
Executive Summary of the Thesis

Design and verification of a RISC-V superscalar CPU

Laurea Magistrale in Electronics Engineering - Ingegneria Elettronica

Author: Marco Vitali and Sebastiano Vittoria

Advisor: Prof. Davide Zoni

Co-advisor: Dr. Andrea Galimberti

Academic year: 2022-2023

1. Introduction
In 1965, Gordon Moore made an influential ob-
servation that has had a significant impact on
modern computing. It is now widely known as
Moore’s law and it states that the number of
transistors on a microchip will double approx-
imately every two years. This trajectory was
further supported by Robert Dennard’s scaling
principles, which predicted that as transistors
shrink in size, their power density would remain
constant, leading to a proportional increase in
performance. The RISC-V Instruction Set Archi-
tecture [5] is widely adopted in academic research
due to its open-source nature. Its modularity
and extendibility allow for a high degree of cus-
tomization in terms of ISA extensions or even
the creation of brand-new instructions, thanks to
the free spaces left in the opcodes list. The sim-
pler nature of a RISC-V is also optimal for the
development of more logically complex pipelines,
which boosts performance in exchange for a mi-
nor increase in area and power consumption. One
such approach is to allow the concurrent prop-
agation of more than one instruction at a time
through the whole pipeline, creating the distinc-
tion between scalar and superscalar CPUs. Pro-
cessor design has long focused on the dichotomy
between Complex Instruction Set Computing

(CISC) and Reduced Instruction Set Computing
(RISC) architectures. CISC architectures aim to
reduce the number of instructions per program,
theoretically leading to more efficient code execu-
tion, by using rich instruction sets. On the other
hand, RISC architectures streamline instruction
sets, emphasizing simplicity and efficiency in ex-
ecution. Superscalar architectures represent a
paradigm shift from the traditional scalar ar-
chitectures. A superscalar CPU presents more
complex logic networks and, as a consequence, a
higher area occupation and power consumption
but with the advantage of completing, ideally,
multiple per clock cycle. If designed carefully,
this type of CPU can represent a good middle
ground between low-cost and high-performance
solutions. Often, FPGAs represent the best tar-
get for the development of a design, thanks to
their re-programmability, consequentially reduc-
ing the time to market of a product. Notice-
able examples of RISC-V superscalar CPUs are
Frontgrade Gaisler’s NOEL-V [4], an in-order
dual-issue CPU, and UC Berkeley’s BOOM, su-
perscalar and capable of out-of-order execution
[3].
This thesis proposes a description of ViVit, a
RISC-V superscalar in-order dual-issue CPU, and
its verification method exploiting a customized
version of an open-source ISA simulator.

1



Executive summary Marco Vitali and Sebastiano Vittoria

The three main contributions are:
• The design of the CPU’s microarchitec-

ture. The present study centers on the
microarchitecture design of the superscalar
CPU, with a particular emphasis on each
pipeline stage. Additionally, we analyze
which pipeline stage could become the criti-
cal path of the stage.

• The verification infrastructure consists of a
functional ISA simulator and a socket for
communication. The custom features and
their usefulness are discussed, along with an
in-depth methodology for verification.

• Experimental evaluation. To evaluate the
quality of a CPU, its performance, power,
and area results are analyzed across all the
extracted data. This analysis provides an
overall view of the CPU’s quality and par-
ticularly focuses on identifying the stages
that have a significant impact on power con-
sumption and area occupation.

2. Methodology
Hardware design poses numerous challenges, pri-
marily due to the concurrent nature of its logic
networks and the presence of registers that re-
quire synchronization between blocks. When
selecting an FPGA board, system resource uti-
lization is a key metric, as higher data volumes
result in increased area occupation. It’s impor-
tant to note that transitioning from a scalar to a
superscalar architecture substantially increases

area occupation, as most ports and interconnec-
tions must be duplicated to support multiple
instructions propagating through the pipeline.
Additionally, logic networks contribute signifi-
cantly to this since they must be extended, often
doubling the initial complexity due to possible
dependencies between multiple instructions.

2.1. Architecture of the superscalar
CPU

The presented superscalar architecture features
a 7-stage dual-issue pipeline, composed of the
Instruction Memory, Fetch, Decode, Issue, Ex-
ecute, Reorder Buffer, and Register File stages.
It supports in-order dispatch of instructions and
out-of-order completion.
The Instruction Memory (IM) of the architec-
ture is implemented as a RAM, accessible from
the Fetch stage through the desired Program
Counter. A relevant feature for a superscalar
Architecture is a Pre-Fetch logic, which accounts
for a set of particular limit cases.
The Instruction Fetch (IF) stage is the second
stage of the pipeline and datapath. It’s responsi-
ble for extracting two instructions from the cor-
responding memory in one clock cycle. Addition-
ally, it can perform a "pre-decode" of the input
instructions, which helps synchronize the front
end blocks, especially in the case of subsequent
bundles of instructions containing branches. At
each clock cycle, a bundle of two instructions is
extracted from the Instruction Memory and fed
to the pre-decode logic. The pre-decode logic

Figure 1: Microarchitecture of ViVit, the proposed superscalar CPU

2



Executive summary Marco Vitali and Sebastiano Vittoria

distinguishes between three cases: the first in-
struction is a conditional or unconditional jump,
the second one is a jump, or neither are jump
instructions.
The next stage is the superscalar Instruction
Decode (ID) stage. This stage supports the
decoding of 32-bit RISC-V instructions coming
from the I-, M-, and F-extensions. It has two
main duties: instruction decoding and jump res-
olution and calculation. The Decode logic is im-
plemented as a sequential positive edge-sensitive
net. The main challenge lies in the jump logic,
as a set of ports must be created to propagate
a read address to the RF and receive from it
the status of the requested register and its value.
This is done through combinatorial logic, which
implements an asynchronous inter-module com-
munication capable of resolving the read request
without waiting for a rising edge of the clock.
However, the high weight of the logic results in a
limitation on the maximum achievable frequency.
After a bundle of instructions is decoded, it is
propagated towards the Issue (IS) stage, which
is responsible for dispatching the instructions to
the Execute stage and renaming the operands to
guarantee the correct out-of-order execution and
completion of the operations. Each instruction
passes first through the fill queue logic, which
saves it into a FIFO-like memory called issue
queue. Then, the instruction operands are read
through the double read operands logic, and fi-
nally gets dispatched.
The Execute (EXE) stage is in charge of pro-
ducing the result values. It is composed of a
parametric number of functional units that can
be chosen at design time based on the applica-
tion needs. Having a double dispatch means that
every type of functional unit needs a queue in
case a bundle is composed of two instructions
that need to be executed on the same unit. After
a result is produced by the Execute stage, the
commit on the Reorder Buffer is managed by a
Priority Multiplexer, which accelerates the prop-

agation of load and stores.
The Reorder Buffer (ROB) is a FIFO-like
structure with a parametric depth and entries
composed of multiple fields. The main role of
the Reorder Buffer is to commit the results of
completed instructions, granting the correctness
of the program order even in an out-of-order
completion architecture. So, it’s the duty of the
ROB itself to produce the result and additional
information of the one or two head instructions
inside it. Multiple commit routers guide the com-
mitting instructions towards either the Register
File or the Data Memory. There is also a combi-
natorial logic used to send the value requested
by the double read operands in the Issue stage.
This logic must be realized in a combinatorial
way to get the value at the same clock cycle the
data is required.
The last pipeline stage of the superscalar CPU
is the Register File (RF), which stores all the
register values required by the ISA. Sequential
logic is added to take care of both doing and
undoing the renaming of the register.

2.2. Verification of the superscalar
CPU

To ensure that the architecture described in the
previous section is executed correctly, the cho-
sen verification approach was to monitor every
instruction commit. To automatically verify the
execution during a simulation, the ISA simula-
tor and Vivado had to communicate with each
other. They were connected through a socket to
send commands from the testbench and receive
data to perform the verification routine. The ISA
simulator adopted is Spike, the RISC-V golden
model for verification.
To perform the verification, Spike must be started
in interactive debug mode and informed which
application to run. It waits for a connection with
the client. Then, in the testbench, the architec-
tural instruction and data memory are initialized
with the content of the application, and then the

Figure 2: Scheme of the Verification process

3



Executive summary Marco Vitali and Sebastiano Vittoria

client-side connection is established.
After the architecture simulates one clock cy-
cle, the TB verifies if one or two new commits
occurred. If they did, it instructs Spike to sim-
ulate one step through a SV function. Then, it
compares the PC, destination, and result coming
from the golden model with the ones produced
by the architecture. If a mismatch occurs in
any of them, the simulation stops. In case of a
store instruction, the TB calls the spike_mem
SV function, which exposes the content of the
memory address that was just written in the
functional simulator. This is necessary since the
commit log for stores is not automatically pro-
duced. Finally, the TB checks if the committed
PC matches a target final PC, which is a param-
eter set according to the dump of the executed
application. If the two match, the simulation
ends, and the verification is successful.

3. Experimental evaluation
The proposed architecture is implemented to val-
idate it and evaluate a set of quality metrics.
The design is written in SystemVerilog. Syn-
thesis and implementation are carried out on
Vivado 2022.2, targeting an AMD Xilinx Artix-7
75 FPGA, which provides 47200 Lookup Tables
(LUTs), 94400 Flip-Flops (FFs), 105 BlockRAMs
(BRAMs) and 180 Digital Signal Processing units
(DSPs). The target frequency of the implemen-
tation is 77 MHz, using the default directives.
For the verification, the used Spike version is
1.0.0. Everything is hosted by a machine run-
ning Linux OS distribution Ubuntu 22.04. All
the bare-metal elf executables were compiled us-
ing the riscv32-unknown-elf-gcc compiler based
on the GNU RISC-V 32-bit Toolchain [1] and the
linker provided by the official riscv-test repos-
itory or WCET website [2]. Regarding the in-
terface between Vivado and Spike, DPI (Direct
Programming Interface) is used and all the C
functions are compiled through the xsc compiler.
For the evaluation, the chosen configuration of
the pipeline parameters is the following: RV32I
base ISA with M and F extensions, 2 ALUs with
one cycle of latency, 1 MULDIV with 5 cycles
of latency, 1 FPU with 5 cycles of latency, 1
LSU with 3 cycles of latency, 16 entries deep
issue queue, 64 entries deep ROB, 32 bit wide
and 210 entries deep Instruction Memory, 32 bit
wide and 216 entries deep functional Data Mem-

ory. Every FU is functional. For the rest of this
Chapter, the configuration of the architecture
described is referred to as ViVit. Regarding the
results, using Vivado’s post-implementation func-
tionality Report Power Utilization on the final
CPU design, a hierarchical view highlighting the
power consumption of every module can be ob-
tained, while the quality metrics such as resource
utilization and timing must be extracted after
Vivado’s synthesis and implementation. Based
on the WCET benchmarks [? ], we extracted
the following information: the total number of
commits, the number of single and double com-
mits, and the percentage of double commits over
the total. This percentage is related to the su-
perscalarity, which is the ability of a processor
to execute multiple instructions in parallel.

Table 1: Numbers of commits and percentage of
exploitation of the superscalar properties

WCET Total Double Ratio

bsort100 1237 310 50,1%

cnt 2006 567 56,5%

crc 21186 4600 43,4%

fdct 1363 363 52,3%

jfdctint 1748 444 50,8%

prime 1754 3 0,3%

select 845 156 36,9%

fac 124 24 38,7%

janne_complex 77 10 25,9%

lcdnum 101 11 21,7%

matmult 12156 4422 72,7%

As shown in Table 1, the architecture is capa-
ble of exploiting its superscalar features in al-
most all benchmarks, except for the prime bench-
mark which has nested data dependencies and
jumps. This hinders the use of dual-issue and
dual-commit functionality, highlighting that a
superscalar architecture may not be the best so-
lution if there is not much exploitable instruction-
level parallelism in the program code. Regarding
the prime WCET benchmark, only 3x2 instruc-
tions take advantage of the double commit fea-
ture. However, in the case of the matmult WCET
benchmark, the percentage of instructions that

4



Executive summary Marco Vitali and Sebastiano Vittoria

exploit the double commit feature is the high-
est among all benchmarks, with a percentage of
72.7%. This is due to the fact that the code is
highly compatible with a dual-issue architecture,
and hence allows for the creation of independent
instruction bundles in most cases. This bench-
mark provides an ideal scenario for a dual-issue
CPU to leverage its superscalar feature, resulting
in the best percentage among all reported ap-
plications. The remaining benchmarks have an
average exploitation of the dual-issue and dual-
commit features at around 47%. Thus, we can
conclude that the architecture is capable of fully
exploiting the dual-issue and dual-commit fea-
tures almost half of the time. The percentages
are referred to the total CPU power budget.

Table 2: Power estimation after implementation.
The percentages are referred to the total CPU
power budget.

Module Total [mW] Ratio

CPU 251

Fetch 1 0,4%

Decode 4 1,6%

Issue 46 18,4%

ROB 160 63,9%

RF 40 15,7%

Looking at Table 2, it can be seen that the Re-
order Buffer represents the module with the high-
est power consumption with a value of 160 mW,
which means that 63,9% of the total power bud-
get is due to this stage. This is mainly due to
the Reorder Buffer structure itself, whose entries
are composed of different fields, each of them
accessible from different logic networks, like the
Fill Queue of the Issue stage writing destination,
Program Counter and store amount, or the Ex-
ecute stage committing a result, or again the
Issue accessing these results for the double read
operands logic. The commit on ROB and com-
mit from ROB, including the Commit Router, do
not influence significantly the power metric. The
combinatorial network used for the double read
operands represents another important contribu-
tion to this value. The Register File presents
an average power consumption of 40 mW, which
again is mainly due to the combinatorial net-

work used by the Issue stage, but also to the
renaming logic which must perform many nested
checks to avoid problems in limit cases where an
instruction commits on a register which is cur-
rently being renamed. The power consumption
of the Issue stage, 46 mW, is highly impacted by
the double read operands logic and its correlated
combinatorial networks. Finally, the Fetch and
the Decode stages do not contribute heavily, with
a combined 5 mW of total power consumption.
This low value is mainly due to the fact that
the logic nets implemented in these stages are
extended but simple.

Table 3: Resource and Timing report after im-
plementation. The target frequency is 77 MHz.

Module LUT FF WNS

CPU 26298 13593 0.594 ns

Fetch 299 322 6.196 ns

Decode 973 302 5.940 ns

Issue 2524 2134 1.626 ns

ROB 16204 9491 2.729 ns

RF 6233 1280 3.962 ns

The table above shows all the results, with a fo-
cus on the percentage of utilization of the target
FPGA. We first extracted the number of overall
CPU resources used, and then we implementated
each module to collect the same set of data. We
obtained the Worst Negative Slack (WNS) of
each module with the same clock frequency of
the CPU, which is reported in the Fmax col-
umn. Looking at Table 3, we can see that the
stage with the highest number of used LUTs is
ROB. This is mainly due to the two combina-
torial networks used to communicate with the
Issue stage: one to look for the values during the
read operands, and the other to insert PC, desti-
nation, and store amount during the fill queue.
These networks are particularly complex, as they
must be able to access every cell of the ROB in a
single clock cycle without a proper synchronous
read port. Regarding the FFs utilization, it is
mainly due to the ROB structure itself, since
every entry is composed of many different fields.
A similar argument applies to the Issue stage,
where a portion of the FFs is used to implement
the issue queue. The number of LUTs is justified

5



Executive summary Marco Vitali and Sebastiano Vittoria

by the presence of three heavy combinatorial net-
works: one used to gather operands from RF and
ROB, one to perform and enable the renaming in
the extension fields of the Register File, and the
last one to implement the double read operands
logic itself. Regarding the RF, FFs are mainly
used to implement the Register File, while the
number of LUTs is not due to the logic used for
the commit of the instructions, but rather to the
net used to perform enabling and disabling of
the renaming. In terms of timing, the CPU can
run at a maximum frequency of 77 MHz, having
a WNS of 0.594 ns. The Issue module represents
the critical path for the architecture, having a
large combinatorial net that limits the timing
performance of the stage, with a WNS of 1.626
ns. The total CPU WNS is much lower than the
one of the limiting stage since it considers the
totality of the interconnections between blocks.
In this case, the critical path becomes the combi-
natorial networks for the double read operands,
which are not taken into consideration during
the implementation of the single module.

4. Conclusions
This thesis explores a superscalar RISC-V dual-
issue CPU, highlighting the intricacies and po-
tential advancements in modern processor design.
Investigating the architecture’s ability to simulta-
neously execute two instructions per clock cycle,
has not only showcased the efficiency gains but
also underscored the significance of adopting the
RISC-V instruction set architecture. The ViVit
CPU emerges as a promising avenue for achieving
higher throughput and addressing the growing
demands of computational workloads, with its
custom verification tool and infrastructure. It
aims to propose a solution to a specific mar-
ket need for a high-performance processor with a
medium-low area occupation and power consump-
tion. Looking ahead, there are several avenues
for future improvement. One key area of focus
is the hardware implementation of the Execute
stage and the refinement of compiler technologies
to better exploit the dual-issue capabilities. Ad-
ditionally, exploring advanced branch prediction
techniques and enhancing the instruction fetch
mechanism can contribute to reducing pipeline
stalls and improving overall execution efficiency.
Moreover, the integration of more sophisticated
out-of-order execution mechanisms holds the po-

tential to unlock greater parallelism within the
processor, leading to improved performance in di-
verse computational workloads. Power efficiency
and scalability should be at the forefront of future
developments. Exploring techniques for dynamic
voltage and frequency scaling, as well as inves-
tigating advanced power gating strategies, can
contribute to creating more energy-efficient pro-
cessors without compromising performance. In
summary, the continuous evolution of the super-
scalar CPUs necessitates ongoing research and de-
velopment efforts. Future improvements should
address both hardware and software aspects, to
unlock the full potential of this architecture and
meet the ever-growing demands of modern com-
puting.

References
[1] Homepage of GNU RISC-V Toolchain Repos-

itory: https://github.com/riscv-collab/riscv-
gnu-toolchain.

[2] Homepage of Mälardalen WCET benchmarks:
http://www.mrtc.mdh.se/projects/wcet/be-
nchmarks.html.

[3] Alexander Dörflinger, Mark Albers, Benedikt
Kleinbeck, Yejun Guan, Harald Micha-
lik, Raphael Klink, Christopher Blochwitz,
Anouar Nechi, and Mladen Berekovic. A com-
parative survey of open-source application-
class risc-v processor implementations. In
Proceedings of the 18th ACM International
Conference on Computing Frontiers, CF ’21,
page 12–20, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[4] Manoj Sharma, Ekansh Bhatnagar, Kar-
tik Puri, Amitav Mitra, and Jatin Agar-
wal. A survey of risc-v cpu for iot ap-
plications. In Proceedings of the Interna-
tional Conference on Innovative Computing
& Communication (ICICC) 2022, February
2022. Available at SSRN: https://ssrn.
com/abstract=4033491 or http://dx.doi.
org/10.2139/ssrn.4033491.

[5] Andrew Waterman, Yunsup Lee, David A.
Patterson, and Krste Asanović. The risc-v in-
struction set manual, volume i: User-level isa,
version 2.0. Technical Report UCB/EECS-
2014-54, EECS Department, University of
California, Berkeley, May 2014.

6

https://ssrn.com/abstract=4033491
https://ssrn.com/abstract=4033491
http://dx.doi.org/10.2139/ssrn.4033491
http://dx.doi.org/10.2139/ssrn.4033491

	Introduction
	Methodology
	Architecture of the superscalar CPU
	Verification of the superscalar CPU

	Experimental evaluation
	Conclusions

