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1. Introduction
The interpretation of incoming sensory infor-
mation from the outside world to guide adap-
tive behavior is a crucial function of the brain.
A fundamental question in neuroscience is how
and where sensory information is translated into
motor commands in a context- and learning-
dependent manner. Studies have demonstrated
a gradual transformation of sensory signals into
decision/motor signals from sensory to frontal
areas: primary sensory areas encode primarily
the physical features of the stimulus, whereas
the response of frontal areas (such as the pre-
frontal cortex) covaried with both the decision
and the physical features of the stimulus. Thus,
it has been argued that flexible sensorimotor de-
cisions result from the integration of sensory and
task information in the prefrontal cortex. The
medial prefrontal cortex (mPFC) is assumed to
play a fundamental role in context-dependent
behaviors.
To determine which neurons are involved in a
particular aspect of sensorimotor task, an unsu-
pervised clustering algorithm developed to ex-
plore the neural behavior of a large recorded
population of neurons and their hypothesized

roles more precisely. By defining the proper-
ties of neurons within a specific group, the re-
searcher can then determine functional classes of
neurons depending on their relationship to the
task. Gaussian mixture model (GMM) is among
the most used algorithms for the clustering the
neurons of the sensorimotor areas [3]. The con-
cept is based on collecting significant features
from the firing rate and clustering them using
an expectation-maximization Gaussian mixture
algorithm (EM-GMM) [5]. The approach can
automatically detect and cluster similar firing
rate profiles based on specific signal characteris-
tics.
In a different study, to investigate the role of
learning in the modification of synaptic connec-
tions and assess brain plasticity, functional con-
nectivity study of neuron-to-neuron or network-
to-network was utilised. Neural plasticity, also
referred to as neuroplasticity or brain plasticity,
is the capacity of the nervous system to change
its activity in response to intrinsic or extrinsic
stimuli by reorganizing its structure, functions,
or connections. Through the synaptic connec-
tions, brain cells construct the neural circuits
that support our sensory, motor, and cognitive
abilities and eventually govern our entire behav-
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ior. The correlation which exists between the
firing activity of cortical neurons, are thought to
be a key in processing of many neural systems;
hence, the functional connectivity by correlation
analysis was evaluated. Correlated neurons fire
at similar times but not precisely synchronously;
therefore, correlation must be described in terms
of a timescale within which spikes are consid-
ered correlated. Also, spiking is sparse regard-
ing the recording’s sampling frequency and spike
duration. This implies that conventional ap-
proaches to correlation (such as Pearson’s cor-
relation coefficient) are inappropriate, as peri-
ods of quiescence should not be counted as cor-
related and correlations should compare spike
trains over short time frames, not just instan-
taneously. So, to be more precise and to over-
come the flaws of correlation analysis in spike
data, researchers used spike time tiling coeffi-
cient (STTC) method [2]. The spike time tiling
coefficient uses the proportion of the recording
that falls within delta t of spikes from neuron
A to evaluate if the proportion of spikes in neu-
ron B that share this property is indicative of
the correlation. Cross-correlogram method was
also implemented to assess mono-synaptic direc-
tional connectivity [6] as neurons in the cerebral
cortex create thousands of synapses with other
cortical neurons in nearby and distant brain re-
gions and have descending and recurrent connec-
tions with subcortical systems.

2. Methods
Data used in clustering and connectivity
projects are respectively titled as "Psychometric
detection task" and "Delayed response detection
task" gathered by neuroscientists at EPFL’s lab-
oratory of sensory processing.

2.1. Psychometric detection task
Mice were trained head-restrained to perform a
whisker dependent tactile detection task during
which a brief passive C2 whisker stimulation
is present and mice respond by licking a spout
in order to obtain a reward (Figure 1A). The
whisker stimulation was achieved by attaching
an iron particle to the C2 whisker (1 mm from
the pad) at the beginning of each training
session. A magnetic coil placed directly below
the mouse’s head produced a 1 ms magnetic
pulse, which was subsequently used to induce

a small and rapid whisker movement. Over
sessions, mice learned to lick in response to
the whisker stimulus within the one second
response window after stimulus onset. Mice
were also required not to lick for a variable
2.5-3.5 s ‘No Lick’ window in order to initiate a
new trial (Figure 1B). Mice were presented with
four different whisker stimulation amplitudes
from very low (1 degree) to salient (3.3 degree)
randomly interleaved during the behavioral
session. Trials when the mouse licked the
reward spout within the 1 second response
window after whisker stimulation, were con-
sidered as “hit trials”, and rewarded with the
sweet water; if the animal did not lick within
one second of response window after whisker
stimulation no reward was delivered, and these
trials were considered as “miss trials”; trials
when no whisker stimulation were delivered
(catch trials), but the mouse licked the reward
spout were considered as “false alarm trials”;
if no licking occurred during catch trials, they
were considered as “correct rejection”. Once the
performance of the animal reached a stable and
satisfactory level (more than 70 percent of hit
rate and less than 30 percent of false alarm for
the strongest amplitude), an acute extracellular
recording session was performed using silicon
probes as mice performed the psychophysical
task. Two areas out of three areas were recorded
simultaneously so, in each session, two probes
were implanted into two distinct brain sites.

Figure 1: (A) The experimental setup for the
whisker-based detection task. Mice were head-
restrained in front of a water spout and above
an electromagnetic coil.(B) Task structure. An-
imals were trained to respond to the whisker
stimulation by licking the reward spout within
the 1 s of the response window and to suppress
licking for a random interval of 2.5-3.5s during
no lick period.
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2.2. Delayed response detection task
In another task, a go/no-go learning paradigm
was designed where head-restrained mice
learned to lick in response to a whisker stimulus
after a 1-s delay period (Figure 2A- 2C). Each
trial included a visual cue (200 milliseconds,
green LED) and an auditory cue (200 ms, 10
kHz tone of 9 dB added on top of the continuous
background white noise of 80 dB). The stimuli
were separated by a delay interval that was
gradually increased to 2 seconds during the
course of the pretraining days. During the be-
havioral studies, all whiskers were trimmed with
the exception of the C2 whiskers on both sides.
Expert and Novice mouse groups underwent
a pretraining phase consisting of trials with
visual and auditory signals (without whisker
stimulus) (Figure 2C). Mice were rewarded for
licking a spout placed on their right side within
one second after the onset of the auditory cue.
Trials were separated by 6 to 8 seconds and
began after a time of 2 to 3 seconds during
which mice did not lick the spout. Licking
before the response period (Early lick) aborted
the trial and introduced a 3-5 s timeout. Mice
learned to lick the spout by detecting the
auditory cue and suppressing early licking after
3-6 days of pretraining. The electrophysiological
recordings from the Novice group of mice was
performed when mice finished the pretraining
phase and were introduced to the whisker
delay task (Figure 2C). In half of the trials, a
whisker stimulus (10 ms cosine 100 Hz pulse
through a glass tube attached to a piezoelectric
actuator) was applied to the right C2 whisker
1 s following the beginning of the visual cue.
Importantly, the reward was only accessible in
trials with the whisker stimulus (Go trials),
and mice who licked in trials without the
whisker stimulus (No-Go trials) were punished
with a time-out and an auditory buzz tone
(Figure 2B). Thus, mice were trained to change
their licking/non-licking behavior in response to
the whisker stimuli. Since the whisker stimulus
was weak, Novice mice continued to lick in the
majority of Go and No-Go trials regardless of
the whisker stimulus and exhibited no whisker
learning (Figures 2D). The Expert mice entered
a 2-29 day Whisker-training phase during which
a stronger whisker stimulus (larger amplitude
and/or pulse train) and shorter delays (for some

mice) were introduced. As the mice learnt to
lick properly, the whisker stimulus amplitude
was gradually decreased and the latency was
increased to 1 s, eventually achieving the same
circumstances as novice mice. As measured
by the piezoelectric lick sensor, expert mice
decreased licking in No-Go trials but increased
their premature early licks after the whisker
stimulus (Figure 2D).

Figure 2: (A) Behavioral setup. Sensory stim-
uli were delivered to head-restrained mice. (B)
Task structure and trial outcomes in go and no-
go trials. (C) Learning paradigm. All mice went
through visual-auditory pretraining, where all
licks after the auditory cue were rewarded. Ex-
pert mice went through whisker training, where
final task structure was used as in (B). (D) Task
performance. Left: first-lick time histogram was
similar in go versus no-go trials in novice mice
but differed in expert mice. Early licks are
shown with light colors. Middle: novice mice
licked equally in go and no-go trials, whereas ex-
pert mice licked preferentially in go trials (quan-
tified as mean ± SEM across all completed tri-
als). Right: both groups of mice made more
early licks in go compared to no-go trials. *** in-
dicates p < 0.001 according to Wilcoxon signed-
rank test.

2.3. Clustering analysis of spike data
5 kinds of trials are included in the analysis;
hit trials aligned both to whisker stimulus onset
and to jaw opening onset; miss trials aligned to
whisker stimulus onset; spontaneous licks hap-
pening in inter-trial intervals and aligned to the
lick signal from piezo sensor on water spout;
spontaneous whisking trials that are aligned to
the onset of whisking. For each neuron and trial
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type, time-varying PSTHs (100 ms bin size) were
generated during a 2.5-s window beginning 1 s
before the alignment and ending 1.5 s afterward
(25 bins for each kind of trial). PSTHs from vari-
ous trial types were baseline subtracted, normal-
ized to the range of values across all bins (of all
five trial types), and then concatenated, yielding
an activity matrix X ∈ R1598∗125 whose row I
corresponds to the concatenated normalized fir-
ing rate of the neuron I across various trial types
and columns correspond to time bins (Figure 3).
A general overview of steps taken for clustering
is shown in Figure 4. To decrease the existing
redundancy between firing rate time bins and
speed up the computation, principal component
analysis (PCA) was applied to linearly projected
firing rate vectors onto a low-dimensional space
removing correlated features before clustering.
PCA was performed on the centered version of X
(i.e.,xi − x̄i) and identified nine significant com-
ponents.

Figure 3: PSTH of matrix X. Color bar repre-
sents normalized firing rate.

By normalizing the data, the weight of distinct
components was equalized, resulting in one vari-
ance for each component (X ′ ∈ R1598∗9). Next,
spectral embedding was used to identify non-
convex and more complicated clusters. To do
this, the similarity matrix S ∈ R1598∗1598 was
calculated, whose element at row I and column
j measures the similarity between xi

′ and xj
′ as

sij = exp
−||xi′ − x′ ||22

2σ2
∈ [0, 1],

where σ is a free parameter that determines how

Figure 4: Block diagram indicating the different
steps for unsupervised neuronal clustering. Di-
mensionality reduction and spectral embedding
were applied on concatenated trialtype averaged
PSTHs of neurons and the results were clustered
by fitting a Gaussian mixture model (GMM).

local similarity is measured in the feature space.
σ was calibrated by setting the average similar-
ity value at 0.5. Then, the normalized Laplacian
matrix was constructed using the formula

L = I −D−0.5WD−0.5,

where I is the identity matrix and D
is the diagonal degree matrix defined as
diag({

∑1598
k=1 sik}

1598

i=1 ). The transformed features
are rather abstract and computed as the eigen-
vectors of L. Notably, the new feature space is a
non-linearly converted version of the PCA space,
which itself is a linearly transformed version of
the original firing rate space. Such a transforma-
tion is believed to naturally separate data points
which are clustered together [1]. Using the el-
bow approach on the eigenvalues of matrix L
(i.e., locating the sharp transition in the deriva-
tive of sorted eigenvalues), (after omitting the
very first eigenvector) the first 8 eigenvectors of
matrix L were considered as representative fea-
tures, resulting in matrix X̃ ∈ R1598∗8. Using a
Gaussian Mixture Model (GMM), neurons were
clustered based on the resulting matrix X̃. The
approach assumes that the underlying data dis-
tribution is a combination of K Gaussians with
means {µ1, ..., µk}, diagonal covariance matri-
ces {

∑
1, ...,

∑
k}, and weights {ρ1, ..., ρk}. The

parameters of this mixture model were com-
puted using the expected maximization (EM)
approach for a given K [3]. To do this, the
’fitgmdist’ function in MATLAB (Mathworks)
was utilized with 1,000 maximum iterations, 0
regularization value, 5000 replicates, and a di-
agonal covariance matrix constraint. This gen-
erates a GMM in which the principal axes of
the Gaussians are parallel to the axes of the
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feature space, providing greater flexibility than
the k-means approach while preserving a lim-
ited number of fitting parameters. The number
of clusters was then chosen (k = 17) by mini-
mizing the Bayesian information criterion (BIC)
(Figure 5). It is a penalized likelihood term de-
fined as -2log(L) + Mlog(n), where log(L) is the
data’s negativelog-likelihood, M is the number
of GMM parameters, and n is the number of ob-
servations. The first term rewards models with
strong fit, whereas the second term penalizes
models with greater complexity. Using the fitted
parameters, each neuron was assigned a cluster
index ki ∈ {1, ..., 17} corresponding to the Gaus-
sian distribution to which it most likely belongs.
The output of the GMM stage was the vector
K ∈ {1, ..., 17}1598 holding the neuron cluster in-
dexes (Figure 7).

Figure 5: Determination of the number of clus-
ters. Number of optimal clusters (k=17) was
determined as the minimum of the Bayesian in-
formation criterion (BIC) curve.

To determine the amount that neurons from
various brain regions contribute to each clus-
ter composition, two steps were taken. First,
the distribution of neurons within each cluster
across distinct brain areas was assessed (Fig-
ure 9). Weighted proportions were evaluated to
account for the disparities in the total number of
neurons belonging to each group and brain area.
To see how the neurons of a specific area are dis-
tributed across clusters, the same calculation of
Figure 9 has been done with difference of nor-
malization to the number of clusters instead of
the number of areas (Figure 10). Finally, a "dis-
tribution index" (Figure 8) that measures the
dispersion of each cluster across several brain
areas was established. The total variation dis-

tance between the weighted distribution of neu-
rons was calculated in each cluster across three
brain regions and the uniform distribution for
this purpose:

TVk =
1

2

∑
a

∣∣∣∣ρk,a − 1

3

∣∣∣∣,
Where ρk,a is the weighted proportion of cluster
k neurons that belong to region a. Note that ρk,a
has been normalized with respect to areas, i.e.,∑

a ρk,a = 1. The distance TVk has a minimum
value of 0 when the neurons of cluster k are dis-
persed uniformly across all brain regions and a
maximum value of 2

3 when all neurons of cluster
k belong to a single brain region. To scale this
value between zero and one, a distribution index
was constructed Dk for each cluster k as follows:

Dk = 1− 3

2
TVk ∈ [0, 1],

Dk = 1 implies that cluster k is uniformly dis-
tributed throughout brain regions, while Dk =
0 indicates that cluster k is concentrated in a
single brain region.

2.4. Interareal connectivity analysis
Single units were isolated and separated into
fast-spiking units (FSU) or regular spiking units
(RSU) based on spike width. Utilizing the sub-
set of sessions with simultaneous paired record-
ings from whisker sensory and motor cortices,
the changes in the coordination of interareal
wS(1,2)->wM(1,2) neural activity across learn-
ing were examined using two distinct techniques.

2.4.1 Pearson correlation

First, the Pearson correlation was determined
between trial-by-trial whisker-evoked responses
in pairs of individual neurons recorded from
wS1/wS2 (5 to 55 ms after whisker onset) and
wM1/wM2 (10 to 90 ms after whisker onset)
(Figure 15). For the pair-wise correlation anal-
ysis, only neurons within the analysis windows
whose average firing rate was greater than 2.5 Hz
were examined. Similarly, the Pearson correla-
tion between the trial-by-trial average popula-
tion responses in the same task epochs between
pairs of simultaneously recorded areas was cal-
culated (Figure 17A).
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2.4.2 Spike Time Tilling Coefficient

The STTC technique [2] was utilized as a sec-
ond measure of pair-wise correlation, which is
hypothesized to be insensitive to firing rate. The
STTC was calculated during a 1-second window
centered on the whisker stimulus (Figure 17B)
and was defined for spike trains A and B as

STTC =
1

2

(
PA − TB

1− PATB
+

PB − TA

1− PBTA

)
,

where PA and PB are the proportion of spikes
from A falling within ±∆t(±10 ms) of a spike in
B and vice versa and TA and TB are the propor-
tion of the total recording time that falls within
±∆t of a spike from B or A, respectively (Fig-
ure 6).

Figure 6: Diagram illustrating the spike time
tiling coefficient computation. PA, PB, TA, and
TB are the four parameters required to deter-
mine the spike time tiling coefficient. ∆t is the
only free parameter. Values and scales are only
for illustrative purposes. Adapted from [2].

2.4.3 Cross-correlograms

In addition, directional functional connectivity
from wS1 to wM1 and from wS2 to wM2 was
determined using cross-correlograms (CCG)
within a 1 second window centered on whisker
stimulus (Figure 16, and 17).The CCG was
defined as

CCG(τ) =
1
M

∑M
i=1

∑N
t=1 χ

i
1(t)χ

i
2(t+ τ)

θ(τ)
√
λ1λ2

,

where M is the number of trials, N is the num-
ber of bins in the trial, χi

1 and χi
2 are the spike

trains of the 2 units on trial i, τ is the time
lag relative to reference spikes, and λ1 and λ2

are the mean firing rates of the reference and
target units, respectively. θ(τ) is the triangle
function that corrects for the overlap of time
bins resulting from the sliding window. Within
the analysis window, neurons with a firing rate
greater than 1 Hz were included in the analysis.
Cross-correlograms were corrected by removing
a jittered version [7] (Figure 17C) to better cap-
ture fast timescale changes related to feedfor-
ward connections

CCGcorrected = CCG− CCGjittered

The jittered CCG was generated by averaging
100 resamplings of the original dataset in which
spike times inside each 25-ms window were per-
muted randomly across trials. This technique
eliminates stimulus-locked and slow timeframe
correlations bigger than the jitter window while
maintaining the trial-averaged PSTH and num-
ber of spikes each unit. The significant direc-
tional link from reference to target neuron was
determined for each pair of recorded units if the
maximum CCG within time lags between 0 and
10 ms was greater than the 6-fold standard de-
viation of the jitter-corrected CCG flanks (be-
tween ± 50 to 100 ms). For both analytical
methods, in wS1/wS2, we concentrated only on
RS units, which are known to have long-range
projections. In wM1/wM2, correlations and di-
rectional connectivity were evaluated indepen-
dently for RS and FS units.

3. Results
3.1. Clustering analysis of spike data
Unsupervised clustering of neurons was per-
formed on the basis of their temporal firing pat-
tern across several trial types (Hit, Miss, Sponta-
neous licks, and whisking) by combining neurons
from different brain regions. Clustering based
on the Gaussian mixture model (GMM) pro-
duced 17 groups of neurons (Figure 7), sorted by
their onset latency. Next, a "distribution index"
was calculated that measures the composition of
clusters inside versus between areas (Figure 8).
The low distribution index for wS1 clusters (1,
2, 3), tjM1 clusters (5, 8, 11), and mPFC clus-
ters (6, 17) indicates their limited distribution in
specific brain areas. In contrast, the dispersion
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index was high for the other clusters, indicating
that these clusters are widely distributed across
brain regions.

Figure 8: Distribution index between 0 (local-
ized in one area) to 1 (uniformly distributed).
Values are corrected for different sample size in
different areas.

The neuronal clustering revealed some patterns
of activity: (1) a rapid and transient increase in
neuronal activity following the whisker stimulus
(clusters 1–3), which was predominantly repre-
sented in wS1; (2) both inhibition (clusters 4)
and excitation (cluster 5,7-11) mainly in tjM1;
and (3) complex behaviours mainly in mPFC
(cluster 6,12-17). cluster 1 and 2 are mostly
composed by wS1 neurons, cluster 5 by tjM1
neurons, and cluster 6 by mPFC neurons indi-
cating that there are specific patterns related to
a specific area. Strikingly, the majority of clus-
ters are represented by neurons of all three ar-
eas pointing to a distributed information cod-
ding and that similar neuronal responses can be
found in all three areas.

3.1.1 How sensory information is repre-
sented by neuronal activity?

In figure 11, grand average PSTH of most rep-
resentative clusters of wS1 is shown. We have
sensory neurons in clusters 1, 2, and 3 with the
major contribution of wS1 however, it is evident
that mPFC is the second contributor in the com-
position of clusters 2 and 3 indicating the exis-
tence of sensory neurons in mPFC. Considering
hit trials, there is a secondary lasting excitation
in cluster 2 and a secondary lasting inhibition

in cluster 3 compared to cluster 1, which is 99
percent wS1.

Figure 11: Clusters 1-3. Most representative
clusters of wS1.

3.1.2 How motor information is repre-
sented by neuronal activity?

In figure 12, grand average PSTH of most repre-
sentative clusters of tjM1 is shown. As demon-
strated in the figure below, jaw opening-related
clusters which contain mainly motor related neu-
rons are widespread across the areas; however,
cluster 5 is quite specific to tjM1 and there is
not any activity in miss trials.

Figure 12: Clusters 4, 5, 7, 8. Most representa-
tive clusters of tjM1.
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Figure 7: PSTH of all neurons clustered and weighted proportion of neurons within each cluster
belonging to different brain regions.

Figure 9: Composition of clusters. Weighted
proportion of neurons within each cluster be-
longing to different brain regions

3.1.3 How choice information is repre-
sented by neuronal activity?

For the Identification of choice or decision neu-
rons, they should exhibit activity in hit trials
but not in miss and spontaneous licking trials as
the decision is defined to lick the spout in pres-
ence of a whisker stimulus. Despite having mi-
nor activity in miss and spontaneous lick trials,
cluster 6 is the closest to the definition of choice
neurons between all clusters and choice neurons
are sub-group of this cluster (Figure 13). Choice
neurons are distributed across areas but more in
mPFC.

Figure 10: Composition of areas. Weighted pro-
portion of neurons within each area belonging to
different clusters

Figure 13: Cluster 6. The most representative
cluster of mPFC.
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3.1.4 What else is represented in mPFC?

Two of the clusters, 15 and 14, display an in-
triguing pattern of activity that may indicate a
role for the areas, most notably the mPFC, in
the generation of teaching signals for learning by
error (Figure 14). Cluster 15 demonstrates that
there is a maximal activity in spontaneous licks
that do not match motor activity since it is ab-
sent in hit trials and may signal the absence of
the reward despite licking (reward expectation).
Cluster 14 reveals that there is a maximal ac-
tivity when the reward is missed and may signal
the mice not doing the task correctly.

Figure 14: Clusters 14 and 15. Error (teaching)
signal in mPFC.

3.2. Interareal connectivity analysis
To examine how the coordination between sen-
sory and motor cortices changed throughout the
course of learning, interareal interactions were
assessed among wS1->wM1 and wS2->wM2 in
the subset of sessions in which simultaneous
paired recordings from these regions were col-
lected (Figure 15 and Figure 16). Averaged over
individual pairs of neurons, trial-by-trial corre-
lation between evoked activity of wS2-RS units
with wM2-RS units increased across learning
while it decreased between wS2-RS units and
wM2-FS units. These apparent changes in cor-
relations may be influenced by variations in fir-
ing rates caused by learning. Despite the fact
that the activity of wM1 FS units increased with
learning, the correlation between wS1-RS units
and wM1-FS units did not alter considerably,
nor did the connection between wS1-RS units
and wM1-RS units. As a further control, in-
terareal pairwise correlations utilizing the spike
time tiling coefficient (STTC) approach were as-
sessed [2], which is believed to be insensitive
to firing rate (Figure 17B). Using STTC anal-
ysis, the only significant increase in correlation
across learning was found between wS2-RS and
wM2-RS units. Trial-by-trial correlation of the

population response showed similar patterns of
change across learning in both area pairs as
those observed in pair-wise correlation changes
(Figure 17A). To further analyze changes in
functional connectivity, the amount of direc-
tional connections (putative direct monosynap-
tic connections) were determined based on short-
latency sharp peaks in the cross-correlograms
between pairs of neurons from the whisker sen-
sory and whisker motor cortices (Figure 16 and
17C). The number of linkages between wS2-RS
units and wM2-RS units increased significantly
as learning progressed. These findings show that
learning increases the ratio of excitation to in-
hibition in the sensory-evoked response in wM2,
but decreases it in wM1 in favor of inhibition.
Increased functional connectivity between wS2
and wM2 may result in increased activity of ex-
citatory neurons in wM2 in answer to learning.

Figure 15: Pair-wise correlation between sen-
sory and motor cortices in Novice and Expert
mice. Left: A scatter plot illustrating the trial-
by-trial correlation between the whisker-evoked
response of a sample pair of neurons in wS2 and
wM2. Each circle indicates the neural pair’s re-
sponse in a 1 trial. The circles were slightly jit-
tered for viewing purposes. Gray line: least-
squares regression. Middle: Average pair-wise
Pearson correlation of wS1-RS units with wM1-
RS and wS1-RS units with wM1-FS units sepa-
rately. Right: Average pair-wise Pearson corre-
lation between wS2-RS units and wM2-RS units
and wS2-RS units and wM2-FS units. Error
bars: SEM. The Wilcoxon rank-sum test was
used to compare Novice and Expert statistically
(ns: p > = 0.05; *: p 0.05; ***: p 0.001).

4. Conclusions
Clusters with wS1 majorities are characterized
by a transient, rapid, and sharp activation in re-
sponse to the whisker stimulation (hit and miss
trails), and the majority of neurons of these
clusters (1, 2, and 3) are identified as sensory
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Figure 16: Left: Example of a cross-correlogram
between two neurons from wS2 and wM2 simul-
taneously recorded. A directional connection be-
tween wS2 and wM2 has been detected due to
a threshold crossing between 0 and 10 millisec-
onds. Middle: Percentage of discovered connec-
tions from wS1-RS to wM1-RS and wM1-FS.
Right: Percentage of discovered directional con-
nections from wS2-RS to wM2-RS and wM2-FS
units. The numbers on each bar show the total
number of discovered connections and recorded
pairs.

neurons. Clusters composed primarily of tjM1
neurons (clusters 4, 5, 7, and 8) participate
in movement-related functions (hit and sponta-
neous licks trials) and are predominantly com-
posed of motor related neurons. On the other
hand, it is believed that mPFC plays a role in
sensory input to motor output cooperating in
the integration. Clusters composed primarily
of mPFC neurons (clusters 6, 14, and 15) ex-
hibit complicated behaviors that may indicate
the mPFC’s probable participation in learning
and teaching, resulting in improved decision-
making. Particularly, cluster 6 could indicate
choice neurons with strong excitation in hit tri-
als and minor activity in miss and spontaneous
lick trails. Moreover, clusters 14 and 15, could
show an error signal pointing to not receiving
the reward.
On a different study in connectivity analysis, It
has been found out that RS units in wM1 de-
creased their sensory-evoked response over the
course of learning, but RS units in wM2 in-
creased their response [4]. Trial-by-trial cor-
relations (Figure 15) and spike-triggered con-
nectivity analyses (Figure 16) both indicated
enhanced coupling between wS2-RS units and
wM2-RS units, which could, at least in part, re-
sult from potentiation of monosynaptic inputs
from wS2-RS units to wM2-RS units, although
other more complex mechanisms could also play
a role. In contrast, FS units in wM1 increased
their response over the course of learning, while

Figure 17: (A) Interareal correlation of popula-
tion response in Novice and Expert mice. (Left)
Scatter plot of the average trial-by-trial popula-
tion response between wS1-RS units and wM1-
RS units for a Novice session. Gray line: Pear-
son correlation of trial-by-trial average popula-
tion response of wS1-RS and wM1-RS and wS1-
RS and wM1-FS units. (Right) Pearson correla-
tion of trial-by-trial population average response
of wS2-RS vs wM2-RS and wS2-RS versus wM2-
FS units. Circles represent separate sessions.
Error bars: SEM. (B) Correlation between the
sensory and motor cortices of novice and expert
mice utilizing the STTC technique. Left: Aver-
age pair-wise STTC correlation of wS1-RS units
with wM1-RS and wS1-RS units with wM1-FS
units. Right: Average pair-wise Pearson corre-
lation between wS2-RS units and wM2-RS and
wS2-RS units and wM2-FS units. Error bars:
SEM. (C) Example cross-correlogram (CCG)
from a pair of neurons simultaneously recorded
in wS2 and wM2 of an Expert mouse with a
significant connection; similar example pair as
in Figure 16, but with CCG from -100 to 100
ms time lags. Jitter correction approach (left)
and significant functional connections detection
(right). Significant connections were detected
if any threshold crossing happened within 0- to
10-ms time lags (gray bar) of the jitter-corrected
CCG. Threshold (red dotted line) was defined as
6-fold standard deviation of the jitter-corrected
CCG flanks (red bars).
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FS units in wM2 decreased their evoked neu-
ronal activity. Findings indicate that the bal-
ance between excitation and inhibition changes
differentially with learning in wM1 and wM2,
with improved sensory-evoked inhibition rela-
tive to excitation in wM1 and enhanced sensory-
evoked excitation relative to inhibition in wM2.
Changes in inhibitory neural activity may play
a significant role in task learning. Throughout
learning, increased recruitment of rapid inhibi-
tion in wM1 may reduce the response of exci-
tatory neurons in wM1. It is hypothesized that
inhibiting wM1 activity could improve whisker
detection performance by minimizing whisker
movements, which could otherwise lead to sen-
sory reafference signals. On the other hand, the
decreased firing of inhibitory neurons in wM2
during learning may permit the excitatory neu-
rons to react more strongly.
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