. In the second and the fourth

rows, we show statistics considering only the features values that are > 0.

6.2 Models training

6.2.1 Evaluation procedure

In Figure 6.1, we show the evaluation process to train recommenders. The

approach is the following: We start from the filtered dataset and create the

URM splits, as mentioned in Section 6.1, then, we tune the hyper-parameters

of each recommender in our study by training them with the train split and

evaluating them against the validation split. After the hyper-parameter

tuning process finishes, we train each recommender with the best set of

hyper-parameters and with the sum of the train and validation split. Then

it is evaluated against the test split.

6.2.2 Models

Starting from the code from the library1 of ContentWise Impression dataset

reference article [15], we tested the following Recommender System models

as baselines:

1https://github.com/ContentWise/contentwise-impressions

49

FILTERED DATASET

URM
TRAIN
(70%)

URM
VALIDATION

(10%)

URM
TEST
(20%)

MODEL
INITIALIZATION

FIT

PREDICT RATINGS

EVALUATE

MODEL
INITIALIZATION

FIT

PREDICT RATINGS

FINAL EVALUATION

URM TRAIN +
VALIDATION

(80%)

+

Hyper-parameter
tuning

Final test

FINAL SCORES AND
BEST HYPER-
PARAMETERS

Figure 6.1: Evaluation procedure description. We initialize the model with the URM

train, then we perform the hyper-parameter tuning as an iteration of fit, prediction and

evaluation against the URM validation. Finally, we fit the models with the best hyper-

parameters and we compute predictions with the sum of URM train and validation,

evaluating the scores against the URM Test.

• Random;

• Top Popular;

• User Collaborative Filtering;

50

• Item Collaborative Filtering;

• SLIM ElasticNet;

• LightFM Factorization Machine [10].

We extended User Collaborative Filtering, Item Collaborative Filter-

ing, SLIM ElasticNet, and LightFM with binge-watching and binge-worthy

features, as described through Chapter 6. In particular, we weighted the

features with an alpha-weight approach, multiplying the feature arrays for a

hyper-parameter α, ranging from 0 to 1, learned during training. For each

of these models, we built three different versions:

• one using binge-watching features only;

• one using binge-worthy features only;

• one combining both binge-watching and binge-worthy features.

Considering how we introduce features into SLIM ElasticNet with con-

textual information, it cannot be considered a pure Context-aware Recom-

mender System since we do not define any feature matrix[22]. On the other

hand, the core idea is the same since we are still introducing contextual

information.

6.2.3 Keeping already seen items in recommendations

For the same reasons previously presented, we recommend already seen

items, i.e., series present in the training set. We already know that an

element present in the training set will not be in the validation or test set

in recommenders without overlapping sets. However, in our case, we want

to recommend the missing episodes of a series to a user who might not have

finished in the observation span in which we gather the interactions in the

training set. It makes sense to recommend series that are already present

in the dataset. Considering how the URMs are built, we recommend the

number of interactions we think a user would have with a particular series.

6.2.4 Hyper-parameter tuning

We tuned the reported models’ hyper-parameters, optimizing the recom-

mendation performance over the validation set. We used the Bayesian Op-

timization implemented in the reference library [15], optimizing the MAP

metric. We trained each model for 50 iterations, with 15 random starts each.

During the first 15 epochs, the optimizer explores random parameters and

51

then exploits the best one over the validation set. At the end of the tuning,

we train the recommender using the best parameters found using the union

of the training and the validation set and scoring it against the test set.

6.2.5 Metrics

We evaluated the performance of top-N recommendations over the following

metrics: Precision (PREC), Recall (REC), Mean Average Precision (MAP),

Mean Reciprocal Rank (MRR), F1, Novelty, Coverage, and Diversity. Each

metric is computed with cut-off values 5, 10 and 20, which means considering

the @K metrics as described in Section 2.3.

52

Chapter 7

Results

In this chapter, we present an analysis of the performance of models trained

using binge-watching and binge-worthy features. We present results grouped

by model type to show how they compare with and without the features.

We show MAP and Recall metrics, with cut-offs of 5, 10, and 20. We also

present other accuracy and beyond-accuracy metrics with a cut-off of 20.

7.1 Random and Top Popular baselines

In Tables 7.1 and 7.2, we show the results for two baselines to illustrate

the difference in accuracy between them and more advanced models trained

with and without features. Random model recommends the series randomly,

which explains its low accuracy but high diversity and coverage. Instead,

Top Popular recommends the first k most popular items, where k is the

considered cut-off. On the contrary, this recommender has a higher value of

accuracy, but its diversity is zero as recommendations are not personalized.

@ 5 @ 10 @ 20

REC MAP REC MAP REC MAP

Random 0.0001 0.0001 0.0002 0.0001 0.0003 0.0001

TopPop 0.126 0.0988 0.1614 0.0998 0.1975 0.1016

Table 7.1: Baselines for Random and Top Popular recommenders. They do not use

features.

@ 20

PREC MRR F1 ARHR Novelty Div.MIL Div.HHI
Cov.

Item

Div.

Gini

Div.

Shannon

Random 0.0001 0.0003 0.0001 0.0003 0.0182 0.9989 0.9999 1 0.909 14.139

TopPop 0.0299 0.1851 0.052 0.2199 0.0083 0 0.95 0.0011 0.0011 4.3219

Table 7.2: Baselines with all accuracy measures for Random and Top Popular recom-

menders. They do not use features.

7.2 Collaborative Filtering

7.2.1 User Collaborative Filtering

We outline the results for User Collaborative Filtering using the extended

URM. We group the results by the similarity measure.

@ 5 @ 10 @ 20

Weight

binge-

watchers

Weight

binge-

worthy

REC MAP REC MAP REC MAP

UserKNN CF cosine - - 0.4707 0.3763 0.5489 0.3805 0.6181 0.3886

Bingewatcher Bingeworthy 0 0 0.4431 0.3641 0.5081 0.3648 0.5668 0.3706

Bingewatcher 0 - 0.4431 0.3641 0.508 0.3648 0.5668 0.3706

Bingeworthy - 0.0574 0.4431 0.3641 0.5081 0.3648 0.5669 0.3706

UserKNN CF dice - - 0.3677 0.2699 0.4514 0.2788 0.532 0.2878

Bingewatcher Bingeworthy 0 1 0.3667 0.2693 0.4504 0.2781 0.5313 0.2872

Bingewatcher 0 - 0.368 0.2695 0.452 0.2785 0.5322 0.2876

Bingeworthy - 0 0.3675 0.2697 0.4512 0.2785 0.5319 0.2876

UserKNN CF jaccard - 0.3688 0.2706 0.453 0.2795 0.5328 0.2886

Bingewatcher Bingeworthy 0 0 0.3683 0.2701 0.4517 0.2788 0.5322 0.2879

Bingewatcher 0 - 0.3681 0.2702 0.4518 0.2789 0.532 0.288

Bingeworthy - 0 0.3687 0.2706 0.4523 0.2794 0.5332 0.2885

UserKNN CF asymmetric - - 0.4641 0.3724 0.5423 0.3763 0.6117 0.3842

Bingewatcher Bingeworthy 0 0 0.4431 0.3641 0.5081 0.3648 0.5668 0.3706

Bingewatcher 0 - 0.4431 0.3641 0.508 0.3648 0.5668 0.3706

Bingeworthy - 0 0.4431 0.3641 0.5081 0.3648 0.5668 0.3706

UserKNN CF tversky - - 0.387 0.2848 0.4718 0.2934 0.5472 0.3022

Bingewatcher Bingeworthy 0 0 0.3689 0.2701 0.4527 0.279 0.533 0.2882

Bingewatcher 0 - 0.3688 0.2707 0.4529 0.2795 0.5327 0.2886

Bingeworthy - 0 0.3688 0.2705 0.4523 0.2793 0.5333 0.2885

Table 7.3: Compared results for MAP and Recall between User Collaborative filtering

for each similarity computation. Results are shown in chunks for each similarity without

features, and with all possible feature combinations

Extending the URM of a User Collaborative Filtering with binge-watching

or binge-worthy features does not improve its performances. The informa-

tion introduced is not leveraged by this model.

In Table 7.4 we show the results for other accuracy and beyond-accuracy

metrics at cut-off 20. All metrics are impacted negatively by binge-watching

and binge-worthy features, even when their weights are set to 0. The

54

@ 20

PREC MRR F1 Novelty
Div.

MIL

Div.

HHI

Cov.

Item

Div.

Gini

Div.

Shannon

UserKNN CF cosine 0.0845 0.5448 0.1487 0.0104 0.857 0.9928 0.2449 0.0234 8.6923

Bingewatcher Bingeworthy 0.0739 0.5392 0.1307 0.0104 0.8278 0.9914 0.2372 0.0199 8.3794

Bingewatcher 0.0739 0.5392 0.1307 0.0104 0.8278 0.9914 0.2372 0.0199 8.3794

Bingeworthy 0.0739 0.5392 0.1307 0.0104 0.8278 0.9914 0.2372 0.0199 8.3795

UserKNN CF dice 0.0692 0.4088 0.1225 0.0108 0.8321 0.9916 0.199 0.0185 8.3596

Bingewatcher Bingeworthy 0.0691 0.4084 0.1223 0.0108 0.8266 0.9913 0.1953 0.0178 8.3033

Bingewatcher 0.0692 0.4075 0.1225 0.0108 0.8387 0.9919 0.205 0.0195 8.435

Bingeworthy 0.0692 0.4086 0.1225 0.0108 0.8311 0.9916 0.1982 0.0183 8.3487

UserKNN CF jaccard 0.0694 0.4093 0.1228 0.0108 0.8327 0.9916 0.2021 0.0187 8.3727

Bingewatcher Bingeworthy 0.0693 0.409 0.1227 0.0108 0.8286 0.9914 0.1991 0.0182 8.3278

Bingewatcher 0.0693 0.4092 0.1226 0.0107 0.8274 0.9914 0.1982 0.018 8.315

Bingeworthy 0.0694 0.4092 0.1228 0.0108 0.8352 0.9918 0.2038 0.0191 8.4

UserKNN CF asymmetric 0.0837 0.543 0.1473 0.0103 0.8425 0.9921 0.2309 0.0203 8.4849

Bingewatcher Bingeworthy 0.0739 0.5392 0.1307 0.0104 0.8278 0.9914 0.2372 0.0199 8.3794

Bingewatcher 0.0739 0.5392 0.1307 0.0104 0.8278 0.9914 0.2372 0.0199 8.3794

Bingeworthy 0.0739 0.5392 0.1307 0.0104 0.8278 0.9914 0.2372 0.0199 8.3794

UserKNN CF tversky 0.0721 0.4287 0.1274 0.0108 0.8416 0.9921 0.1962 0.0184 8.4059

Bingewatcher Bingeworthy 0.0694 0.4081 0.1228 0.0108 0.8383 0.9919 0.2068 0.0196 8.4364

Bingewatcher 0.0694 0.4094 0.1228 0.0108 0.8326 0.9916 0.202 0.0187 8.3715

Bingeworthy 0.0694 0.4091 0.1228 0.0108 0.8353 0.9918 0.2039 0.0191 8.4014

Table 7.4: Compared results for other accuracy metrics between User Collaborative

filtering for each similarity computation. Results are shown in chunks for each similarity

without features, and with all possible feature combinations. The features weights are

omitted for readability reasons. They are the same of the ones shown in Table 7.3.

Bayesian optimization process, in fact, selected not to use these features.

This means the best results obtained are the ones where features’ weights

are not considered. Even when it uses them, the weights are close to 0,

and the results are not impacted, as shown for UserKNN CF cosine with

binge-worthy features in Table 7.3. Hence, we can conclude that User Col-

laborative Filtering is not impacted by this information.

7.2.2 Item Collaborative Filtering

In Table 7.5 we indicate the results for Item Collaborative Filtering using

the extended URM. The results are still grouped by similarity measure.

Considering the general pattern among the different models trained,

we cannot conclude that Item Collaborative Filtering is improved through

binge-watching and binge-worthy, even though we can improve by a 1.16%

margin the MAP@20, and by a similar amount the other metrics. This mar-

gin is not sufficiently wide to consider this an improvement. The Bayesian

optimization process selects to use binge-worthy features. In most cases,

the model’s performances drop significantly when using features, and where

there is an improvement, it is marginal.

Moreover, we notice that all the other metrics, including the beyond-

55

@ 5 @ 10 @ 20

Weight

binge-

watchers

Weight

binge-

worthy

REC MAP REC MAP REC MAP

ItemKNN CF cosine - - 0.1077 0.0709 0.1785 0.0769 0.2698 0.0858

Bingewatcher Bingeworthy 1 0 0.0746 0.0522 0.1235 0.0555 0.1929 0.0621

Bingewatcher 1 - 0.0746 0.0522 0.1235 0.0555 0.1929 0.0621

Bingeworthy - 0 0.0742 0.0519 0.1223 0.0552 0.1912 0.0616

ItemKNN CF dice - - 0.1084 0.0693 0.1847 0.0763 0.277 0.0856

Bingewatcher Bingeworthy 1 0 0.1098 0.069 0.1848 0.0757 0.276 0.0845

Bingewatcher 1 - 0.11 0.0691 0.1851 0.0758 0.2767 0.0847

Bingeworthy - 0 0.1084 0.0693 0.1847 0.0763 0.277 0.0856

ItemKNN CF jaccard - - 0.1069 0.0692 0.1854 0.0766 0.2828 0.0863

Bingewatcher Bingeworthy 0 0 0.1075 0.0692 0.1817 0.0757 0.2714 0.0845

Bingewatcher 0.91 - 0.1094 0.0701 0.1883 0.0776 0.2856 0.0873

Bingeworthy - 0 0.1075 0.0693 0.1816 0.0757 0.2715 0.0846

ItemKNN CF asymmetric - - 0.1785 0.1258 0.2594 0.1315 0.3591 0.1416

Bingewatcher Bingeworthy 1 0 0.0747 0.0521 0.1236 0.0555 0.1929 0.062

Bingewatcher 1 - 0.0746 0.0521 0.1236 0.0555 0.193 0.0621

Bingeworthy - 0 0.0742 0.0519 0.1224 0.0552 0.1912 0.0616

ItemKNN CF tversky - - 0.1268 0.0885 0.1947 0.0929 0.2832 0.1019

Bingewatcher Bingeworthy 1 0 0.1125 0.0706 0.1876 0.0772 0.2783 0.0861

Bingewatcher 1 - 0.1157 0.0722 0.1921 0.0792 0.284 0.0883

Bingeworthy - 0.1387 0.1041 0.0677 0.1816 0.0747 0.277 0.084

Table 7.5: Compared results between Item Collaborative filtering for each similarity

computation. Results are shown in chunks for each similarity without features and all

possible feature combinations. We highlight in bold the rows where we were able to

improve the results for the corresponding baseline

accuracy ones, are generally impacted negatively by binge-watching or binge-

worthy features. We show those results in Table 7.6.

The results of Item Collaborative Filtering are similar to those of User

Collaborative Filtering, i.e., these two types of algorithms do not leverage

binge-watching or binge-worthy features. We report these results for com-

pleteness.

7.3 SLIM with contextual information

In Table 7.7 we outline the results provided by SLIM ElasticNet with con-

textual information, both with and without features. We introduce features

by extending the URM.

Using both information on binge-watchers and binge-worthy series, we

improve the model by 5.39% approximately, in terms of MAP@20. Con-

cerning Recall, we obtain more minor improvements. We outline that the

improvements in MAP and Recall obtained by using binge-watching and

binge-worthy features correspond to improvements in every other metric, as

shown in Table 7.8.

56

@ 20

PREC MRR F1 Novelty
Div.

MIL

Div.

HHI

Cov.

Item

Div.

Gini

Div.

Shannon

ItemKNN CF cosine 0.0501 0.1627 0.0845 0.012 0.9298 0.9965 0.772 0.0903 10.1542

Bingewatcher Bingeworthy 0.0395 0.1301 0.0656 0.0116 0.8386 0.9919 0.3616 0.0523 9.184

Bingewatcher 0.0395 0.1301 0.0656 0.0116 0.8386 0.9919 0.3616 0.0523 9.184

Bingeworthy 0.0393 0.1295 0.0652 0.0117 0.8455 0.9923 0.3631 0.0535 9.247

ItemKNN CF dice 0.0489 0.1629 0.0832 0.0121 0.9381 0.9969 0.8058 0.0856 10.2387

Bingewatcher Bingeworthy 0.0485 0.1631 0.0825 0.0116 0.9279 0.9964 0.5658 0.0613 9.9317

Bingewatcher 0.0486 0.1633 0.0826 0.0116 0.9293 0.9965 0.5734 0.0625 9.9601

Bingeworthy 0.0489 0.1629 0.0832 0.0121 0.9381 0.9969 0.8058 0.0856 10.2387

ItemKNN CF jaccard 0.0498 0.1636 0.0847 0.0118 0.9259 0.9963 0.6958 0.0731 10.035

Bingewatcher Bingeworthy 0.0486 0.1632 0.0824 0.0117 0.9332 0.9967 0.5701 0.0621 9.9761

Bingewatcher 0.0499 0.1654 0.085 0.0117 0.9244 0.9962 0.6825 0.0714 10.0032

Bingeworthy 0.0486 0.1633 0.0824 0.0117 0.9333 0.9967 0.5704 0.0623 9.9793

ItemKNN CF asymmetric 0.0602 0.2567 0.1031 0.0105 0.8476 0.9924 0.2917 0.0246 8.6179

Bingewatcher Bingeworthy 0.0395 0.13 0.0655 0.0116 0.8417 0.9921 0.363 0.0529 9.213

Bingewatcher 0.0395 0.1301 0.0655 0.0116 0.8414 0.9921 0.3629 0.0528 9.2104

Bingeworthy 0.0393 0.1294 0.0652 0.0117 0.8459 0.9923 0.3633 0.0536 9.2499

ItemKNN CF tversky 0.0511 0.1979 0.0866 0.011 0.9256 0.9963 0.4392 0.0356 9.3438

Bingewatcher Bingeworthy 0.0491 0.1654 0.0834 0.0115 0.9254 0.9963 0.5606 0.0595 9.8811

Bingewatcher 0.0499 0.168 0.0849 0.0118 0.9304 0.9965 0.6004 0.0662 10.0119

Bingeworthy 0.0491 0.1609 0.0834 0.0115 0.9226 0.9961 0.5786 0.0613 9.876

Table 7.6: Compared results for other accuracy metrics between Item Collaborative

filtering for each similarity computation. Results are shown in chunks for each similarity

without features, and with all possible feature combinations. The features weights are

omitted for readability reasons. They are the same of the ones shown in Table 7.5

@ 5 @ 10 @ 20

Weight

binge-

watchers

Weight

binge-

worthy

REC MAP REC MAP REC MAP

SLIM ElasticNet - - 0.1383 0.0925 0.2078 0.0974 0.2951 0.1058

Bingewatcher Bingeworthy 0.7437 1 0.1452 0.0979 0.2163 0.1029 0.3042 0.1115

Bingewatcher 0.6356 - 0.1364 0.091 0.2066 0.096 0.2929 0.1044

Bingeworthy - 0.2665 0.1379 0.0937 0.2063 0.098 0.2917 0.1063

Table 7.7: Results for SLIM ElasticNet models. Results are shown without features and

with all possible feature combinations. We highlight in bold the improved metrics for

the baseline and the corresponding weights

@ 20

PREC MRR F1 Novelty
Div.

MIL

Div.

HHI

Cov.

Item

Div.

Gini

Div.

Shannon

SLIM ElasticNet 0.0502 0.1993 0.0858 0.0113 0.875 0.9938 0.2244 0.0255 8.8454

Bingewatcher Bingeworthy 0.0513 0.2076 0.0878 0.0114 0.8925 0.9946 0.2636 0.0309 9.12

Bingewatcher 0.0498 0.1977 0.0852 0.0112 0.8756 0.9938 0.2205 0.0248 8.8202

Bingeworthy 0.0505 0.2016 0.0861 0.0115 0.9049 0.9952 0.2607 0.0311 9.1693

Table 7.8: Results for other accuracy metrics for SLIM ElasticNet models. Results

are shown in chunks for each similarity without features, and with all possible feature

combinations. The features weights are omitted for readability reasons. They are the

same of the ones shown in Table 7.7

57

In contrast to User and Item Collaborative Filtering techniques, SLIM

ElasticNet leverages both the binge-watchers and binge-worthy series infor-

mation, improving the recommendation quality. This can be explained by

how SLIM computes the similarity matrix, which is learned following the op-

timization approach explained in Section 2.1.4. Moreover, this result shows

how Machine Learning models can leverage this type of extra content while

non-ML models cannot.

7.4 LightFM

Last, we present results for LightFM, comparing the non-feature version

with the ones using features in all possible combinations.

@ 5 @ 10 @ 20

Weight

binge-

watchers

Weight

binge-

worthy

REC MAP REC MAP REC MAP

LightFM - - 0.3649 0.2253 0.5116 0.2452 0.6401 0.2618

Bingewatcher bingeworthy 0 1 0.3744 0.2311 0.5199 0.2541 0.6442 0.2706

Bingewatcher 0 - 0.3731 0.2338 0.5174 0.2526 0.6453 0.2691

Bingeworthy - 1 0.3773 0.2361 0.5202 0.2551 0.6446 0.2715

Table 7.9: Results for LightFM models. Results are shown without features and with

all possible feature combinations. We highlight in bold the improved metrics for the

baseline and the corresponding weights

As shown in Section 7.3, binge-worthy features improve the recommen-

dation accuracy. The hyper-parameter tuning process ends up reaching the

maximum importance weight for binge-worthy features, though it judges

binge-watching information as non-important, setting its weight to 0. LightFM

with binge-watching features improves MAP@20 by 3.7%. The other met-

rics are impacted at a lower rate instead, as shown in Table 7.10. Notice

@ 20

PREC MRR F1 Novelty
Div.

MIL

Div.

HHI

Cov.

Item

Div.

Gini

Div.

Shannon

LightFMWrapper 0.0835 0.3631 0.1477 0.0114 0.9212 0.9961 0.9191 0.1016 10.3013

Bingewatcher Bingeworthy 0.0849 0.3737 0.1499 0.0112 0.9064 0.9953 0.8824 0.0864 10.0334

Bingewatcher 0.085 0.3754 0.1503 0.0115 0.9248 0.9962 0.9136 0.1023 10.3657

Bingeworthy 0.0852 0.3763 0.1505 0.0113 0.9111 0.9956 0.9075 0.0948 10.1532

Table 7.10: Results for other accuracy metrics for LightFM models. Results are shown in

chunks for each similarity without features, and with all possible feature combinations.

The features weights are omitted for readability reasons. They are the same of the ones

shown in Table 7.9

that LightFM with only binge-watching information has a higher score than

58

the baseline. The improvement is due to the discovery of better hyper-

parameters during the search, and the binge-watching features do not impact

the scores since the best weight is chosen 0.

7.5 Popularity bias analysis

Table 7.11 shows how much binge-watching and binge-worthy features are

correlated to the popularity of users and items, respectively. We sum the

interactions of the training URM column-wise to obtain user popularity, and

we do the same row-wise to obtain the series popularity.

Pearson Spearman Kendall

r p val r p val tau p val

Series popularity, binge-worthy features 0.0211 0.004338 0.4873 0 0.397 0

User popularity, binge-watching features 0.1951 0 0.5364 0 0.417 0

Table 7.11: Different correlation metrics measured between user popularity and binge-

watching features, series popularity and binge-worthy features

As said in Section 2.5.1, Pearson-r values can go between -1 and 1, with 0

implying no correlation. Based on the values shown in Table 7.11, user and

series popularities have a low linear correlation between binge-watching and

binge-worthy features, respectively. Instead, they have a certain degree rank

correlation due to Spearman-r and Kendall-tau’s values. The definitions of

binge-watcher and binge-worthy series are intrinsically related to popularity:

they both count the number of binge-watching sessions for a user or for a

series to attribute the binge-status. Series that are highly popular are more

prone to be binge-watched, even from everyday experience.

To conclude, we are introducing new information since the correlation

measures are low in terms of linear correlation and range from 0.4 to 0.5

approximately for rank correlation ones. We expect some degree of cor-

relation between binge-features and popularity arrays. However, it is not

sufficient to state information on binge-watchers and binge-worthy series is

a redundant form of popularity.

7.6 Time benchmarks

In Appendix A.1, we show the time needed to train the tested models, both

with and without features.

We train models using Amazon Web Services1 EC-2 machines. Mostly,

1https://aws.amazon.com/

59

we use a c5.4xlarge instance with 16vCPUs, 32 GB of memory, and running

Amazon Linux version 2.

7.7 Final remarks

To conclude, KNN models exploit neither the binge-watching nor binge-

worthy features. Instead, our implementation of SLIM ElasticNet using the

extended URM, similarly to a Context-aware model, exploits both binge-

worthy and binge-watching information, though binge-worthy is dominant.

LightFM with binge-worthy features is improved by 3.7% in terms of

MAP@20. Binge-worthy features are weighted at the maximum value. In-

stead, binge-watching features are discarded during optimization.

Finally, binge-worthy information appears to be relevant for Factoriza-

tion Machines and SLIM ElasticNet model because it improves recommen-

dations. Moreover, these features are not strongly correlated to series pop-

ularity; hence the information we are introducing is primarily new. On

the other hand, binge-watching features do not improve the Recommender

Systems for which we have provided results.

60

Chapter 8

Conclusion and Future Work

This chapter presents and discusses the key outputs and contributions of

our research work. This work aims at structuring the process of binge-

watchers identification on an industrial dataset, translating the research

in other fields that analyzes and defines binge-watching behavior from a

different perspective, often too general or relying solely on surveys.

The absence of well-defined approaches to identify binge-watchers and

binge-worthy series in a dataset leads to a consequent non-existent explo-

ration of its significance. Currently, the research community does not pro-

vide any hints on whether this behavioral pattern improves recommendation

quality or not. The second goal of this thesis is to track how the extracted

information impacts Recommender Systems, hence understanding if it can

improve their performance.

8.1 Outputs and Contributions

We divide our work into two main parts: identifying binge-watchers and

binge-worthy series in our dataset and analyzing the results from models

built to include these features.

For the first task, we extract binge-watchers and binge-worthy series

from a filtered dataset with only serial content and relevant interactions by

computing watching sessions and applying the binge-watching definitions we

find in the literature. We then compare the statistics over binge-watchers

that can be found in surveys and current research and validate our ap-

proach’s efficacy by matching those statistics accordingly. Finally, we trans-

late binge-watchers and binge-worthy series information into features that

will be plugged into models. To summarize, we provide the reader with

a flexible set of tools to extract binge-watching information from a serial

content dataset.

Secondly, we propose different strategies to introduce these features into

models. The first approach was to extend the User Rating Matrix using a

fake item corresponding to the binge-watchers information and a fake user

corresponding to the binge-worthy series features. The second one was to

plug these features into LightFM, a Factorization Machine implementation

that digests well user and item features and uses them to make recom-

mendations. The two most improved algorithms are SLIM ElasticNet with

contextual information, where the context is introduced by extending the

URM, and LightFM. In both cases, we verify that binge-worthy features

improve the recommendation quality. Concerning binge-watching features,

they do not seem to improve the recommendations.

8.2 Limitations

Apart from the multiple contributions brought to this research, limitations

are still present and need to be assessed, as it is going to be discussed

throughout this section.

Due to the computational power required to train models and score pre-

diction, we must limit the number of epochs in which the hyper-parameter

tuning runs.

Secondly, most industrial datasets are private, unlike the one we use. It

would be interesting to validate our approaches on the datasets used in the

previous articles and surveys.

Finally, there are no recommendation algorithms available in the liter-

ature that use this type of information to compare our results due to the

scarcity of research in this field, so we must rely only on baselines.

8.3 Future Work

Research on binge-watching features in Computer Science-related fields is

almost non-existent; hence, future research must be performed, particularly

in terms of using the features extracted.

Even though binge-watching information is not relevant to the recom-

mendation models from our experiments and analysis, it still can be used

as metadata to enrich user profiles. For instance, knowing that a user is a

binge-watcher could be used to arrange specifically the carousels of recom-

mended items within an OTT media service page. We could order the items

inside the carousel using binge-worthy information that we have proven to

62

be efficient in item recommendations. These ideas can be validated with

A/B testing after being deployed in production.

63

64

Bibliography

[1] George Anghelcev, Sela Sar, Justin Martin, and Jas Moultrie. Binge-

watching serial video content: Exploring the subjective phenomenology

of the binge-watching experience. the role of narrative transportation.

Mass Communication & Society, 24:130–154, 01 2021.

[2] Lee Raymond Dice. Measures of the amount of ecologic association

between species. Ecology, 26(3):297–302, July 1945.

[3] DTVE Reporter. Binge viewing the ‘new norm’, says TiVo, July 2015.

publisher: Digital TV Europe.

[4] Jean Mark Gawron. Improving sparse word similarity models with

asymmetric measures. In Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics (Volume 2: Short Pa-

pers), pages 296–301, Baltimore, Maryland, June 2014. Association for

Computational Linguistics.

[5] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and

John T. Riedl. Evaluating collaborative filtering recommender systems.

ACM Trans. Inf. Syst., 22(1):5–53, January 2004.

[6] Paul Jaccard. The distribution of the flora in the alpine zone.1. New

Phytologist, 11(2):37–50, 1912.

[7] Gawesh Jawaheer, Martin Szomszor, and Patty Kostkova. Comparison

of implicit and explicit feedback from an online music recommendation

service. In Proceedings of the 1st International Workshop on Informa-

tion Heterogeneity and Fusion in Recommender Systems, HetRec ’10,

pages 47–51, New York, NY, USA, 2010. Association for Computing

Machinery.

[8] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. Computer, 42(8):30–37, 2009.

65

[9] William H. Kruskal. Ordinal measures of association. Journal of the

American Statistical Association, 53(284):814–861, 1958.

[10] Maciej Kula. Metadata embeddings for user and item cold-start rec-

ommendations, 2015.

[11] J. L. Myers and A. D. Well. Research Design and Statistical Analysis.

Lawrence Erlbaum Associates, New Jersey, 2003.

[12] Netflix, Inc. Netflix declares binge watching is the new normal, Decem-

ber 2013. publisher: PRNewswire.

[13] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n

recommender systems. In Proceedings of the 2011 IEEE 11th Inter-

national Conference on Data Mining, ICDM 11, pages 497–506, USA,

2011. IEEE Computer Society.

[14] Karl Pearson. Note on Regression and Inheritance in the Case of Two

Parents. Proceedings of the Royal Society of London Series I, 58:240–

242, January 1895.

[15] Fernando B. Pérez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule,

Mario Scriminaci, and Paolo Cremonesi. Contentwise impressions: An

industrial dataset with impressions included. In Proceedings of the 29th

ACM International Conference on Information & Knowledge Manage-

ment, CIKM ’20, pages 3093–3100, New York, NY, USA, 2020. Associ-

ation for Computing Machinery.

[16] L.G. Perks. Media Marathoning: Immersions in Morality. Lexington

Books, 2014.

[17] S. Rendle. Factorization machines. In 2010 IEEE International Con-

ference on Data Mining, pages 995–1000, 2010.

[18] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender Sys-

tems Handbook, volume 1-35, pages 1–35. 10 2010.

[19] Lorenzo Saule. Negative item sampling on user impressions for multi-

channel bayesian personalized ranking techniques. Master’s thesis, Po-

litecnico di Milano, April 2020.

[20] William Trouleau, Azin Ashkan, Weicong Ding, and Brian Eriksson.

Just one more: Modeling binge watching behavior. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery

66

and Data Mining, KDD ’16, page 1215 to 1224, New York, NY, USA,

2016. Association for Computing Machinery.

[21] Amos Tversky. Features of similarity. Psychological Review, 84(4):327–

352, 1977.

[22] Yong Zheng, Bamshad Mobasher, and Robin Burke. CSLIM: Contex-

tual slim recommendation algorithms. In Proceedings of the 8th ACM

Conference on Recommender Systems, RecSys ’14, pages 301–304, New

York, NY, USA, 2014. Association for Computing Machinery.

67

68

Appendix A

Results

A.1 Time benchmarks

Train Time RecommendationTime
Recommendation

Throughput

Random 0.01 [sec] 36.93 [sec] 1055

TopPop 0.01 [sec] 43.79 [sec] 890

UserKNN CF cosine 20.39 ± 2.90 [sec] 197.74 [sec] / 3.30 ± 0.09 [min] 191

Bingewatcher Bingeworthy 27.12 ± 1.08 [sec] 182.20 [sec] / 3.04 ± 0.01 [min] 214

Bingewatcher 25.96 ± 1.26 [sec] 178.38 [sec] / 2.97 ± 0.00 [min] 219

Bingeworthy 36.71 ± 5.78 [sec] 247.15 [sec] / 4.12 ± 0.56 [min] 146

UserKNN CF dice 16.19 ± 0.90 [sec] 155.13 [sec] / 2.59 ± 0.01 [min] 252

Bingewatcher Bingeworthy 26.74 ± 0.93 [sec] 180.59 [sec] / 3.01± 0.01 [min] 216

Bingewatcher 25.66 ± 0.97 [sec] 177.61 [sec] / 2.96 ± 0.01 [min] 220

Bingeworthy 30.30 ±5.54 [sec] 250.53 [sec] / 4.18 ± 0.90 [min] 201

UserKNN CF jaccard 16.41 ±0.90 [sec] 158.74 [sec] / 2.65 ±0.11 [min] 252

Bingewatcher Bingeworthy 26.78 ± 0.89 [sec] 181.98 [sec] / 3.03 ± 0.01 [min] 214

Bingewatcher 25.54 ±1.22 [sec] 178.63 [sec] / 2.98 ± 0.01 [min] 219

Bingeworthy 33.92 ±4.88 [sec] 236.80 [sec] / 3.95± 0.35 [min] 136

UserKNN CF asymmetric 17.09 ± 1.11 [sec] 155.60 [sec] / 2.59 ±0.01 [min] 250

Bingewatcher Bingeworthy 27.33 ± 0.97 [sec] 181.43 [sec] / 3.02 ±0.02 [min] 216

Bingewatcher 26.53 ± 1.06 [sec] 178.06 [sec] / 2.97 ± 0.01 [min] 219

Bingeworthy 35.63 ± 5.30 [sec] 281.80 [sec] / 4.70 ± 0.82 [min] 125

UserKNN CF tversky 17.44 ± 0.97 [sec] 155.20 [sec] / 2.59 ±0.01 [min] 251

Bingewatcher Bingeworthy 27.38 ± 1.05 [sec] 179.55 [sec] / 2.99 ±0.01 [min] 216

Bingewatcher 27.04 ±1.19 [sec] 177.84 [sec] / 2.96±0.01 [min] 220

Bingeworthy 28.40 ± 4.63 [sec] 213.72 [sec] / 3.56 ± 0.84 [min] 199

ItemKNN CF cosine 3.21 ± 0.59 [sec] 49.10 ± 1.97 [sec] 802

Bingewatcher Bingeworthy 13.42 ±0.23 [sec] 39.54±0.36 [sec] 978

Bingewatcher 12.74 ± 2.48 [sec] 42.70±1.64 [sec] 883

Bingeworthy 12.25 ± 2.00 [sec] 38.80 ± 0.22 [sec] 1006

ItemKNN CF dice 2.96 ± 0.47 [sec] 50.17 ± 1.17 [sec] 787

Bingewatcher Bingeworthy 13.41 ± 0.57 [sec] 38.22 ± 0.42 [sec] 1025

Bingewatcher 12.49 ± 2.49 [sec] 46.53 ± 13.58 [sec] 980

Bingeworthy 12.21 ± 1.62 [sec] 41.76 ±8.45 [sec] 1028

ItemKNN CF jaccard 2.87 ± 0.58 [sec] 48.21 ± 1.11 [sec] 801

Bingewatcher Bingeworthy 13.40 ± 0.30 [sec] 38.68 ± 0.89 [sec] 1023

Bingewatcher 12.93 ± 2.56 [sec] 54.64 ± 16.19 [sec] 596

Bingeworthy 12.67 ± 2.46 [sec] 42.88 ± 12.27 [sec] 1053

ItemKNN CF asymmetric 3.38 ± 0.48 [sec] 50.31 ± 1.12 [sec] 745

Bingewatcher Bingeworthy 13.55 ± 0.19 [sec] 39.53 ±0.49 [sec] 979

Bingewatcher 12.25 ± 2.06 [sec] 42.52 ± 1.58 [sec] 936

Bingeworthy 12.33 ± 1.87 [sec] 51.53 ± 15.49 [sec] 1006

ItemKNN CF tversky 3.27 ± 0.51 [sec] 49.49 ± 1.34 [sec] 791

Bingewatcher Bingeworthy 13.66 ± 0.25 [sec] 38.17 ± 0.81 [sec] 1021

Bingewatcher 11.98 ± 1.51 [sec] 50.29 ± 17.80 [sec] 985

Bingeworthy 12.76 ± 2.10 [sec] 37.95 ± 1.11 [sec] 1047

SLIM ElasticNet 488.60 [sec] / 8.14 ± 7.06 [min] 187.86 [sec] / 3.13±0.21 [min] 213

Bingewatcher Bingeworthy 641.94 [sec] / 10.70 ±7.93 [min] 291.52 [sec] / 4.86 ± 2.50 [min] 167

Bingewatcher 606.51 [sec] / 10.11 ±8.32 [min] 252.21 [sec] / 4.20 ± 0.65 [min] 133

Bingeworthy 483.77 [sec] / 8.06±6.16 [min] 156.65 [sec] / 2.61± 0.01 [min] 249

LightFM 52.93 ± 26.18 [sec] 179.79 [sec] / 3.00 ± 0.00[min] 217

Bingewatcher bingeworthy 105.83 [sec] / 1.76 ± 1.33 [min] 967.88 [sec] / 16.13 ± 0.12 [min] 40

Bingewatcher 52.97± 29.25 [sec] 951.24 [sec] / 15.85 ± 0.27 [min] 40

Bingeworthy 90.77 [sec] / 1.51 ± 1.53 [min] 744.33 [sec] / 12.41 ± 6.07 [min] 121

Table A.1: Time benchmarks for the trained models

70

	Abstract
	Sommario
	Acknowledgements
	Introduction
	Context: Recommender Systems in an industrial scenario
	Scenario and problem statement
	Contributions
	Definitions
	Thesis structure

	State of the Art
	Recommender Systems
	Explicit and implicit feedback
	User Rating Matrix
	Collaborative Filtering
	SLIM

	Context-aware Recommender Systems
	Factorization Machines

	Recommender Systems Evaluation
	Binge-watching
	Correlation measures
	Pearson-r correlation coefficient
	Spearman-r correlation coefficient
	Kendall- correlation coefficient

	Data and and preliminaries to feature crafting
	Dataset
	Data description

	Filtering
	Sequence reconstruction
	Pre-processing: readjusting the episode numbers
	Method
	Results

	Binge-watchers identification and feature crafting
	Watching sessions
	Watching sessions extraction

	Binge-watchers and binge-worthy series identification
	User-series engagement table
	Binge-watchers and binge-worthy thresholds definition
	Series grouping
	Binge-watchers and binge-worthy series statistics
	Final remarks on binge-watching definitions

	Binge-watching and binge-worthy features crafting

	Approach
	Extension of the User Rating Matrix
	Models using the extended URM
	User Collaborative Filtering
	Item Collaborative Filtering
	SLIM with contextual information

	LightFM Factorization Machine

	Experimental setup
	Dataset processing
	User temporal splitting
	URM splits description
	Binge-watching and binge-worthy features built with training set

	Models training
	Evaluation procedure
	Models
	Keeping already seen items in recommendations
	Hyper-parameter tuning
	Metrics

	Results
	Random and Top Popular baselines
	Collaborative Filtering
	User Collaborative Filtering
	Item Collaborative Filtering

	SLIM with contextual information
	LightFM
	Popularity bias analysis
	Time benchmarks
	Final remarks

	Conclusion and Future Work
	Outputs and Contributions
	Limitations
	Future Work

	References
	Results
	Time benchmarks

