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1. Introduction 

The aim of the thesis is the realization of frequency 
regulation models for hydroelectric power plant 
participating to the thesis group project of Nuclear 
Section of DENG on modelling in Dymola, a 
software based on Modelica language. Dymola 
allows a multi-engineering approach and so is 
ideal to realize interconnected energy models; 
hence, it is possible to add other power plants to 
the frequency regulation models realized. 
The hydroelectric adduction system is examined in 
linear and nonlinear models starting from the 
simple ideal case of inelastic penstock to more 
complex hypothesis: the presence of surge tank 
effect and the propagation of pressure waves. 
The speed governor has been tuned through 
stability analysis in islanding operation, and 
frequency control with variation of electrical 
power has been realized.  
The case study for all the models is the Susqueda 
power plant-reported in Table 4. 

2. Linear model adduction 
system 

The inelastic conduit of the penstock is identified 
by the water starting time 𝑇௪: 

𝑇௪ ≜
𝐿

𝑔𝐴௖

𝑄଴

𝐻଴

 (1) 

The adduction transfer function 𝐺௔(𝑠) is the 
relation between mechanical power 𝑃ത௠ and 
opening of gate 𝐴̅. 𝐺௔(𝑠) in case of ideal and 
inelastic penstock is: 
 

𝐺௔(𝑠) =
∆𝑃ത௠

∆𝐴̅
=

1 −  𝑇௪𝑠

1 +
1
2

𝑇௪𝑠
 

(2) 

The time response of ∆𝑃ത௠(Figure 1) for a step of 
0.01 p.u. of ∆𝐴̅ shows a negative behaviour due to 
the inertia of the water: when the valve is opened 
the water cannot instantaneously change the flow 
for its weight, and the pressure across the turbine 
is reduced so the mechanical power produced is 
lower. 
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Figure 1- Mechanical power[p.u.] in time[s] case with 

inelastic penstock  

The hydraulic response is shown in Figure 2: the 
volumetric flow 𝑄ത , unlike the mechanical power, 
has the same variation of valve section 𝐴̅; the 
variation of the available head 𝐻ഥ is not relevant for 
the final steady state value of mechanical power, 
since its total variation is null. 

 
Figure 2 -Variation of hydraulic response[p.u.] in time[s] 

 
For very long penstocks, the wave travel time of 
the water column becomes significant, and 
subsequentlty the dynamic should not rely only on 
𝑇௪, but also the elastic time 𝑇௘௣: 

𝑇௘௣ =
𝐿

𝑐
 (3) 

The normalized impedance of the penstock 𝑍௣ is 
defined as:  

𝑍௣ =
𝑐

𝑔𝐴௖

=
𝑇௪

𝑇௘௣

 (4) 

The transfer function 𝐺௔(𝑠) for ideal turbine 
considering the propagation of elastic waves 
becomes: 

𝐺௔(𝑠) =
∆𝑃ത௠

∆𝐴̅
=

1 − 𝑍௣tanh (𝑠𝑇௘௣)

1 +
1
2

𝑍௣tanh (𝑠𝑇௘௣)
 

(5) 

The hyperbolic tangent is represented by the 
distributed parameter theory as: 

tanh൫𝑇௘௣𝑠൯ =
1 − 𝑒ିଶ ೐்೛௦

1 + 𝑒ିଶ ೐்೛௦ =

𝑠𝑇௘௣ ∏ ቈ1 + ൬
𝑠𝑇௘௣

𝑛𝜋
൰

ଶ

቉ ஶ
௡ୀଵ

∏ ቈ1 + ൬
2𝑠𝑇௘௣

(2𝑛 + 1)𝜋
൰

ଶ

቉ ஶ
௡ୀଵ

 
(6) 

The hyperbolic tangent can be  approximated for 
power system with lumped parameter 𝑛 = 1, 
which preserves the fundamental harmonic of 
water column. 
The time response of the variation of the 
mechanical power ∆𝑃ത௠ (Figure 3) has oscillations in 
the transient phase due to propagation of elastic 
waves. 

 
Figure 3-Mechanical power[p.u.] in time[s] with elastic 

penstock 
 

The parameters of the circuit reserve-surge tank 
are: 

- The water starting time of the tunnel 𝑇௪௖  

𝑇௪௖ =
𝐿௧

𝐴௧𝑔

𝑄଴

𝐻଴

𝑇௘௖  (7) 

- The surge tank storage constant 𝐶௦ 

𝐶௦ =
𝐴ௌ

𝑄଴

𝐻଴ (8) 

In the first seconds, the time response of ∆𝑃ത௠ is the 
same of the case without surge tank effect. In the 
long term there are oscillations (Figure 4) because 
the water level in the surge tank begins to oscillate 
following a change in the turbine flow with the 
natural period 𝑇ௌ: 

𝑇ௌ = 2 𝜋ඥ𝑇௪௖𝐶௦ (9) 
 

 

Figure 4-Mechanical power oscillations[p.u.] in time[s]   
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3. Nonlinear model of 
adduction 

The linear model is useful for its simplicity to 
obtain insights into the basic characteristics of 
hydraulic system, and it is acceptable to represent 
small signal performance, but inadequate for 
studies of large variation in frequency and power 
output, hence a nonlinear model is necessary. 
The following parameters are introduced: 

- Turbine gain 𝐴௧  is the relation between the 
real and the ideal gate 

𝐴௧ =
1

𝑔̅ி௅ − 𝑔̅ே௅

 (10) 

The ideal gain 𝐺 is based on having 1 p.u. 
as change from no load to full load, while 
the real gate opening 𝑔 is based on having 
1 p.u. as change from the fully closed (𝑔̅ே௅) 
to the fully open position (𝑔̅ி௅) 

- Losses due to no load speed 𝑈ഥே௅ , defined 
as 

𝑈ഥே௅ = 𝐴௧𝑔̅ே௅(𝐻ഥ଴)
ଵ
ଶ (11) 

In the present study, the nonlinear models of IEEE 
have been realized. Figure 5 shows the nonlinear 
model with only the dynamics of the penstock.  

 
Figure 5-Nonlinear model of IEEE only penstock dynamic 

 
The value of hyperbolic tangent has been 
approximated with lumped parameter in the three 
cases of n=0,1,2.  
The time response of mechanical power 𝑃ത௠ (Figure 
6) has been studied having as input a step variation 
of the gate from 0.5 to 0.51 p.u. at time 1 s. 
 

 
Figure 6-Mechanical power[p.u.] in time[s] nonlinear model 

without surge tank effect 
 
It is important to initialize the transfer functions for 
the initial steady states. The expression of the 
speed in turbine at steady state 𝑈௧௦௦ is: 

𝑈௧௦௦ =
ඩ

1

1

𝑔തଶ + 𝑓௣ଵ

 
(12) 

 
For the case study the values of steady state speed 
of water flow in turbine 𝑈ഥ௧௦௦, head in turbine 𝐻ഥ௧௦௦  
and mechanical power 𝑃ത௠௘௖  are reported in Table 1. 
 

Table 1-Values of steady state model without surge tank 
effect 

 
Figure 7 is the IEEE nonlinear model that deals 
with penstock, surge tank, tunnel dynamics, and 
losses. 

 
Figure 7-Nonlinear model of IEEE with surge tank effect 

𝑔̅[p.u.] 𝑈ഥ௧௦௦[p.u.] 𝐻ഥ௧௦௦[p.u.] 𝑃ത௠௘௖[p.u.] 

0.5 0.4971 0.9883 0.6058 

0.51 0.5069 0.9878 0.6217 
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The equations of steady state value of the head at 
the risers of surge tank 𝐻ഥ௥௦௦, the speed of water 
flow in turbine 𝑈ഥ௧௦௦ and the respective head 
𝐻ഥ௧௦௦ are:  

𝐻ഥ௥௦௦ =
𝜙

𝑝
+

1
𝑔̅ଶ

𝜙
𝑐

+ 𝜙
𝑝

+
1

𝑔̅ଶ

 

𝑈ഥ௧௦௦ = ඨ
𝑔̅ଶ

1 + 𝑔̅ଶ൫𝜙
𝑝

+ 𝜙
𝑐
൯
 

𝐻ഥ௧௦௦ =
𝑈ഥ௧௦௦

ଶ

𝑔̅ଶ
 

(13) 

 
For the case study the steady state values are 
reported in Table 2.  
 

Table 2-Values of steady state model without surge tank 
effect 

 
The mechanical power 𝑃ത௠ in the first instants is 
equal to the model without surge tank effect, but in 
long term Figure 8 shows oscillations of 𝑃ത௠ around 
the steady state value of 0.6217 p.u..  

 
Figure 8-Mechanical power oscillations[p.u.] in time[s] 

 
Indeed, the water mass oscillates inside the surge 
tank as shown by the time response of head riser of 
the surge tank 𝐻ഥ௥ (Figure 9).  

 
Figure 9-Head riser of surge tank oscillations [p.u.] in time[s] 

4. Tuning PID speed governor 

The stability analysis for the power plant in 
islanding (scheme in Figure 10) with inelastic 
penstock has been realized to choose the PID speed 
governor, with only proportional effect equal to 
the reverse of permanent droop. 
 

 
Figure 10-Frequency loop in islanding 

 
The permanent droops and their respective poles 
are reported in Figure 11 and Table 3 for the cases:  
undamped, critically damped, unstable and 
underdamped. 

 
Figure 11-Poles map 

Table 3-Permanent droops and poles 

Cases: 𝑏௣[𝑝. 𝑢./𝑝. 𝑢. ] Poles 

Undamped 0.1395 [1.6896i , -1.6896i] 

Critically damped 1.3809 [-2.0042, -0.1439] 

𝑔̅[𝑝. 𝑢. ] 𝑈ഥ௧௦௦[𝑝. 𝑢. ] 𝐻ഥ௧௦௦[p.u.] 𝐻ഥ௥௦௦[p.u.] 

0.5 0.4970 0.9880 0.9998 

0.51 0.5068 0.9875 0.9997 
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Underdamped 0.2000 [-0.3614 + 1.3640i 

,-0.3614 - 1.3640i] 

Unstable 0.0400 [2.9719 + 1.0601i, 

2.9719 - 1.0601i] 

5. Frequency control  

The effects of water starting time 𝑇௪  and 
mechanical starting time 𝑇௔ in regulation have been 
studied:  

- Increasing 𝑇௪, the delayed flow has more 
effects on hydraulic turbine and enhances 
the oscillations of the mechanical power 
and of the frequency of the system; 

- Increasing 𝑇௔, the mechanical power and 
the frequency of the system reduce 
deviation, but the time to reach the steady 
state increases.  

The frequency control after a variation of power 
load, represented in Figure 12, has been analyzed. 

 
Figure 12-Control loop for frequency regulation 

 
The transfer function representing the grid is: 

G୥୰୧ୢ =
1

𝑠𝑇௔ + 𝐷
 (13) 

The load damping coefficient 𝐷 is assumed null 
and 𝑇௔ has as reference the Italian grid in the 
blackout of 2003 (Table 5).  
This analysis has considered only the proportional 
effect of the PID speed governor. The transfer 
function of speed regulator 𝐺௥(𝑠) is a gain with 
value equal to the reverse of the permanent droop 
𝑏௣of 0.20 p.u. as the underdamped case in 
islanding (Table 3).  
The frequency variation 𝑓 and mechanical power 
𝑃ത௠௘௖ have been analyzed adding gradually more 
complex dynamics of the adduction system. 
The power load variation 𝑃ത௘ is a step from 0 to 0.01 
p.u. at time 1 s; the time response of the frequency 
(Figure 13) has been studied for cases: negligible 
adduction system with 𝐺௔(𝑠) as unit function, 
penstock inelastic, penstock elatic with grade n=1 
and n=2. 𝑓 decreases until the minimum value of 
49.90 Hz (0.998 p.u.)-as expected from the chosen 
droop: 

𝑏௣ =
∆f̅

∆𝑃ത
→  ∆f̅ = 𝑏௣ ∙ ∆𝑃ത = 2 ∙ 10ିଷp. u.  

𝑓̅ = 1 p. u. − ∆f̅ = 0.998 p. u. 

(14) 

 

 
Figure 13-Frequency variation[Hz] in time [s] 

In case of surge tank, frequency oscillates in the 
long term as shown by Figure 14.  

 
Figure 14-Frequency[Hz] in time[s] with surge tank effect 

 
For nonlinear models, the frequency has similar 
behavior, but the steady state value is not 49.90 Hz 
but 49.937 Hz, hence nonlinearity does not satisfy 
the value expected for the frequency from droop 
computation (14).  
The frequency regulation of the hydroelectric 
powerplant has been studied also in presence of 
baseload nuclear power in the grid. 
The nuclear power is realized by IRIS (Figure 15), 
a SMR reactor able to produce 335 MW of electrical 
power. 
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Figure 15-Dymola model of IRIS 

 
The frequency regulation has been studied for 1 
MW variation of power load in the grid at time 300 
s. The mechanical power 𝑃ത௠௘௖  (Figure 16) oscillates 
before and after the disturbance for the surge tank 
effect, and after 300 s increases its value from 
0.6058 p.u. to 0.6175 p.u.- equivalent to 52.5 MW. 
The frequency of the grid (Figure 17) is oscillating 
around 50 Hz before the disturbance, then 
decreases and oscillates around 49.925 Hz.  
 

 
Figure 16-Mechanical power[p.u.] in time[s] of hydro unit 

 
Figure 17-Frequency of the grid[Hz] in time[s] 

6. Conclusions 

The Dymola models of the hydroelectric power 
plant in frequency regulation have been realized 
taking singularly the dynamics of adduction 
system, speed regulator and grid, and are all 
consistent with a progressive increase of accuracy.  

Some suggestions to increase the accuracy of 
regulation models are: the adoption of a speed 
regulator with transient droop, the addition of 
frequency dependency of the load and of 
secondary regulation. 
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Table 4-Susqueda power plant 

 Parameter Value 

Penstock Length [𝐿] 250 𝑚 

 Initial diameter [𝑑௜௖] 4.3 𝑚 

 Final diameter [𝑑௙௖] 3.3 𝑚 

 Average section [𝐴௖] 11.34 𝑚ଶ 

 Pressure wave velocity [𝑐] 1200 𝑚/𝑠 

 Friction coefficient [𝜙௣] 0.0475 

Tunnel Diameter [𝑑௧] 4.3 𝑚 

 Section [𝐴௧] 14.52 𝑚ଶ 

 Length [𝐿௧] 3500  𝑚 

 Friction coefficient [𝜙௖] 0.0010112 

Surge tank Diameter [𝑑௦] 9 𝑚 

 Section [𝐴௦] 63.61 𝑚ଶ 

 Length [𝐿௦] 100 𝑚 

Turbine Rated mechanical power [𝑃௠] 86 𝑀𝑊 

 Rated discharge [𝑄଴] 65 𝑚ଷ/𝑠 

 Total head [𝐻଴] 174.41 𝑚 

Table 5-Grid block 

 Parameter Value 

Grid Mechanical starting time  

[𝑇௔] 

9.72 s 
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Abstract 

The aim of the thesis is the realization of frequency regulation models for hydroelectric 
power plant participating to thesis group project of Nuclear Section of DENG on modelling 
in Dymola, a software based on Modelica language. Dymola allows a multi-engineering 
approach and so is ideal to realize interconnected energy models; hence, it is possible to add 
other power plants to the frequency regulation models realized. 

The identification of all Dymola models has been performed for Susqueda power plant, 
hydroelectric generating unit of Endesa Group in Spain.  

The models have been realized starting from the simplest case, and then more complex 
dynamics have been considered. The adduction system was, at first, ideally approximated 
with only penstock, then, model by model, the effects of surge tank, friction, propagation 
of elastic waves and nonlinearity were added.  

The first chapter deals on the theory of frequency regulation and explains the control loop 
scheme that has been used in the models. The second and third chapter discuss the theoretical 
background of, respectively, linear and nonlinear model of the hydroelectric adduction 
system. Chapter four explains speed regulators and their role in frequency regulation, along 
with how to realize a stability analysis for hydroelectric power plant in islanding operation.  

Dymola software is briefly analyzed in chapter five. Each one of adduction system models 
is examined in chapter six, through the analysis of time response of the mechanical power 
after variation of gate in turbine.  

The last chapter combines the models of frequency regulation and adduction system of 
hydroelectric powerplant; furthermore, the model of frequency regulation has been 
connected with the Dymola model of nuclear power plant. It presents the results for stability 
analysis of the case study, and analyzes the results of frequency regulation of hydro unit after 
power load variation through the time response of mechanical power and frequency of the 
grid. 
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Estratto 

Lo scopo della tesi è quello di realizzare modelli di regolazione di frequenza di un impianto 
idroelettrico partecipando ad un progetto di tesi del dipartimento nucleare DENG di 
modellizzazione su Dymola, software con linguaggio Modelica. Dymola permette di avere 
un approccio multi-ingegneristico e quindi ben si presta a realizzare modelli energetici 
interconnettibili tra di loro; è dunque possibile aggiungere altri impianti di generazione ai 
modelli di regolazione di frequenza realizzati. 

Nel compimento di tutti i modelli è stato preso in considerazione l’impianto idroelettrico 
Susqueda in Spagna appartenente al Gruppo Endesa.  

I modelli sono stati realizzati partendo da prime semplificazioni, per poi tener conto di 
dinamiche più complesse. Il sistema di adduzione, infatti, è stato prima semplificato 
idealmente con solo la condotta forzata, per poi aggiungere di modello in modello l’effetto 
del pozzo piezometrico, di attriti, di propagazione di onde elastiche e non linearità.  

Nel primo capitolo è esposta la teoria alla base della regolazione di frequenza, ed è spiegato 
lo schema di regolazione successivamente realizzato nei modelli. Il secondo e terzo capitolo 
trattano la teoria alla base dei modelli, rispettivamente, lineare e non lineare del sistema di 
adduzione dell’impianto idroelettrico. Mentre nel quarto capitolo vengono trattati i 
regolatori di velocità e il loro ruolo in regolazione, insieme alla realizzazione di un’analisi 
di stabilità per un impianto idroelettrico in modalità islanding.  

L’ambiente di Dymola è sintetizzato nel quinto capitolo. I risultati dei modelli di adduzione 
vengono analizzati separatamente nel capitolo sei, con l’analisi delle risposte in potenza 
meccanica nel tempo a seguito di variazioni alla valvola in turbina.  

Nell’ultimo capitolo si fondono i modelli di regolazione e dei sistemi di adduzione 
dell’impianto idroelettrico, inoltre è mostrato un modello combinato di regolazione 
dell’idroelettrico con un impianto nucleare in rete. Sono esposti i risultati dell’analisi di 
stabilità svolta sul case study e i risultati della regolazione dell’impianto idroelettrico a 
seguito di una variazione di potenza dei carichi tramite l’analisi della risposta nel tempo di 
potenza meccanica e frequenza di rete.  
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Frequency control 

This first chapter recalls some bases on frequency control and its importance. The main 
approach proposed in this thesis work, which is the frequency loop control of a single 
generating unit, will be presented and discusses in later paragraphs. 

1.1 Fundamentals of frequency control  
The frequency regulation consists in limiting the frequency oscillations of the grid to the 
nominal value, which for Italian grid is 50 Hz. 

The frequency value is continuously perturbed by load disconnection and connection 
throughout the day, variations of power absorption and tripping of generators due to faults: 
hence the power system industry implemented three hierarchical levels of frequency 
regulation schemes. [1] 

In reality, the electrical system is “elastic”: there are electromechanical transients between 
the rotors, hence the electrical speed of the rotating groups is not unique. The electrical grid 
is assumed to be “rigid”: the period of electromechanical transients is considered fast enough 
compared to the time of frequency regulation. Therefore, the machines are deemed to move 
in synchronous to a frequency, named “the frequency of the system”. [2] 

The problem of frequency control is traduced in problem of speed control of turbine-
alternator; indeed, the mechanical rotational speed 𝜔௠ corresponds to frequency: 

 

𝑓 =
𝜔௠𝑝

2𝜋 
 

 (1.1) 

 

With 𝑝 number of pole pairs. 

The fundamental equation in power system stability analysis is the Swing equation: the effect 
of imbalance between the electrical and mechanical torques of the machines results in a 
variation of the mechanical speed of the rotor. 
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𝐽
𝑑𝜔௠

𝑑𝑡
= 𝑇௠ − 𝑇௘ 

 (1.2) 

 

Where: 

- 𝐽 is the combined moment of inertia of generator and turbine [𝑘𝑔 ∙ 𝑚ଶ], it depends 
on rotor structure and material; 

- 𝜔௠ is the mechanical rotational speed [
௥௔ௗ

௦
] and it is the derivative of mechanical 

angle 𝜃௠[𝑟𝑎𝑑],  𝜔௠ =
ௗఏ೘

ௗ௧
 ; 

- 𝑇௠ is the mechanical torque given by the turbine to the electrical machine [𝑁 ∙ 𝑚]; 
-  𝑇௘ is the electrical torque generated by machine [𝑁 ∙ 𝑚]. 

 

𝑇௠ − 𝑇௘ is the accelerating torque: 

- 𝑇௠ > 𝑇௘ determines a positive accelerating torque, resulting in an increase of rotor 
speed and electrical frequency; 

- 𝑇௠ < 𝑇௘ determines a negative accelerating torque, resulting in a decrease of rotor 
speed and electrical frequency; 

- 𝑇௠ = 𝑇௘ determines a null accelerating torque, and the electrical frequency and rotor 
speed result constant. 

Equation (1.2) is more useful expressed in terms of power: 

 

𝐽𝜔௠

𝑑𝜔௠

𝑑𝑡
= 𝑃௠ − 𝑃௘ 

 (1.3) 

 

Where: 

- 𝑃௠ is the mechanical power in input to the shaft [W]; 
- 𝑃௘ is the electrical power output generated by the machine [W]. 

 

It is possible to introduce the mechanical starting time 𝑇௔, which is the time required for the 
rated torque to accelerate the rotor from null speed to rated speed 𝜔௠,௡. The mechanical 
starting time is function of nominal power of generator 𝑆௡, inertia 𝐽 and the type of prime 
mover:  

 

𝑇௔ ≜
𝐽𝜔௠,௡

ଶ

𝑆௡
 

 (1.4) 

 

As consequence, the factor  𝑀 can be defined as: 



 
 

3 
 

𝑀 ≜
𝑇௔𝑆௡

𝜔௠,௡
 

 (1.5) 

1.2 Frequency regulation  

The Italian grid is a synchronous area of continental Europe that is part of European Network 
of Transmission System operator (ENTSO-E). 

The ENTSO-E has established three hierarchical levels: primary, secondary, and tertiary 
regulation. It has also provided Time control with the aim of correcting the average value of 
frequency in the long term. [3] 

 

 
Figure 1-1 Operations of ENTSO-E for frequency (entsoe.eu/) 

1.2.1 Primary regulation 

The frequency is not immediately restored at the nominal value in the new permanent 
regime: the speed regulators asses the frequency to a value near the nominal one, because 
the need is to restore the balance of electrical and mechanical power. 

This first part of control, called primary regulation, occurs in 0 ÷ 30 seconds and the goals 
are: 

- Establish the equilibrium between absorbed power and the generated one; 

- Limit the value of frequency overshooting; 
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- Arrive to the new value of frequency with strongly damped transient oscillations; 

- Allow the various synchronous generators to cover the increase of load by sharing it 
among themselves.  

Of course, the new steady-state value for frequency should not be so low as to cause damage 
in final users, turbines, and electrical machines.  

The primary regulation is realized by local speed governors, which must act very quickly. 
The generators participating to the primary regulation are large synchronous generators that 
constitute the primary reserve-also called the “spinning reserve”. 

The permanent regulating droop-or statism of generation unit- is defined as the relation of 
variation of frequency (maximum frequency 𝑓௠௔௫  and nominal 𝑓௡) and power (nominal 
power 𝑃௡ and minimum 𝑃௠௜௡): 

 

𝑏௣ =

𝑓௠௔௫ − 𝑓௡

𝑓௡

𝑃௡ − 𝑃௠௜௡

𝑃௡

  

 (1.6) 

The droop 𝑏௣[p. u./p. u. ]  is a value in the range between 2% and 7%. 

Another important parameter to introduce is the permanent regulating energy 𝐸௣[
ெௐ

ு௭
] that is 

correlated to the droop: 

 

𝐸௣ =
1

𝑏௣

𝑃௡

𝑓௡
 

 (1.7) 

𝐸௣ represents the variation of power due to a frequency variation of 1 Hz.  

The static characteristic of speed regulator, illustrated in Figure 1-2, shows how the 
frequency-and so speed- varies in function of the mechanical power that the machine 
supplies. [4] 
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Figure 1-2 The static characteristic of speed regulator [4] 

 

The slope of frequency is negative because to a variation of power required by the load ∆𝑃௘ 
there is a variation of frequency. The expression of frequency variation ∆𝑓 is: 

 

∆𝑓 = −𝑏௣

𝑓௡

𝑃௡
∆𝑃௘ 

 (1.8) 

1.2.2 Secondary regulation 

The secondary regulation is done by the system regulator, placed in the Central Dispatching 
Centre, that sends a level signal to speed regulators of secondary reserve to adjust the power 
generation.  

The Figure 1-3 shows how the increase of load ∆𝑃௘ determines a decrease of frequency, 
which is equal to 𝑓ଵ at the end of primary regulation frequency. Via the level signal 𝑌௘ the 
secondary regulation allows  the translation of the static characteristic of the frequency to 
the nominal value 𝑓௡. 
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Figure 1-3 Secondary regulation 

 

In comparison with the primary regulation, it is worth noting that the secondary regulation 
is a frequency regulation and is slower, centralized and digital, while the primary regulation 
is a speed regulation done by local regulators. 

1.2.3 Tertiary regulation 

The tertiary regulation concerns only real power and, differently from the previous ones, is 
activated manually and not automatically by the TSO.  

Its main goals are to restore the secondary reserve and adjust the power generation to the 
requirements of economic dispatch generation (currents, voltage, N-1 security). 

The tertiary power intervention can be represented as power ramp and has maximum time 
of activation equal to 15 minutes. 

Figure 1-4 shows how the different control reserves cover different time frames. It illustrates 
in case of large frequency drop (the dotted line beginning before activation of Primary 
Control shows the principle plot of the frequency deviation) how the activation of primary 
control reserve (activated within seconds) is followed up by secondary controlled reserve 
(activated within minutes) that is supported and followed up by tertiary control reserve. [3] 
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Figure 1-4 Tertiary regulation (entsoe.eu/) 

1.3 Speed regulation of a generating unit in isolated operation 

A first approach of control frequency consists in analyzing the case of a single generating 
unit in charge of speed regulation, shown in Figure 1-5. The generation is analyzed 
considering separately the speed regulator, the valve system, and the adduction system with 
the turbine.  

 

 
Figure 1-5 Control loop for a single generating unit 

 

The frequency error is  

 

𝜀௙ = 𝑓௥௘௙ − 𝑓  (1.9) 
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Where 𝑓 and 𝑓௥௘௙ are the measured frequency and the reference frequency. 

Figure 1-6 shows the linearized block diagram of speed regulation for a generating unit: the 
closed loop control determines the restoration of frequency after the disturbance caused by 
load variation ∆𝑃௅ .  The closed loop is constituted by the transfer function of speed governor 
𝐺௥(𝑠), valve control system 𝐺௩(𝑠), turbine 𝐺௔(𝑠) and the unit inertia block. [1] 

 

 
Figure 1-6 Control loop for a single generating unit 

 

The generating unit is represented by the inertia block after the balance of mechanical power 
from the generating unit and electrical power by the load. 

The inertia block comes by the swing equation in term of power:  

 

𝑑𝑓

𝑑𝑡
=

𝑓௡

𝑇௔𝑆௡

[𝑃௠ − 𝑃௘] 
 (1.10) 

 

In LaPlace domain: 

 

∆𝑓 =
1

𝑠

𝑓௡

𝑇௔𝑆௡

[∆𝑃௠ − ∆𝑃௘] 
 (1.11) 

 

The electrical power can be expressed as the sum of load variation ∆𝑃௅ and load dependence 
of frequency ∆𝑃஼: 

 

∆𝑃௘ = ∆𝑃௅ + ∆𝑃஼ = ∆𝑃௅ + 𝐺௅(𝑠)∆𝑓 ≅ ∆𝑃௅ + 𝐷∆𝑓  (1.12) 
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Where 𝐺௅ is the transfer function that takes in account the dependency of the load on 
frequency and is usually approximated to pure gain, the load damping coefficient 𝐷. 

Hence the frequency variation is:  

 

∆𝑓 =
1

𝑠

𝑓௡

𝑇௔𝑆௡

[∆𝑃௠ − ∆𝑃௅ − 𝐺௅ ∆𝑓] 
 (1.13) 

 

The transfer function 𝐺௙(𝑠) is the main transfer function: it is the cascade of speed governor, 

valve control system and supply system and turbine transfer function.  

 

𝐺௙(𝑠) ≜ 𝐺௥(𝑠)𝐺௔(𝑠)𝐺௩(𝑠)  (1.14) 

Where: 

- The transfer function for the speed governor 𝐺௥(𝑠) has as input the error in frequency 

Δ𝜀௙ and as output the opening of regulating servomotor Δ𝜃, so 𝐺௥(𝑠) ≜
୼ఏ

୼ఌ೑
; 

- The transfer function for the valve control system 𝐺௩(𝑠) has as input the opening of 
regulating servomotor Δ𝜃 and as output the opening of the turbine admission valve 

Δ𝐴, so 𝐺௩(𝑠) ≜
୼஺

୼ఏ
; 

- The transfer function for the supply system and the turbine 𝐺௔(𝑠) has as input the 
opening of the turbine admission valve Δ𝐴 and output regulating power Δ𝑃௥, so 

𝐺௔(𝑠) ≜
 ୼௉ೝ

୼஺
. 

 

The shape of the transfer function 𝐺௙(𝑠) is in the following form: 

 

𝐺௙(𝑠) = 𝐾௙𝑇ଵ

1 + 𝑠𝑇ଶ

1 + 𝑠𝑇ଵ
 

 (1.15) 

With time constant 𝑇ଵ and 𝑇ଶ and constant of proportionality 𝐾௙. 

 

The static value of the transfer function 𝐺௙(𝑠) is the ratio between the change in regulating 

energy and the corresponding frequency variation: 
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𝐺௙(0) = 𝐾௙𝑇ଵ =
 Δ𝑃𝑟

Δ𝜀𝑓

(0) = ൤−
 Δ𝑃𝑟

Δ𝑓
(0)൨

Δ𝑓𝑟𝑒𝑓=0

 
 (1.16) 

 

(1.16) corresponds to the permanent regulating energy 𝐸௣ defined in (1.7), so  

 

𝐺௙(0) = 𝐸௣  (1.17) 

 

Similarly, the transient gain of the transfer function 𝐺௙(𝑠) is computed: 

 

𝐺௙(∞) = 𝐾௙𝑇ଶ =
 Δ𝑃𝑟

Δ𝜀𝑓

(∞) = ൤−
 Δ𝑃𝑟

Δ𝑓
(∞)൨

Δ𝑓𝑟𝑒𝑓=0

 
 (1.18) 

 

And 𝐺௙(∞) is identified as the transient regulating energy 𝐸௧ 

 

𝐸௧ ≜ 𝐺௙(∞)  (1.19) 

 

Moreover, it is possible to introduce the transient regulating droop 𝑏௧ 

 

𝑏௧ ≜ ൦−

Δ𝑓
𝑓

𝑛

Δ𝑃r

𝑃𝑛

(∞)൪

Δ𝑓𝑟𝑒𝑓=0

=
𝑃𝑛

𝑓
𝑛

𝐾𝑓𝑇2

 

 (1.20) 

 

The 𝐺௙(𝑠) can be put in form of energy regulating  

 

𝐺௙(𝑠) = 𝐸௣

1 + 𝑠𝑇ଶ

1 + 𝑠𝑇ଵ
= 𝐸௧ +

𝐸௣ − 𝐸௧

1 + 𝑠𝑇ଵ
 

 (1.21) 
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𝐺௙(𝑠) =
𝑃௡

𝑓௡𝑏௣

1 + 𝑠𝑇ଶ

1 + 𝑠𝑇ଵ
=

𝑃௡

𝑓௡
൦

1

𝑏௧
+

1
𝑏௣

−
1
𝑏𝑡

1 + 𝑠𝑇ଵ
൪ 

 (1.22) 

 

Figure 1-6 shows the bode diagram of 𝐺௙(𝑠): the regulating energy in the first instants after 

the load variation is equal to the transient regulating energy 𝐸௧, which is a lower value; then 
it increases until it reaches the permanent regulating energy 𝐸௣. [1] 

 
Figure 1-7 Bode diagram of 𝐺௙(𝑠) 
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Hydroelectric system  

This chapter concerns the linearization of the model of hydroelectric system, that is mainly 
constituted by the adduction system and the turbine.  

The adduction system is the part of the hydro power plant engaged in feeding the water from 
the intake to the powerhouse. It is constituted of pressure tunnels, surge tank and penstocks. 

The hydraulic turbine converts the stored energy of water as hydraulic fluid into mechanical 
energy. 

The hydroelectric adduction system is examined starting from the simple ideal case of 
inelastic condition to more complex hypothesis, like the presence of surge tank and water 
hammer effect. The first subdivision is power plant with and without the effect of the surge 
tank.  

2.1 Power plant without surge tank effect 

The effect of the power plant upstream the penstocks is considered negligible in the first 
approach, because the dynamic influence of pressure tunnels and surge tank is assumed to 
be very low: the adduction system in this first analysis is simply represented by the penstock 
only. [1] 

2.1.1 Inelastic Penstock 

In the first considerations the losses for friction are assumed negligible, the model in analysis 
is characterized by a penstock considered as cylindric pipe with section 𝐴௖, length 𝐿 and 𝛽 
angle of inclination represented in Figure 2-1.  

The other fundamental parameters are the total energy per unit of weight 𝐻௧ referred to the 
terminal section of the penstock and volumetric flow 𝑄. 
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Figure 2-1 Adduction system  

 

With the following conditions, it is possible to write the Bernoulli equation: 

 

𝑧 +
𝑝௦

𝛾
+

𝑢ଶ

2𝑔
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 (2.1) 

 

Where: 

- 𝛾 is the specific weight of water [
ே

௠య
]; 

- 𝑝௦ is the average pressure in the section [𝑃𝑎]; 
- 𝑧 is the height [𝑚]; 

- 𝑢 is the speed[
௠

௦
]. 

Taking in consideration a high head power plant, the energy from speed is assumed to be 

negligible  𝑧 +
௣ೞ

ఊ
≫

௨మ

ଶ௚
 .  

So, the total energy 𝐻௧ is expressed as: 

 

𝐻௧ =
𝑝௦ଵ

𝛾
+ 𝐿 sin 𝛽 

 (2.2) 

 

with  𝑝௦ଵ the average pressure at the initial section of the penstock. 

𝐻 is the total energy at the outtake of penstock per unit of weight and it is expressed as:  

 

𝐻 =
𝑝௦ଶ

𝛾
 

 (2.3) 

 

with 𝑝௦ଶ the average pressure at the terminal of the penstock. 

The difference between the energy associated to the two sections 
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𝐻௧ − 𝐻 =
𝑝௦ଵ − 𝑝௦ଶ

𝛾
+ 𝐿 sin 𝛽 

 (2.4) 

 

leads to an accelerating force (𝐻௧ − 𝐻)𝛾𝐴௖ acting on water column of mass 
ఊ௅஺೎

௚
 and 

speed 
ொ

஺೎
. Hence it is possible to express the second Newton rule of motion as: 

 

(𝐻௧ − 𝐻)𝛾𝐴௖ =
𝛾𝐿𝐴௖

𝑔
∙

𝑑 ቀ
𝑄
𝐴௖

ቁ

𝑑𝑡
 

 (2.5) 

 

Once the inertia of penstock 𝐽௖[
௦మ

௠మ
] is defined: 

 

𝐽௖ ≜
𝐿

𝐴௖𝑔
 

 (2.6) 

 

The expression (2.5) is expressed as: 

 

𝑑𝑄

𝑑𝑡
=

𝐻௧ − 𝐻

𝐽௖
 

 (2.7) 

 

It shows how the energy 𝐻 is dynamically related to the volumetric flow Q.  

The (2.7), assuming 𝐻௧ constant, can be written in LaPlace domain for small displacement 
around the operating point as 

 

∆𝐻 = −𝑍௪(𝑠)∆𝑄 (2.8) 

 

Where the subscript ∆ denotes small deviations and 𝑍௪(𝑠) the impedance of penstock 
defined as 

𝑍௪(𝑠) ≜ 𝑠𝐽௖ =
𝑠𝐿

𝑔𝐴௖
 

 (2.9) 

 

Another important variable is the water starting time 𝑇௪, defined in the same way of 
mechanical starting time of a power group 𝑇௔: 𝑇௪ is equal to the ratio of the twice the kinetic 
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energy of water in penstock with speed 
ொబ

஺೎
 and the hydraulic power of water jet with 

volumetric flow 𝑄଴ and energy 𝐻଴. [1] 

 

𝑇௪ ≜

𝛾
𝑔

𝐿𝐴௖ ቀ
𝑄଴

𝐴௖
ቁ

ଶ

𝛾𝑄଴𝐻଴
=

𝐿

𝑔𝐴௖

𝑄଴

𝐻଴
= 𝐽௖

𝑄଴

𝐻଴
 

 (2.10) 

 

where the subscript “0” denotes initial steady state values.  

𝑇௪ is not constant but varies with load: with the same energy of operation 𝐻଴, the time 
constant of penstock 𝑇௪ is proportional to the volumetric flow 𝑄଴ 

 

𝑇௪ = 𝑇௪௡

𝑄଴

𝑄௡
 

 (2.11) 

 

Where 𝑄௡ is the nominal volumetric flow and 𝑇௪௡ is the nominal water starting time defined 
as  

 

𝑇௪௡ ≜
𝐿

𝑔𝐴௖

𝑄௡

𝐻଴
 

 (2.12) 

 

The water starting time 𝑇௪௡ at full load lies in the range of 0.5 ÷ 4.0 𝑠. [5] 

2.1.2 Effect of friction  

The losses for friction 𝐻௟ଵ in the penstock are taken in account through the friction loss 
coefficient 𝜙௣ 

 

𝐻௟ଵ = 𝜙𝑝|𝑄|𝑄  (2.13) 

 

 𝜙௣ is approximated with the following formula 

 

𝜙௣ =
𝜌𝐿

𝐷𝑐
5
 

 (2.14) 
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Where: 

- the resistance coefficient 𝜌 is defined as 

 

𝜌 =
64

𝜋2Σ2 
 (2.15) 

in which Σ is Chézy’s coefficient; 

- 𝐷௖  and 𝐿 are respectively the diameter and the length of the penstock  

 

The dynamic relation between the head and the flow is rewritten as 

 

𝐻௧ − 𝐻 = 𝐽௖

𝑑𝑄

𝑑𝑡
+ 𝜙𝑝|𝑄|𝑄 

 (2.16) 

 

2.1.3 Elastic Penstock 

For very long penstocks, the wave travel time of the water column becomes significant, and 
the reflected pressure waves in the water column cause the preceding treatment of water start 
time to be no longer valid. When the wave travel time approaches 25% of the water starting 
time 𝑇௪, the dynamic should not rely on 𝑇௪, and the performance of the turbine governing 
system should be evaluated by considering the effects of both the water starting time and the 
wave travel time, also defined as elastic time 𝑇௘. [6] 

The traveling wave speed 𝑐 for a circular section is computed as function of the speed of 
sound in in water 𝐶 (value around 1245 m/s), the compression ratio 𝜀, the Young’s modulus 
of elasticity 𝐸, the geometrical parameter of the penstock (diameter 𝐷௖ and the thickness 𝑒) 

 

𝑐 =
𝐶

ටቀ1 +
𝜀
𝐸

𝐷௖

𝑒
ቁ

 
 (2.17) 

 

The value of 𝑐 in penstock is around 700-1200 m/s.  

The elastic time of penstock 𝑇௘௣ is defined as the 
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𝑇௘௣ =
𝐿

𝑐
 

 (2.18) 

 

Taking in consideration propagation effect and friction, the impedance of penstock 𝑍௪ is 
expressed as 

 

𝑍௪(𝑠) ≜ 𝑍௣ tanh(𝜃௖)  (2.19) 

with 𝑍௣ the normalized impedance of the penstock and elastic phase 𝜃௖: 

 

𝑍௣ =
𝑐

𝑔𝐴௖

ඨ1 +
2𝜙𝑝𝑄଴𝑔𝐴௖

𝑠𝐿
 

 (2.20) 

 

𝜃௖ =
𝑠𝐿

𝑐
ඨ1 +

2𝜙𝑝𝑄଴𝑔𝐴௖

𝑠𝐿
 

 (2.21) 

 

Neglecting friction losses, through a null value of coefficient 𝜙௣. (2.20) and (2.21) become 

 

𝑍௣ =
𝑐

𝑔𝐴௖
 

 (2.22) 

 

𝜃௖ =
𝑠𝐿

𝑐
= 𝑠𝑇௘௣ 

 (2.23) 

 

It is worth noticing the relation between the water starting time and elastic time is given in 
no friction case by the normalized impedance: 
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𝑍௣ =
𝑇௪

𝑇௘௣
 

 (2.24) 

In the later models, for the sake of simplicity the friction coefficient is taken into account 
separately by the normalized impedance 𝑍௣, hence (2.24) results always valid.   

2.1.4 Turbine 

The hydraulic turbines are machines that transform the potential energy of water in rotational 
kinetic energy. The mechanical power depends on the hydraulic power in input to the 
turbine, that is modulated acting on the inlet valve placed at the end of the penstock: 
changing the opening of inlet valve varies the water in turbine and so the power.  

 

 

Figure 2-2 Transformation of hydraulic power in electrical power 

 

Therefore, the dynamic relation is between the opening gate and the mechanical power of 
turbine 𝑃௠. 

There are two main types of hydraulic turbine: impulse turbine (Pelton turbine) and reaction 
turbine (Francis and Kaplan turbine). The impulse turbine obtains the resulting thrust on the 
runner blades by changing direction of the speed, while reaction turbine changes only the 
speed magnitude; hence, reaction turbines also modify pressure while impulse-type has no 
impact on pressure.  

The hydraulic power at the inlet of turbine is: 

 

𝑃௜ = 𝛾𝑄𝐻  (2.25) 

 

Where the head 𝐻 for Pelton turbine can be expressed in function of the cross-sectional area 
of discharge 𝐴 as  

 

𝐻 =
𝑄ଶ

2𝑔𝐴ଶ
 

 (2.26) 
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while for Francis turbine, the reaction degree α is introduced 

 

𝐻 =
𝑄ଶ

2𝑔𝐴ଶ
+ 𝛼𝐻 

 (2.27) 

 

The hydraulic power is transformed in mechanical power taking care of efficiency 
coefficient 𝜂: 

 

𝑃௠ = 𝜂𝛾𝑄𝐻  (2.28) 

 

𝜂 takes care of the following considerations: 

- losses due to water speed left at the outlet; 
- losses because the water flow has changes in direction; 
- not all the points of the water jet have the same speed; 
- the water jet leaves the blade in a different point respect the point of incidence.  

The expression is linearized around the operating point, indicated with subscript “0”, to 
obtain the turbine transfer function:  

 

∆𝑃௠ = (𝛾𝜂଴𝐻଴)∆𝑄 + (𝛾𝜂଴𝑄଴)∆𝐻 + (𝛾𝑄଴𝐻଴)∆𝜂  (2.29) 

 

Dividing by 𝑃௠଴
= 𝛾𝜂଴𝑄଴𝐻଴, the expression becomes 

 

∆𝑃௠

𝑃௠଴

=
∆𝑄

𝑄଴
+

∆𝐻

𝐻଴
+

∆𝜂

𝜂଴
 

 (2.30) 

 

The efficiency of turbine 𝜂 is function of opening of inlet valve 𝐴, hence  

 

∆𝜂

𝜂଴
= 𝑘ఎ஺

∆𝐴

𝐴଴
 

 (2.31) 

 

With 𝑘ఎ஺ =
஺బ

ఎబ
(

ௗఎ

ௗ஺
)௢ depending on the gradient of function 𝜂 = 𝜂(𝐴); only in the ideal case, 

the coefficient 𝑘ఎ஺ is considered null.  
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The volumetric flow 𝑄 for Pelton turbine is 𝑄 = 𝐴ඥ2𝑔𝐻. Rewriting (2.27), the linearization 
is 

 

∆𝑄 = ൬
𝜕𝑄

𝜕𝐴
൰

଴

∆𝐴 + ൬
𝜕𝑄

𝜕𝐻
൰

଴

∆𝐻 
 (2.32) 

 

In which the partial derivatives are 

 

⎩
⎪
⎨

⎪
⎧ ൬

𝜕𝑄

𝜕𝐴
൰

଴

= ൣඥ2𝑔𝐻൧
଴

=
𝑄଴

𝐴଴

൬
𝜕𝑄

𝜕𝐻
൰

଴

= ൤
1

2
𝐴(2𝑔𝐻)ି

ଵ
ଶ2𝑔൨

଴

=
1

2

𝑄଴

𝐴଴

 

 (2.33) 

 

 

Hence the linearization of volumetric flow 𝑄 (2.32) can be written: 

 

∆𝑄

𝑄଴
=

∆𝐴

𝐴଴
+

1

2

∆𝐻

𝐻଴
 

 (2.34) 

 

The linearization of mechanical power (2.30) can be rewritten with (2.34) and (2.31) as 

 

∆𝑃௠

𝑃௠଴

= ൫1 + 𝑘ఎ஺൯
∆𝐴

𝐴଴
+

3

2

∆𝐻

𝐻଴
 

 (2.35) 

 

Defining 𝑘௣஺ = 1 + 𝑘ఎ஺ , which is equal to 1 in ideal case because 𝑘ఎ஺ is null. So, in the 
ideal case normalizing the variable it is obtained:  

 

∆𝑃ത௠ = ∆𝐴̅ +
3

2
∆𝐻ഥ 

 (2.36) 

 

It can be also expressed through the variation of volumetric flow instead of head with the 

equation ∆𝑄ത = ∆𝐴̅ +
ଵ

ଶ
∆𝐻ഥ (2.34) 

 

∆𝑃ത௠ = 3∆𝑄ത − 2∆𝐴̅  (2.37) 
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2.1.5 Transfer function of the adduction system with ideal 
turbine  

The acceleration of water column due to change in head at turbine is expressed by the 
Newton’s second law of motion: 

 

𝜌𝐿
𝑑∆𝑄

𝑑𝑡
= − 𝜌𝑔∆𝐻𝐴 

 (2.38) 

 

With 𝜌 water density and 𝜌𝑔∆𝐻 incremental change in pressure at turbine gate. [5] 

Dividing both side for 𝜌𝑔𝐻଴𝑄଴ and normalizing it is obtained: 

 

𝑇௪

𝑑∆𝑄ത

𝑑𝑡
= − ∆𝐻ഥ 

 (2.39) 

 

Substituting with the equation of (2.34), the dynamic relation between the cross-sectional 
area of discharge 𝐴 and the volumetric flow 𝑄 is obtained in LaPlace domain: 

 

𝑇௪∆𝑄ത𝑠 = 2( ∆𝐴̅ + ∆𝑄ത)  (2.40) 

 

That can be expressed as 

 

∆𝑄ത =
1

1 +
1
2

𝑇௪𝑠
∆𝐴̅ 

(2.41) 

 

The relation between the variation cross-sectional area of discharge 𝐴 and the variation of 
mechanical power 𝑃௠ determines the adduction transfer function 𝐺௔(𝑠). Through  (2.41) and 
(2.37) the adduction transfer function for the ideal case is:  
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𝐺௔(𝑠) =
∆𝑃ത௠
∆𝐴ഥ

=
1 −  𝑇௪𝑠

1 +
1
2

𝑇௪𝑠
 

 (2.42) 

2.1.6 Transfer function of the adduction system with non-
ideal turbine  

In case of non-ideal turbine, the transfer function can be expressed by the following:  

 

𝐺௔(𝑠) =
∆𝑃ത௠
∆𝐴ഥ

=
𝑎ଶଷ + (𝑎ଵଵ𝑎ଶଷ − 𝑎ଵଷ𝑎ଶଵ) 𝑇௪𝑠

1 + 𝑎ଵଵ𝑇௪𝑠
 

 (2.43) 

 

Where the coefficients 𝑎ଵଵ and 𝑎ଵଷ are partial derivatives of water flow with the respect to 
head and gate opening, and the coefficients 𝑎ଶଵ and 𝑎ଶଷ are partial derivatives of turbine 
power with respect to head and gate opening. [5] 

The values of coefficients for a 40 MW Francis turbine in different working conditions are 
shown in Table 2-1. 

 
 

Table 2-1  Coefficients for a 40 MW Francis turbine 

Coefficient Ideal lossless Typical at full load Typical at no 
load 

𝑎ଵଵ 0.5 0.58 0.57 

𝑎ଵଷ 1.0 1.1 1.1 

𝑎ଶଵ 1.5 1.4 1.18 

𝑎ଶଷ 1.0 1.5 1.5 

 

2.1.7 Transfer function with elastic penstock  

The transfer function 𝐺௔(𝑠) for ideal turbine taking into consideration the propagation 
phenomena is: 
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𝐺௔(𝑠) =
∆𝑃ത௠
∆𝐴ഥ

=
1 − 𝑍௣tanh (𝑠𝑇௘௣)

1 +
1
2

𝑍௣tanh (𝑠𝑇௘௣)
 

 (2.44) 

 

Taking into consideration also the friction coefficient in the penstock, 𝐺௔(𝑠) is: 

 

𝐺௔(𝑠) =
1 − 𝑍௣ tanh൫𝑠𝑇௘௣൯ − 𝜙௣

1 +
1
2

𝑍௣tanh (𝑠𝑇௘௣)
 

 (2.45) 

 

The hyperbolic tangent is defined using distributed-parameter theory: 

 

tanh൫𝑇௘௣𝑠൯ =
1 − 𝑒ିଶ ೐்೛௦

1 + 𝑒ିଶ ೐்೛௦ =

𝑠𝑇௘௣ ∏ ቈ1 + ൬
𝑠𝑇௘௣

𝑛𝜋
൰

ଶ

቉ ஶ
௡ୀଵ

∏ ቈ1 + ൬
2𝑠𝑇௘௣

(2𝑛 + 1)𝜋
൰

ଶ

቉ ஶ
௡ୀଵ

 

 (2.46) 

The infinite product is required to preserve all the characteristics of the transfer function, 
anyway it is possible to approximate lumped parameter equivalent maintaining a certain 
accuracy. 

In case of 𝑛 = 0, the value of hyperbolic tangent tanh൫𝑠𝑇௘௣൯ is equal to 𝑠𝑇௘௣. 𝐺௔(𝑠) 

becomes: 

 

𝐺௔(𝑠) =
1 − 𝑍௣൫𝑠𝑇௘௣൯

1 +
1
2

𝑍௣൫𝑠𝑇௘௣൯
 

 (2.47) 

 

In this way the transfer function has the same approximation of inelastic case, indeed (2.47) 
through (2.24) is: 
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𝐺௔(𝑠) =
1 − T୵𝑠

1 +
1
2

𝑇௪𝑠
 

 (2.48) 

With 𝑛 = 1 the first pole and the zero of hyperbolic function are preserved, which represent 
the fundamental harmonic of water column: 

 

𝑍௉ tanh൫𝑇௘௣𝑠൯ ≈

𝑠𝑇௪௣ ቈ1 + 𝑠ଶ ൬
𝑇௘௣

𝜋
൰

ଶ

቉

ቈ1 + 𝑠ଶ ൬
2𝑇௘௣

𝜋
൰

ଶ

቉

 

 (2.49) 

 

In most cases, the simplification with n=1 for power system stability is enough. [5] 

 

2.2 Power plant with surge tank effect 

The surge tank is an open standpipe to the conduit of hydroelectric power plant, the top is 
typical open to atmosphere. The conduit between the reservoir and the surge tank is referred 
as pressure tunnel, and only the one between surge tank and powerhouse is the penstock.  

The role of surge tank is of paramount importance because it improves regulation of 
hydraulic turbine: it reduces the length of power conduit determining reduction of water 
starting time 𝑇௪. The oscillations in surge tank are slow, so the approximation with lumped 
parameter n=0 is often accurate. [7] 
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Figure 2-3 Surge tank hydraulic scheme 

 

The water starting time of the tunnel 𝑇௪௖, is defined i.e. the time required to accelerate the 
flow from zero to the rated flow of tunnel under the base head.  

 

𝑇௪௖ =
𝐿௧

𝐴௧𝑔

𝑄଴

𝐻଴
𝑇௘௖ = 𝑍௧𝑇௘௖ 

 (2.50) 

 

Where 𝐿௧ and 𝐴௧ are the length and the section of tunnel, 𝑍௧ and 𝑇௘௖ are the normalized 
impedance and the time elasticity of tunnel.  

For the surge tank the storage constant 𝐶௦ is introduced: 

 

𝐶௦ =
𝐴ௌ

𝑄଴
𝐻଴  

 (2.51) 

 

Where 𝐴ௌ is the section of surge tank.  

In addition, the water level in the surge tank begins to oscillate following a change in the 
turbine flow with the natural period 𝑇ௌ: 
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𝑇ௌ = 2 𝜋ඥ𝑇௪௖𝐶௦  

 (2.52) 

 

The amplitude of these oscillations may increase or decrease in time depending upon the 
system parameters and the magnitude and time variation of the flow change. The oscillations 
are defined: “stable” if they dampen to the final steady state in a reasonable time, and 
“unstable” if their magnitude increases with time. [7] 

2.2.1 Dynamic equations 

The Newton second law, mentioned in (2.38), is rewritten in function of speed of the water 
flow 𝑈. Taking infinitesimally small values of space ∆𝑥, time ∆𝑡 and ∆𝑈: [5] 

 

𝜕𝑈

𝜕𝑡
= −𝑔

𝜕𝐻

𝜕𝑥
 

 (2.53) 

 

The speed of water flow 𝑈 is proportional to the flow 𝑄 and inversely proportional to the 
section of conduit 𝐴: 

 

𝑈 =
𝑄

𝐴
 

 (2.54) 

 

The increase in volume of the conduit walls due to compressibility of the water is described 
by another differential equation: 

 

𝜕𝑈

𝜕𝑥
= −𝛽

𝜕𝐻

𝜕𝑡
 

 (2.55) 
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With the auxiliar variable 𝛽 in function the geometric parameters (diameter 𝐷 and thickness 
𝑒) and elasticity parameter (compression ratio 𝜀 and modulus of elasticity of Young 𝐸):  

 

 

The solution of the two differential equations (2.53) and (2.55): 

 

𝐻ଶ = 𝐻ଵ 𝑠𝑒𝑐ℎ(𝑇௘𝑠) − 𝑍଴𝑄ଶ𝑡𝑎𝑛ℎ (𝑇௘𝑠) 

 (2.57) 

 

𝑄ଵ = 𝑄ଶ 𝑐𝑜𝑠ℎ(𝑇௘𝑠) −
1

𝑍଴
𝐻ଶ𝑠𝑖𝑛ℎ (𝑇௘𝑠) 

 (2.58) 

 

Where 𝑍଴ is the hydraulic surge impedance. 

These equations allow to identify the dynamics separately in tunnel, surge tank and penstock. 
[8] 

In the tunnel: 

 

Where: 

- 𝐻ഥ௥ is the head of the riser of the surge tank.  

- The initial steady state value of 𝐻ഥ଴ is assumed 1.0 p.u. 

- The head loss in tunnel 𝐻ഥ௟ଶ is in function of the speed of the water flow in the tunnel 
𝑈ഥ௖ and head loss coefficient 𝑓௣ଶ 

 

𝛽 = 𝜌𝑔 ൬
1

𝜀 
+

𝐷

𝐸𝑒
൰ 

 (2.56) 

𝐻ഥ௥ = 𝐻ഥ଴ − 𝐻ഥ௟ଶ − 𝐻ഥொଶ 
 (2.59) 
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𝐻ഥ௟ଶ = 𝑓௣ଶ𝑈ഥ௖|𝑈ഥ௖| 
 (2.60) 

 

𝑓௣ଶ is assumed to be equal to the friction coefficient 𝜙௖. 

- The head 𝐻ഥொଶ due to the water flow in the tunnel is in function of water starting time 

of tunnel 

 

𝐻ഥொଶ = 𝑇௪௖

𝑑𝑈ഥ௖

𝑑𝑡
 

 (2.61) 

 

In the surge tank: 

 

𝐻ഥ௥ =
1

𝐶ௌ
න 𝑈ഥௌ𝑑𝑡 − 𝑓଴𝑈ഥௌ|𝑈ഥௌ| 

 (2.62) 

 

With 𝑓଴ as surge tank orifice head loss coefficient and 𝑈ഥௌ as speed in the surge tank. Indeed, 
many surge tanks include an orifice which dissipates the energy of hydraulic oscillations and 
produces damping. 

 

In the penstock: 

 

𝐻ഥ௧ = 𝐻ഥ௥ − 𝐻ഥ௟ − 𝐻ഥொ 
 (2.63) 

 

Where: 

- 𝐻ഥ௧ and 𝑈ഥ௧ are the head and the speed in turbine; 

- 𝐻ഥ௟ is the head due to losses in turbine  
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𝐻ഥ௟ = 𝑓௣ଵ𝑈ഥ௧
ଶ 

 (2.64) 

 

Where the head loss coefficient in the penstock 𝑓௣ଵis assumed equal to the friction 
coefficient 𝜙௣. 

- The head due to water flow in turbine 𝐻ഥொ: 

 

𝐻ഥொ = 𝑍௣tanh (𝑇௘௣𝑠)𝑈ഥ௧ 
 (2.65) 

 

2.2.2 Transfer function  

The auxiliary transfer function 𝐺(𝑠) defines the relations in the circuit Surge Tank-Penstock 
[8]: 

 

𝐺(𝑠) =
𝐻ഥ଴ − 𝐻ഥௌ

𝑈ഥ௣ − 𝑈ഥ଴ 
=

𝜙௖ + 𝑍௖ tanh(𝑇௘௖𝑠)

1 + 𝑠𝐶௦𝜙௖ + 𝑍௖ tanh(𝑇௘௖𝑠) 𝑠𝐶ௌ
 

  
(2.66) 

Where: 

- 𝑈ഥ௣ is the upper penstock water velocity; 

- 𝑈ഥ଴ is the initial steady state of water speed; 

- 𝐻ഥ଴  is the initial steady state of head; 

- 𝐻ഥௌ is the surge tank head. 

For the circuit surge tank-tunnel the expansion of the hyperbolic tangent with n=0 has been 
considered, (2.66) becomes: 

 

𝐺(𝑠) =
𝜙௖ + 𝑠𝑇௪௖

1 + 𝑠𝐶௦𝜙௖ + 𝑠ଶ𝐶ௌ𝑇௪௖
 

  
(2.67) 
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The transfer function 𝐹(𝑠) relates penstock speed and head and for elastic water column in 
penstock is: 

 

𝐹(𝑠) =
𝑈ഥ௧ − 𝑈ഥ଴

𝐻ഥ௧ − 𝐻ഥ଴

= −

1 +
𝐺(𝑠)

𝑍௣
tanh൫𝑇௘௣𝑠൯

𝜙௣ + 𝐺(𝑠) + 𝑍௣ tanh൫𝑇௘௣𝑠൯
 

(2.68) 

 

For inelastic water column: 

 

𝐹(𝑠) =
𝑈ഥ௧ − 𝑈ഥ଴

𝐻ഥ௧ − 𝐻ഥ଴

= −

1 +
𝐺(𝑠)

𝑍௣
𝑇௘௣𝑠

𝜙௣ + 𝐺(𝑠) + 𝑍௣𝑇௘௣𝑠
 

(2.69) 

 

The adduction transfer function is computed starting from the formula of linearization of 
mechanical power (2.37) and the function 𝐹(𝑠); in case of an elastic water column in the 
penstock and non-elastic water column in the tunnel 𝐺௔(𝑠) is: 

 

𝐺௔(𝑠) =

1 − 𝜙௣ − 𝑍௉ tanh൫𝑇௘௣𝑠൯ +
𝐺(𝑠)

𝑍௣
tanh൫𝑇௘௣𝑠൯ − 𝐺(𝑠)

1 +
1
2

𝜙௣ +
1
2

𝑍௣𝑇௘௣𝑠 +
1
2

𝐺(𝑠) +
𝐺(𝑠)

𝑍௣
tanh൫𝑇௘௣𝑠൯ 

 

(2.70) 

 

In case of inelastic water column in the penstock, 𝐺௔(𝑠) becomes: 

 

𝐺௔(𝑠) =

1 − 𝜙௣ − 𝑍௣𝑇௘௣𝑠 +
𝐺(𝑠)

𝑍௣
𝑇௘௣𝑠 − 𝐺(𝑠)

1 +
1
2

𝜙௣ +
1
2

𝑍௣𝑇௘௣𝑠 +
1
2

𝐺(𝑠) +
𝐺(𝑠)

𝑍௣
𝑇௘௣𝑠 

 

(2.71) 
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Nonlinear model 

The linear model is useful for its simplicity to obtain insight into the basic characteristics of 
hydraulic system, and it is acceptable to represent small signal performance, but it is 
inadequate for studies of large variation in frequency and power output, hence a nonlinear 
model is necessary.  

The discussion of nonlinearity starts with models realized by P. Kundur, to more models of 
IEEE. As for Chapter 2, the first subdivision is nonlinear models with and without surge tank 
effect. 

3.1 General considerations  

In a nonlinear system the response of perturbation of finite duration depends on initial 
condition and the kind of perturbation, so it is not possible to apply the overlap of the effects. 
Furthermore, the analysis of stability is not valid for all the points of equilibrium of the 
system, all the points of equilibrium have different stability features.  

The ideal gain 𝐺 is based on having 1 p.u. as change from no load to full load, while the real 
gate opening 𝑔 is based on having 1 p.u. as change from the fully closed to the fully open 
position. [5] 

The relation between the real and the ideal gate is given by the turbine gain 𝐴௧: 

 

𝐴௧ =
1

𝑔̅ி௅ − 𝑔̅ே௅
 

 (3.1) 

 

With 𝑔̅ி௅ full load gate and 𝑔̅ே௅ no load gate. 

These considerations are shown in Figure 3-1.  
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Figure 3-1 Real gate g and ideal gate G 

 

The mechanical power output of turbine 𝑃௠ is obtained by the difference between the turbine 
power and the losses.  

 

𝑃௠ = 𝑃 − 𝑃௅௢௦௦௘௦ 

 (3.2) 

 

In which the losses are given by  

 

𝑃௅௢௦௦௘௦ = 𝑈ഥே௅𝐻ഥ 

 (3.3)  

 

Where 𝑈ഥே௅is the no load water speed: 

 

𝑈ഥே௅ = 𝐴௧𝑔̅ே௅(𝐻ഥ଴)
ଵ
ଶ 

 (3.4) 

 

The expression of mechanical power 𝑃௠ is: 
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𝑃ത௠ = (𝑈ഥ − 𝑈ഥே௅)𝐻ഥ 

 (3.5) 

 

3.2 Kundur models 

The nonlinear model realized by Kundur is represented Figure 3-2. 

 

 
Figure 3-2 Nonlinear model Kundur 

 

The transfer function 𝐹(𝑠), as asserted in Chapter 2, is the relation between the variation of 
water speed in turbine 𝑢௧ and the variation of head ℎ௧: 

 

𝐹(𝑠) =
𝑈ഥ௧ − 𝑈ഥ଴

𝐻ഥ௧ − 𝐻ഥ଴

=
𝑢௧

ℎ௧
 

 (3.6) 

 

The transfer function 𝐹(𝑠) depends on the kind of assumptions taken.  
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3.2.1 Power plant without surge tank effect 

The dynamics of the penstock in a power plant without surge tank are written through (2.57): 

 

𝐻ഥ௧ = 𝐻ഥ଴ − 𝐻ഥ௟ − 𝐻ഥொ 
 (3.7) 

 

Where: 

-  𝐻ഥ௟ is the head due to losses defined as (2.64); 

- 𝐻ഥொ head to water flow without considering propagation effect is: 

 

𝐻ഥொ = 𝑇௪

𝑑𝑈ഥ௧

𝑑𝑡
 

 (3.8) 

 

The head in turbine 𝐻ഥ௧ can be rewritten in function of 𝑈ഥ௧ through 

 

𝑈ഥ௧ = 𝐺̅(𝐻ഥ௧)
ଵ
ଶ 

 (3.9) 

 

hence it is possible to rewrite the dynamics (3.8) as a differential equation of 𝑈ഥ௧: 

 

𝑑𝑈ഥ௧

𝑑𝑡
=

1

𝑇௪
൭1 −

𝑈ഥ௧

𝐺̅

ଶ

− 𝑓௣ଵ𝑈ഥ௧
ଶ൱ 

 (3.10) 

 

Neglecting the friction coefficient 
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𝑑𝑈ഥ௧

𝑑𝑡
=

1

𝑇௪
൭1 −

𝑈ഥ௧

𝐺̅

ଶ

൱ = −
1

𝑇௪
(𝐻ഥ௧ − 𝐻ഥ଴) 

 (3.11) 

𝐹(𝑠) is defined only by the water starting time 𝑇௪ and it is found rewriting (3.11) in LaPlace 
domain: 

 

𝐹(𝑠) =
𝑈ഥ𝑡

𝐻ഥ𝑡 − 𝐻ഥ0

= −
1

𝑇௪𝑠
 

 (3.12) 

Taking in considerations the propagation of waves, the transfer function becomes in function 
of the normalized impedance of the penstock 𝑍௣ and the elastic time 𝑇௘௣ 

 

𝐹(𝑠) =
−1

𝑍௣ tanh൫𝑇௘௣𝑠൯
 

 (3.13) 

 

Also considering friction losses through coefficient 𝜙௣ 

 

𝐹(𝑠) =
−1

𝜙
𝑝

+ 𝑍௣ tanh൫𝑇௘௣𝑠൯
 

 (3.14) 

 

The expression (3.14) can be simplified with lumped parameter: 

- taking n=0 the expression tanh൫𝑇௘௣𝑠൯ ≈ 𝑇௘௣𝑠, the transfer function is so 

 

𝐹(𝑠) =
−1

𝜙
𝑝

+ 𝑍௣𝑇௘௣𝑠
=

−1

𝜙
𝑝

+ 𝑇௪𝑠
 

 (3.15) 

 

Neglecting the friction, this expression is equivalent to the inelastic case of (3.12).  
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- with n=1 the first pole and the zero of the tanh function are maintained and they 
represent the fundamental harmonic of water column, 𝐹(𝑠) becomes  

 

𝐹(𝑠) =
−1

𝜙
𝑝

+ 𝐹ଶ(𝑠)
 

 (3.16) 

With 

 

𝐹ଶ(𝑠) = 𝑍௣tanh (𝑇௘௣𝑠) ≈

𝑠𝑇ௐ௣ ቈ1 + 𝑠ଶ ൬
𝑇௘௣

𝜋
൰

ଶ

቉

ቈ1 + 𝑠ଶ ൬
2𝑇௘௣

𝜋
൰

ଶ

቉

 

 (3.17) 

The transfer function 𝐹(𝑠) must be initialized for steady state output, therefore there is the 
need to compute the steady state speed of water flow in turbine 𝑈ഥ௧௦௦.  

The steady state value 𝑈௧௦௦ is found nulling the derivative term 
ௗ௎ഥ೟

ௗ௧
 in (3.10): [8] 

 

𝑈௧௦௦ = ඩ
1

1
𝐺̅ଶ + 𝑓௣ଵ

 

 (3.18) 

3.2.2 Power plant with surge tank effect 

The dynamics of power plant with surge tank have been already described taking separately 
penstock, pressure tunnel and surge tank by (2.59-2.65). [8] 

The additional transfer function 𝐺(𝑠) (2.67) has been introduced to describe the relation 
between the circuit tunnel-surge tank with the penstock in section (2.2.9).  

The 𝐹(𝑠)for elastic water column in the penstock and inelastic pressure tunnel is (2.68) while 
in case of inelastic water column in penstock is (2.69).  

Starting from dynamics equations (2.59-2.65) the following differential equations have been 
analyzed: 
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𝑑𝑈ഥ௧

𝑑𝑡
=

1

𝑇௪
𝐻ഥ௥ − ቆ

1

𝑇௪𝐺̅ଶ
+

𝑓௣ଵ

𝑇௪
ቇ 𝑈ഥ௧

ଶ 

(3.19) 

 

𝑑𝐻ഥ௥

𝑑𝑡
=

𝑈ഥ௖

𝐶௦
−

𝑈ഥ௧

𝐶௦
 

(3.20) 

 

𝑑𝑈ഥ௖

𝑑𝑡
=

1

𝑇௪௖
−

𝐻ഥ௥

𝑇௪௖
−

𝑓௣ଶ

𝑇௪௖
𝑈ഥ௖

ଶ 

(3.21) 

 

The aim is to find the steady state values of the water flow of turbine 𝑈ഥ௧, the water flow in 
tunnel 𝑈ഥ௖ and the head of riser of surge tank 𝐻ഥ௥: 

 

0 =
1

𝑇௪
𝐻ഥ௥௦௦ − ቆ

1

𝑇௪𝐺̅ଶ
+

𝑓௣ଵ

𝑇௪
ቇ 𝑈ഥ௧௦௦

ଶ  

(3.22) 

 

0 =
𝑈ഥ௖௦௦

𝐶௦
−

𝑈ഥ௧௦௦

𝐶௦
 

(3.23) 

 

0 =
1

𝑇௪௖
−

𝐻ഥ௥௦௦

𝑇௪௖
−

𝑓௣ଶ

𝑇௪௖
𝑈ഥ௖௦௦

ଶ  

(3.24) 

The solutions are: 

 

𝐻ഥ௥௦௦ = ൬
1

𝐺̅ଶ
+ 𝑓௣ଵ൰ 𝑈ഥ௧௦௦

ଶ  

(3.25) 
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𝑈ഥ௧௦௦
ଶ =

1

𝑓௣ଶ
−

𝐻ഥ௥௦௦

𝑓௣ଶ
 

(3.26) 

𝑈ഥ௧௦௦ = 𝑈ഥ௖௦௦ 

(3.27) 

The solutions for 𝐻ഥ௥௦௦ and 𝑈ഥ௧௦௦ are function of the ideal gate opening 𝐺̅ and head losses 
coefficient 𝑓௣ଵ and 𝑓௣ଶ, that are supposed equal to friction coefficient 𝜙௣ and 𝜙௖: 

 

𝐻ഥ௥௦௦ =
𝑓௣ଵ +

1
𝐺̅ଶ

𝑓௣ଶ + 𝑓௣ଵ +
1

𝐺̅ଶ

 

(3.28) 

 

𝑈ഥ௧௦௦ = 𝑈ഥ௖௦௦ = ඨ
𝐺̅ଶ

1 + 𝐺̅ଶ൫𝑓௣ଵ + 𝑓௣ଶ൯
 

(3.29) 

 

The computation of 𝑈ഥ଴ starts from the solution for head of dynamics equations (2.57) for the 
surge tank-penstock-turbine circuit: 

 

𝐻ഥ௧ − 𝐻ഥ଴ = (𝐻ഥ௥ − 𝐻ഥ଴) sech൫𝑇௘௣𝑠൯ − (𝑍௣ tanh൫𝑇௘௣𝑠൯ + 𝜙௣)(𝑈ഥ௧ − 𝑈ഥ଴) 
(3.30) 

 

At the steady state it becomes  

 

𝐻ഥ௧௦௦ = 𝐻ഥ௥௦௦ − 𝜙௣(𝑈ഥ௧௦௦ − 𝑈ഥ଴) 
(3.31) 
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The same process is done for the circuit reservoir-tunnel-surge tank to find the value of 𝐻ഥ௥௦௦. 
The solution of dynamic equations is: 

 

𝐻ഥ௥ − 𝐻ഥ଴ = (𝐻ഥ௪ − 𝐻ഥ଴) sech(𝑇௘௖𝑠) − (𝑍௖ tanh(𝑇௘௖𝑠) + 𝜙௖)(𝑈ഥ௖ − 𝑈ഥ଴) 

(3.32) 

 

That at the steady state gives: 

 

𝐻ഥ௥௦௦ = 𝐻ഥ଴ − 𝜙௖(𝑈ഥ௧௦௦ − 𝑈ഥ଴) 

(3.33) 

 

Replacing the result of the steady state head at the riser of surge tank 𝐻ഥ௥௦௦ in the equation of 
steady state head at turbine 𝐻ഥ௧௦௦ (3.31), 𝑈ഥ଴ is found: 

𝑈ഥ଴ = 𝑈ഥ௧௦௦ +

𝑈ഥ௧௦௦ 
ଶ

𝐺̅ଶ − 𝐻ഥ଴ 

𝜙௣ + 𝜙௖
 

(3.34) 

 

The value 𝑈ഥ଴ is depends on the gate opening 𝐺̅, the dependency is shown in Figure 3-3 for 
Susqueda power plant (Table 6-1). 
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Figure 3-3 Variation of initial steady state 𝑈ഥ଴ on the ideal gate 𝐺̅ 

 

3.3 IEEE models 

3.3.1 Power plant without surge tank effect 

IEEE working group of 1992 has developed the nonlinear model in Figure 3-4 expliciting 
the dynamic equations of penstock (3.8)-(3.11).  

In addition, this model considers includes a turbine self-regulation gain term (𝐷௧), 
which depends on  both  speed  variation  ∆𝑤ഥ)  and  flow: [9] 

P௧
ഥ = 𝐷௧𝐺̅∆𝑤ഥ  

(3.35) 
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Figure 3-4 Model of IEEE without surge tank effect 

 

The computations of 𝑈௧௦௦ is (3.18) but with real gate gത, because the turbine gain is afterward. 

3.3.2 Power plant with surge tank effect 

The nonlinear model with surge tank effect of IEEE working group the in Figure 3-5 
iincludes the representation of:  

- penstock dynamics, 

- surge chamber dynamics, 

- tunnel dynamics, 

- penstock, tunnel, and surge chamber orifice losses [10] 
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Figure 3-5 Model of IEEE with surge tank effect 

 

The computations of 𝐻௥௦௦ and 𝑈௧௦௦ are respectively (3.28) and (3.29) but with real gate gത. 
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Speed regulators 

The speed regulators are constituted by a speed transducer, with one or more error amplifiers 
and servomotors. In the past, there was a large use of hydraulic type, while nowadays they 
are electrical or electronic. [1] 

The block diagram of regulation is shown in Figure 4-1: the input of the speed regulator is 
the frequency error, and the output is the opening of servomotor 𝜃, that acts on the valve of 
distribution in turbine by changing the area of outflow 𝐴. 

 

 
Figure 4-1 Speed regulator and valve system block control 

 

The following chapter discusses theoretical and general form of speed regulator with at first 
the distinction into two main groups, tacho-accelerometer and transient feedback, and then 
more specific speed regulators for hydroelectric power plant. 

4.1 General form  

A preliminary general form for the speed regulator transfer function is achievable through 
the desired form of the main transfer function 𝐺௙ , that has been already computed in the first 

chapter:  

 

𝐺௙ =
𝑃௡

𝑓௡𝑏௉

1 + 𝑠𝑇ଶ

1 + 𝑠𝑇ଵ
=

𝑃௡

𝑓௡

1 + 𝑠𝑇ଶ

𝑏௉ + 𝑠𝑇ଶ𝑏௧
   

 (4.1) 
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𝐺௙ =  𝐺௔(𝑠)𝐺௩(𝑠) 𝐺௥(𝑠)  (4.2) 

 

The control system of valve is the dependency of 𝐴 on 𝜃, and the transfer function is  

 

𝐺௩ =
𝐾௩

1 + 𝑠𝑇௩
 

 (4.3) 

 

The static dependency (𝐴 ,𝜃) is nonlinear with gain 𝐾௩ 

 

𝐾௩ ≜  ൬
𝑑𝐴

𝑑𝜃
൰

௢

 
 (4.4) 

 

And the time constant 𝑇௩ is around 0.1÷0.5 seconds 

In first approximation, the transfer function of valve system and the one of the adduction 
system are assumed pure gains, so  𝐺௩ = 𝐾௩ and 𝐺஺ = 𝐾஺. 

Hence the transfer function of speed regulator becomes 

 

𝐺௥ =
𝐺௙(𝑠)

𝐺௔(𝑠)𝐺௩(𝑠)
=

𝑃௡

𝑓௡𝑏௉𝐾஺𝐾௏

1 + 𝑠𝑇ଶ

1 + 𝑠𝑇ଵ
   

 (4.5) 

 

Defining the permanent opening droop 𝑏௉
ᇱ  and the transient opening droop 𝑏௧′: 

 

𝑏௧′ ≜
𝑏௧(𝜃𝑛𝐾𝑉𝐾𝑎)

𝑃𝑛

 
 (4.6) 

 

𝑏௣′ ≜
𝑏௣(𝜃𝑛𝐾𝑉𝐾𝑎)

𝑃𝑛

 
 (4.7) 
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The final formula for speed regulator transfer function is: 

 

𝐺௥(𝑠) =
𝜃௡

𝑓௡

1 + 𝑠𝑇ଶ

 𝑏௉
′ + 𝑠𝑇ଶ𝑏௧′

 
 (4.8) 

 

(4.8) in per unit is: 

 

𝑔௥(𝑠) =

∆𝜃
𝜃 ௡

∆𝜀௙

𝑓௡

=
1 + 𝑠𝑇ଶ

 𝑏௉
′ + 𝑠𝑇ଶ𝑏௧′

 

 (4.9) 

There are two solutions to obtain a transfer function like (4.9): speed regulator with tacho-
accelerometer and speed regulator with transient feedback. [1] 

4.1.1 Speed regulator with tacho-accelerometer 

The Figure 4-2 shows the block diagram for tacho-accelerometer speed governor. [1] 

 

 
Figure 4-2 speed governor with tacho-accelerometer 

The transfer function of speed regulator 𝑔௥(𝑠) is: 

 

𝑔௥(𝑠) =
1 + 𝑠𝑇௔௖

1 + 𝑠𝑇௕

1

𝑘௉ +
𝑠

𝑘஺𝑘௦

=
1

𝑘௣

1 + 𝑠𝑇௔௖

1 + 𝑠𝑇௕

1

1 +
𝑠

𝑘஺𝑘ௌ𝑘௉

 
 (4.10) 
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Where: 

- 𝑇௔௖ is the time constant of accelerometric regulator; 

- 𝑇௕ is the time constant of speedometer;  

- 𝑘஺is the booster gain;  

- 𝑘௉ is the constant gain of permanent feedback; 

- 𝑘ௌ is the constant of servomotor. 

 

The delay due to speedometer 𝑇௕ is usually very low, thus is assumed negligible. The 
requirements to obtain (4.10) equal to the ideal case of (4.9) are:  

 

⎩
⎨

⎧
𝑏௣

ᇱ = 𝑘௣

𝑇ଵ =
1

𝑘஺𝑘ௌ𝑘௉

𝑇ଶ = 𝑇௔௖

 

 (4.11) 

4.1.2 Speed regulator with transient feedback  

The Figure 4-3 is the block diagram of speed regulator with transient feedback. [1] 

 

 
Figure 4-3 Speed regulator with transient feedback  
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In this case the transfer function neglecting 𝑇௕ is: 

 

𝑔௥(𝑠) =
𝑘஺𝑘ௌ(1 + 𝑠𝑇ௗ)

𝑘஺𝑘ௌ𝑘௉ + 𝑠[1 + 𝑘஺𝑘ௌ(𝑘௉ + 𝑘்)𝑇ௗ] + 𝑠ଶ𝑇௦
 

 (4.12) 

 

Taking the following value 

 

ቐ
𝑘஺𝑘ௌ𝑘் ≫

1

𝑇ௗ

𝑘் ≫ 𝑘௉

 

 (4.13) 

 

The following expression of 𝑔௥(𝑠) is obtained: 

 

𝑔௥(𝑠) =
1 + 𝑠𝑇ௗ

𝑘௉ + 𝑠(𝑘௉ + 𝑘்)𝑇ௗ

1

1 + 𝑠𝑇ଷ
 

 (4.14) 

 

In which 𝑇ଷ is same order of 𝑇௕ and can be neglected. The ideal 𝑔௥(𝑠) of (4.9) is obtained 
with these conditions: 

 

⎩
⎪
⎨

⎪
⎧

𝑏௣
ᇱ = 𝑘௣

𝑇ଵ =
𝑇ௗ(𝑘௉ + 𝑘்)

𝑘௣

𝑇ଶ = 𝑇ௗ

𝑏௧
ᇱ = 𝑘௉ + 𝑘் > 𝑘்

 

 (4.15) 
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4.2 Speed governor for Hydroelectric power plant 

The hydro turbines have an initial reverse response in power due to water inertia and thus 
they require a large transient droop and long resetting time to obtain stable control. The final 
governor implies a high droop (so low gain) for fast deviation in frequency, while low droop 
(so high gain) and low deviation operation in frequency for steady state. [5] 

 

4.2.1 Hydraulic-Mechanical turbine governor 

The main elements of hydraulic governor are pilot valve, main servo, dashpot time constant 
and temporary droop. 

The model of Hydro-Turbine Governor is represented in Figure 4-4 where: 

- 𝑇௉ is the pilot valve and servo motor time constant; 

- 𝐾ௌ is the servo gain; 

- 𝑇  is the main servo time constant; 

- 𝑅௉ is the permanent droop; 

- 𝑅் is the temporary droop; 

- 𝑇ோ is the reset time or dashpot time constant. 

 

 
Figure 4-4 Speed regulator with transient drop 
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4.2.2 Electrohydraulic (PID) Governors  

Nowadays, the most used speed governors for hydro turbine are electrohydraulic systems 
because they guarantee a greater flexibility and performance. 

Electrohydraulic systems, shown in Figure 4-5, are generally formed by PID controller: the 
proportional term deals with the present error, the integral term with the past error and the 
derivate with the future error.  

 

 
Figure 4-5 Block diagram of PID governor for hydraulic turbine 

 

It is possible to consider only PI governor (PID without derivative part) because having high 
derivative term determines oscillations. In this case, the scheme results equivalent to 
hydromechanical governor.  

 

4.3 Tuning of Hydro Governors 

This section illustrates the basis for selection of hydraulic turbine governor settings. The 
stability analysis for unit in isolated operation is first presented examining linear and 
nonlinear model.  



 
 

50 
 

4.3.1 Stability of the Unit in Isolated Operation with PID 
governor  

One of the most important considerations in selecting governor settings is having stable 
operation during islanding condition.  

Figure 4-6 shows isolated unit of hydro power plant with the hydroelectric power plant 
approximated as inelastic penstock. The generator is represented by mechanical starting time 
𝑇௔ and the load is represented as constant power model, and the relation with frequency is 
given by (1.12). [5] 

 

 
Figure 4-6 Block diagram of isolated operation 

 

 

The system transfer function is: 

 

𝐺(𝑠) =
൫𝐾௣𝑠 + 𝐾௜ + 𝐾ௗ𝑠ଶ൯(1 − 𝑇௪𝑠)

𝑠(1 + 0.5𝑇௪𝑠)(𝑇௔𝑠 + 𝐷)
 

 (4.16) 

The transient response of a linear closed-loop system is determined by the position of the 
poles of closed loop in the complex plane.  

Figure 4-7 shows the response of second order system. A stable system has the necessary 
and sufficient condition that the transfer function has poles with no positive real part, 
otherwise the system is unstable.  

 The stable systems are divided in: 

- Underdamped system, with poles with imaginary part not null and real part negative; 

- Critically damped or overdamped system, with poles with imaginary part null; 
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- Undamped system, with poles that lay in the Imaginary axis. 

 

 
Figure 4-7 Second order system response 

 

The research of poles is given solving in case of negative feedback loop: 

 

1 + 𝐺(𝑠)𝐻(𝑠) = 0  (4.17) 

 

with 𝐺(𝑠) the system function and 𝐻(𝑠) the feedback function.  

(4.17) for the hydroelectric unit in isolated operation is rewritten as  

 

൤𝐾௣ + 𝐾ௗ𝑠 +
𝐾௜

𝑠
൨

𝛥𝑃ഥ𝑚

 𝛥𝐺ഥ
൤

1

𝑇௔𝑠 + 𝐷
൨ + 1 

= ൤𝐾௣ + 𝐾ௗ𝑠 +
𝐾௜

𝑠
൨ ൤

1 − 𝑇௪𝑠

1 + 0.5𝑇௪𝑠
൨ ൤

1

𝑇௔𝑠 + 𝐷
൨ + 1 = 0 

 (4.18) 

4.3.2 Linearization of nonlinear model 

Conventional PID governors are usually tuned using linear control theory tools. To use these 
methods, the turbine-penstock model has to be linear. Therefore, nonlinear models must be 
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linearized around the operating point, this is possible using first order Taylor series 
expansion. [11] 

Starting from (3.9): 

 

𝑈ഥ଴ + 𝛥𝑈ഥ = (𝐺̅଴ + 𝛥𝐺̅)ට𝐻ഥ଴ + 𝛥𝐻ഥ 

(4.19) 

 

Solving for 𝛥𝑈ഥ: 

 

𝛥𝑈ഥ = 𝛥𝐺̅ට𝐻ഥ଴ + 𝐺̅଴ට𝐻ഥ଴

𝛥𝐻ഥ

2𝐻ഥ଴

 

(4.20) 

 

The same is done for mechanical power: 

 

𝛥𝑃ത௠ = 𝑈ഥ଴𝛥𝐻ഥ + 𝛥𝑈ഥ𝐻ഥ଴ 

(4.21) 

 

The value 𝛥𝑈 ഥ is taken by (4.20) while the value 𝛥𝐻ഥ depends on 𝐹(𝑠).  

Selecting the power plant without surge tank, (3.12) is rewritten as: 

 

𝐹(𝑠) =
𝛥𝑈ഥ

 𝛥𝐻ഥ
= −

𝐵

𝑍௣𝑇௘௣𝐴𝑠
 

(4.22) 

 

Where with the approximation of lumped parameter of the hyperbolic tangent:  
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- With  𝑛 = 0  →  𝐴 = 1, 𝐵 = 1 

 (4.23) 

- With  𝑛 = 1  →  𝐴 = 1 + 𝑠ଶ ቀ
೐்೛

గ
ቁ

ଶ

, 𝐵 = 1 + 4𝑠ଶ ቀ
೐்೛

గ
ቁ

ଶ

 

 (4.24) 

- With  𝑛 = 2  →  ቐ
𝐴 = 1 +

ହ

ସ
𝑠ଶ ቀ

೐்೛

గ
ቁ

ଶ

+
ଵ

ସ
𝑠ସ ቀ

೐்೛

గ
ቁ

ସ

   𝐵 = 1 +
ସ଴

ଽ
𝑠ଶ ቀ

೐்೛

గ
ቁ

ଶ

+
ଵ଺

ଽ
𝑠ସ ቀ

೐்೛

గ
ቁ

ସ 

 (4.25) 

The adduction transfer 𝐺௔ function for linearization nonlinear model is obtained: 

 

𝛥𝑃ത௠

 𝛥𝐺̅
=

𝛥𝑃ത௠

 𝛥𝑈ഥ

𝛥𝑈ഥ

 𝛥𝐺̅
=

2𝐻ഥ଴

ଷ
ଶ൫𝐻ഥ଴𝐵 − 𝑈ഥ ଴𝑇௪𝐴𝑠൯

2𝐻ഥ଴𝐵 + 𝑈ഥ଴𝑇௪𝐴𝑠
 

 (4.26) 

 

The stability analysis and the selection of parameter is realized substituting the adduction 
transfer function (4.26) in (4.18). 

4.3.3 Hydromechanical governor requirements 

The transient gain has not to exceed the limit  
ଵ

ோ೟
≤ 1.5

ு

்ೢ
 to have accettable stability in the 

speed regulator. The value of transient droop can be chosen following the guidelines: [10] 

- The following formula  

 

𝑅௧ =
𝑇௪

𝐻
[1.15 − (𝑇௪ − 1)0.075] 

 (4.27) 
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Where 𝐻 is the inertia constant equal to two times the mechanical starting time 𝑇௔. 

- Values of the ratio of  
்ೢ

ு
. 

 

While the value of rest time 𝑇ோ - or dashpot time constant- is suggested to be chosen with 
these two possible guidelines: 

- 𝑇ோ equal to 5 or 4 times 𝑇ௐ; 

- Following the experimental formula 

 

𝑇ோ = 𝑇௪[5 − (𝑇௪ − 1)0.5]  (4.28) 

 

The above considerations are done when the unit is at full load supplying an isolated load, 
the most severe requirements. For loading and unloading, during normal interconnected 
system operation, the response is too slow with the previous settings: the reset time should 
be very low in this case, 𝑇ோ less than 1.0 s; otherwise, an alternative arrangement is to bypass 
the dashpot in not islanding condition. [5] 

The servomotor gain 𝐾ௌ should be set as high as possible to achieve good performance: it 
results in an improvement in damping and rate of response. Figure 4-8 shows the influence 
of servo gain constant: increasing 𝐾ௌ, it is obtained a higher region of stability for value 𝑅௧ 
and 𝑇ோ. 

 

 
Figure 4-8 The effect of servo gain constant  
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Dymola software 

The development of models has been carried out using Dymola software based on the 
Modelica language. 

Dymola adopts a new modeling methodology based on object orientation and equations, and 
the advantage of this approach is the possibility to use an acausal approach. Other highlights 
of Dymola that have been useful in this thesis work are:  

• Handling of large, complex multi-engineering models.  

• Faster modeling by graphical model composition.  

• Faster simulation – symbolic pre-processing.  

•Real-time simulations 

 

5.1 Architecture of Dymola 

Figure 5-1 shows the architecture of Dymola:  

- it has a powerful graphic editor for composing models; 

- it can also import other data and graphics files; 

- Dymola contains a symbolic translator for Modelica equations generating C-code for 
simulation; 

- the C-code can be exported to Simulink and hardware-in-the-loop platform.  

[12] 
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Figure 5-1 Dymola Architecture 

 

5.2 Building models 
The windows of Dymola are Main window and Library window.  

The Main window can operate in one of two modes:  

- Modelling mode, that is used to realize models and model components;  
- Simulation mode, that is used to plot results and animate the behaviour of the 

models. 

In the Library window there is the Modelica Standard Library, that includes the following: 

- Blocks, that contains continuous and discrete input/output blocks such as transfer 
functions, filters, and sources. 

- Constants, that provides constants from mathematics, machine dependent constants 
and constants from nature. 

- Electrical, that provides electric and electronic components such as resistor, diode, 
MOS and BJT transistor. 

- Icons, that provides common graphical layouts (used in the Modelica Standard 
Library).  

- Math, that gives access to mathematical functions such as sine, cosine, and 
logarithm. 
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- Mechanics, that includes one-dimensional translational and rotational components 
such as inertia, gearbox, planetary gear, bearing friction and clutch.  

- SIunits, that includes definitions with units, such as Angle, Voltage, and Inertia.  

- Thermal, that provides models for heat-transfer. 

The dynamics of hydropower plant and grid are represented by operations with transfer 
functions as explained in the theoretical background chapters (1,2,3 and 4). The Dymola 
models of this thesis work have been realized through the libraries Blocks: Math (Table 5-
1) and Continuous (Table 5-2).  

 

Table 5-1 Block Math library description / build.openmodelica.org 

Name Description 

UnitConversions  Conversion blocks to convert between SI and non-SI unit 
signals 

InverseBlockConstraints  Constructs inverse model by requiring that two inputs and two 
outputs are identical 

Gain  Output the product of a gain value with the input signal 

MatrixGain  Output the product of a gain matrix with the input signal vector 

MultiSum Sum of Reals: y = k[1]*u[1] + k[2]*u[2] + ... + k[n]*u[n] 

MultiProduct Product of Reals: y = u[1]*u[2]* ... *u[n] 

MultiSwitch Set Real expression that is associated with the first active input 
signal 

Sum Output the sum of the elements of the input vector 

Feedback  Output difference between commanded and feedback input 

Add Output the sum of the two inputs 

Add3 Output the sum of the three inputs 
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Product Output product of the two inputs 

Division Output first input divided by second input 

Abs Output the absolute value of the input 

Sign Output the sign of the input 

Sqrt  Output the square root of the input (input >= 0 required) 

Sin Output the sine of the input 

Cos  Output the cosine of the input 

Tan Output the tangent of the input 

Asin Output the arc sine of the input 

Acos  Output the arc cosine of the input 

Atan Output the arc tangent of the input 

Atan2 Output atan(u1/u2) of the inputs u1 and u2 

Sinh Output the hyperbolic sine of the input 

Cosh  Output the hyperbolic cosine of the input 

Tanh Output the hyperbolic tangent of the input 

Exp Output the exponential (base e) of the input 

Power  Output the power to a base of the input 

Log Output the logarithm (default base e) of the input (input > 0 
required) 

Log10 Output the base 10 logarithm of the input (input > 0 required) 

WrapAngle  Wrap angle to interval ]-pi,pi] or [0,2*pi[ 
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RealToInteger  Converts Real to Integer signal 

IntegerToReal  Converts Integer to Real signals 

BooleanToReal  Converts Boolean to Real signal 

BooleanToInteger  Converts Boolean to Integer signal 

RealToBoolean  Converts Real to Boolean signal 

IntegerToBoolean  Converts Integer to Boolean signal 

RectangularToPolar Converts rectangular coordinates to polar coordinates 

PolarToRectangular  Converts polar coordinates to rectangular coordinates 

Mean  Calculates mean over period 1/f 

RectifiedMean Calculates rectified mean over period 1/f 

ContinuousMean Calculates the empirical expectation (mean) value of its input 
signal 

RootMeanSquare  Calculates root mean square over period 1/f 

Variance  Calculates the empirical variance of its input signal 

StandardDeviation  Calculates the empirical standard deviation of its input signal 

Harmonic  Calculates harmonic over period 1/f 

TotalHarmonicDistortion  Output the total harmonic distortion (THD) 

RealFFT  Sampling and FFT of input u 

Pythagoras Determines the hypotenuse or leg of a right triangle 

Max Passes through the largest signal 

Min Passes through the smallest signal 
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MinMax Output the minimum and the maximum element of the input 
vector 

LinearDependency  Output a linear combination of the two inputs 

Edge Indicates rising edge of Boolean signal 

BooleanChange  Indicates Boolean signal changing 

IntegerChange  Indicates integer signal changing 

 
Table 5-2 Library Block in continuous/ build.openmodelica.org 

Name Description 

CriticalDamping Output the input signal filtered with an n-th order filter with 
critical damping 

Der Derivative of input (= analytic differentiations) 

Derivative Approximated derivative block 

Filter Continuous low pass, high pass, band pass or band stop IIR-filter 
of type CriticalDamping, Bessel, Butterworth or ChebyshevI 

FirstOrder First order transfer function block (= 1 pole) 

Integrator Output the integral of the input signal with optional reset 

Internal … Internal utility functions and blocks that should not be directly 
utilized by the user 

LimIntegrator Integrator with limited value of the output and optional reset 

LimPID P, PI, PD, and PID controller with limited output, anti-windup 
compensation, setpoint weighting and optional feed-forward 

LowpassButterworth Output the input signal filtered with a low pass Butterworth filter 
of any order 



 
 

61 
 

PI Proportional-Integral controller 

PID PID-controller in additive description form 

SecondOrder Second order transfer function block (= 2 poles) 

StateSpace Linear state space system 

TransferFunction Linear transfer function 

 

5.2.1 Initialization of models  

A dynamic model describes how the states evolve in time; the states represent the memory 
of the model. When starting a simulation, the states need to be initialized.  

Dymola allows to assume that the system is in steady state, which means that, in continuous 
time, the derivative shall be zero. Due to the flexibility in defining initialization equations in 
Modelica, it is possible to formulate more general initial conditions: a mixture of initial states 
and initial state derivatives is defined. 

The linear models realized in thesis work have assumed steady state conditions, while for 
nonlinear models the state of initial output or input have been computed. [12] 
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Dymola models of adduction system 

This chapter shows the results of Dymola models regarding the adduction system of the 
hydroelectric power plant, which have been explained in theoretic details in Chapters 2 and 
3. 

The identification has been performed for the Susqueda power plant, that is a hydroelectric 
plant of Endesa Group in Spain described in Table 6-1. [8] 

 
Table 6-1 Susqueda Hydroelectric Power Station parameters [8] 

 Parameter: Value: 

Penstock Length [𝐿] 250 𝑚 

 Initial diameter [𝑑௜௖] 4.3 𝑚 

 Final diameter [𝑑௙௖] 3.3 𝑚 

 Average section [𝐴௖] 11.34 𝑚ଶ 

 Pressure wave velocity [𝑐] 1200 𝑚/𝑠 

 Friction coefficient [𝜙௣] 0.0475 

Tunnel Diameter [𝑑௧] 4.3 𝑚 

 Section [𝐴௧] 14.52 𝑚ଶ 

 Length [𝐿௧] 3500  𝑚 

 Friction coefficient [𝜙௖] 0.0010112 

Surge tank Diameter [𝑑௦] 9 𝑚 
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 Section [𝐴௦] 63.61 𝑚ଶ 

 Length [𝐿௦] 100 𝑚 

Turbine Rated mechanical power [𝑃௠] 86 𝑀𝑊 

 Rated discharge [𝑄଴] 65 𝑚ଷ/𝑠 

 Total head [𝐻଴] 174.41 𝑚 

 

 

6.1 Linear model without surge tank effect 

This section shows the results for linear models in which the surge tank effect has been 
assumed negligible.  

 

6.1.1 Inelastic penstock  

The transfer function of the adduction system 𝐺௔(𝑠) in case of inelasticity of the penstock 
and assuming no friction losses is represented as a block diagram in Figure 6-1: 

 

 
Figure 6-1 Adduction system and turbine control block 
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The parameter that represents the dynamics of the penstock is the water starting time 𝑇௪: 

 

𝑇௪ =
𝐿𝑄଴

𝑔𝐴௖𝐻଴
= 0.837 𝑠  

(6.1) 

The transfer function of adduction system 𝐺௔(𝑠) is: 

 

𝐺௔(𝑠) =
∆𝑃ത௠
∆𝐴ഥ

=
1 − 𝑇௪𝑠

1 +
1
2

𝑇௪𝑠
=

1 −  0.837𝑠

1 + 0.4185𝑠
 

(6.2) 

 

Figure 6-2 shows the time response of mechanical power variation ∆𝑃ത௠ after a step variation 
at the opening of the valve ∆𝐴̅ of 0.01 p.u. at time 1 second. 

 

 
Figure 6-2 Mechanical power variation[p.u.] in time [s] after step variation of amplitude A 
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The mechanical power shows a transient behavior: the moment the valve opens ∆𝑃ത௠ 
instantaneously decreases of two times the value of step variation ∆𝐴̅, then increases to the 
value of ∆𝐴̅ at steady state. Indeed, the initial value theorem gives for a step change ∆𝐴̅ of 
0.01 p.u.: 

 

∆𝑃ത௠(0) = lim
௦→ஶ

𝑠
0.01

𝑠

1 − 𝑇௪𝑠

1 + 0.5𝑇௪𝑠
= −0.02 

 (6.3) 

And the final value theorem gives 

 

∆𝑃ത௠(∞) = lim
௦→଴

𝑠
0.01

𝑠

1 − 𝑇௪𝑠

1 + 0.5𝑇௪𝑠
= 0.01 

 (6.4) 

 

The negative behavior of 𝑃ത௠ is due to the inertia of the water: when the valve is opened the 
water cannot instantaneously change the flow due to its weight, and consequently the 
pressure across the turbine is reduced so the mechanical power produced is lower. [5] 

The time response of mechanical power ∆𝑃ത௠(𝑡) is represented by the following expression:  

 

∆𝑃ത௠(𝑡) = [1 − 3𝑒
ିቀ

ଶ
்ೢ

ቁ௧
 ]∆𝐴̅ 

 (6.5) 

 

Figure 6-3 represents the variation of the volumetric flow 𝑄ത and available head 𝐻ഥ. The 
volumetric flow 𝑄ത, unlike the mechanical power, has the same variation of amplitude 𝐴̅: an 
increase of 0.01 p.u. of 𝐴̅ corresponds to a rise of 0.01 p.u. of 𝑄ത. The variation of the available 
head 𝐻ഥ is not relevant for the final value of mechanical power, since its total variation is 
null: the 𝐻ഥ decreases instantaneously of 0.02 p.u. at time 1 s for the effect of water inertia, 
then restores its initial value. [5] 
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Figure 6-3 Variation of 𝐻ത  and 𝑄ത [p.u.] in time[s] for step variation of amplitude 𝐴ത in case of inelastic penstock 

 

The same linear model is tested for a negative ramp of 0.01 p.u. with time duration of 1 s at 
time 1 s, Figure 6-4 shows the hydraulic response. Analogously to the previous case, the 
volumetric flow 𝑄ത follows the behaviour of the amplitude 𝐴̅: 𝑄ത decreases until reaching          
-0.01 p.u. as steady state value. The time response of the head 𝐻ഥ starts with a ramp up with 
same duration of the ramp of 𝐴̅, and then decreases restoring the initial steady state value, 
therefore 𝐻ഥ shows null variation. [5] 
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Figure 6-4 Variation of 𝐻തand 𝑄ത [p.u.] in time[s] for ramp variation of 𝐴ത in case of inelastic penstock 

 

The response of mechanical power ∆𝑃ത௠in Figure 6-5 shows again the effect of water inertia: 
∆𝑃ത௠ increases in the transient phase instead of immediately decreasing to 0.01 p.u., but in 
this case the ramp variation, being less impulsive, allows not to reach the high value of two 
times the variation of 𝐴̅.  
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Figure 6-5 Variation of mechanical power[p.u.] in time[s] for ramp variation of 𝐴ത in case of inelastic penstock 

 

6.1.2 Elastic penstock 

The inelastic penstock has only one parameter-the water starting time 𝑇௪-while in the elastic 
penstock there is the necessity to also regard the elastic time constant 𝑇௘௣: 

 

𝑇௘௣ =
𝐿

𝑐
= 0.208 𝑠 

 (6.6) 

 

And the normalized impedance of the penstock 𝑍௣: 

 

𝑍௣ =
𝑇௪

𝑇௘௣
= 4.019 𝑝. 𝑢. 

 (6.7) 

 

The adduction transfer function 𝐺௔(𝑠) becomes: 
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𝐺௔(𝑠) =
∆𝑃ത௠
∆𝐴ഥ

=
1 − 𝑍௣tanh (𝑠𝑇௘௣)

1 +
1
2

𝑍௣tanh (𝑠𝑇௘௣)
=

1 − 4.019tanh (0.208𝑠)

1 + 2.0095tanh (0.208𝑠)
 

 (6.8) 

 

𝐺௔(𝑠) has been approximated with lumped parameter with n=1 and n=2 1following the 
formula: 

 

tanh൫𝑇௘௣𝑠൯ =
1 − 𝑒ିଶ ೐்೛௦

1 + 𝑒ିଶ ೐்೛௦ =

𝑠𝑇௘௣ ∏ ቈ1 + ൬
𝑠𝑇௘௣

𝑛𝜋
൰

ଶ

቉ ஶ
௡ୀଵ

∏ ቈ1 + ൬
2𝑠𝑇௘௣

(2𝑛 + 1)𝜋
൰

ଶ

቉ ஶ
௡ୀଵ

 

 (6.9) 

Figure 6-6 shows the mechanical power time response of ∆𝑃ത௠ for a step at the opening of 
the valve of 0.01 p.u. at time 1 second for lumped parameter approximation with n=1 and 
n=2, which are compared with the case of inelastic penstock corresponding to the 
approximation n=0. 

 

 
Figure 6-6 Variation of mechanical power[p.u.] in time[s] for step variation of amplitude 𝐴̅ in case of elastic penstock 

 
 

1 The adduction transfer function for n=1 and n=2 is written in Appendix [1] and [2]. 
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The mechanical power has the same trend of the inelastic case but has oscillations in the 
transient phase. Indeed, the initial value theorem and the final value theorem show the same 
results of (6.3) and (6.4): 

 

∆𝑃௠(0) = lim
௦→ஶ

𝑠
0.01

𝑠

1 − 𝑍௣tanh (𝑠𝑇௘௣)

1 +
1
2

𝑍௣tanh (𝑠𝑇௘௣)
= −0.02 

 (6.10) 

 

∆𝑃௠(∞) = lim
௦→଴

𝑠
0.01

𝑠

1 − 𝑍௣tanh (𝑠𝑇௘௣)

1 +
1
2

𝑍௣tanh (𝑠𝑇௘௣)
= 0.01 

 (6.11) 

 

Also, the volumetric flow 𝑄ത and available head 𝐻ഥ2 deviation have the same trend of the 
inelastic case with oscillations due to propagation effect. In Figure 6-7 the time response of 
𝑄ത and 𝐻ഥ,using for hyperbolic tangent the approximation with lumped parameter n=1, is 
shown. 

 

 
 

2 The transfer function of the volumetric flow 𝑄ത  and available head 𝐻ഥ are transposed respectively in 
Appendix [3] and [4]  
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Figure 6-7 Variation of 𝐻ഥ and 𝑄ത  [p.u.] in time[s] for step variation of amplitude 𝐴̅ in case of elastic penstock 

6.1.3 Friction losses 

The complete linear model of adduction system also takes in account also the friction losses 
through the friction coefficient 𝜙௣. 𝐺௔(𝑠) becomes: 

 

𝐺௔(𝑠) =
1 − 𝑍௣ tanh൫𝑠𝑇௘௣൯ − 𝜙௣

1 +
1
2

𝑍௣tanh (𝑠𝑇௘௣)
=

1 − 4.019 tanh(0.208𝑠) − 0.0475

1 + 2.0095tanh (0.208𝑠)
 

 (6.12) 

 

Figure 6-8 shows the time response of mechanical power ∆𝑃ത௠ considering friction. The 
water column of penstock is presented in two cases: inelastic and elastic with lumped 
parameter approximation n=13. It is worth to notice that the final value of  ∆𝑃ത௠ at the steady 
state is lower than the case without friction, while the initial value is the same; indeed, the 
final value theorem applied in this case gives: 

 

 
 

3 Transfer function of adduction system for linear model elastic penstock with lumped parameter 
approximation n=1 and friction is in Appendix [5] 
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 ∆𝑃ത௠ (∞) = lim
𝑠→0

𝑠
0.01

𝑠

1 − 𝑍𝑝tanh (𝑠𝑇𝑒𝑝) − 𝜙𝑝

1 +
1
2

𝑍𝑝tanh (𝑠𝑇𝑒𝑝)
= 0.01(1 − 𝜙𝑝) 

 (6.13) 

 

And the initial value theorem gives: 

 

 ∆𝑃ത௠ (0) = lim
𝑠→∞

𝑠
0.01

𝑠

1 − 𝑍𝑝tanh (𝑠𝑇𝑒𝑝) − 𝜙𝑝

1 +
1
2

𝑍𝑝tanh (𝑠𝑇𝑒𝑝)
= −0.02 

 (6.14) 

 

 
Figure 6-8 Variation of mechanical power[p.u.] in time[s] for step variation of amplitude 𝐴̅ with friction losses 

 

6.2 Linear model with surge tank effect  

In this section, there are the results obtained for linear models with surge tank effect, with 
two distinctions: the case with non-elastic water columns and the one with elastic water 
column in the penstock and non-elastic water column in the tunnel.  
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6.2.1 Non-elastic water columns 

The penstock is approximated with inelastic water column, and the only parameter needed 
is the water starting time 𝑇௪, which was previously computed. The dynamic of the tunnel is 
represented by water starting time 𝑇௪௖: 

 

𝑇௪௖ =
𝐿௧

𝐴௧𝑔

𝑄଴

𝐻଴
= 9.15 s 

(6.15) 

 

The surge tank is identified by storage constant 𝐶ௌ: 

 

𝐶௦ =
𝐴ௌ

𝑄଴
𝐻଴ = 170.69 s  

(6.16) 

 

The natural period of surge tank 𝑇ௌ is: 

 

𝑇ௌ = 2 𝜋ඥ𝑇௪௖𝐶௦ =   248.40 s 

(6.17) 

 

The variation of mechanical power ∆𝑃ത௠ is computed using (2.71): 

 

𝐺௔(𝑠) =

1 − 𝜙௣ − 𝑍௣𝑇௘௣𝑠 +
𝐺(𝑠)

𝑍௣
𝑇௘௣𝑠 − 𝐺(𝑠)

1 +
1
2

𝜙௣ +
1
2

𝑍௣𝑇௘௣𝑠 +
1
2

𝐺(𝑠) +
𝐺(𝑠)

𝑍௣
𝑇௘௣𝑠 

=
−2.2629𝑠 + 2.7022

1.1315𝑠 + 2.7022
 

(6.18) 

 

Figure 6-9 shows the time response of mechanical power ∆𝑃ത௠ for a step variation of 0.01 
p.u. at the gate. The transient interval of ∆𝑃ത௠ behaves likes the case of inelastic penstock 
without surge tank effect in the transient time; but the steady state value is lower because 
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this model takes also in account the friction losses in pressure tunnel through the coefficient 
𝜙௖. 

 

 
Figure 6-9 Variation of mechanical power[p.u.] in time[s] in case of surge tank effect with inelastic penstock 

 

Figure 6-10 shows oscillations of ∆𝑃ത௠ with period 𝑇ௌ around the steady state value after the 
first transient; while Figure 6-11 shows that the variation of mechanical power comes to a 
standstill after five times 𝑇ௌ. 
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Figure 6-10 Oscillations of mechanical power[p.u.] in time[s] around steady state value 

 
Figure 6-11 Damping of oscillations of mechanical power[p.u.] in time[s] 

𝑇ௌ 
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6.2.2 Elastic water column in the penstock and non-elastic 
water column in the tunnel 

The elastic behavior of penstock is represented by elastic time 𝑇௘௣ (6.6) and normalized 
impedance of penstock 𝑍௣ (6.7) as for the model without surge tank effect. 

The variation of mechanical power ∆𝑃ത௠ has been computed through the adduction transfer 
function (2.70) with approximation of lumped parameter n=14.  

The time response of ∆𝑃ത௠ is shown in Figure 6-12: there are oscillations in transient time 
due to the propagation of elastic waves. Figure 6-13 shows that in the long term there are no 
differences with the inelastic case because the propagation of pressure waves and the 
correlated water hammer effect are fast phenomena.  

 

 
Figure 6-12 Variation of mechanical power[p.u.] in time[s] in case of surge tank effect with elastic penstock 

 

 
 

4 𝐺௔  is reported in Appendix [6].  
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Figure 6-13 Damping of oscillation of mechanical power[p.u.] in time[s] with elastic penstock 

6.3 Nonlinear model without surge tank effect 

This section has examined the nonlinear model of the Susqueda Hydroelectric Power Station 
taking in consideration only the dynamics of penstock. The model chosen is the one of IEEE 
W. group 1992 in Figure 3-4, because the dynamics are more explicit rather than Kundur 
model allowing to observe singularly the variables.  

The gate opening at no load 𝑔̅ே௅ is equal to 0.0778 p.u. and the gate opening at rated load 
𝑔̅ி௅is 0.6766 p.u., hence the turbine gain function 𝐴௧ is: 

 

𝐴௧ =
1

𝑔ி௅ − 𝑔ே௅
= 1.67 

 (6.19) 

 

The no load speed 𝑈ഥே௅ is: 

 

𝑈ഥே௅ = 𝐴௧𝑔ே௅(𝐻଴)
ଵ
ଶ = 0.13 𝑝. 𝑢. 

(6.20) 
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The initial real gate 𝑔̅ is equal to 0.5 and the turbine self-regulation gain term 𝐷௧ is 
considered null.  

The transfer function of penstock dynamics has been approximated by lumped parameter, 
and need to be initialized determining the output, which is the head due to water flow 𝐻ഥ௤௦௦. 

 

 
Figure 6-14 Representation of the block to calculate the approximation n=0, n=1 and n=2 of the hyperbolic tangent  

 

Starting from the value at steady state of the waterflow speed 𝑈ഥ௧௦௦ (3.18): 

 

𝑈ഥ௧௦௦ =
ඩ

1

1
𝑔̅ଶ + 𝜙௣

= 0.4971 𝑝. 𝑢. 

 (6.21) 

through accurate computations, the initial steady state output of 𝐻ഥ௤௦௦is obtained equal to 0 

p.u. for the cases n=0,1,2.  
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The time response of mechanical power 𝑃ത௠௘௖ has been analyzed for the cases n=0,1,2 after 
a step variation of 0.01 p.u. at time 1 second and is shown in Figure 6-15.  

 

 
Figure 6-15 Mechanical power[p.u.] in time[s] in case of nonlinear model without surge tank effect 

 

The initial steady state of mechanical power is:  

𝑃ത௠௘௖ = 𝐴௧𝐻ഥ௧௦௦(𝑈ഥ௧௦௦ − 𝑈ഥே௅) = 0.6058 𝑝. 𝑢. 

 (6.22) 

Where 𝐻ഥ௧௦௦ is equal 
௎ഥ೟ೞೞ

మ

௚തమ
 so 0.9883p.u. 

The final value of mechanical power 𝑃ത௠௘௖ is obtained repeating the computation of 𝐻ഥ௧௦௦ and 
𝑈ഥ௧௦௦ for the new steady state with 𝑔̅ equal to 0.51 p.u.. The values have been reported with 
the initial values in Table 6-2. 
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Table 6-2 Steady state variables 

 

𝑃ത௠௘௖ has trends similar to the linear model, but the reached values are different: the linear 
adduction with initial gate of 0.5 p.u. provides mechanical power of 0.5 p.u., that after the 
variation of 0.01 p.u.at the gate decreases immediately to 0.48 p.u. and then increases to 0.51 
p.u.. 

Figures 6-16 and 6-17 show the time response of available head 𝐻ഥ௧ and water flow 𝑈ഥ௧ for 
the nonlinear model with lumped parameter approximation with n=0,1,2. 𝐻ഥ௧ and 𝑈ഥ௧ have 
similar behavior to the linear model: the available head decreases and then tries to restore its 
initial value, but in the nonlinear case 𝐻ഥ௧ reaches a lower steady state due to head losses in 
the penstock 𝐻ഥ௟; 𝑈ഥ௧ follows the step variation of gate increasing its value by almost 0.01 
p.u.. 

 

 
Figure 6-16 Available head in turbine[p.u.] in time[s] in case of nonlinear model without surge tank effect 

𝑔̅[p.u.] 𝑈ഥ௧௦௦[p.u.] 𝐻ഥ௧௦௦[p.u.] 𝑃ത௠௘௖[p.u.] 

0.5 0.4971 0.9883 0.6058 

0.51 0.5069 0.9878 0.6217 
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Figure 6-17 Water flow speed in turbine[p.u.] in time[s] in case of nonlinear model without surge tank effect 

 

6.4 Nonlinear model with surge tank effect 

In this section the nonlinear model of adduction system with surge tank effect of IEEE W. 
Group 1992 in Figure 3-5 has been analyzed.  

The initialization of the three transfer functions has been done computing the steady state 
variables 𝑈ഥ௧௦௦ and 𝐻ഥ௥௦௦ in case of 𝑔̅=0.5 p.u. through equations (3.29) and (3.28). The 
obtained values and 𝐻ഥ௧௦௦ -computed like previously by 𝑈ഥ௧௦௦- have been reported in Table 6-
3 with also the final steady state variables with 𝑔̅=0.51 p.u. 

 
Table 6-3 Steady state at initial value and final value 

 

𝑔̅[p.u.] 𝑈ഥ௧௦௦[p.u.] 𝐻ഥ௧௦௦[p.u.] 𝐻ഥ௥௦௦[p.u.] 

0.5 0.4970 0.9880 0.9998 

0.51 0.5068 0.9875 0.9997 
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Through these values and accurate computations, the three transfer functions were initialized 
for these initial outputs:  

- The penstock dynamic transfer function: 𝐻ഥ௤௦௦ equal to 0 p.u.; 

- The surge tank transfer function with 𝐻ഥ௥௦௦equal to 0.9998 p.u.; 

- The tunnel transfer function with 𝑈ഥ௧௦௦equal to 0.4970 p.u.. 

The time response of mechanical power 𝑃ത௠௘௖ is the same of the nonlinear model with only 
penstock for the first transient as shown in Figure 6-18. After reaching the new steady state 
value there are oscillations of period 𝑇௦ (Figure 6-19) and then after 5 times 𝑇௦ there is the 
damping (Figure 6-20). 

 

 
Figure 6-18 Mechanical power[p.u.] in time[s] in case of nonlinear model with surge tank effect 
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Figure 6-19 Mechanical power oscillation[p.u.] in time[s] in case of nonlinear model with surge tank effect 

 
Figure 6-20 Mechanical power damping[p.u.] in time[s] in nonlinear model with surge tank effect 

The physical phenomenon of power oscillation for long time period is the water mass 
oscillation in the surge tank and is represented by the time response of the head riser of surge 
tank 𝐻ഥ௥  in Figure 6-21.  
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Figure 6-21 Head riser of surge tank [p.u.] in time[s] in case of nonlinear model 

 

The propagation of elastic waves has been studied considering the penstock elastic with 
lumped approximation of hyperbolic tangent n=1. 

Figure 6-22 shows that mechanical power 𝑃ത௠௘௖ for nonlinear model does not reach the steady 
state value of 0.6217 p.u. in the first 10 s: this happens because the dynamics of elastic 
penstock and water mass oscillation in the surge tank interfere. Starting from 0.610 p.u. 
𝑃ത௠௘௖ oscillates around the final steady state value with period 𝑇ௌ (Figure 6-23); eventually 
the mechanical power reaches the final steady state (Figure 6-24).  
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Figure 6-22 Mechanical power[p.u.] in time[s] in case of nonlinear model with surge tank effect and elastic penstock 

 

 
Figure 6-23 Mechanical power oscillations [p.u.] in time[s] in case of nonlinear model with surge tank effect and elastic 

penstock 
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Figure 6-24 Mechanical power damping [p.u.] in time [s] in case of nonlinear model with surge tank effect and elastic 

penstock 
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Dymola model of frequency control  

This chapter focuses on the speed-governing system of hydraulic unit of the Susqueda power 
plant supplying an isolated load, and the tuning of PID speed governor has been realized 
through stability analysis. 

Furthermore, Dymola models of frequency control with the variation of power load have 
been realized considering the effect of the Italian grid and the linear and nonlinear models 
of adduction system-analyzed in chapter 6.  

7.1 Variation of frequency reference in frequency control  

The control loop of frequency for isolated hydraulic unit is illustrated in Figure 7-1. 

The aim is to tune the speed governor of the primary regulation in islanding operation for 
Susqueda power plant, which is simplified considering an inelastic penstock without surge 
tank. The same speed governor has been applied to the nonlinear model of Susqueda power 
plant.  

Moreover, the effects of the water starting time 𝑇௪ and mechanical starting time 𝑇௔ in 
frequency control have been examined. 

 

 
Figure 7-1 Frequency control loop for isolated hydraulic unit 
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7.1.1 Linear model with gain speed regulator 

This analysis has considered only the proportional effect of the PID speed governor. The 
transfer function of speed regulator 𝐺௥(𝑠) is a gain with value equal to the reverse of the 

permanent droop 𝑏௣, so 𝐺௥(𝑠)=
ଵ

௕೛
. [5] 

(4.18) becomes: 

 
1

𝑏௣
 
1 − 𝑇௪𝑠

1 +
𝑇௪

𝑠
𝑠

1

𝑇௔𝑠 + 𝐷
+ 1 = 0 

(7.1) 

 

The mechanical starting time 𝑇௔ represents the generator: for hydroelectric unit the standard 
value is equal to 6 s. The load damping coefficient 𝐷 is instead assumed null.  

For the case study, (7.1) becomes:  

 

2511𝑏௣𝑠ଶ + 6000𝑏௣𝑠 −  837𝑠 +   1000 = 0 
(7.2) 

 

For stability the roots of (7.2) must be in the left part of complex plant. In case of quadratic 
equation, a sufficient and necessary condition is that all the quadratic coefficients are 
positive. So,  

 

൜
2511𝑏௣ > 0

6000𝑏௣  −  837 > 0
→ 𝑏௣ > 0.1395  

(7.3) 

the result of the stability analysis affirms that the system is stable for values of 𝑏௣ higher 

than 0.1395 p.u.. It is worth to notice that Terna value of permanent droop for hydro unit in 
islanding is 0.04 p.u., which determines an unstable system in this model. [13] 

For critically damped, the discriminant of (7.2) must be zero to obtain negative real poles: 

 

൫6000𝑏௣  −  837൯
ଶ

+ 4 ∙ 2511𝑏௣ ⋅ 1000 = 0 

(7.4) 
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This equation has solution 𝑏௣ = [0.0141 ; 1.3809]. The permanent droop of 0.0141 p.u. is 
less than he limiting value of stability 𝑏௣equal to 0.1395, so the solution for critically 

damped is having permanent droop of 1.3809 p.u.. 

The underdamped case is computed by choosing a permanent droop stable with discriminant 
of (7.2) higher than zero: 

 

ቊ
𝑏௣ > 0.1395 

൫6000𝑏௣  −  837൯
ଶ

+ 4 ∙ 2511𝑏௣ ⋅ 1000 > 0
 

(7.5) 

One solution is 𝑏௣ equal to 0.2 p.u.. 

Table 7-1 lists the permanent droops and the respective poles for the cases: underdamped, 
critically damped, undamped and unstable. For each case, the present study has analyzed the 
time response of the mechanical power 𝑃ത௠௘௖ and of the frequency 𝑓 ̅of the system after a step 
variation in frequency set point of 0.01 p.u. at time 1 second from steady state value of 1 
p.u..  

The transfer function of adduction system 𝐺௔ is initialized by a null value of 𝑃ത௠௘௖, and the 
transfer function of the grid is initialized by 1 p.u., the frequency of the system at the steady 
state.  

 

 
Table 7-1 Cases underdamped, critically damped, undamped and unstable 

 

Cases: 𝑏௣[𝑝. 𝑢./𝑝. 𝑢. ] Poles 

Undamped 0.1395 [1.6896i, -1.6896i] 

Critically damped 1.3809 [-2.0042, -0.1439] 

Underdamped 0.2000 [-0.3614 + 1.3640i, -0.3614 
- 1.3640i] 

Unstable 0.0400 [2.9719 + 1.0601i, 2.9719 - 
1.0601i] 
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Figure 7-2 shows the poles map for the 4 cases and complies with the stability theory of 
second order system in Figure 4-7. 

 

 
Figure 7-2 Poles map 

 

The case with permanent droop 𝑏௣ equal to 0.1395 p.u. is at the margin of stable system and 

is identified as undamped. The mechanical power 𝑃ത௠௘௖ after the perturbation should increase 
because the system must reach a value higher of frequency, but instead starts with a negative 
value a cause of the inertia of the water column. 𝑃ത௠௘௖ continues to increase and decrease 
with oscillations whose amplitude remains constant without stopping (Figure 7-3). 

The period of undamped oscillation is computed: 

 

𝑇 =
√2𝜋

൬
1

𝑇௠𝑇௪𝑏௣
൰

ଵ
ଶ

 

(7.6) 

For the study case 𝑇 is 3.71 s.  

The frequency of the system 𝑓 ̅starts from the steady state value of 1 p.u. and, after the 
perturbation, has the same trend of mechanical power (Figure 7-4). 
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Figure 7-3 Mechanical power[p.u.] in time[s] undamped case 

 

 
Figure 7-4 Frequency[p.u.] in time[s] in case undamped case 

 

In the critically damped case, the frequency of the system reaches the new steady state of 
1.01 p.u. quickly without oscillations (Figure 7-6). The mechanical power 𝑃ത௠, starting with 
high negative value due to the inertia of water, increases and then goes to zero when the new 
steady state of the frequency is reached (Figure 7-5).  
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Figure 7-5 Mechanical power[p.u.] in time[s] in case of critically damped 

 

 
Figure 7-6 Frequency[p.u.] in time[s] in case of critically damped 

 

The time response of  𝑃ത௠(Figure 7-7) and of 𝑓 ̅(Figure 7-8) in underdamped case oscillates 
around the new steady state values and then converges respectively to 0 p.u. and 1.01 p.u.. 
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Figure 7-7 Mechanical power[p.u.] in time[s] in case of critically damped 

 

 
Figure 7-8 Frequency[p.u.] in time[s] in case of in case underdamped 

 

The time response of mechanical power (Figure 7-9) and of frequency (Figure 7-10) for 
𝑏௣ equal to 0.04 p.u. is unstable and diverges. 
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Figure 7-9 Mechanical power[p.u.] in time[s] in unstable case 

 

 
Figure 7-10 Frequency[p.u.] in time[s] in unstable case 

7.1.2 Gain regulator nonlinear model 

It is more complex to do stability analysis in case of nonlinear models, and the results would 
strongly depend on the initial point. Therefore, the behavior of the nonlinear model (Figure 
3-4) of Susqueda power plant has been studied in the frequency control loop of Figure 7-1 
using the same values of permanent droop obtained from the linear model in section 7.1.1..  

Figures 7-11 and 7-12 show the time response of the mechanical power 𝑃ത௠௘௖ for respectively 
stable and unstable cases after a step variation in frequency set point of 0.01 p.u. at time 1 
second from steady state value of 1 p.u.. 

The permanent droops 𝑏௣ of 1.3809 p.u., 0.1395 p.u. and 0.2 p.u. identify stable cases also 

with nonlinear model of the penstock.  
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𝑏௣ equal to 0.04 p.u. still determines an unstable case: the value of mechanical power 
diverges and does it periodically because the non-linear solver of Dymola attempt to 
handle the problem. 

In the nonlinear model, the value of 𝑏௣ equal to 0.1395 p.u. determines an underdamped case 

and not undamped, as it was expected from the linear case.  

 

 
Figure 7-11 Mechanical power[p.u.] in time[s] for stable cases of gain regulator in nonlinear model 

 

 
Figure 7-12 Mechanical power[p.u.] in time[s] for unstable of gain regulator in nonlinear model 
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7.1.3 The effect of 𝑻𝒘 and 𝑻𝒂 in regulation  

The effect of water starting time 𝑇௪ has been studied in three cases of linear model 
representing the Susqueda power plant. The speed regulator is a gain of value 0.884, that has 
been proved critically damped in section 7.1.1..  

 
Table 7-2 Cases with different 𝑇௪ 

 Case 1 Case 2 Case 3 

𝑇௪[𝑠] 0.83 2.76 5.52 

𝑇௔[𝑠] 6 6 6 

 

Increasing the water starting time, the delayed flow has more effects on hydraulic turbine 
and enhances the oscillations of the mechanical power (Figure 7-13) and of the frequency of 
the system (Figure 7-14). [14] 

 

 
Figure 7-13 Oscillation of mechanical power[p.u.] in time[s] for three cases 
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Figure 7-14 Frequency[p.u.] in time[s] of the system for the three cases 

 

The oscillations due to 𝑇௪ can be reduced acting on the mechanical starting time 𝑇௔.Three 
cases are studied with different values of 𝑇௔ described in Table 7-3. 

 
Table 7-3 Cases with different 𝑇௔ 

 Case 1 Case 2 Case 3 

𝑇௪[𝑠] 0.83 0.83 0.83 

𝑇௔[𝑠] 6 10 15 

 

Increasing the value of 𝑇௔, the response in time of mechanical power 𝑃ത௠ (Figure 7-15) and 
of the frequency of the system 𝑓 ̅(Figure 7-16) reduces deviation, but the time to reach the 
steady state increases. [14] 
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Figure 7-15 Mechanical power[p.u.] in time[s] for the three cases 

 

 
Figure 7-16 Frequency of the system[p.u.] in time[s] for the three cases 
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7.2 Variation of power load in frequency control  

In this section, the Dymola models of frequency regulation have been realized with the 
Susqueda hydropower that oversees the variation of load power 𝑃௘ inside the electrical grid 
(Figure 7-17). The analysis has been realized adding progressively more complex element 
in the adduction system and turbine block.  

 

 
Figure 7-17 Control loop of frequency with grid 

 

The reference grid is the one in the Italian blackout of 2003.The mechanical starting time 
𝑇௔ of the grid is computed as weighted average of mechanical starting time 𝑇௔௜ of the power 
plants-participating to regulation- with their rated power 𝑃௜  as weight. At the time before the 
blackout, there were 1400 MW of hydroelectric powerplant and 19000 MW of thermal 
power plant; the standard values of 𝑇௔ are 6 s for hydro unit and 10 s for thermal power plant. 
[15] 

 

𝑇௔ =
∑ 𝑃௜𝑇௔௜

𝑃௧௢௧
=

6 𝑠 ∙ 1400𝑀𝑊 + 10𝑠 ⋅ 19000𝑀𝑊

20400𝑀𝑊
= 9.72 𝑠 

 (7.7) 

 

It has been hypothesized that the power plant of the case study represents 85 MW of 1400 
MW of hydroelectric power plant.  

The effects of the load regulating energy are assumed negligible; hence the grid block is 
represented by the transfer function: 
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𝐺௚௥௜ௗ(𝑠) =
1

𝑇௔𝑠
=

1

9.72𝑠
 

 (7.8) 

 

7.2.1 Linear model of hydro unit in frequency regulation  

This subsection focuses on the frequency regulation for linear model of hydroelectric power 
plant. The speed regulator is a gain equal to the reverse of the permanent droop of 0.20 p.u., 
which has determined an underdamped case in the analysis of subsection 7.1.1.. 

The frequency variation 𝑓 and mechanical power 𝑃ത௠௘௖ have been analyzed firstly without 
the dynamics of penstocks: the transfer function of adduction system 𝐺௔ has been assumed 
equal to 1.  

The power load variation 𝑃ത௘ is a step from 0 to 0.01 p.u. at 1 second, the time response of 
the frequency in Figure 7-18 shows that 𝑓 decreases until the minimum value of 49.90 Hz 
(0.998 p.u.)-as expected from the chosen droop: 

 

𝑏௣ =
∆f̅

∆𝑃ത
→  ∆f̅ = 𝑏௣ ∙ ∆𝑃ത = 2 ∙ 10ିଷp. u.  

 (7.9) 

So  

𝑓̅ = 1 p. u. − ∆f̅ = 0.998 p. u.   (7.10) 
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Figure 7-18 Frequency variation [p.u.] in time [s] in the case neglecting adduction system 

 

Figure 7-19 shows the time response of mechanical power 𝑃ത௠௘௖: the variation of 𝑃ത௠௘௖ starts 
from 0 p.u., when there is no need to increase the power production because the balance of 
power is null; then, after the variation of power load 𝑃௘

ഥ  and the resulting negative 
accelerating torque, the mechanical power increases until reaches the value of 𝑃ത௘ 0.01 p.u.. 
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Figure 7-19 Mechanical power variation[p.u.] in time [s] in case of 𝐺௔ = 1 

 

The next step is to analyze the influence of linear adduction system in the frequency control 
without the effects of surge tank and propagation of pressure waves. The adduction transfer 
function for linear model is (6.2). 

Figures 7-20 and 7-21 show oscillations respectively in mechanical power 𝑃ത௠௘௖ and 
frequency 𝑓 due to the dynamics of inelastic penstock, represented by the water starting time 
𝑇௪. It is worth to notice that 𝑃ത௠௘௖ has at first a negative variation due to water inertia and 
that the steady state values of 𝑓 and 𝑃ത௠௘௖ are the same as the previous case. 
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Figure 7-20 Mechanical power variation [p.u.] in time [s] in case of linear adduction with inelastic penstock  

 

 
Figure 7-21Frequency[Hz] in time [s] in case of linear adduction with inelastic penstock 

 

The propagation of elastic waves in the penstock has been approximated to lumped 
parameter with grade n=1 and n=2, and the time response of 𝑃ത௠௘௖ and of 𝑓 is represented in 
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Figure 7-22 and 7-23. It is worth to note that the reached oscillations are higher, and that the 
approximation with grade n=1 and n=2 are equivalent: this hints that the approximation of 
hyperbolic tangent is good enough. 

 

 
Figure 7-22 Mechanical power[p.u.] in time [s] in case of linear adduction with elastic penstock  

 

 



 
 

105 
 

 
Figure 7-23 Frequency[Hz] in time[s] in case of linear adduction with elastic penstock  

 

Figures 7-24 and 7-25 show the mechanical power 𝑃ത௠௘௖ and frequency 𝑓  variation with 
surge tank effect. 𝑃ത௠௘௖ oscillates with surge tank period 𝑇ௌ around the steady state value of 
1.01 p.u., and so does the frequency; but the oscillation increases instead of damping, so the 
system is unstable as mentioned in section 2.2. 
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Figure 7-24 Mechanical power[p.u.] in time[s] in case of linear adduction with surge tank effect 

 

 

 
Figure 7-25 Frequency[Hz] in time[s] in case of linear adduction with surge tank effect 
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7.2.2 Nonlinear model frequency regulation 

In this subsection, the frequency regulation has been studied adopting the nonlinear 
adduction scheme without surge tank effect analyzed in section 6.3. Like the previous 
subsection, the power load 𝑃ത௘ is the disturbance with step variation of 0.01 p.u. at time 1 
second. 

Figures 7-26 and 7-27 show the time response of mechanical power 𝑃ത௠௘௖ and gate 𝑔̅ : the 
initial value of 𝑃ത௠௘௖ is 0.606 p.u. with the valve opened at 0.5 p.u., the final steady state is 
0.616 p.u. with gate 0.506 p.u. equal to the value of power load 𝑃ത௘. 

 

 
Figure 7-26 Mechanical power[p.u.] in time[s] in case nonlinear adduction  
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Figure 7-27 Gate opening[p.u.] in time[s] in case nonlinear adduction  

 

The time response of the frequency is shown in Figure 7-28 and the steady state value is not 
49.90 Hz but 49.937 Hz, hence nonlinearity does not satisfy the value expected for the 
frequency from droop computation in (7.10). 
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Figure 7-28 Frequency[Hz] in time[s] in case nonlinear adduction  

 

Figure 7-29 is the time response of mechanical power 𝑃ത௠௘௖ with adduction system 
constituted by elastic penstock, the approximation of hyperbolic tangent has been realized 
with lumped parameter n=1 and n=2. It is worth to notice that elastic propagation in the 
penstock allows, in this case, to reach a minimum value of 𝑃ത௠௘௖ lower in amplitude and 
delayed. 
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Figure 7-29 Mechanical power[p.u.] in time[s] in case of nonlinear adduction with elastic penstock 

 

The scheme with surge tank effect of section 6.4, assuming inelastic water column in the 
penstock, has the same results in mechanical power 𝑃ത௠௘௖ and frequency 𝑓 for the first few 
seconds of the nonlinear model without surge tank effect as shown by Figures 7-30 and 7-
31.  
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Figure 7-30 Mechanical power[p.u.] in time[s] in case of nonlinear adduction with surge tank effect 

 

 
Figure 7-31 Frequency[Hz] in time[s] in case of nonlinear adduction with surge tank effect 

 

Figures 7-32 and 7-33 show that the nonlinear model with surge tank has oscillation in 𝑃ത௠௘௖ 
and 𝑓 in long term with period 𝑇௦. 
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Figure 7-32 Mechanical power oscillations[p.u.] in time[s] in case of nonlinear adduction with surge tank effect 

 

 
Figure 7-33 Frequency oscillations[Hz] in time[s] in case of nonlinear adduction with surge tank effect 
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7.3 Frequency regulation with nuclear reactor in the grid 

In this section, the primary frequency regulation realized by the hydroelectric powerplant 
has been studied in presence of baseload nuclear power in the Italian grid-represented by 
block (7.8).  

The hydroelectric power plant is the nonlinear model of Susqueda power plant with surge 
tank effect and elastic penstock approximated through lumped parameter n=1. The hydro 
unit starts at steady state with gate opened at 50%, so mechanical power is 0.606 p.u., as 
reported in Table 6-2, which is equivalent to 51.5 MW. 

The speed governor of hydro unit is a gain equal to the reverse of the permanent droop of 
0.20 p.u., as in section 7.2. 

The nuclear power plant is composed of IRIS, which has been modelled in the thesis project 
group of Nuclear Section of DENG in Dymola (Figure 7-34). IRIS is a SMR that was 
developed by an international consortium, led by Westinghouse, involving so many 
companies, research centers and universities, including Politecnico di Milano. IRIS is a light 
water reactor, PWR type, with a thermal power output of 1 GW and an electric output of 335 
MW. The fuel enrichment is around 4.95 % and it is usually UO2 even if it can be loaded 
also using MOX. The reactor is designed to have a half core refueling every three years and 
the planned life is 60 years. [16] 

 
Figure 7-34 Dymola model of IRIS [16] 

The electrical power time response for the Dymola model of IRIS is shown in Figure 7-35 
and IRIS is producing 335 MW of electrical power. 
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Figure 7-35 Power[MW] in time[s] in IRIS 

The frequency regulation has been studied for variation of power load of 1 MW at time 300s 
in the grid as section 7.2. The mechanical power 𝑃ത௠௘௖ (Figure 7-36) oscillates before and 
after the power load variation for surge tank effect; and after 300 s, 𝑃ത௠௘௖ increases its value 
to 0.6175 p.u., equivalent to 52.5 MW, with a settling time of 25 s. 

 
Figure 7-36 Mechanical power[p.u.] in time[s] of hydro unit 
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The frequency of the grid (Figure 7-37) is oscillating around 50 Hz before the disturbance, 
then decreases and oscillates around 49.925 Hz.  

 

 
Figure 7-37 Frequency of the grid [Hz] in time[s] 
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Conclusions 

The aim of this thesis work is the modelling of the hydroelectric power plant dynamics inside 
frequency regulation and is part of thesis group project of Nuclear Section of DENG on 
modelling in Dymola. These models have been realized taking singularly the dynamics of 
adduction system, speed regulator and grid, and are all consistent with a progressive increase 
of accuracy. 

The importance of the dynamics inside the penstock has been explored: 

- The mechanical power has initial negative behavior at the opening of the gate due to 
water inertia; 

- For very long penstocks, the wave travel time of the water column becomes 
significant, and the reflected pressure waves in the water column cause the preceding 
treatment of water start time to be no longer valid. 

The circuit of penstock-surge tank has been analyzed: the mechanical power is affected by 
long term oscillations because the water level in the surge tank begins to oscillate with the 
natural period following a change in the turbine flow. 

The nonlinear models of IEEE have been developed to allow to deal with large variation in 
frequency and power output. Furthermore, these models are more explicit in the dynamics 
of the penstock, tunnel, and surge tank.  

Dymola models of regulation have been implemented starting from stability analysis, and 
the time responses of the mechanical power and of the grid frequency highlight the 
importance of the adduction system of hydroelectric power plant inside the frequency control 
loop.  

The thesis work has shown how these models of regulation are interconnectable with other 
power plant models on Dymola, in fact the frequency regulation of hydro power plant has 
been realized with presence of baseload power of IRIS in the grid.  

The models realized are the first of thesis group project on hydropower: there is more focus 
on the adduction system of the plant rather than on regulation. Hence, there are future 
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developments to increase the accuracy of regulation models; some suggestions on what to 
work on can be: 

- Implementing Dymola models of hydroelectric power plant using speed regulator 
with transient droop; 

- Taking into consideration the dependency of the power load on the frequency; 

- Realizing Dymola models with also secondary regulation. 
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Appendix 

[1] 

Transfer function of adduction system for linear model elastic penstock with lumped parameter 
approximation n=1: 

N={[-5.6573]; [2.7022e+1];[-1.2864e+3];[1.5361e+3]} 

D={[2.8286];[2.7022e+1];[6.4322e+2];[1.5361e+3]} 

 
[2] 

Transfer function of adduction system for linear model elastic penstock with lumped parameter 
approximation n=2: 

N={[-4.2430];[3.6029e+1];[-4.8241e+3];[2.0482e+4];[-8.7759e+5];[1.0479e+6]} 
D={[2.1215];[3.6029e+1];[2.4121e+3];[2.0482e+4];[4.3880e+5];[1.0479e+6]} 
 
[3] 

Transfer function of volumetric flow for linear model elastic penstock with lumped parameter 
approximation n=1: 

N={[2.7022e+1];[0];[1.5361e+3]} 
D={[2.8286];[2.7022e+1];[6.4322e+2];[1.5361e+3]} 
 
[4] 

Transfer function of available head for linear model elastic penstock with lumped parameter 
approximation n=1 

N= {[-5.6573];[0];[-1.2864e+3];[0]} 
D= {[2.8286];[2.7022e+1];[6.4322e+2];[1.5361e+3]} 
 
[5] 

Transfer function of adduction system for linear model elastic penstock with lumped parameter 
approximation n=1 and friction: 

N= {[-1.4143e+1];[6.4345e+1];[-3.2161e+3];[3.6580e+3]} 
D={[7.0716];[6.9158e+1];[1.6080e+3];[3.9316e+3]} 
 
[6] 
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Transfer function linear model with surge tank elastic grade n=1: 

N={[-3.8703e+1];[1.7609e+2];[-8.8019e+3];[1.0012e+4];[-6.6090e+1];[6.3977]} 
D={[7.7405e+1];[1.8927e+2];[4.4010e+3];[1.0763e+4];[3.4786e+1];[6.8870]
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