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Abstract
We present the Domain Reduction Method (DRM) in the context of three-dimensional
numerical simulations of strong ground motion for the study of the effects due to the seis-
mic source on geological and man-made structures. DRM is a sub-structuring technique
that allows to divide the region under study in two subsequent models, in order to reduce
the computational cost of the simulation and to guarantee greater accuracy in the results.
We explain how the method is implemented, in the plane wave scenario, on code SPEED
(SPectral Elements in Elastodynamics with Discontinuous Galerkin), and the way in which
the input files are generated for a correct usage of the code.
The validity of the method and its advantages are tested on some preliminary geological
models.

Keywords: DRM, seismic, SPEED, plane wave, earthquake





Abstract in lingua italiana
In questa tesi viene presentato il Metodo del Dominio Ridotto (MDR) nel contesto di
simulazioni numeriche tridimensionali del movimento del suolo, volte allo studio degli ef-
fetti provocati da una sorgente sismica su strutture di tipo geologico o artificiale. MDR si
presenta come una tecnica di tipo sub-strutturale dal momento che comporta la divisione
della regione di interesse in due modelli sequenziali, volti alla riduzione del costo com-
putazionale della simulazione e al fine di garantire una migliore accuratezza dei risultati.
Viene descritto il modo in cui il metodo è implementato, nel contesto di onde piane,
all’interno del codice SPEED (SPectral Elements in Elastodynamics with Discontinuos
Galerkin), e la procedura necessaria da seguire per la creazione dei file di input in modo
da garantire un corretto uso del codice.
Il metodo viene poi validato facendo uso di alcuni modelli geologici introduttivi, grazie ai
quali è possibile anche analizzare i vantaggi legati al MDR.

Parole chiave: MDR, sismico, SPEED, onde piane, terremoto
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Introduction
Simulating earthquake ground motion in seismic regions for the study of its effects on
geological or man-made structures is a topic of great interest, especially in applications
involving civil and structural engineering.
In spite of that, three-dimensional simulations on seismic wave propagation analyses are
still very hard to put into practice, because of the high computational cost and the com-
plexity in properly defining the earthquake scenario.
Traditional numerical approaches typically consider a single model including in the do-
main the whole geological structure, from the seismic source to the localized structure
under study. This strategy, however, has two major drawbacks: computationally, this
necessarily leads to some approximations in the maximum frequency of propagation and
in the lowest propagation velocity, moreover the construction of a mesh that takes into
account features that can be modeled with a variation of about three/four orders of magni-
tude is very complicated. In addition, these methods appear particularly disadvantageous
when the seismic source is very distant from the site of interest.

This thesis focuses on the Domain Reduction Method (DRM), that is a method repre-
senting an alternative approach to the one described before.
Referring to Bielak, Loukakis, Hisada, and Yoshimura [2003], the DRM is a sub-structuring
technique in which the problem is subdivided into two sequential parts. The first one is
an auxiliary problem where the structure under study is artificially substituted by the
same materials of the surrounding soil. At this stage, it is computed the ground motion
obtained in absence of the structure, the so-called free-field motion. After that, it is con-
sidered only a reduced part of the entire domain, referred to as reduced problem. The
seismic source and most of the propagation path are not taken into consideration. Indeed,
the reduced domain is only slightly larger than the structure of interest.
Seismic excitation are introduced to this model in the form of localized effective forces,
calculated thanks to the free-field motion obtained with the auxiliary domain.
This procedure allows in particular to choose two different grid scales in the composition
of the model, avoiding an high computational cost and leading to an accurate configura-
tion.
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The central approximation made for the development of this thesis is the assumption of
either vertical or oblique plane waves. This hypothesis turns out to be reasonable espe-
cially when the source is located far away from the site under study. Indeed, the spherical
wavefront propagating from the seismic source travels through several transmissions as it
moves through the earth’s crustal layers. Because of the distinct material that composes
the different levels of the earth (hard rock material at depth, softer material near the
surface) and accordingly to Snell’s law (see Aki and Richards [2002]) waves are almost
vertical when they reach the earth’s surface.

The aim of this thesis is to implement the Domain Reduction Method in SPEED (SPec-
tral Elements in Elastodynamics with Discontinuous Galerkin), a high performance open-
source library, which primary use is to examine seismic wave propagation in viscoelastic
heterogeneous three-dimensional media on both local and regional scale (see Mazzieri, Stu-
pazzini, Guidotti, and Smerzini [2013], SPEED: https://speed.mox.polimi.it). This
is done, in particular, by exploiting the implementation of the method already done by
Smerzini [2010] on the code GeoELSE (GeoELastodynamics by Spectral Elements). The
latter represents a sort of older version of SPEED.
Moreover, suitable Matlab’s scripts have been developed for the phase before calculating
the effective forces in SPEED. More precisely, they are involved in the computation of
the free-field motion, necessary for the simulation of the reduced domain.
Some three-dimensional tests have been subsequently used to validate the code.

By summarizing the contents in each chapter, we describe the thesis’ structure in detail.

Chapter 1. After a brief introduction to the Domain Reduction Method, we go trough
its theoretical formulation. We start from the equations of motion formulated for the en-
tire domain, until the expression of the effective forces computed in the reduced domain.

Chapter 2. We present here a brief overview of the code SPEED, that will be followed
by the algorithmic aspects of the computation in SPEED both of the stiffness matrix and
of the effective boundary forces. After that, we look more closely at the key aspects of
the procedure for the analysis of plane wave propagation, the context in which the code
was developed.

Chapter 3. We describe the steps necessary for the generation of the input files. We
revise all the procedure required for the generation of the mate file with the functions
FDRM (free-field motion). The latter is needed in order to execute the code SPEED
coupled with DRM. The creation of such a file pass through the construction of the com-
putational domain’s mesh (software CUBIT) and all the Matlab scripts already used and
implemented by Smerzini [2011].

https://speed.mox.polimi.it
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Chapter 4. In this chapter we validate the code addressing three different test cases.
The first one (homogeneous model) and the second one (heterogeneous model) are stud-
ied under the incidence of SV and P waves, both in the case of vertical wave (angle of
incidence γ = 0◦) and oblique wave (angle of incidence γ = 10◦).
After that, a more physical test case is studied: croissant valley. The analysis concerns a
valley surrounded by a bedrock subject to a vertical SH wave.

Chapter 5. We provide an overview of the outcomes attained and discuss open problems
for future research.
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1| The Domain Reduction
Method (DRM)

The Domain Reduction Method, also referred to as DRM, represents an alternative
method with respect to the traditional single-step approach used for simulating earth-
quake ground motion in seismic regions.

Indeed, as quoted by Bielak et al. [2003], in the 90’s many models were developed for the
three-dimensional modelling of the ground motion due to seismic events. For instance,
for moderate-size problems with quite simple geometries and geological features, bound-
ary element and discrete wavenumber approaches have become popular (e.g. Mossessian
and Dravinski [1987], Kato, Aki, and Teng [1993], Kawase and Aki [1990]). Instead, for
large-size problems, which includes realistic basin models with strongly heterogeneous
materials, methods like finite elements (e.g. Lysmer and Drake [1971], Toshinawa and
Ohmachi [1992], Bao [1998], Bao, Bielak, Ghattas, Kallivokas, O’Hallaron, Shewchuk,
and Xu [1998] and Aagaard, Hall, and Heaton [2001]) and finite differences (e.g. Frankel
and Vidale [1992], Frankel [1993], Graves [1993, 1996], Olsen, Pechmann, and Schuster
[1995] and Pitarka [1999]) are preferred due to their perspicuity and flexibility. An-
other approach used in this framework is that of Spectral elements, see e.g. Faccioli,
Maggio, Paolucci, and Quarteroni [1997] and Komatitsch, Tsuboi, Ji, and Tromp [2003],
Komatitsch, Liu, Tromp, Suss, Stidham, and Shaw [2004].

However, traditional methods usually adopt uniform structured grids for large-size prob-
lems. This often forces to make prohibitive simplifications and approximations in three-
dimensional simulations, including restricting the highest frequency or the slowest wave
velocities that can be taken into account. Even though the softest soils only cover a small
section of the computational domain, the grid size, which is proportional to the lowest
shear wave velocity in the model and inversely proportionate to the highest frequency of
interest, is held constant throughout it.
This explains why finite element and other methods with irregular grids are more prefer-
able: thanks to their flexibility, they can better fit the mesh size to the local wavelength
of the propagating waves.
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Although the grid problem can be overcome in some way, another issue still remains:
despite their differences, the traditional finite difference and finite element methods are
characterised by the simultaneous computation of the ground motions near the causative
fault, along the propagation path and within the region of interest. This is done using a
single model that includes the whole geological structure, from the fault region to the site
under study, namely adopting a single-step procedure. Despite this approach is good for
a wide range of applications, it presents some problems when the seismic source is distant
from the geological site under examination.

According to the work by Bielak et al. [2003], in the previous decades several research
projects have been devoted to the development of substructuring techniques based on
combinations of different computational methods aimed at overcoming this problem.
For example, some of these are: i) discrete wavenumber method coupled with finite dif-
ference methods (FDM) by Zahradník and Moczo [1996]; ii) modal summation method
+ FDM by Fäh, Suhadolc, and Panza [1994]; iii) Finite element method (FEM) coupled
with boundary element method (BEM) by Bielak, MacCamy, McGhee, and Barry [1991]
and Mita and Luco [1987]; iv) Finite element (FE) coupled with finite element by Bielak
et al. [2003] and Yoshimura, Bielak, Hisada, and Fernández [2003]; v) Finite difference
(FD) coupled with finite difference by Oprsal and Zahradnik [2002].

In this context, also the DRM represents an alternative approach to the single model,
since it allows to divide the entire domain in order to avoid representing a single large
region in which the seismic source is very far from the interested area or in which the scale
of the elements varies significantly. In particular, DRM permits to reduce the computa-
tional cost of the analysis because is a two-step FE methodology in which an equivalent
seismic excitation is applied at a fictitious boundary which ideally divides the region of
interest (e.g., the Near field) from an external region (e.g., the Far field). For this reason
DRM is a powerful substructuring technique. As a result, the seismic input is positioned
closer to the region of interest and set in a way that ensures the same outcomes as the
initial excitation modeling.
The approach has been originally proposed for soil-structure interaction (SSI) problems
by Bielak and Christiano [1984] and subsequently applied to two-dimensional case-studies
(e.g. Cremonini, Christiano, and Bielak [1988], Loukakis [1988], Loukakis [1994] and
Loukakis and Bielak [1994]). Its extension to three-dimensional problems is provided by
Yoshimura et al. [2003] and limited applications have been proposed in literature, such as
in the works by Cremonini et al. [1988] and Oprsal and Zahradnik [2002]. The former ap-
plies to the finite element (FE) method and validates the formulation proposed by Bielak
et al. [2003], while the second one is formulated for the finite-difference (FD) approach.
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In the DRM the original problem (STEP 0) is divided into two numerical simpler sub-
problems analysed sequentially, as depicted in Figure 1.1:

• STEP I: consider an auxiliary problem, that contains the seismic source and the
propagation path, but from which the localized structure and the geological features
of interest have been removed and replaced with a background structure having the
same materials of the surrounding soil. In this step the free-field ground motion due
to the seismic source is computed. The term free-field motion is used to denote the
ground motion evaluated in absence of the structure or of any excavation.
It is worth noticing that this computation only needs to be performed once for a
certain earthquake source even when some features or system parameters of the
localized structure are supposed to vary. Moreover, the grid or mesh only needs to
be as fine as required by the background model’s softest material.

• STEP II: consider subsequently a reduced problem where the initial domain is re-
stricted in such a way as to delimit the presence of structures and geological features
which are in turn examined. In this way, the new problem is modeled in a more
accurate way, since a finer grid can be considered without compromising a lot the
whole computational cost.
Since now the fault of the earthquake ground motion has been excluded from the
domain, we exploit the ground motion obtained in the previous step in order to de-
termine the seismic input. This is introduced as a collection of equivalent effective
nodal forces acting within a single layer of elements at an ideal interface between the
region of interest and an external domain. The effective forces act as an equivalent
dynamic excitation. This step needs to be repeated whenever changes in parameters
of the localized structure of interest are introduced.

This methodology is capable of efficiently modeling three-dimensional wave fields for an
arbitrary earthquake source in highly heterogeneous geological systems. Moreover, the
main advantage of this modular two-step procedure is the possibility of computing the free-
field displacements and, after that, the effective forces, by either numerical or analytical
methods suitable for simplified geological settings (e.g. horizontally layered crustal model)
and arbitrary seismic excitations (point/extended source or plane wave propagation).
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Seismic source

STEP 0: ORIGINAL PROBLEM

STEP 1: AUXILIARY PROBLEM STEP 2: REDUCED PROBLEM

Structure and geological features

Seismic source
EXTERIOR DOMAIN

INTERIOR DOMAIN

Effective
boundary

INTERIOR DOMAIN

REDUCED EXTERIOR DOMAIN

Figure 1.1: Domain Reduction Method (DRM) two-step procedure: the original problem
is subdivided into two numerical submodels, namely the auxiliary problem and the reduced
problem. STEP 0 (top panel): original problem. STEP 1 (left bottom panel): auxiliary
problem. Seismic source and propagation path effects are included, while structure and
geological features are removed and replaced with a background structure having the
same materials of the surrounding soil. STEP 2 (right bottom panel): reduced model
including the localized geological structure of interest. The coupling of Step 1 and 2 is
given by a set of effective forces, evaluated from the free-field solution (auxiliary problem)
and applied within a strip of elements as an equivalent dynamic excitation. Adapted from
Bielak et al. [2003] and Smerzini [2010].
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1.1. Theoretical formulation of the DRM
In this section we describe the three-dimensional theoretical formulation of the method
as proposed by Bielak et al. [2003] with the contribution given by Smerzini [2010]. Then,
in Chapter 2 we are going to outline its implementation in SPEED.

We consider the problem of a semi-infinite seismic region that contains localized geological
features (e.g. basin, hill, cave) as well as man-made structures, henceforth simply called
"structure", under earthquake excitation. The latter may be caused by a seismically active
fault at depth, as depicted in Figure 1.2, or to plane waves propagating with arbitrary
angle of incidence.

Fault

Figure 1.2: Simple representation of a semi-infinite seismic region characterised by the
presence of a hill, a basin and an active fault.

Since the causative fault may be far from the structure, we want to define a new problem
in which the seismic excitation is brought closer to the region of interest. Certainly this
approach must occur in such a way as to ensure that the resulting ground motion within
the region under study is identical to that caused by the original source.
To do so, consider Γi (sketched by a dashed line in Figure 1.3a) as the fictitious surface
dividing the original domain into two subdomains: the interior one, denoted as Ωi, includ-
ing the structure, and the semi-infinite exterior one, denoted as Ωe, including the seismic
fault. The new excitation has to be specified on this surface Γi. Note that the original
semi-infinite area must be truncated for computational reasons; this is achieved including
the absorbing boundary Γ+ as indicated in Figure 1.3a.

Let the vector field of displacements in the exterior domain Ωe, in the interior domain
Ωi, and in the boundary Γi between them, be respectively expressed as ue, ui and ub as
shown in Figure 1.3a. The earthquake excitation (extended fault or plane wavefront) can
be expressed in terms of a set of equivalent body forces Pe operating close to the fault
(e.g. Bao [1998]).
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As explained before, we want to focus our study on the seismic response in a restricted
region near the structure and not directly on the whole domain. For this purpose, we
partition the total domain in two subdomains, as depicted in Figure 1.3b. It is worth
underline that the displacements ub are continuous across Γi and Pb correspond to the
forces transmitted from Ωe onto Ωi.

Fault

(a)

Fault

(b)

Figure 1.3: Limited seismic region: idealized seismic region confined by the boundary Γ+

including a localized geological irregularity (alluvial basin and a hill) as well as a seismic
source (active fault). a) The artificial interface Γi subdivides the original model into two
subdomains: Ωe, the exterior domain, which includes the seismic source, represented by
a set of equivalent body forces Pe, and the background geological model; Ωi, the interior
domain, which contains only the localized geological feature. b) Explicit partition of the
domain into two subdomains Ωe and Ωi across the fictitious interface Γi: displacements
ub are continuous across Γi, Pb are transmitted from Ωe onto Ωi and −Pb are the cor-
responding reactions equal in modulus but opposite in sign. Adapted from Bielak et al.
[2003].

The equations of motion can be stated in Ωi and Ωe in the following partitioned form
after spatial discretization (for example by the use of spectral elements or finite elements,
without loss of generality):

Interior domain Ωi:MΩi
ii MΩi

ib

MΩi
bi MΩi

bb

üi
üb

+
CΩi

ii CΩi
ib

CΩi
bi CΩi

bb

u̇i
u̇b

+
KΩi

ii KΩi
ib

KΩi
bi KΩi

bb

 ui
ub

 =
 0
Pb

 . (1.1)

Exterior domain Ωe:MΩe
bb MΩe

be

MΩe
eb MΩe

ee

üb
üe

+
CΩe

bb CΩe
be

CΩe
eb CΩe

ee

u̇b
u̇e

+
KΩe

bb KΩe
be

KΩe
eb KΩe

ee

ub
ue

 =
−Pb
Pe

 . (1.2)
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Where M denotes the mass matrix, C the damping matrix and K the stiffness matrix.
Referring to Figure 1.3, the subscripts i, e and b stand for the nodes present in the inte-
rior domain, in the exterior domain or in the inner boundary, respectively. Indeed, the
vectors u, u̇ and ü represent the nodal displacements, velocities and accelerations for the
corresponding subdomain in which they are defined, precisely identified by subscripts i,
e and b. Finally, the superscripts Ωi and Ωe represent the domain over which different
matrices are defined.

In order to obtain the traditional form of the equation of motion, namely the one corre-
sponding to the total domain, it is necessary to add the two equations (1.1) and (1.2) to
obtain:


MΩi

ii MΩi
ib 0

MΩi
bi MΩi

bb +MΩe
bb MΩe

be

0 MΩe
eb MΩe

ee



üi

üb

üe

+


CΩi

ii CΩi
ib 0

CΩi
bi CΩi

bb +CΩe
bb CΩe

be

0 CΩe
eb CΩe

ee



u̇i

u̇b

u̇e



+


KΩi

ii KΩi
ib 0

KΩi
bi KΩi

bb +KΩe
bb KΩe

be

0 KΩe
eb KΩe

ee



ui

ub

ue

 =


0
0
Pe

 .
(1.3)

Now, we are going to consider an auxiliary domain in order to transmit the seismic ex-
citation from the fault to the inner boundary Γi, and also to reduce the computational
burden. As can be seen from Figure 1.4a, the geological features have been removed from
the interior domain, now called Ω0

i , and substituted with the same material of the exterior
domain Ωe, which instead remained unchanged, as well as the seismic source.
Clearly, the superscript 0 in ue0, u0

b , u0
i and P 0

b denotes that this time the nodal dis-
placements and the forces are referred to the interior domain Ω0

i , while the subscripts e,
b and i have the same meaning as before, as can be seen in Figure 1.4.
We know that the element size of the computational grid is determined by the lowest wave
propagation velocity present in the model under study. The smaller propagation velocity
is typically reach under the surface of the localized structures that, however, have been
removed. For this reason the element size is now controlled by the lowest wave propaga-
tion velocity of the background geological structure and this leads to an optimization of
the computational grid.
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Fault

(a)

Fault

(b)

Figure 1.4: Auxiliary seismic region (STEP 1). The localized structure in Ω0
i has been

removed and substituted with a simpler background structure with the same material of
Ωe. (a) Auxiliary domain in its entirety. (b) Auxiliary domain subdivided in exterior
domain Ωe and interior domain Ω0

i . Γi represents the inner boundary between these two
domains. This partition underline the condition of continuity of displacement u0

b and
forces P 0

b transferred through the interface Γi. Adapted from Bielak et al. [2003].

At this point, the equations of motion for the auxiliary problem can be stated in Ωe in
the following partitioned form after spatial discretization:

MΩe
bb MΩe

be

MΩe
eb MΩe

ee

ü0
b

ü0
e

+
CΩe

bb CΩe
be

CΩe
eb CΩe

ee

u̇0
b

u̇0
e

+
KΩe

bb KΩe
be

KΩe
eb KΩe

ee

u0
b

u0
e

 =
P 0

b

Pe

 . (1.4)

Note that equation (1.4) is the same as equation (1.2) except for the presence of the
superscript 0 in the variables ui, ub, ue and Pb. In particular, the matrices M , C and
K are exactly the same as in equation (1.2) because nothing change unless the seismic
source changes.
From the second equation in (1.4), we can now explicit the nodal body forces Pe as a
function of the free-field motion:

Pe = MΩe
eb ü

0
b +MΩe

ee ü
0
e +CΩe

eb u̇
0
b +CΩe

ee u̇
0
e +KΩe

eb u
0
b +KΩe

ee u
0
e. (1.5)

At this point, by substituting (1.5) into equation (1.3) it is possible to solve the latter
equation for the entire domain in terms of the nodal displacements ui, ub, ue. However,
this does not give any advantage with respect to the traditional formulation, since equation
(1.5) contains the terms MΩe

ee ü
0
e, CΩe

ee u̇
0
e and KΩe

ee u
0
e, that requires the free-field u0

e to be
stored through the domain Ωe. Of course this entails an excessive amount of calculation.
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To overcome this problem, consider the transformation variable we defined as follows:

we = ue − u0
e. (1.6)

We can observe that the total displacement wavefield ue can be expressed as the sum of
the free-field u0

e and the residual field we, which in turn expresses the relative displace-
ment with respect to the free-field solution u0

e.
Taking into consideration the just mentioned definition, we can substitute (1.6) into equa-
tion (1.3). After writing the terms containing the free-field on the right hand side, we
obtain the following expression:
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 .
(1.7)

Finally, by substituting the expression of Pe determined in (1.5) into equation (1.7) we
obtain the following desired equation:
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(1.8)

On the one side, the mass matrix, the damping matrix and the stiffness matrix are still
identical with those of equation (1.3). On the other side, the seismic forces Pe on the
fault have been replaced by the effective nodal forces P eff , given by:

P eff =


P eff
i

P eff
b

P eff
e
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 . (1.9)
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It is worth noticing that these effective forces Pe have an important property: in their
computation are involved only the matrices Mbe, Meb, Cbe, Ceb, Kbe and Keb, that are
defined on the exterior domain Ωe. The latter entails that these effective forces do not
vanish only on a single layer of elements in Ωe and adjacent to Γi. This small domain is
situated between the surface Γi and the surface Γe, adjacent to the previous one, as one can
see in Figure 1.5. This entails that the nodes on Γi, the nodes on Γe and the nodes between
these two surfaces are the only points where the effective forces in (1.9) are computed from
the auxiliary problem. The effective forces thus constitute the means by which seismic
excitation is introduced into the reduced domain as an equivalent dynamic excitation.
The principal advantage of formulation (1.6) therefore consists in the localization of the
equivalent effective forces only in a strip of elements in the neighborhood of the geological
structure.

There is another important advantage in the formulation (1.9) that is worth pointing out.
In the outer domain Ωe, all the waves are outgoing. As a result, the external domain’s size
can be significantly reduced to get a reduced exterior domain Ωr

e for solving equations of
motion (1.8), provided suitable absorbing boundaries are used to reduce the occurrence
of spurious waves. These conditions were proposed for example by Clayton and Engquist
[1977] and Stacey [1988].

It is exactly for this reason that the method is called Domain Reduction Method. Note
that at least one strip of elements must be included in between the boundary Γe and the
boundary which delimits the reduced domain, i.e. Γ+r (see Figure 1.5).

Figure 1.5: Reduced seismic region (STEP 2). The exterior domain Ωe has been restricted
to the reduced exterior domain Ωr

e, delimited by the surface Γ+r. This domain must
include at least one strip of elements around the boundary Γe. The effective forces Peff ,
which correspond to a dynamic excitation equivalent to the seismic one, are computed
only in the strip of elements in between the inner boundary Γi and the outer boundary
Γe.
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Moreover, only the diffracted wavefield we has an impact on Ωr
e and since the Absorbing

Boundary Conditions (ABCs) only affect that wavefield, their effectiveness when applied
to the exterior boundary Γ+r is greatly increased. This results in a notable reduction of
spurious reflections inside the region of interest.

Compared to previous derivations like the one proposed by Bielak and Christiano [1984],
Loukakis [1988], Loukakis and Bielak [1994], this turns out to be more rigorous and it
considers explicitly the effect of an extended source on a finite fault. Moreover, a similar
procedure was proposed by Loukakis [1988] and developed afterward by Aydinoğlu [1993],
in the context of soil-structure interaction but without explicit analysis of the seismic
source.
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2| Implementation of the Domain
Reduction Method

In this chapter we discuss the implementation of the method described in Section 1.1
within the code SPEED (SPectral Elements in Elastodynamics with Discontinuous Galerkin).

The chapter is organized as follow: a brief overview of the code SPEED will be followed
by the algorithmic aspects of the computation in SPEED of the stiffness matrix and of the
effective boundary forces. Then, we will see in more detail the main steps employed for
the analysis of plane wave propagation, the environment for which the Domain Reduction
Method (DRM) was developed.

2.1. SPEED: a brief overview
SPEED, as explained by Mazzieri et al. [2013], is a high performance open-source library,
which primary use is to approximately solve seismic wave propagation problems in vis-
coelastic heterogeneous three-dimensional media on both local and regional scale.

This code was developed in response to the growing requirement for creating models that
simultaneously account for the seismic source, the propagation path through intricate ge-
ological features and localized superficial irregularities, like alluvial basins and man-made
structures. Always in this framework, other three-dimensional numerical codes were de-
veloped mainly based on finite differences (see e.g. Graves [1996], Moczo, Lucká, Kristek,
and Kristeková [1999], Pitarka [1999], Alford, Kelly, and Boore [1974] and Boore [1970]),
finite elements (Bao [1998]), pseudo-spectral Fourier method (Furumura and Hayakawa
[2007], Kosloff, Kessler, Filho, Tessmer, Behle, and Strahilevitz [1990]) and spectral ele-
ments (Faccioli et al. [1997], Komatitsch and Vilotte [1998], Wald and Graves [1998]).

The last approach, spectral element method (SEM), which is also the one implemented
in SPEED, has proved to be one of the most effective procedures for solving three-
dimensional seismic wave propagation problems in highly heterogeneous media. This
is due to its native orientation toward high performance parallel computing and its ca-
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pacity to provide quick and extremely accurate solutions. SEM was first introduced in
fluid dynamics in the 80’s (Maday and Patera [1989] and Patera [1984]) and was applied
to elastodynamics in the mid 90’s. Following the innovative work by Kosloff and Baysal
[1982], which approximated the solution of the partial differential equations in elastic wave
propagation using a Fourier decomposition of the displacement field, spectral methods for
elastic wave propagation developed first with the introduction of Chebyshev polynomials
(Kosloff et al. [1990], Priolo, Carcione, and Seriani [1994]), and then of Legendre polyno-
mials combined with Legendre-Gauss-Lobatto quadrature formulas (Faccioli et al. [1997],
Komatitsch and Tromp [1999]).

The SEM is a high order variational method that combines the finite element method
(FEM) with the spectral method (SM). In particular, it inherits from the first one the
geometrical flexibility, namely the capacity to take into account irregular interfaces and
to adapt the mesh accordingly, while the spectral accuracy from the second one, i.e. few
grid points per wavelength are necessary to maintain a minimal numerical dispersion due
to the exponential convergence rate to the exact solution. In particular, the ability to
provide an arbitrarily accurate numerical solution by simply increasing the polynomial
approximation degree is one of the main feature of the SEM (Canuto, Hussaini, Quar-
teroni, and Zang [2007]).

The main aspect characterising the SEM is that the Lagrange polynomials, which are
high-order (piecewise) interpolants, are samples of the finite-dimensional space taken at
the Legendre-Gauss-Lobatto (LGL) quadrature points. To be more specific, this choice
of polynomials allows to increase the numerical accuracy with respect to the low order
polynomials shape functions usually used in finite element (FE) method. Indeed, the
crucial aspect of the SEM is the capability of providing an arbitrary increase in accuracy
simply enhancing the algebraic degree of these functions.
On the other hand, it is also possible to improve the accuracy of the numerical solution
by refining the grid, as usually done for FE procedures.

Therefore, the SEM can be considered as a combination of the so-called p (polynomial
degree) and h (grid size) versions of the FE method (see e.g. Babuska, Szabo, and Katz
[1981], Babuška and Suri [1987]).

Consider now the Discontinuous Galerkin (DG) technique, which is a non-conforming dis-
cretization method (Arnold [1982], Wheeler [1978], Arnold, Brezzi, Cockburn, and Marini
[2002], Hesthaven and Warburton [2007]). Referring to Mazzieri et al. [2013], there are
several reasons to explain why it is coupled with SEM for the development of the code:

− complexity of the geometric constraints;
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− seismic wave propagation issues due to a multiscale trait, which involves a large
range of wavelengths;

− difficulty in keeping the computational cost low and, at the same time, dealing with
complex three-dimensional heterogeneous setting.

The DG method, first introduced by Reed and Hill [1973] for neutron transport equation,
was then developed for the treatment of parabolic end elliptic linear or non-linear partial
differential equations (PDEs), for example by Arnold [1982] and Cockburn, Karniadakis,
and Shu [2012]. After that, applications in parabolic equations by Falk and Richter [1999],
Giraldo, Hesthaven, and Warburton [2002] and to acoustic or elastic wave propagation by
Chung and Engquist [2006], Riviere, Shaw, Wheeler, and Whiteman [2003] followed.

Käser and Dumbser [2006] owe the first try of the high-order version of the DG approach
for seismic wave propagation problems in heterogeneous media. However, this attempt
was reviewed because of the high computational cost; in order to raise the computational
efficiency and the performance of the method, a local time stepping scheme was introduced
(Dumbser, Käser, and Toro [2007]). Finally, a similar DG method was exerted by Wilcox,
Stadler, Burstedde, and Ghattas [2010] for the numerical solution of three-dimensional
wave propagation problems in coupled elastic-acoustic media by using a velocity-strain
formulation.

In order to cope the disadvantages of the above approaches and by virtue of the spectral
element method, SPEED was implemented jointly between the Department of Structural
Engineering and of Mathematics of Politecnico di Milano (SPEED: https://speed.mox.
polimi.it).

To sum up, the code permit to perform simulation of seismic wave propagation in visco-
elastic heterogeneous three-dimensional media, by exploiting non-conforming grids and/or
variable approximation orders. One of the biggest advantages over the methods mentioned
above, is the significant reduction of the computational cost per element due to its ap-
plication only at a subdomain level (see discussion by De Basabe and Sen [2007] and
De Basabe and Sen [2010]).

In Figure 3.9 we report a scheme containing the main features of SPEED.

https://speed.mox.polimi.it
https://speed.mox.polimi.it
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SPEED: SPectral Elements
in Elastodynamics with
Discontinuous Galerkin

Spectral Element Method
(Finite element method

+ spectral method)

Discontinuous
Galerkin technique

Simulation of seismic
wave propagation in

visco-elastic heterogeneous
three-dimensional media

+

=

Figure 2.1: Graphical representation of the SPEED code’s features.

2.2. DRM and spectral elements
The formulation of DRM passed before from finite elements (Bielak et al. [2003], Loukakis
[1988]) and then from spectral elements (Faccioli et al. [1997], Faccioli, Vanini, Paolucci,
and Stupazzini [2005]). The implementation, instead, was first of type FE-SE within the
code AHNSE (Advance Hybrid Numerical Solver for Elastodynamics) and, only after, was
formulated using spectral elements by Scandella [2007] within the code GeoELSE, with
particular attention to two-dimensional wave propagation analyses.

In this work, adapting the implementation done by Smerzini [2010] in the 3D parallel
version of GeoELSE (GeoELastodynamics by Spectral Elements) (see Stupazzini, Zambelli,
et al. [2005] and Scandella [2007]), the DRM was implemented in SPEED, for dealing with
plane waves propagation problems.

The adoption of SEM leads to introduce some important features in order to clarify its
formulation. Referring to Faccioli et al. [1997] and Smerzini [2010] for further details, we
report here some of the basic aspects of the SEM taken into consideration.
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Consider an arbitrary model with domain Ω ⊂ Rd, where d is the dimension of the space,
and boundary Γ = ΓN ∪ ΓD ∪ ΓNR, where ΓD is the portion on which the displacement
vector u takes prescribed values, ΓN the portion subjected to external forces (or tractions)
and ΓNR is the fictitious non reflecting boundary.

Then, on this model, we can define the weak formulation of the differential wave equation
through the principle of virtual work (see Zienkiewicz and Taylor [1989]). This can be
written by multiplying the wave equation by an arbitrary displacement test function v(x)
and, after that, integrating over the computational domain Ω.
The problem can be formulated in the following way: find the displacement wavefield
u(x, t) such that ∀t ∈ (0, T ):

∂2

∂t2

∫
Ω
ρu · vdΩ +

∫
Ω
σij(u) : ϵij(v)dΩ =

∫
ΓN

t · vdΓ +
∫

ΓNR

t∗ · vdΓ +
∫

Ω
f · vdΩ,

i, j = 1,...,d.
(2.1)

In (2.1), ρ(x) is the material density, σij is the stress tensor and ϵij is the small strain
tensor.
v(x) represents a generic function for admissible displacements, namely these are contin-
uous through the domain. Moreover, the latter has been assumed to vanish over ΓD, as
well as making all the integrals in (2.1) finite.
f(x, t) is the source term, given by a prescribed body force distribution. Finally, t(x, t)
is the vector of external tractions on ΓN , while t∗(x, t) is the traction vector on the ab-
sorbing boundary ΓNR.

To describe this equation, additional details must be presented. First, suitable initial
conditions must be given at time t = 0 for u and ∂u

∂t
, ∀x ∈ Ω.

For what concerns the constitutive law, instead, we are under the hypothesis of linear
elastic behaviour. Precisely, the Hooke’s law describes the relation between stress and
strain tensors with the displacement field:

σij = λ∇ · uδij + 2µϵij(u). (2.2)

Where λ and µ are the Lamé elastic coefficients, while δij is the Kronecker Delta, such
that: δij = 1, if i = j,

δij = 0, otherwise.
(2.3)
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Instead, the strain tensor is expressed as follows:

ϵ(u) = 1
2(∂ui

∂xj

+ ∂uj

∂xi

). (2.4)

To obtain an approximate numerical solution uN at all grid points of the numerical model,
we need to discretize equation (2.1) with respect to the space variables. In particular, the
SEM is based on a generalized Galerkin approximation of the formulation (2.1).
uN , as well as the admissible displacements vN , are chosen in the space V 0

N := {r ∈
PN , set of continuous polynomials of degree N , such that r|ΓD

= 0}.

Then, consider the semi-discrete formulation of equation (2.1): find uN = uN(x, t) ∈ V 0
N

such that ∀t ∈ (0, T ):

∂2

∂t2

∫
Ω
ρuN · vNdΩ +

∫
Ω
σij(uN) : ϵij(vN)dΩ =∫

ΓN

t · vNdΓ +
∫

ΓNR

t∗ · vNdΓ +
∫

Ω
f · vNdΩ,

∀vN ∈ V 0
N .

(2.5)

It is now necessary to define the form of the approximate solution in a more precise way.
However, since the use of global polynomials on the entire domain Ω brings many disad-
vantages (see Boyd [2001]), another approach is preferable.

We partition the computational domain Ω into disjointed quadrilaterals (in 2D) or hex-
ahedra (in 3D), denoted by Ω1, ...,ΩE. Then, uN and vN are assumed to be piecewise
continuous polynomials of degree N in each of the domains Ωe, as well as being continuous
at the interfaces.

Then, equation (2.5) must be computed for all the domains Ωe. In the latter, each volume
integral is computed numerically by means of the Legendre-Gauss-Lobatto quadrature
formula: ∫

Ωe

fdΩ ≃
∑

j

f(x(e)
j )ω(e)

j . (2.6)

Where x(e)
j is the vector of the coordinates of the LGL nodes in Ωe and the ω(e)

j are the
corresponding weights, more precisely defined in Section 3.2 (see also Canuto, Hussaini,
Quarteroni, Zang, Canuto, Hussaini, Quarteroni, and Zang [1988]).

The resulting scheme can now be defined as a pseudo-spectral domain decomposition
method. For its implementation, we need to select a set of independent polynomials
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rj ∈ V 0
N . After that, we can express the numerical solution in the following way:

uN = rjũj. (2.7)

Where ũj are the unknowns of the problem. The subscript j represents the generic node
of the grid. As a consequence, (2.5) needs to be satisfied only by such rj, i.e. taking
vN = rj, for all j.

The choice made for rj is the set of Lagrange polynomials of degree N , which is equal to
1 at the jth LGL node and vanishes at all the others nodes (see Canuto et al. [1988]). For
further details see also Section 3.2.
This choice mainly leads to two advantages: on one side, it allows to preserve the exponen-
tial accuracy of the spectral method and, on the other side, to minimize the computational
effort, since it yields diagonal matrices (for further details see Smerzini [2010], Section 3.4).

To be more precise, consider (ζi)i=0,...N the N + 1 LGL integration points. The Lagrange
interpolants are the N + 1 one-dimensional polynomials ψq of degree N that satisfy the
following relationship:

ψq(ζi) =

1, if q = i,

0, otherwise.
(2.8)

Precisely, in the one-dimensional case, the qth Lagrange polynomial of degree N on the
reference domain [−1, 1] can be defined as follows:

ψq(ζ) = (ζ − ζ0)...(ζ − ζq−1)(ζ − ζq+1)...(ζ − ζN)
(ζq − ζ0)...(ζq − ζq−1)(ζq − ζq+1)...(ζq − ζN) . (2.9)

Since we deal with the three-dimensional case, the polynomial basis is obtained as the
product of three one-dimensional polynomials of degree N, namely ψijk(ζ) = ψi(ζ)ψj(η)ψk(γ),
with i, j, k = 0, ..., N and being ζ the generic coordinate vector on the reference cube
[−1, 1]3 .

Then, we can define the generic ith displacement component uiN as:

uiN(x) = uiqψq(x). (2.10)

We underline that uiq = uiN(xq), where xq denotes the global grid of LGL nodes. Pre-
cisely, these nodes are the images of the nodes ζ on the reference element through the
mapping F e.
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Considering again equation (2.5), performing numerical integration by the LGL quadra-
ture rule yields, for each domain Ωe and for each scalar component i, the following ex-
pression:

∂2

∂t2
(ρuiN , vi)Ωe + (σlm(uN), ϵlm(vN))Ωe = (ti, vi)Γe

N
+ (t∗i , vi)Γe

NR
+ (fi, vi)Ωe . (2.11)

In the equation above, uiN , vi, ti, t
∗
i and fi are, respectively, the scalar components of the

vectors uN ,vN , t, t
∗ and f . Moreover, we have used the notation (f, g)Ωe to express the

LGL numerical approximation of the integral
∫

Ωe
fgdΩ. Similarly, (f, g)Γ(e) indicates the

approximation of the boundary integral
∫

Γ(e) fgdΓ.

Finally, by introducing equation (2.10) into equation (2.11) and summing for all sub-
domains, we obtain a system of algebraic equations in the unknowns uN , equal to the
displacements at nodes q. The system is the following:

E∑
e=1

∂2

∂t2
(ρuiqψq, ψ

(i)
k )Ωe +

E∑
e=1

(σlm(uqψ, ϵlm(ψ)Ωe =

E∑
e=1

(ti, ψ(e)
k )Γe

N
+

E∑
e=1

(t∗i , ψ
(i)
k )Γe

NR
+

E∑
e=1

(fi, ψ
(i)
k )Ωe .

(2.12)

As a result, for each component of displacement, there are as many equations as the nodal
points.
Note that each equation is obtained by imposing vi = ψ

(i)
k , namely equal to the Lagrange

polynomial associated to the kth node for the ith displacement component. From this
formulation, we obtain the following system of ordinary differential equations with respect
to time (time dependence has so far been ignored for the sake of simplicity):

MÜ(t) +KU(t) = F ext(t) + T (t). (2.13)

Where U is the vector of nodal displacements, M is the mass matrix and K is the
stiffness matrix. Moreover, vectors F ext and T represent respectively the contributions
of external forces and tractions.

Thanks to this formulation, one important simplification occurs in the computation of
the effective forces, previously computed in (1.9):

P eff =


P eff
i

P eff
b

P eff
e

 =


0

−KΩe
be u

0
e

KΩe
eb u

0
b

 . (2.14)
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Indeed, the terms related to extra-diagonal components of the mass matrix M are 0
because, as mentioned before, the SE mass matrix is diagonal. Moreover, without loss of
generality, we assume the viscosity terms Cij in (2.14) to be understood.
Finally, looking at (2.14), we can state that the effective forces only depend on the stiffness
matrix related to the DRM elements, namely the elements at the interface between Γi

and Γe (see section 1.1), and on the free-field displacements obtained from the auxiliary
problem.

2.2.1. Stiffness matrix for DRM

One of the necessary computation required for the implementation of DRM is the evalu-
ation of the stiffness matrix within the strip made of DRM elements.

First, define as N the matrix of shape functions used for the approximation of the solu-
tion and B the matrix containing the derivatives of the same shape functions.

Consider the expression of the internal forces related to a generic spectral element el
belonging to the mesh::

Fi =
∫

Vel

BTσdV. (2.15)

where σ is the stress vector and Vel indicates the volume of the element el.

The formulation will be done in the framework of linear elasticity; therefore we can express
the stress vector in terms of the linear elastic law by introducing the elastic constitutive
matrix E:

σ = Eϵ, (2.16)

where ϵ is the elastic strain vector, which in turn can be defined as a function of E, B
and the vector of displacements u:

ϵ = Bu. (2.17)

By substituting (2.17) into (2.16) we get:

σ = EBu. (2.18)

That leads to:
Fi =

∫
Vel

BTEBudV. (2.19)

Being Fi = Kelu, from (2.19) is immediate to verify that the element stiffness matrix
becomes:

Kel =
∫

Vel

BTEBdV. (2.20)
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Now, we want to explicitly define the element matrix for the three-dimensional case:

Kij =
∫

Vel

[λΨT
,iΨ,j + µΨT

,jΨ,i + µδijΘ]dV. (2.21)

Where λ and µ are the Lamé elastic coefficients and δij is the Kroneker delta. The term
Θ, instead, is given by the following expression:

Θ = ΨT
,1Ψ,1 + ΨT

,2Ψ,2 + ΨT
,3Ψ,3 =

3∑
k=1

ΨT
,kΨ,k. (2.22)

Note that Ψ,i expresses the differentiation of the vector of shape functions with respect
to the ith axis (for the three-dimensional case i = 1, 2, 3).

The integrals in equation (2.21) are computed by means of the LGL quadrature rule (see
Canuto et al. [2007]).

Moreover, we note that the product ΨT
,iΨ,j is a matrix K̄ of dimensions [N + 1, N + 1],

being N the spectral degree, with the following form:

K̄(ij)
mn = Ψm,iΨn,j. (2.23)

Therefore, Kel turns out to be a symmetric matrix of dimensions [3(N + 1)3, 3(N + 1)3],
always referring to the three-dimensional case. Since equation (2.23) refers only to one
spectral element, the application of the DRM in three dimensions requires overall the
allocation of a matrixKDRM of dimensions [3NelDRM(N+1)3, 3(N+1)3], where NelDRM

is the number of elements composing the effective boundary.

For further details on the implementation of the matrix KDRM in SPEED see Appendix
A.

2.2.2. Computation of the free-field motion

Another fundamental computation required by the method is the free-field displacement.
The latter can be calculated following several ways, as for example:

• analytical methods for plane wave propagation with arbitrary angle of incidence.
The DRM is coupled with analytical solutions for P -SV -SH plane waves propagat-
ing in horizontally layered media with arbitrary angle of incidence. Such a method
enables for the minimization of errors caused by spurious reflections emanating from
the absorbing boundaries, making it particularly appropriate for three dimensional
applications (see section 4.1.1).
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• Numerical or semi-analytical methods. For what concerns two-dimensional applica-
tions, the use of the method developed by Hisada [1994, 1995], Hisada and Bielak
[2003] for computing the near-fault strong ground motions due to an extended kine-
matic fault in a viscoelastic horizontally layered half-space can often lead to good
results (see e.g. Faccioli, Vanini, Villani, Cauzzi, Smerzini, et al. [2010], Scandella
[2007]).

The implementation of the free-field motion and more details on the used approach can
be found in section 3.3.

2.2.3. Computation of the effective forces

At this point, if we look at equation (2.14), we are able to compute the effective forces
by means of the stiffness matrix (see equation (2.20)) and the free-field motion at the
interface nodes.
From a practical point of view, consider to isolate from the discretized model a generic
spectral element from the strip that forms the effective boundary elements, as shown in
Figure 2.2. Denoting 1 and 2 the vertices of the element belonging to the inner boundary
Γi, while 3 and 4 are the one belonging to the outer boundary Γe. The algorithm for the
computation of the effective nodal forces consists of two steps:

1. The degrees of freedom at the two nodes in Γi, denoted by 1 and 2, are fixed. Then,
the free-field displacements are imposed at the other two nodes, namely 3 and 4,
with opposite sign. After that, the reaction forces P eff

1 and P eff
2 are computed at

the interface nodes 1 and 2 (see Figure 2.3a).

2. The degrees of freedom are now fixed at the two nodes in Γe, namely 3 and 4.
Then, the free-field displacements are imposed at nodes 1 and 2, with opposite sign.
Finally, the reaction forces P eff

3 and P eff
4 are computed at the fixed nodes (see

Figure 2.3b).

The reaction forces calculated at steps 1 and 2 correspond to the effective nodal forces
and can be calculated in the following way:

P eff =


P eff

1

P eff
2

P eff
3

P eff
4

 =


−K13u

0
3 −K14u

0
4

−K23u
0
3 −K24u

0
4

K31u
0
1 −K32u

0
2

K41u
0
1 −K42u

0
2

 . (2.24)
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From this derivation it is evident that the computation of effective forces should be per-
formed only once unless the seismic source changes.
Moreover, the approach is suitable for non-linear analyses of structures because the effec-
tive forces disappear for nodes outside the strip of elements next to the boundary Γi.
As a result, no forces act inside the interior region of the localized structure.

Effective
boundary

Figure 2.2: Computation of the effective nodal forces at the interface elements. Inside the
reduced domain, the artificial green strip represents the spectral elements at the effective
boundary. One of the spectral element, delimited by the four vertices 1 and 2, belonging to
the internal boundary Γi, 3 and 4, belonging to the external boundary Γe, is idealistically
isolated for the sake of explanation. Adapted from Smerzini [2010].

(a) Step 1. (b) Step 2.

Figure 2.3: Two-steps procedure for the computation of the effective forces. Step 1: the
degrees of freedom are fixed at nodes 1 and 2, while the free-field displacements u0

3 and u0
4

are imposed with opposite sign at nodes 3 and 4. The reaction forces P eff
1 and P eff

2 are
computed. Step 2: the degrees of freedom are fixed at nodes 3 and 4, while the free-field
displacements u0

1 and u0
2 are imposed at nodes 1 and 2. The reaction forces P eff

3 and P eff
4

are computed.
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2.3. DRM for plane wave propagation
In this section we refer to the algorithm implemented by Smerzini [2011] in the framework
of seismic wave propagation analyses. In particular, this approach is aimed at the study
of arbitrarily complex geological structures under the action of plane waves with possibly
any angle of incidence. The code, originally implemented in GeoELSE, is introduced here
in SPEED.

Before exposing this procedure, that couples DRM with analytical methods for plane wave
propagation, a brief overview of the previous version of the code will be given. In the
latter, plane waves are instead implemented as a distribution of forces.

2.3.1. Plane waves as a distribution of body forces

The plane wave source was originally implemented as a force distribution along the wave-
front that was computed in order to impose a specific displacement time history, ū(t). It
has been demonstrated that this is effectively obtained by including in the equilibrium
equation an external force term that is proportional to the time derivative of the imposed
displacement ū(t).

Following Faccioli et al. [1997], let us consider the wave propagation equation in its one
dimensional form:

ρ
∂2u

∂t2
= (λ+ 2µ)∂

2u

∂x2 + f(x, t). (2.25)

Where λ and µ are the Lamè coefficients and f(x, t) is an equivalent uniform body force
distribution corresponding to a vertically propagating displacement plane wavefront ū(t).

In a three dimensional infinite homogeneous medium, the displacement in the i-direction
generated by a uniform distribution of body forces f(x, t) = ϕ(t)δ(x− x0)ei, being δ the
spatial Dirac delta, acting on plane x = x0, is given by:

u(x, t) = 1
2ρcH

(
t− |x− x0|

c

)∫ t− |x−x0|
c

0
ϕ(τ)dτ. (2.26)

Where ρ is the soil mass density, c is the propagation velocity and H(·) the step function.

Hence, in order to propagate an assigned displacement waveform ū(t), we determine the
time dependence of the force distribution by differentiating (2.26) with respect to time
and evaluating the result at x = x0 (see Graff [2012]). This leads to:

ϕ(t) = 2ρc∂ū
∂t
. (2.27)
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These equivalent body forces are applied at the nodes of a horizontal grid line near the
bottom boundary of the computational domain. Precisely, the nodal points must lie inside
a horizontal layer of quadrilaterals (in 2D) or hexahedral (in 3D) elements with constant
height L̄x. Indeed, the geometry must remain constant along the x axis since the numerical
approximation seeks at resembling the 1D plane wave propagation of equation (2.25) This
is also the reason why triangles and tetrahedra are discarded.

Such a strategy has two significant drawbacks:

• unless the free-surface is rotated, it does not apply to oblique plane waves propaga-
tion;

• the absorbing lateral boundaries, whose efficiency is minimal for lateral incidence,
badly affect wave propagation.

2.3.2. Plane waves as an effective seismic excitation

In the chosen approach, SPEED has been provided with a set of subroutines that can
compute the effective nodal forces from the analytical free-field solution for P -SV -SH
plane wave propagation across horizontally stratified soil media at any angle of incidence.
More precisely, the analytical solutions are computed through the Haskell-Thomson (H-
T) propagation matrix method (Haskell [1990], Thomson [1950]).

As depicted in Figure 2.4, the steps concerning plane wave propagation analyses performed
in SPEED with DRM are the following:

1. definition of the input parameters:

• time dependence of the imposed plane displacement wavefront. In this thesis,
a Ricker wavelet is always used for validation, but any arbitrary displacement
time history could be used without loss of generality;

• mechanical properties of the background geological model that constitute the
auxiliary problem. We assume the latter to be horizontally layered by Nl layers.
Each layer l, l = 1, ..., Nl, is identified by thickness Hl, soil mass density ρl,
S− velocity VSl

, P− wave velocity VPl
and quality factors QSl

and QPl
;

• plane wave source: type of polarization of seismic input (in-plane, P or SV , or
out-of-plane, SH waves);

• angle of incidence γ (γ = 0 indicates vertical incidence, then γ positive is
measured in clockwise sense), in- or out- cropping input.



2| Implementation of the Domain Reduction Method 31

2. Computation of the effective boundary nodes in which the effective boundary forces
will be evaluated, namely in the strip of spectral elements that constitutes the
effective boundary. These nodes are Legendre-Gauss-Lobatto (LGL) nodes and
their number depends on the spectral degree N ;

3. Definition of a one-dimensional reference soil profile. Consider Nf > Nl fictitious
layers, each one described from its own mechanical properties Hf , ρf , VSf

, VPf
, QSf

and QPf
. Every layer is delimited by two adjacent non-coinciding LGL nodes in

the vertical (z) direction. Those nodes located inside the lth layer of the actual
geological model (see point 1) have the same properties. Note that nodes located
at the same height z but different x or y coordinates are not duplicated within the
soil profile, but only nodes at different depths are considered.

4. Resolution of the Haskell-Thomson (H-T) matrix method for the 1D soil profile
determined at previous point. As a result, the free-field displacement time histories
at the (Nf + 1) interfaces are computed.
It is worth underlying that H-T matrix method provides results in the frequency
domain. Therefore, the code must take into account a specific convolution process
for the analytical transfer function with the imposed displacement time history.

5. Computation of the free-field displacements at the entire set of effective boundary
nodes of the reduced problem. In order to "distribute" the free-field displacement so-
lution to all spectral nodes where the equivalent seismic excitation must be applied,
allowing for any direction of propagation, a proper translation in the time domain
is achieved. To be more precise, let us recall the solution of the scalar Helmholtz
wave equation in three-dimensional space: uo(t−n · r/V ). n =

[
nx ny nz

]
is the

vector normal to the plane wave front, r =
[
x y z

]
is the position vector and V

is the propagation velocity. Now, calling x0 and y0 the reference coordinates with
respect to which the temporal time shift t̃ is calculated, the free-field displacement
of the nodes located at the same depth z̄ can be computed as follow:

u0(xk, yk, z̄; t) = u0(x0, y0, z̄; t+ t̃), with t̃ = nx · (xk − x0) + ny · (yk − y0)
V

.

Of course, the choice of the reference coordinate depends on the prescribed direction
of the incident plane wave. Moreover, nx and ny can be expressed as a function of
the angle of incidence γ and the azimuth ϕ of the plane wavefront, namely:

nx(γ, ϕ) = sin γ · cosϕ, ny(γ, ϕ) = − sin γ · sinϕ.
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6. Computation of the effective nodal forces P eff exploiting the free-field displace-
ments obtained at the previous step. Then the resolution of the wave propagation
analysis takes place (reduced model).

Construction of the
reduced problem

Reference 1D soil profile:
calculation of
displacement time histories
(H-T method)

Computation of the
free-field motion
for the entire set of effective nodes

Introduction of the
effective forces P
and resolution of wave propagation
analysis

Figure 2.4: Plane wave propagation analyses in arbitrary complex media: sketch of the
implementation. Adapted from Smerzini [2010].
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In particular, the first five steps, implemented in Matlab, are described in more details
in Chapter 3, while the last step, the only one directly implemented in SPEED, can be
found within the SPEED subroutine MAKE_LOAD_MATRIX.f90.

As a final remark, it should be noted that this method is particularly appropriate for the
applications that are frequently used in engineering practice. Indeed, a similar procedure
is implemented in the finite difference commercial code FLAC (Fast Lagrangian Analysis
of Continua, https://www.itascacg.com/software/FLAC3D, Board [1989]) for advanced
continuum modeling of geotechnical analysis of rock, soil and structural support in 2D
and 3D, even though it is only applicable to vertical plane waves.

The use of DRM for modeling plane wave propagation leads to several advantages with
respect to the conventional approach, such as:

• The spurious reflections due to the absorbing boundary conditions (ABCs) applied
on the external boundary of the computational domain are minimized. Beyond their
efficacy, the ABCs are not exempt from numerical errors: non physical reflections
from the external boundary towards the localized structure of interest may affect
seismic wave propagation in the region under study. In general, absorbing conditions
perform well for vertical wave incidence (γ = 0◦), while spurious effects tend to
increase when γ increases. Precisely, in the standard approach, namely without
DRM, (see Section 4.1.1), non reflecting conditions act on the total wavefield, while
in the sub-structuring approach boundary conditions on Γ+ act only on the diffracted
wavefield. As a result, the ABCs perform better, and it is no longer essential to
locate the exterior boundary distant from the region of interest.

• Coupling SPEED with DRM allows the treatment of non orthogonal plane wave
incidence to the free surface. The latter can be done by simply changing the auxiliary
problem according to the assumed seismic excitation.
Thanks to this, such an approach is much more versatile in doing parametric studies
with respect to the seismic input.

https://www.itascacg.com/software/FLAC3D
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In this section, we go over the steps necessary to apply the plane wave propagation
analyses. Precisely, we focus on the generation of the input files necessary for the use of
the code SPEED coupled with the Domain Reduction Method.

This process can be summarized as follows:

1. Create the spectral element (SE) reduced model using the software CUBIT. In order
to apply the effective forces to the irregular structure of interest, the computational
grid must include an appropriate strip of spectral elements, i.e. the effective DRM
boundary.

2. Exploit the Matlab script read_grid_test.m that in turn involves the Matlab func-
tion lgl_block.m to be able to obtain the coordinates of the LGL (Legendre -
Gauss - Lobatto) nodes in the effective DRM boundary. These are listed in the
file LGL_coords.txt.

3. Run the input_4else_3D.m interface Matlab program. This file allows to create the
PDRM nodes (effective DRM nodes) and FDRM (free-field displacements computed
at PDRM) functions which are subsequently inserted in the file *.mate.

4. 3D SE simulation by SPEED: the displacement time histories at selected sites of
the model under study are provided as output in the folder MONITORS: file MONI-
TORXXXXXX.D.

The algorithm is schematised in Figure 3.1.
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Generation of the SE re-
duced model using CUBIT

Filename.cub → Filename.mesh

Matlab script
read_grid_test.m + Mat-
lab function lgl_block.m

LGL_coords.txt

Interface Matlab program
input_4else_3D.m

Filename.mate
with PDRM nodes
FDRM functions

3D simulation on SPEED MONITORXXXXXX.D
at selected sites

Figure 3.1: Main steps for the use of SPEED coupled with the Domain Reduction Method.
Starting from the generation of the mesh file using the software CUBIT, up to the gener-
ation of the monitor at the selected sites.
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3.1. Spectral Elements mesh generation using
CUBIT

It is necessary to create an unstructured mesh of spectral elements for the spatial dis-
cretization of an arbitrarily complex model that honors the topography of the earth and
includes, in addition to an extended seismic fault, localized irregular structures (like allu-
vial basins) or civil engineering elements of various types (viaducts, bridges, underground
structures). This discretization takes place by means of quadrilaterals elements (two-
dimensional case) and hexahedral elements (three-dimensional case).

For the simulations in SPEED, the computational grid is generated making use of the
software CUBIT (https://cubit.sandia.gov/). It includes a collection of strong and
sophisticated meshing techniques created to address challenging unstructured meshing
issues.

Once the geometry is set on CUBIT, we have to define the mesh on it. In Section 3.1.1
we report some general criteria for spatial discretization.
After that, one has to define the different blocks that characterise the domain under
study. These blocks can be of different type: soil layers, DRM boundary elements, ab-
sorbing boundary conditions etc. The geological features of each block are then declared
inside the .mate file. In Figure 3.2 we present an example of a homogeneous model divided
in blocks.

After the generation of the mesh, in order to obtain the mesh file necessary to run SPEED
for the desired test, it is necessary to follow the following steps:

• Export the file test.cub containing the geometry of the test in the Exodus format in
order to obtain test.e;

• Convert test.e into an ASCII file test.txt exploiting the filter ncdump.exe;

• Run the Matlab file MAKE_MESHinput.m in order to rewrite the file test.txt in
the format test.mesh. The mesh file of the test contains all the information about
the geometry and grid in which the test has been subdivided, see Figure 3.3.

https://cubit.sandia.gov/
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Homogeneous case:
computational domain

Block 1:
halfspace (inside DRM)

Block 2:
DRM boundary

Block 3:
halfspace (outside DRM)

Block 4:
Absorbing Boundary

Conditions

Block 5:
internal boundary

(BDRM)

Figure 3.2: Division into blocks of a simple computational case. Here, there is no difference
in the materials of the blocks. This division allows the simulation with SPEED coupled
with DRM method, in particular the presence of the green strip of DRM elements (block2).
Note that there is a block also for absorbing boundary conditions applied to the external
boundary of the computational domain (block 4) and for the DRM boundary elements
(block 5).
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# number of total nodes \number of total elements
196 228 0 0 0
# number of the node \x, y, z coordinates
1 +2.5000000e+02 -2.5000000e+02 +0.0000000e+00
2 +0.0000000e+00 -2.5000000e+02 +0.0000000e+00
3 +0.0000000e+00 +0.0000000e+00 +0.0000000e+00
...
# number of the element \block it belongs to \type of element \vertices
1 4 quad 18 12 10 17
2 4 quad 12 11 9 10
3 4 quad 16 15 13 14
...
1 1 hex 1 2 3 4 5 6 7 8
2 1 hex 2 9 10 3 6 11 12 7
3 1 hex 4 3 13 14 8 7 15 16
...

Figure 3.3: Example of mesh file. In this file are listed all the nodes delimiting the
elements together with their coordinates. Then, for each block, all the elements are listed
specifying their type (namely quadrilateral / hexahedral) and the four / eight vertices
that delimit them.

3.1.1. Spatial discretization criteria

It is important to take into consideration some general criteria for spatial discretization.
In particular, Nyquist theorem (see Por, Van Kooten, and Sarkovic [2019]) states that if
we have to examine a signal or a waveform, we would need samples with a frequency larger
than twice the maximum frequency contained in the signal, namely fsample ≥ 2fmax. This
is necessary in order to avoid aliasing phenomena, due to an undersampled signal.
From this, it is possible to derive the maximum spatial sampling step for a suitable
discretization of the computational grid. Always to avoid aliasing phenomena, it follows
from the Nyquist theorem that the minimum number of points to represent the minimum
wavelength, called Gλ, must be equal to 2, and this translates into terms of maximum
spatial sampling step as:

∆x ≤ λmin

2 , with λmin = Vmin

fmax

, (3.1)

where Vmin is the minimum wave propagation velocity and fmax is the maximum frequency
to propagate.
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Despite this request parameter, Faccioli et al. [1997] provide another criteria in order
to obtain better results: the mesh should be designed in order to ensure more than 2.5
points per minimum wavelength, namely Gλ ≥ 2.5, for a homogeneous environment, while
Gλ ≥ 3.5 − 4 for a strongly heterogeneous one. To give an idea of these values, consider
that low order finite elements (FE) schemes require in general Gλ ≈ 10 − 12.

Note that ∆x in equation (3.1) is equal to the spatial step of the mesh for finite differences
(FD) method and it is constant. However, for spectral elements (SE) method ∆x is not
kept constant, but corresponds to an average inter-node distance between two adjacent
LGL nodes. As a general rule, we can assume characteristic dimension ∆l of the spectral
element given by the following expression:

∆l ≤ λmin

Gλ

N. (3.2)

Here Gλ is equal to 4 and N is the degree of the interpolant polynomial. Note that this
rule is valid for a relative low spectral degree, like N ≤ 5.

Therefore, the dependence of the discretization on the spectral degree constitutes a great
advantage in using this method: the accuracy of the method can be enhanced not only by
decreasing ∆l, namely by refining the grid, but also by increasing N . More precisely, for
the user it is sufficient to impose the spectral degree without changing the mesh. Then,
the code will calculate the new LGL nodes consequently.

3.2. LGL nodes generation
The first step consists in creating the list of the Legendre-Gauss-Lobatto (LGL) nodes.
These nodes are necessary for the computation of the effective forces.

Before moving on to the calculation of LGL nodes, we make some theoretical remarks on
their construction.
First of all, let us consider the expression of the Legendre polynomials in their recursive
expression (Quarteroni, Sacco, Saleri, and Gervasio [2014]):


L0(x) = 1,

L1(x) = x,

Lk+1(x) = 2k+1
k+1 xLk(x) − k

k+1Lk−1(x), k = 1, 2, ... .

(3.3)

These polynomials are defined in the domain [−1, 1] and it is easy to demonstrate that
Lk ∈ Pk for every k = 1, 2, ..., where Pk is the space of polynomials with order k.
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In one dimension, the LGL nodes ζi are defined as the roots of the first space derivatives
of the Legendre polynomial of degree N , LN (see Abramovitz and Stegun [1966]), i.e.:


i = 0 : ζ0 = −1;

i = 1, ..., N − 1 : ζi = L′
N(ζi) = 0;

i = N : ζi = 1.

(3.4)

Therefore, for a Legendre polynomial of degree N , there are N + 1 LGL nodes in each
space dimension: N − 1 are the zeros of L′

N , in addition to the two extrema.

In order to obtain the LGL nodes in higher dimensional spaces, it is necessary a ten-
sorization process. The latter is one of the reason for which in spectral element method
(SEM) quadrilateral and hexahedral elements are preferred to triangular and tetrahedral
elements.

For computing the LGL nodes for the entire strip of DRM elements, which are three-
dimensional physical hexahedral elements, the user has to run the Matlab script
read_grid_test.m.

First of all, one has to set the spectral degree N ≥ 1. Then, the script receives as input
two matrices:

1. coords: contains in the first column the number of all the nodes in the entire domain
in ascending order, and in the last three columns the three respective coordinates.
This matrix has dimensions [nn× 4], where nn indicates the number of total nodes.

2. drm_blocks: contains in the first column the numbers of all hexahedral elements
that make up the DRM boundary, always in ascending order. The other eight
columns are instead characterised by the eight nodes that correspond to the vertices
of the respective hexahedron. This matrix has dimensions [NelDRM × 9], being
NelDRM the number of DRM elements.

These two matrices are used in order to extract, for each DRM element, the coordinates
of its eight vertices.
These coordinates are necessary to generate the parameters needed for mapping the LGL
nodes into the desired DRM element. Indeed, exploiting the Matlab function lgl_block.m
we obtain the LGL nodes calculated for the reference hexahedron element that in fact
must then be able to be mapped on the generic hexahedron that makes up the DRM
boundary (see Casadei and Gabellini [1998] for more details). The reference hexahedron
element in the three-dimensional case is nothing but the cube having dimensions [−1, 1]3.
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In Figure 3.4 we report, as an example, the computation of LGL nodes for the reference
element having N = 3. This leads to the computation of N+1 = 4 nodes for each interval
span [−1, 1] and, consequently, to the creation of 43 = 64 LGL nodes.

Note that ξ, η and ζ are used to express the reference axis in the reference domain, while
x, y and z correspond to the axis in the physical domain.

ξ

η

ζ

Figure 3.4: Computation of the LGL nodes for the reference hexahedron, that corresponds
to the cube having dimensions [−1, 1]3. In this example, the spectral degree N is equal
to 3. This leads to the computation of 43 = 64 LGL nodes.

In algorithm 3.1 we report the Matlab code described util the call of the Matlab function
lgl_block.m at line 22.

Listing 3.1: read_grid_test.m
1 N = 4; % spectral degree

2 coords = [1 +2.5000 e+02 -2.5000e+02 +0.0000 e+00 .. ];
3 drm_blocks = [1205 729 736 8 5 733 738 4 1 .. ];
4
5 % extract the coordinates of each vertex of every DRM element

6 for i = 1: length( drm_blocks )
7 x1 = coords( drm_blocks (i ,2) ,2);
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8 y1 = coords( drm_blocks (i ,2) ,3);
9 z1 = coords( drm_blocks (i ,2) ,4);

10 ...
11 z8 = coords( drm_blocks (i ,9) ,4);
12 end
13
14 % for every block I need the coefficients a1, a2 ,..., h3

15 % in order to pass from the reference to the physical domain

16 a1 = - x1 + x2 - x3 + x4 + x5 - x6 + x7 - x8;
17 a2 = - y1 + y2 - y3 + y4 + y5 - y6 + y7 - y8;
18 a3 = - z1 + z2 - z3 + z4 + z5 - z6 + z7 - z8;
19 ...
20 h3 = z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8;
21
22 % call lgl_block.m

23 [ coor_ref ] = lgl_block (N+1);
24 coor_phys_block = zeros(length( coor_ref ) ,3);
25
26 for j = 1: length( coor_ref )
27 xi = coor_ref (j ,1);
28 eta = coor_ref (j ,2);
29 zeta = coor_ref (j ,3);
30 x = (1/8) *(a1*xi*eta*zeta + b1*xi*eta + c1*eta*zeta + d1*

xi*zeta + e1*xi + f1*eta + g1*zeta + h1);
31 y = (1/8) *(a2*xi*eta*zeta + b2*xi*eta + c2*eta*zeta + d2*

xi*zeta + e2*xi + f2*eta + g2*zeta + h2);
32 z = (1/8) *(a3*xi*eta*zeta + b3*xi*eta + c3*eta*zeta + d3*

xi*zeta + e3*xi + f3*eta + g3*zeta + h3);
33 coor_phys_block (j ,1) = x;
34 coor_phys_block (j ,2) = y;
35 coor_phys_block (j ,3) = z;
36 end
37 coor_phys_tot = [ coor_phys_tot ; coor_phys_block ];
38 end
39 C = uniquetol ( coor_phys_tot ,'ByRows ',true); % returns the

unique rows of coor_phys_tot
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Then, as said before, the function lgl_block.m returns the LGL nodes relative to the
reference hexahedron element. This is done by exploiting the Matlab function xwlgl.m
created by Gervasio [2007]. This function returns the np = N + 1 weigths and nodes of
the corresponding Legendre Gauss-Lobatto quadrature formula in the reference interval
[−1, 1]. After that, lgl_block.m function allows to generate all LGL nodes composing the
hexahedron having as dimensions [−1, 1] × [−1, 1] × [−1, 1]. This is achieved as reported
in 3.2.

Listing 3.2: lgl_block.m
1 function [coor] = lgl_block (np)
2 % Input: np = N + 1 number of nodes

3 [x ,~] = xwlgl(np);
4 [y ,~] = xwlgl(np);
5 [z ,~] = xwlgl(np);
6 coor = zeros(np ^3 ,3); % coordinates matrix of LGL nodes

7 cont1 = 1;
8 cont2 = 1;
9

10 % assign x:

11 for k = 1:np*np:np^3
12 coor(k:k+np ^2 -1 ,1) = x(cont1);
13 cont1 = cont1 + 1;
14 end
15
16 % assign y:

17 for k = 1:np:np^3
18 if (rem(cont2 ,np) == 0)
19 coor(k:k+np -1 ,2) = y(np);
20 else
21 coor(k:k+np -1 ,2) = y(rem(cont2 ,np));
22 end
23 cont2 = cont2 + 1;
24 end
25
26 % assign z

27 for k = 1:np^3
28 if (rem(k,np) == 0)
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29 coor(k ,3) = z(np);
30 else
31 coor(k ,3) = z(rem(k,np));
32 end
33 end
34 end

After the call of the function lgl_block.m, inside read_grid_test.m, the LGL reference co-
ordinates are mapped into the physical DRM element. This last computation is reported
in Algorithm 3.1 starting from line 23.

Finally, the script returns as output the file LGL_coords.txt containing the coordinates
of the LGL nodes in the interested strip of DRM elements.

3.3. Computation of PDRM and FDRM
In this section we explain how PDRM (effective DRM nodes) nodes and FDRM (free-field
displacements computed at PDRM) functions are calculated.
To be more specific, pdrm.dat is the file containing the nodal (LGL) coordinates of DRM
strip of elements, while fdrm.dat is the file containing the displacement time histories
computed at the DRM boundary nodes.

The algorithm implemented in Matlab by Smerzini [2010] and requires the following steps:

1. Matlab script input_4PSVQ_3D.m.
Input files:

• LGL_coords.txt: contains the list of coordinates (x, y, z) of all LGL nodes
belonging to the strip of DRM elements as calculated in the previous section;

• layers_plax.txt: It is characterised by the mechanical properties of the hori-
zontal layers that constitute the background geological model that forms the
auxiliary problem. These properties are: layer number, vertical upper bound
zsup(m), vertical lower bound zinf (m), density ρ( t

m3 ), S- velocity Vs(m
s

), quality
factor Qs, P- velocity Vp(m

s
), quality factor Qp.

Output files:

• lista_ord_all_coor_plax.txt: list of LGL node coordinates in descending or-
der;
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• PSVQ_layers_plax.txt: corresponds to the reference soil profile used for 1D
linear visco-elastic analyses. Every layer is delimited by two adjacent LGL
nodes in z direction.

2. PSVQ_drm.m: takes as input the file test_3d.ini, that contains the input param-
eters for 1D linear visco-elastic seismic wave propagation. In Figure 3.5 is depicted
an example of this file and its features. It is always referred to the homogeneous case
of Figure 3.2. Note that the construction of this file takes advantage from the file
PSVQ_layers_plax.txt, previously computed, to introduce the reference soil profile.

The output of this script is the file test_3d.out that contains the free-field displace-

# type of wave (0=SH,1=P,2=SV) - angle of incidence
0.0 0.0
# Number of layers (excluding the halfspace) - plot layers (1=sup.;0=all) IQ=2 Q=q*f
4 0 2
# depth (m) - ρ - VS - QS - VP - QP

125.000 2.000 300.000 1000.000 520.000 2000.000
125.000 2.000 300.000 1000.000 520.000 2000.000
125.000 2.000 300.000 1000.000 520.000 2000.000
125.000 2.000 300.000 1000.000 520.000 2000.000
250.000 2.000 300.000 1000.000 520.000 2000.000
1 # 1 = read accelerogram
ricker.1
# Number of lines to skip - number of columns
0 1
# dt - npoints - iconv(2 on surf.) - idec (=2 deconvolution) - itap (=1 tapering)
0.02 501 1 1 0

Figure 3.5: Example of file test_3d.ini. In this file are listed all the input parameters for
one dimensional linear visco-elastic seismic wave propagation analyses.

ments at all interfaces of the 1D soil profile defined at the previous point. These dis-
placements are calculated from the analytical free-field solution for P -SV -SH plane
wave propagation with arbitrary angle of incidence through horizontally stratified
soil media. The analytical solution, as explained in Section 2.3.2, is obtained through
the Haskell-Thomson (H-T) matrix method (Thomson [1950], Haskell [1990]).

The program, created by F.J. Sanchez-Sesma and R. Paolucci and modified by C.
Smerzini, makes use of the following subroutines:

• HASSH.m: compute the transfer function under SH wave propagation;
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• HASSVP.m: compute the transfer function under either P or SV wave propa-
gation;

• convol.m: compute the convolution of the provided input accelerogram with
the calculated transfer function;

• taper_fun.m: taper the input signal if required;

• read_acc.m: reads an external file containing the input time history.

3. input_4else_3D.m: calculate the free-field solution at the entire set of effective
boundary nodes. Starting from the displacement time histories computed at all
interfaces of the 1D reference soil model, the solution at all effective nodes is obtained
by applying a suitable time shift depending on the assumed direction of propagation.
Note that for γ = 0, time shift is equal to 0 for all nodes.

Input files:

• lista_ord_all_coor_plax.txt;

• test_3d.out;

• param_4else_3d.txt: contains the input parameters of the model under study.
An example of this file, always referred to the homogeneous test, is reported
in Figure 3.6.

Output files:

• pdrm.dat;

• fdrm.dat.

# iwave (0=sh,1=p,2=sv) - dip == angle inc. (deg) - strike (deg) - dt convolution
# R hypo (m) - Vs halfspace (m/s) - Ttot (s)
0 - 0 - 0 - 0.02
0 - 300 - 10

Figure 3.6: Example of file param_4else_3d.txt. It contains the parameters describing
the model under study.
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In Figure 3.7 we report a scheme of the procedure just described.

LGL_coords.txt

layers_plax.txt

input_4PSVQ_3D.m

lista_ord_all_coor_plax.txt

PSVQ_layers_plax.txt

test_3d.ini

PSVQ_drm.m

test_3d.out

input_4else_3D.mparam_4else_3d.txt

pdrm.dat fdrm.dat

Figure 3.7: Steps for the computation of the PDRM nodes and FDRM free-field dis-
placements. Starting from the LGL nodes computed my means of the Matlab scripts
read_grid_test.m and lgl_block.m, it necessary to pass through all the Matlab scripts
depicted above. Finally, one gets as outputs the files pdrm.dat and fdrm.dat that will be
inserted in the file mate in order to run the simulation with SPEED coupled with DRM.
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3.4. Three-dimensional simulation of reduced prob-
lem by SPEED coupled with DRM

Given the files generated in the previous sections, we are now able to perform in SPEED,
coupled with the Domain Reduction Method, the simulation of seismic wave propagation
model under the action of a plane wave.

Precisely, in order to start the simulation, the following files are required:

• File mesh: it contains all the information about the mesh of the model, as explained
in Section 3.1.

• File mate: the effective DRM nodes (PDRM) and the free-field displacements
(FDRM) are added to the initial form of the file mate, namely the one in which
are present only the features of the blocks that compose the reduced domain. The
presence of PDRM and FDRM allows to evaluate at run time the effective nodal
forces necessary to propagate the target plane wavefront. An example of this file
can be found in Figure 3.8.

• SPEED.input. It is the header file in which are fixed the fundamental parameters
of the analysis, and the files and directories that are used for the simulation. We
report in Figure 3.9 an example of this file.

• LS.input. It is the file containing all the coordinates of the monitored points.

It is worth making some considerations on the choice of the time step ∆t used for the
simulation in SPEED (see also Figure 3.9). As explained by Mazzieri et al. [2013], the
procedure adopted for time discretization is the standard leap-frog scheme. The latter,
being an explicit scheme, is not unconditionally stable, but it must satisfy the Courant-
Friedrichs-Levy (CFL) condition, that reads as follows:

∆t ≤ CCF L
∆xmin

Vmax

. (3.5)

Here CCF L is a constant depending on the dimension, the order of the scheme, the mesh
geometry and the polynomial degree. It takes value in between 0 and 1. ∆xmin represents
the minimum distance between any couple of adjacent LGL nodes, while Vmax is the
maximum propagation velocity.
Since ∆xmin is associated to the nodes close to the element edges, where the grid size scales
as N−2, the stability condition becomes restrictive for large values of spectral degree, for
which an implicit time scheme would be recommended.
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MATE label degree ρ ( kg
m3 ) VS (m

s
) VP (m

s
) QS QP

MATE 1 2 2000 300 519.6 30 0
MATE 2 2 2000 300 519.6 30 0
MATE 3 2 2000 300 519.6 30 0
Absorbing boundary conditions
ABSO 5
DRM boundary
MDRM 2
Internal boundary
BDRM 4
Tag step of the problem: reduced model
SDRM 2
List of effective DRM nodes with their coordinates
PDRM 1 -375.000000 -500.000000 0.000000 1
...
Maximum frequency
FMAX 1
Free-field displacements corresponding to effective PDRM nodes.
The time instant is followed by the x, y and z components of the displacements.
FDRM 1 50 501 0 0 0 0
0.02 0 -2.697460e-05 0
0.04 0 -2.835880e-05 0
...

Figure 3.8: Example of mate file. In addition to the geological properties of each block,
PDRM and FDRM are added to the file in order to perform the simulation on SPEED
coupled with DRM.
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Name of the mesh file
GRIDFILE test3d
Name of the mate file
MATFILE test3d
Name of the directory for MPI files
MPIFILE FILESMPI
Name of the directory for MONITOR files
MONFILE MONITOR
DAMPING 1: frequency proportional damping
DAMPING 1
Option for the output: displacement
OPTIOUT 1 0 0 0 0 0 0 0
∆t: time integration step adopted (sec)
TIMESTEP 1.0e-2
Write output results at times t* multiple of TMONITOR*TIMESTEP.
TMONITOR 2
Final instant of the simulation (sec)
STOPTIME 10
Starting depth for monitored point search
MLST -450 0

Figure 3.9: Example of file SPEED.input. It contains the names of all the files used
for the simulation, as well as folder names to which the output files are placed inside.
Moreover, it is specified the type of damping, the type of output and the time step used
for the simulation.
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4| Tests and results
The implementation of the code SPEED coupled with the Domain Reduction Method
(DRM) for plane wave propagation has been validated on simple geological models to
check the accuracy of the numerical results against semi-analytical solutions.

Precisely, these models are studied under the action of two different types of seismic body
waves. The first type are the so-called Primary waves (P waves): they are compressional
waves such that the direction of the ground motion they cause is parallel to the wave
propagation direction. They are called "Primary" because they travel faster than other
waves through the earth and, because of this, they arrive at seismograph stations first.
The second type of waves are the Second waves (S waves), which name is due to the fact
that, in a seismic event, they arrive later than the P waves. They are shear waves for
which, differently from before, the ground motion is perpendicular to the wave propa-
gation direction. For the latter case, we further distinguish between vertically polarized
SV waves, when the polarization of an S wave lies in a vertical plane, and horizontally
polarized SH waves, when, instead, the polarization is in a horizontal plane.
In Figure 4.1 we depict a simple representation of the two different waves.

P waves S waves

Direction of propagation Direction of propagation

Particle motion Particle motion

Figure 4.1: P and S waves. For the P waves (on the left), the direction of propagation
(red arrow) is parallel to the ground motion caused by the wave (blue arrow). For the S
waves (on the right), instead, the direction of propagation (red arrow) is perpendicular
to the ground motion caused by the wave (blue arrow).
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As a final remark, we denote as VP the P wave velocity and VS the S wave velocity.
Respectively, VP =

√
λ+2µ

ρ
and VS =

√
µ
ρ
, where λ and µ are the Lamé elastic coefficients,

while ρ is the material density.

In this section we analyse three different test cases:

• TEST CASE 1: Homogeneous model. The test, analysed both under the action
of SV and P waves, is performed for the cases of vertical plane wave (angle of
incidence γ = 0◦) and oblique plane wave (angle of incidence γ = 10◦);

• TEST CASE 2: Heterogeneous model. Like TEST CASE 1, it is analysed both
under the action of SV and P waves and the simulation is performed for the cases
of vertical plane wave (γ = 0◦) and oblique plane wave (γ = 10◦).

• TEST CASE 3: "Croissant" valley. The last one, a more physical test case, it is
analysed under the action of vertical (γ = 0◦) SH plane wave.

For all these test cases, as said before, we compare the numerical solution obtained with
SPEED coupled with DRM with the semi-analytical solution. The way in which the latter
is obtained is explained in the following and it depends on the test case.

Moreover, only in the cases with vertical plane waves, we are going to compare the numer-
ical solution obtained using SPEED coupled with DRM also with the numerical solution
obtained using SPEED in the traditional way, namely without DRM. This is because
SPEED without DRM is not able to deal with plane waves with an angle of incidence
different from zero, while this is possible for DRM since it takes into account the angle of
incidence in the computation of the free-field ground motion, as explained in the previous
chapter.

Before proceeding with the results, a final remark on the way in which the solution are
obtained. Recall that, as explained in Chapter 3, after the execution of the code we obtain
the file MONITORXXXXXX.D. After that:

1. Run the MATLAB script REWRITE_MONITOR_FORMAT.m to rewrite the out-
put files from MONITORXXXXXX.D to the NLS files monitorxxxxxx.d, where
NLS is the number of the monitored points. These files contain, for the correspond-
ing monitored point, the temporal history of the displacements computed for each
instant of time involved in the simulation.

2. Run the MATLAB script PLOT_MONITOR.m to plot the output results.
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4.1. TEST CASE 1: HOMOGENEOUS MODEL
As a first validation of the three-dimensional numerical code, we consider an idealized
halfspace subject to the incidence of both vertical (γ = 0◦) and oblique (γ = 10◦) plane
waves from below. The temporal dependence of the incident plane wavefront is given by
a Ricker wavelet with maximum frequency equal to 3Hz.

Figure 4.2 represents the mesh of the reduced domain used for the analyses. Moreover,
in the same figure, the blocks that form the computational domain are isolated one by
one in order to simplify the comprehension of the domain’s division. Note that block 4
is introduced in order to make the simulation with code SPEED without DRM. Indeed,
this is the block in which the plane wave is applied for that specific simulation.

In Table 4.1 we report the mechanical properties of the blocks. Obviously, all the four
volumes blocks have the same properties since the model is homogeneous.

Note that the spectral degree N is chosen equal to N = 4 for all the blocks. Because of
this, the number of degrees of freedom for each spectral element of the simulation is equal
to 3(N + 1)3 = 375.

label degree ρ (kg/m3) VS (m/s) VP (m/s) QS QP

MATE 1 4 2000 300 519.6 0 0
MATE 2 4 2000 300 519.6 0 0
MATE 3 4 2000 300 519.6 0 0
MATE 4 4 2000 300 519.6 0 0

Table 4.1: Test case 1. Mechanical properties related to the four blocks composing the
computational domain. The spectral degree is equal to N = 4. All the properties are the
same for every block since the model is homogeneous.

In Figure 4.3 we depict the monitored points of the model during the simulation. These
are the points in which we are going to analyse the numerical displacement solutions in
the following sections. They are nine points taken along the z axis, starting from the top
(z = 0).
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Computational domain

Block 1: halfspace
(inside DRM)

Block 2:
DRM boundary

(MDRM)

Block 3: halfspace
(outside DRM)

Block 4:
plane wave

Block 5:
Absorbing BCs

Block 6:
internal boundary

(BDRM)

Figure 4.2: Test case 1. Blocks representation of the homogeneous model. The figure
in the top panels represents the mesh of the entire computational model. Then, all the
blocks are isolated one by one, included those regarding the boundary conditions of the
model.
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LS.input
9 x y z
1 0 0 0
2 0 0 -25
3 0 0 -50
4 0 0 -75
5 0 0 -100
6 0 0 -125
7 0 0 -150
8 0 0 -175
9 0 0 -200

Figure 4.3: Test case 1. Monitored points of the simulation. The picture on the left
indicates where the points are located inside the computational domain. Note that the
sketch represents the y section of the entire domain. On the right, instead, it is provided
an entire list of the monitored points with their respective coordinates, namely the file
LS.input. Note that these points are all taken inside the DRM block of elements.

4.1.1. Vertical plane wave: γ = 0◦

In this section we analyse the results relative to the vertical (γ = 0◦) plane wave, both in
the case of P and SV waves.

The resulting displacements are plotted in two different figures. Figure 4.4 shows the
horizontal ux and vertical uz displacement time histories obtained due to the incidence
of plane SV wave. Precisely, the top panel shows the displacements corresponding to all
the monitored point except the one on the free surface (see red point in Figure 4.3), that,
instead, is plotted in the bottom panel.

In the same way, in Figure 4.5 we report the computed displacements obtained in the
case of a vertical incident P plane wave.

In both representations we make a comparison between the semi-analytical solution (com-
puted with the Haskell-Thomson (HT) method and depicted as a blue continuous line),
the numerical solution obtained with SPEED coupled with Domain Reduction Method
(dashed green line), and the numerical solution obtained with SPEED without the imple-
mentation of DRM (dashed red line).

For each case, the comparison between the three solutions turns out to be very good since
the solutions are basically superimposed. Moreover, only for the P wave case, we report
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in Table 4.2 the errors in norm L∞ of the difference between the semi-analytical solution
(denoted as u) and the numerical solution obtained with SPEED coupled with DRM (de-
noted as uN), namely |u − uN |L∞ = max(|u − uN |). Note that both the solutions refer
to the vertical displacement uz (see Figure 4.5, top right panel). The solutions taken into
consideration are the one computed in the eight monitor points below the free-surface of
the model and the error turns out to be good in each of the eight cases.

We underline that the spectral degree used for both the numerical simulations is equal
to N = 4, while the time discretization ∆t is chosen equal to 2 · 10−4, again for both the
simulations involving SPEED.

Depth z(m) −25 −50 −75 −100 −125 −150 −175 −200

|u− uN |L∞ 0.0275 0.0204 0.0126 0.0111 0.0126 0.0172 0.0192 0.0186

Table 4.2: Test case 1. Errors in L∞ norm of the numerical solution uN (obtained with
SPEED coupled with DRM) with respect to the semi-analytical solution u, both referred
to the vertical displacement uz. The measure of the error is given for the case of P vertical
incident plane wave. The solutions taken into considerations are the one computed in the
eight monitors point below the free-surface of the model.
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Figure 4.4: Test case 1: homogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel) and to the
point located at the free surface (bottom panel) due to the incidence of a vertical (γ = 0◦)
plane SV wave. Three solutions are compared: the blue line indicates the semi-analytical
solution obtained with the H-T method, the dashed green line represents the solution
obtained with SPEED coupled with DRM, while the red dashed line the one obtained
with SPEED without DRM.
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P WAVES
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Figure 4.5: Test case 1: homogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel) and to the
point located at the free surface (bottom panel) due to the incidence of a vertical (γ = 0◦)
plane P wave. Three solutions are compared: the blue line indicates the semi-analytical
solution obtained with the H-T method, the dashed green line represents the solution
obtained with SPEED coupled with DRM, while the red dashed line the one obtained
with SPEED without DRM.
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4.1.2. Inclined plane wave: γ = 10◦

In the same way, in this section we analyse what happens in the case of oblique incidence
plane wave. Here γ, representing the angle of incidence with respect to the vertical
direction, is taken equal to 10◦. It is positive since it is obtained in a clockwise sense with
respect to the vertical direction.

As done before, we show in Figure 4.6 the horizontal ux and vertical uz displacement time
histories obtained due to the incidence of plane SV wave, and, in Figure 4.7, the same
results but due to the incidence of a plane P wave.

Again, the top panel shows the displacements corresponding to all the monitored points
except the one on the free surface (see red point in Figure 4.3), that, instead, is plotted
in the bottom panel.

Differently from before, the comparison occurs only between the semi-analytical solution
(computed with H-T method and depicted as a blue continuous line) and the numerical
solution obtained with SPEED coupled with Domain Reduction Method (dashed green
line). Indeed, in the traditional use of SPEED, namely without DRM, it is not possible
to perform simulations in which the plane wave has an angle of incidence different from
0.

This time, the results present some minimal spurious effects probably due to the presence
of Absorbing Boundary Conditions (ABCs), that are applied to the bottom and the lateral
surfaces of the reduced model. This is especially visible in the vertical displacement uz for
SV plane wave case, and in the horizontal displacement ux for P plane wave case. These
displacements are the one arising because of the inclined plane wave. Indeed, as we can
see from Figures 4.4 and 4.5, they are both equal to 0 in the case of vertical plane wave.

However, looking at the solutions, the comparison is still very good.
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SV WAVES
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Figure 4.6: Test case 1: homogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel) and to the point
located at the free surface (bottom panel) due to the incidence of an oblique (γ = 10◦)
plane SV wave. Two solutions are compared: the blue line indicates the semi-analytical
solution obtained with the H-T method, while the dashed green line represents the solution
obtained with SPEED coupled with DRM.
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P WAVES
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Figure 4.7: Test case 1: homogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel) and to the point
located at the free surface (bottom panel) due to the incidence of an inclined (γ = 10◦)
plane P wave. Two solutions are compared: the blue line indicates the semi-analytical
solution obtained with the H-T method, while the dashed green line represents the solution
obtained with SPEED coupled with DRM.
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Also for the inclined P wave case, we report in two tables the errors in norm L∞ of the
difference between the semi-analytical solution (denoted as u) and the numerical solution
obtained with SPEED coupled with DRM (denoted as uN), namely |u−uN |L∞ . Precisely,
Table 4.3 refers to the horizontal displacement ux (see Figure 4.7, top left panel), while
Table 4.4 refers to the vertical displacement uz (see Figure 4.7, top right panel). The so-
lutions taken into consideration are the one computed in the eight monitor points below
the free-surface of the model and the error turns out to be good in each of the eight cases.

Depth z(m) −25 −50 −75 −100 −125 −150 −175 −200

|u− uN |L∞ 0.0127 0.0095 0.0087 0.0113 0.0109 0.0138 0.0169 0.021

Table 4.3: Test case 1. Errors in L∞ norm of the numerical solution uN (obtained with
SPEED coupled with DRM) with respect to the semi-analytical solution u, both referred
to the horizontal displacement ux. The measure of the error is given for the case of P
inclined (γ = 10◦) incident plane wave. The solutions taken into considerations are the
one computed in the eight monitors point below the free-surface of the model.

Depth z(m) −25 −50 −75 −100 −125 −150 −175 −200

|u− uN |L∞ 0.0275 0.0204 0.0126 0.0111 0.0126 0.0172 0.0192 0.0186

Table 4.4: Test case 1. Errors in L∞ norm of the numerical solution uN (obtained
with SPEED coupled with DRM) with respect to the semi-analytical solution u, both
referred to the vertical displacement uz. The measure of the error is given for the case of
P inclined (γ = 10◦) incident plane wave. The solutions taken into considerations are the
one computed in the eight monitors point below the free-surface of the model.

4.2. TEST CASE 2: HETEROGENEOUS MODEL
As a second validation of the numerical code, we consider instead a geological model made
of one soft layer (the one above) over a halfspace of harder material. This layers form
together a heterogeneous domain. The model is subject to the incidence of both vertical
(γ = 0◦) and oblique (γ = 10◦) plane waves from below. The temporal dependence of the
incident plane wavefront is given by a Ricker wavelet with maximum frequency equal to
3Hz, as in the previous case.
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Figure 4.8 represents the mesh of the reduced domain used for the analyses. Moreover,
always in Figure 4.8, the blocks that form the computational domain are isolated one by
one in order to simplify the comprehension of the domain’s division. Also in this case, the
block on the bottom (block 4) is introduced in order to make the simulation with code
SPEED without DRM. Indeed, this is the block in which the plane wave is applied for
that specific simulation.

In Table 4.5 we report the mechanical properties of the blocks. Obviously, the two layers
of materials present in this case different values. Note that, without loss of generality, we
assume QS = QP .

Note that the spectral degree is chosen equal to 4 for all the blocks. However, this is true
only for vertical incident plane wave (γ = 0◦). Indeed, for the case of oblique incident
plane wave (γ = 0◦) we use spectral degree N = 2. The reason for that is explained in
the dedicated section.

label degree ρ (kg/m3) VS (m/s) VP (m/s) QS QP

MATE 1 4 2000 300 519.6 60 60
MATE 2 4 2000 300 519.6 60 60
MATE 3 4 2200 1000 1800 180 180
MATE 4 4 2200 1000 1800 180 180
MATE 5 4 2200 1000 1800 0 0

Table 4.5: Test case 2. Mechanical properties related to the five blocks composing the
computational domain. The spectral degree is equal to 4. The properties are the same for
the first two blocks, since they are part of the first physical layer, and for the third and
fourth blocks, because they are part of the second physical layer. The last block, the one
in the bottom, has the same properties related to the second layer, except for the quality
factor QS and QP that are taken equal to 0.

In Figure 4.9 we depict the monitored points of the model during the simulation. These
are the points in which we are going to analyse the numerical displacement solutions in
the following sections. They are nine points taken along the z axis, starting from the top
(z = 0). Note that these are the same points used for the homogeneous test case. This
time, however, the seven points on the top are located in the first layer, while the other
two points are located in the halfspace.
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Computational domain

Block 1: layer 1
(inside DRM)

Block 1: layer 1
(outside DRM)

Block 2: DRM boundary
in layer 1 (MDRM)

Block 3: halfspace
(inside DRM)

Block 3: halfspace
(outside DRM)

Block 4: DRM boundary
in halfspace (MDRM)

Block 5:
plane wave

Block 6:
Absorbing BCs

Block 7: internal boundary
(BDRM)

Figure 4.8: Test case 2. Blocks representation of the heterogeneous model. The figure
in the top panels represents the mesh of the entire computational model. Then, all the
blocks are isolated one by one, included those regarding the boundary conditions of the
model.
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LS.input
9 x y z
1 0 0 0
2 0 0 -25
3 0 0 -50
4 0 0 -75
5 0 0 -100
6 0 0 -125
7 0 0 -150
8 0 0 -175
9 0 0 -200

Figure 4.9: Test case 2. Monitored points of the simulation. The picture on the left
indicates where the points are located inside the computational domain. Note that the
sketch represents the y section of the entire domain. On the right, instead, it is provided
an entire list of the monitored points with their respective coordinates, namely the file
LS.input. These points are all taken inside the DRM block of elements: the first seven
points are inside the first layer, while the other two are taken in the halfspace.

4.2.1. Vertical plane wave: γ = 0◦

As we did for the homogeneous case, we analyse the results relative to the vertical (γ = 0◦)
plane wave, both in the case of P and SV waves.

The resulting displacements are plotted in two different figures. Figure 4.10 shows the
horizontal ux and vertical uz displacement time histories obtained due to the incidence
of plane SV wave. Precisely, the top panel shows the displacements corresponding to all
the monitored point except the one on the free surface (see red point in Figure 4.9), that,
instead, is plotted in the bottom panel.

Then, in Figure 4.11 we report the resulting displacements obtained in the case of P
vertical incident plane wave.

In both cases we make a comparison between the semi-analytical solution (computed with
H-T method and depicted as a blue continuous line), the numerical solution obtained with
SPEED coupled with Domain Reduction Method (dashed green line), and the numeri-
cal solution obtained with SPEED without the implementation of DRM (dashed red line).
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Figure 4.10: Test case 2: heterogeneous model. Plot of horizontal ux and vertical
uz displacements corresponding to the internal monitored points (top panel) and to the
point located at the free surface (bottom panel) due to the incidence of a vertical (γ = 0◦)
plane SV wave. Three solutions are compared: the blue line indicates the semi-analytical
solution obtained with the H-T method, the dashed green line represents the solution
obtained with SPEED coupled with DRM, while the red dashed line the one obtained
with SPEED without DRM.
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Figure 4.11: Test case 2: heterogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel) and to the point
located at the free surface (bottom panel) due to the incidence of a vertical (γ = 0◦) plane
P wave. Three solutions are compared: the blue line indicates the semi-analytical solution
obtained with the H-T method, the dashed green line represents the solution obtained
with SPEED coupled with DRM, while the red dashed line the one obtained with SPEED
without DRM.
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The solution obtained with SPEED coupled with DRM coincides with the semi-analytical
solution mostly in the first part of the simulation (before ≈ 3.5sec), after that it tends to
dampen more slowly. In particular, this happens more for the monitored points located
closest to z = 0 and this is probably due to the change of values of the quality factors
between the two layers. In general, especially for SV plane wave, we can say that the
comparison between the two solutions is quite good.

The displacements obtained with SPEED without DRM, instead, seem to fit better the
semi-analytical solution in the second part of the simulation (after ≈ 3.5sec). However,
it is worth making an important remark on the model used for the simulation of SPEED
without the DRM, particularly regarding the boundary conditions that are applied on it.

Indeed, if from one side the numerical solution obtained with SPEED coupled with DRM
experienced very low spurious effects due to the absorbing boundary conditions, from the
other side this is no longer true for the numerical solution obtained with SPEED without
DRM.

For this reason, in order to obtain the results depicted in Figure 4.10 and in Figure 4.11,
Dirichlet boundary conditions have been applied to the lateral surface of the computa-
tional domain.

In spite of that, if we consider to apply the same boundary conditions, namely ABCs to
the bottom and lateral surface, to both the computational domains, the numerical result
obtained with SPEED without DRM presents lots of spurious effects. To clarify the dif-
ferent setting of boundary conditions (BCs), see Figure 4.12, in which, for the case of P
vertical incident wave, it is shown in which blocks and what types of BCs are applied.

Finally, as an example of the different solutions we obtain, in Figure 4.13 we show a
comparison of the vertical displacement get by the same monitored point (the one on
the free-surface) when the two models undergo the incidence of a vertical P plane wave.
From the latter, it is quite evident how, applying the same boundary conditions (ABCs)
SPEED coupled with DRM provides a much better solution.
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Block 6: Dirichlet BCs Block 7: ABCs
SPEED.input
# Materials’ properties
...
# Absorbing BCs
ABSO 7
# Dirichlet BCs
DIRX 6 8 0 0 0 0
DIRY 6 8 0 0 0 0
FUNC 8 0 0
...

Block 6: ABCs SPEED.input:
# Materials’ properties
...
# Absorbing BCs
ABSO 6
...

Figure 4.12: Boundary conditions for SPEED simulation of heterogeneous case. In the
top panel are shown the blocks in which Dirichlet boundary conditions (block 6, lateral
surface) and absorbing boundary conditions (block 7, bottom surface) are applied together
with their setting on the file SPEED.input. In the bottom panel, instead, it is shown the
unique block (block 6) in which absorbing boundary conditions are applied.

4.2.2. Inclined plane wave: γ = 10◦

In this section, we analyse what happens when the heterogeneous model is subject to the
incidence of an oblique (γ = 10◦) plane wave. This choice leads to a number of degrees
of freedom for spectral element equal to 3(N + 1)3 = 81.

As remarked above, we consider the spectral degree N equal to 2. This is done in order
to reduce the computational cost of the simulation and also because we noticed that in-
creasing the spectral degree do not improve the goodness of the results in this particular
situation.

As done before, we show in Figure 4.14 the horizontal ux and vertical uz displacement
time histories obtained due to the incidence of plane SV -wave, and, in Figure 4.15, the
same results but due to the incidence of a plane P -wave.

Once again, the top panel shows the displacements corresponding to all the monitored
point except the one on the free surface (see red point in Figure 4.9), that, instead, is
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P WAVE

Vertical displacement uz

t(s)

Figure 4.13: Test case 2. Comparison between the solution obtained with SPEED
coupled with DRM (dashed green line) and the solution obtained with SPEED without
DRM (dashed red line) for z = 0 due to the incidence of vertical P plane wave. The
solution obtained without DRM presents lots of spurious effects due to the presence of
absorbing boundary conditions in the bottom surface and in the lateral surface.

plotted in the bottom panel.

Like TEST CASE 1, the comparison occurs only between the semi-analytical solution
(computed with H-T method and depicted as a blue continuous line) and the numerical
solution obtained with SPEED coupled with the DRM (dashed green line), because it is
not possible to compute it with SPEED without DRM.

Similarly to what happens in the analogous case for the homogeneous model, the results
present some spurious effects. The reason for this is probably twofold: minimally, they
are due to ABCs, but mostly they are due to the change of the quality factors QS and
QP in passing from the harder layer to the softer layer. This is especially visible when
the monitored points get closer to the free-surface z = 0.

Once again, this is more evident in the vertical displacement uz for SV plane wave case,
and in the horizontal displacement ux for P plane wave case, the displacements arising
because of the inclination of the plane wave. Here, specially starting from t = 3.5s, the
numerical solution results less damped than the analytical one.
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Figure 4.14: Test case 2: heterogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel) and to the point
located at the free surface (bottom panel) due to the incidence of an oblique (γ = 10◦)
plane SV wave. Two solutions are compared: the blue line indicates the semi-analytical
solution obtained with the H-T method, while the dashed green line represents the solution
obtained with SPEED coupled with DRM.
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Figure 4.15: Test case 2: heterogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel) and to the point
located at the free surface (bottom panel) due to the incidence of an inclined (γ = 10◦)
plane P wave. Two solutions are compared: the blue line indicates the semi-analytical
solution obtained with the H-T method, while the dashed green line represents the solution
obtained with SPEED coupled with DRM.
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4.3. TEST CASE 3: "CROISSANT" VALLEY
The following test, proposed by Sanchez-Sesma and Luzon [1995], concerns the analysis
of a three-dimensional alluvial valley under the action of different plane waves’ types.
Precisely, in this section we analyse the effects of the alluvial basin, here referred as Crois-
sant valley, under the action of a vertical (γ = 0◦) SH plane wave.

The temporal dependence of the incident plane wavefront is now given by a Ricker wavelet
with maximum frequency equal to 1Hz.

After a brief presentation of the geological features of the model, we analyse the results
in terms of x and y displacements components for a series of monitored points located on
the free-surface of the model. Precisely, 98 points laying on the x−y plane for z = 0 have
been taken into considerations: 49 along the x-axis and 49 along the y-axis. Each point
is distant from the adjacent one on the same axis by a distance of 320 m. However, for
the sake of clarity, they are not reported here.

It is made a comparison between the semi-analitycal solution obtained by indirect bound-
ary element method (IBEM) (see Sanchez-Sesma and Luzon [1995]), the numerical solu-
tion computed by SPEED coupled with DRM and the one calculated by SPEED without
DRM.

In Figure 4.16 is shown the mesh of the reduced domain used for the simulation of SPEED
with DRM. Here, one can also find the blocks that form the computational domain isolated
one by one.

It is worth underlying that in this case, in order to avoid the spurious effects due to the
ABCs, the computational domain used for the simulation by SPEED without the DRM
is different from the one above. Precisely, the length of the domain along the x and y

directions goes from −4.2 · 104 m to 4.2 · 104 m, differently from the DRM computational
domain, in which x and y dimensions go from −1.2 · 104 m to 1.2 · 104 m. Figure 4.17
shows the computational domain used for traditional SPEED simulation.

In Table 4.6 we report the mechanical properties of the blocks. Obviously, all the four
volumes blocks have the same properties since the model is homogeneous.

Note that the spectral degree N is chosen equal to N = 3 for all the block, thus leading
to have a number of degrees of freedom for spectral element equal to 3(N + 1)3 = 192.
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Computational domain

Block 1: valley
Block 2: bedrock

(inside DRM)

Block 3:
DRM boundary

(MDRM)

Block 4: bedrock
(outside DRM)

Block 5:
internal boundary

(BDRM)

Block 5:
Absorbing BCs

Figure 4.16: Test case 3. Blocks representation of "croissant" valley. The figure in the
top panels represents the mesh of the entire DRM computational model. Then, all the
blocks are isolated one by one, included those regarding the boundary conditions of the
model.
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Figure 4.17: Test case 3. Computational domain used for the simulation of SPEED
without the implementation of the DRM method. In x and y direction, this domain is
more than three times as much as the DRM computational domain. This choice is made
in order to avoid the spurious effects due to ABCs.

label degree ρ (kg/m3) VS (m/s) VP (m/s) QS QP

MATE 1 3 2000 1000 2081.9942 100 100
MATE 2 3 2500 2000 3463.9976 200 200
MATE 3 3 2500 2000 3463.9976 200 200
MATE 4 3 2500 2000 3463.9976 200 200

Table 4.6: Test case 3. Mechanical properties related to the four blocks composing the
computational domain: the valley and the halfspace bedrock. The spectral degree is equal
to 3. The bedrock outside the valley is homogeneous.
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In Figure 4.18 we plot the results obtained for the x component (top panel) and y com-
ponent (bottom panel) of the uy displacement.
As said before, three solutions are compared: semi-analytical solution obtained by IBEM
(blue line), numerical solution obtained with SPEED coupled with DRM (green line), and
numerical solution obtained with SPEED without DRM (red line).

Before making some comments on the results, we make a remark on the choice of the
spectral degree N .
For SPEED coupled with DRM, N is chosen equal to 3 in order to reduce the computa-
tional cost of the simulation. SPEED without DRM, instead, adopts N = 4 (number of
degrees of freedom per spectral element = 375), since it is not possible to perform plane
wave analysis with odd spectral degrees.

Now, if we look at the results, we can state that there is a good correspondence in the
three solutions, specially for what concerns the x component of the displacement. Once
again, the good fit between the two numerical solutions obtained with SPEED proves the
capability of the DRM from not being affected from impurities caused by ABCs.
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SH WAVES

uy(x, 0, 0, t)

uy(0, y, 0, t)

t(s)

t(s)

Figure 4.18: Test case 3: "croissant valley". Plot of x component (top panel) and y

component (bottom panel) of the uy displacement corresponding to the surface monitored
points along x axis (top panel) and y axis (bottom panel) due to the incidence of a vertical
(γ = 0◦) plane SH wave. Three solutions are compared: the blue line indicates the
semi-analytical solution obtained with IBEM, while the green line represents the solution
obtained with SPEED coupled with DRM and, last, the red line shows the solution
obtained with SPEED without DRM.
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Conclusions and future developments
In this thesis we have presented the Domain Reduction Method (DRM) starting from
its theoretical formulation toghether with its implementation within the code SPEED
(SPectral Elements in Elastodynamics with Discontinuous Galerkin) in the plane wave
scenario. This has been achieved by exploiting the subroutines created on purpose by
Smerzini [2010] in the code GeoELSE (GeoELastodynamics by Spectral Elements), that,
however, is no longer mantained.

Particular attention has been paid to the creation of the input files needed to start the
code. To this aim, we make use of the Matlab scripts already implemented by Smerzini
[2011] and we reconstruct the passages necessary for the correct creation of the desired
files.
In particular, differently from the previous usage of the code, it is not necessary to run
SPEED twice in order to create the Legendre-Gauss-Lobatto nodes in which the effective
forces are calculated. Indeed, this can be simply done with a Matlab function, thus al-
lowing to change the code environment only once (from Matlab to SPEED).

Then, particular attention is made on the validation of three-dimensional test cases. In or-
der to verify the validity of the method, we have compared the numerical solution obtained
with SPEED coupled with DRM with the semi-analytical solution (obtained differently
depending on the case). A second comparison has been made with the numerical solution
obtained with the traditional implementation of SPEED, namely without DRM.

The analysis of the results leads to highlight some main advantages of using the DRM:

1. Capability of the DRM from not being affected almost entirely from impurities
caused by absorbing boundary conditions. In particular, this allows to reduce a lot
the size of the computational domain, thus permitting to decrease the computational
cost of the simulation.

2. Possibility to perform simulations in which the plane wave is not vertical.

3. Possibility to perform parametric analyses with respect to different input motions,



82 | Conclusions and future developments

including accelerograms derived from seismic hazard analysis.

Further developments include the following improvements.
We consider to analyze further cases, for example with a different seismic input type or
considering more complex geometry.
Moreover, in the light of the obtained results, some precautions need to be made in the
implementation of the method since there are cases that are not completely satisfactory.
Indeed, especially if we look at the results obtained for the heterogeneous test case, the
numerical solution obtained with SPEED coupled with the DRM is not perfectly capable
of modeling the transition from one material to another, and this produces spurious effects.
Another important future development regards the implementation of the three-dimensional
parallel version of the code, currently implemented only in sequential version. This will
lead, above all, to an advantageous reduction of the computational time.
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A| Appendix A
In this section we report the implementation of the stiffness DRM matrix, called KDRM

(see Section 2.2.1). The subroutine shown below was implemented in SPEED making
reference to the one implemented in GeoELSE by Scandella [2007].
We underline that the programming language used is Fortran90.

1 call lgl(nn ,ct ,ww ,dd)
2

3 do el = 1, n_el_DRM
4 ie = el_DRM (el ,1)
5 do imDRM = 1,nMDRM
6 if ( cs_loc ( cs_loc (ie -1) +0).eq. tag_MDRM (imDRM)) then
7 do im = 1,nm !For each material
8 if ( tag_mat (im).eq. tag_MDRM (imDRM)) then

9 lambda = prop_mat (im ,2)
10 mu = prop_mat (im ,3)
11 endif
12 enddo
13

14 allocate ( stiff_el (3* nn*nn*nn ,3* nn*nn*nn))
15 stiff_el = 0.0
16

17 do lk = 1,nn
18 do lj = 1,nn
19 do li = 1,nn
20 !Node number in the reference element
21 l = (lk -1)*nn*nn+(lj -1)*nn+li
22 do mk =1,nn
23 do mj =1,nn
24 do mi =1,nn
25 !Node number in the reference element
26 m = (mk -1)*nn*nn+(mj -1)*nn+mi
27

28 ! Partial stiff matrix initialization
29 do i=1,3
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30 do j= 1,3
31 stiff_ij (i,j) = 0
32 enddo
33 enddo
34

35 ! Integration loop on nodes K
36 do kk = 1,nn
37 do kj = 1,nn
38 do ki = 1,nn
39 !Node number in the reference element
40 k = (kk -1)*nn*nn+(kj -1)*nn+ki
41

42 dxdx = alfa11 (ie) + beta12 (ie)*ct(kk) &
43 + beta13 (ie)*ct(kj) &
44 + gamma1 (ie)*ct(kj)*ct(kk)
45 dydx = alfa21 (ie) + beta22 (ie)*ct(kk) &
46 + beta23 (ie)*ct(kj) &
47 + gamma2 (ie)*ct(kj)*ct(kk)
48 dzdx = alfa31 (ie) + beta32 (ie)*ct(kk) &
49 + beta33 (ie)*ct(kj) &
50 + gamma3 (ie)*ct(kj)*ct(kk)
51

52 dxdy = alfa12 (ie) + beta11 (ie)*ct(kk) &
53 + beta13 (ie)*ct(ki) &
54 + gamma1 (ie)*ct(kk)*ct(ki)
55 dydy = alfa22 (ie) + beta21 (ie)*ct(kk) &
56 + beta23 (ie)*ct(ki) &
57 + gamma2 (ie)*ct(kk)*ct(ki)
58 dzdy = alfa32 (ie) + beta31 (ie)*ct(kk) &
59 + beta33 (ie)*ct(ki) &
60 + gamma3 (ie)*ct(kk)*ct(ki)
61

62 dxdz = alfa13 (ie) + beta11 (ie)*ct(kj) &
63 + beta12 (ie)*ct(ki) &
64 + gamma1 (ie)*ct(ki)*ct(kj)
65 dydz = alfa23 (ie) + beta21 (ie)*ct(kj) &
66 + beta22 (ie)*ct(ki) &
67 + gamma2 (ie)*ct(ki)*ct(kj)
68 dzdz = alfa33 (ie) + beta31 (ie)*ct(kj) &
69 + beta32 (ie)*ct(ki) &
70 + gamma3 (ie)*ct(ki)*ct(kj)
71

72

73
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74 ! Jacobian determinant
75 det_j = dxdz * (dydx*dzdy - dzdx*dydy) &
76 - dydz * (dxdx*dzdy - dzdx*dxdy) &
77 + dzdz * (dxdx*dydy - dydx*dxdy)
78

79 ! Derivation of shape functions respect to local
riferiment

80 !(equal to spectral derivate if no zero)
81 if ((kj.eq.lj).and .(kk.eq.lk)) then
82 dfi_i_dcsi_l = dd(ki ,li)
83 else
84 dfi_i_dcsi_l = 0
85 endif
86 if ((ki.eq.li).and .(kk.eq.lk)) then
87 dfi_j_deta_l = dd(kj ,lj)
88 else
89 dfi_j_deta_l = 0
90 endif
91 if ((ki.eq.li).and .(kj.eq.lj)) then
92 dfi_k_zeta_l = dd(kk ,lk)
93 else
94 dfi_k_zeta_l = 0
95 endif
96

97 if ((kj.eq.mj).and .(kk.eq.mk)) then
98 dfi_i_dcsi_m = dd(ki ,mi)
99 else

100 dfi_i_dcsi_m = 0
101 endif
102 if ((ki.eq.mi).and .(kk.eq.mk)) then
103 dfi_j_deta_m = dd(kj ,mj)
104 else
105 dfi_j_deta_m = 0
106 endif
107 if ((ki.eq.mi).and .(kj.eq.mj)) then
108 dfi_k_zeta_m = dd(kk ,mk)
109 else
110 dfi_k_zeta_m = 0
111 endif
112

113 ! Derivation of shape functions respect to
114 ! global riferiment
115 dfi_i_dx = (dydx *( dzdy* dfi_k_zeta_l - &
116 dzdz* dfi_j_deta_l ) &
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117 - dydy *( dzdx* dfi_k_zeta_l - dzdz*
dfi_i_dcsi_l ) &

118 + dydz *( dzdx* dfi_j_deta_l - dzdy*
dfi_i_dcsi_l ))/det_j

119

120 dfi_i_dy = (dzdx *( dxdy* dfi_k_zeta_l - &
121 dxdz* dfi_j_deta_l ) &
122 - dzdy *( dxdx* dfi_k_zeta_l - dxdz*

dfi_i_dcsi_l )&
123 + dzdz *( dxdx* dfi_j_deta_l - dxdy*

dfi_i_dcsi_l ))/det_j
124

125 dfi_i_dz = (dxdx *( dydy* dfi_k_zeta_l - &
126 dydz* dfi_j_deta_l ) &
127 - dxdy *( dydx* dfi_k_zeta_l - dydz*

dfi_i_dcsi_l ) &
128 + dxdz *( dydx* dfi_j_deta_l - dydy*

dfi_i_dcsi_l ))/det_j
129

130 dfi_j_dx = (dydx *( dzdy* dfi_k_zeta_m - &
131 dzdz* dfi_j_deta_m ) &
132 - dydy *( dzdx* dfi_k_zeta_m - dzdz*

dfi_i_dcsi_m ) &
133 + dydz *( dzdx* dfi_j_deta_m - dzdy*

dfi_i_dcsi_m ))/det_j
134

135 dfi_j_dy = (dzdx *( dxdy* dfi_k_zeta_m - &
136 dxdz* dfi_j_deta_m ) &
137 - dzdy *( dxdx* dfi_k_zeta_m - dxdz*

dfi_i_dcsi_m ) &
138 + dzdz *( dxdx* dfi_j_deta_m - dxdy*

dfi_i_dcsi_m ))/det_j
139

140 dfi_j_dz = (dxdx *( dydy* dfi_k_zeta_m - &
141 dydz* dfi_j_deta_m ) &
142 - dxdy *( dydx* dfi_k_zeta_m - dydz*

dfi_i_dcsi_m ) &
143 + dxdz *( dydx* dfi_j_deta_m - dydy*

dfi_i_dcsi_m ))/det_j
144

145

146

147

148



A| Appendix A 95

149 !Stiff matrix components
150 stiff_ij (1 ,1) = stiff_ij (1 ,1) + &
151 det_j*ww(ki)*ww(kj)*ww(kk) &
152 *(( lambda +2* mu)* dfi_i_dx *

dfi_j_dx &
153 + mu* dfi_i_dy * dfi_j_dy + & mu*

dfi_i_dz * dfi_j_dz )
154

155 stiff_ij (1 ,2) = stiff_ij (1 ,2) + &
156 det_j*ww(ki)*ww(kj)*ww(kk) &
157 *( lambda * dfi_i_dx * dfi_j_dy &
158 + mu* dfi_i_dy * dfi_j_dx )
159

160 stiff_ij (1 ,2) = stiff_ij (1 ,2) + &
161 det_j*ww(ki)*ww(kj)*ww(kk) &
162 *( lambda * dfi_i_dx * dfi_j_dy &
163 + mu* dfi_i_dy * dfi_j_dx )
164

165 stiff_ij (1 ,3) = stiff_ij (1 ,3) + &
166 det_j*ww(ki)*ww(kj)*ww(kk) &
167 *( lambda * dfi_i_dx * dfi_j_dz &
168 + mu* dfi_i_dz * dfi_j_dx )
169

170 stiff_ij (2 ,1) = stiff_ij (2 ,1) + &
171 det_j*ww(ki)*ww(kj)*ww(kk) &
172 *( lambda * dfi_i_dy * dfi_j_dx &
173 + mu* dfi_i_dx * dfi_j_dy )
174

175 stiff_ij (2 ,2) = stiff_ij (2 ,2) + &
176 det_j*ww(ki)*ww(kj)*ww(kk) &
177 *(( lambda +2* mu)* dfi_i_dy *

dfi_j_dy &
178 + mu* dfi_i_dx * dfi_j_dx + mu*

dfi_i_dz * dfi_j_dz )
179

180 stiff_ij (2 ,3) = stiff_ij (2 ,3) + &
181 det_j*ww(ki)*ww(kj)*ww(kk) &
182 *( lambda * dfi_i_dy * dfi_j_dz &
183 + mu* dfi_i_dz * dfi_j_dy )
184

185 stiff_ij (3 ,1) = stiff_ij (3 ,1) + &
186 det_j*ww(ki)*ww(kj)*ww(kk) &
187 *( lambda * dfi_i_dz * dfi_j_dx &
188 + mu* dfi_i_dx * dfi_j_dz )
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189

190 stiff_ij (3 ,2) = stiff_ij (3 ,2) + &
191 det_j*ww(ki)*ww(kj)*ww(kk) &
192 *( lambda * dfi_i_dz * dfi_j_dy &
193 + mu* dfi_i_dy * dfi_j_dz )
194

195 stiff_ij (3 ,3) = stiff_ij (3 ,3) + &
196 det_j*ww(ki)*ww(kj)*ww(kk) &
197 *(( lambda +2* mu)* dfi_i_dz *

dfi_j_dz &
198 + mu* dfi_i_dx * dfi_j_dx + mu*

dfi_i_dy * dfi_j_dy )
199 enddo
200 enddo
201 enddo
202

203 ! Element stiff matrix
204 stiff_el (3*l -2 ,3*m -2) = stiff_ij (1 ,1)
205 stiff_el (3*l -2 ,3*m -1) = stiff_ij (1 ,2)
206 stiff_el (3*l -2 ,3*m) = stiff_ij (1 ,3)
207 stiff_el (3*l -1 ,3*m -2) = stiff_ij (2 ,1)
208 stiff_el (3*l -1 ,3*m -1) = stiff_ij (2 ,2)
209 stiff_el (3*l -1 ,3*m) = stiff_ij (2 ,3)
210 stiff_el (3*l ,3*m -2) = stiff_ij (3 ,1)
211 stiff_el (3*l ,3*m -1) = stiff_ij (3 ,2)
212 stiff_el (3*l ,3*m) = stiff_ij (3 ,3)
213 enddo
214 enddo
215 enddo
216 enddo
217 enddo
218 enddo
219

220 K_DRM (1+(el -1) *3* nn*nn*nn:el *3* nn*nn*nn ,1:3* nn*nn*nn) =
stiff_el

221 deallocate ( stiff_el )

222 endif
223 enddo
224 enddo
225

226 deallocate (ct ,ww ,dd)
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1.1 Domain Reduction Method (DRM) two-step procedure: the original prob-
lem is subdivided into two numerical submodels, namely the auxiliary prob-
lem and the reduced problem. STEP 0 (top panel): original problem.
STEP 1 (left bottom panel): auxiliary problem. Seismic source and prop-
agation path effects are included, while structure and geological features
are removed and replaced with a background structure having the same
materials of the surrounding soil. STEP 2 (right bottom panel): reduced
model including the localized geological structure of interest. The coupling
of Step 1 and 2 is given by a set of effective forces, evaluated from the free-
field solution (auxiliary problem) and applied within a strip of elements as
an equivalent dynamic excitation. Adapted from Bielak et al. [2003] and
Smerzini [2010]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Simple representation of a semi-infinite seismic region characterised by the
presence of a hill, a basin and an active fault. . . . . . . . . . . . . . . . . 9

1.3 Limited seismic region: idealized seismic region confined by the boundary
Γ+ including a localized geological irregularity (alluvial basin and a hill)
as well as a seismic source (active fault). a) The artificial interface Γi sub-
divides the original model into two subdomains: Ωe, the exterior domain,
which includes the seismic source, represented by a set of equivalent body
forces Pe, and the background geological model; Ωi, the interior domain,
which contains only the localized geological feature. b) Explicit partition
of the domain into two subdomains Ωe and Ωi across the fictitious interface
Γi: displacements ub are continuous across Γi, Pb are transmitted from
Ωe onto Ωi and −Pb are the corresponding reactions equal in modulus but
opposite in sign. Adapted from Bielak et al. [2003]. . . . . . . . . . . . . . 10
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1.4 Auxiliary seismic region (STEP 1). The localized structure in Ω0
i has been

removed and substituted with a simpler background structure with the
same material of Ωe. (a) Auxiliary domain in its entirety. (b) Auxiliary
domain subdivided in exterior domain Ωe and interior domain Ω0

i . Γi rep-
resents the inner boundary between these two domains. This partition
underline the condition of continuity of displacement u0

b and forces P 0
b

transferred through the interface Γi. Adapted from Bielak et al. [2003]. . . 12
1.5 Reduced seismic region (STEP 2). The exterior domain Ωe has been re-

stricted to the reduced exterior domain Ωr
e, delimited by the surface Γ+r.

This domain must include at least one strip of elements around the bound-
ary Γe. The effective forces Peff , which correspond to a dynamic excitation
equivalent to the seismic one, are computed only in the strip of elements
in between the inner boundary Γi and the outer boundary Γe. . . . . . . . 14

2.1 Graphical representation of the SPEED code’s features. . . . . . . . . . . . 20
2.2 Computation of the effective nodal forces at the interface elements. Inside

the reduced domain, the artificial green strip represents the spectral ele-
ments at the effective boundary. One of the spectral element, delimited by
the four vertices 1 and 2, belonging to the internal boundary Γi, 3 and 4,
belonging to the external boundary Γe, is idealistically isolated for the sake
of explanation. Adapted from Smerzini [2010]. . . . . . . . . . . . . . . . . 28

2.3 Two-steps procedure for the computation of the effective forces. Step 1:
the degrees of freedom are fixed at nodes 1 and 2, while the free-field
displacements u0

3 and u0
4 are imposed with opposite sign at nodes 3 and 4.

The reaction forces P eff
1 and P eff

2 are computed. Step 2: the degrees of
freedom are fixed at nodes 3 and 4, while the free-field displacements u0

1

and u0
2 are imposed at nodes 1 and 2. The reaction forces P eff

3 and P eff
4

are computed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Plane wave propagation analyses in arbitrary complex media: sketch of the

implementation. Adapted from Smerzini [2010]. . . . . . . . . . . . . . . . 32

3.1 Main steps for the use of SPEED coupled with the Domain Reduction
Method. Starting from the generation of the mesh file using the software
CUBIT, up to the generation of the monitor at the selected sites. . . . . . 36
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3.2 Division into blocks of a simple computational case. Here, there is no
difference in the materials of the blocks. This division allows the simulation
with SPEED coupled with DRM method, in particular the presence of the
green strip of DRM elements (block2). Note that there is a block also
for absorbing boundary conditions applied to the external boundary of
the computational domain (block 4) and for the DRM boundary elements
(block 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Example of mesh file. In this file are listed all the nodes delimiting the
elements together with their coordinates. Then, for each block, all the ele-
ments are listed specifying their type (namely quadrilateral / hexahedral)
and the four / eight vertices that delimit them. . . . . . . . . . . . . . . . 39

3.4 Computation of the LGL nodes for the reference hexahedron, that corre-
sponds to the cube having dimensions [−1, 1]3. In this example, the spectral
degree N is equal to 3. This leads to the computation of 43 = 64 LGL nodes. 42

3.5 Example of file test_3d.ini. In this file are listed all the input parameters
for one dimensional linear visco-elastic seismic wave propagation analyses. . 46

3.6 Example of file param_4else_3d.txt. It contains the parameters describing
the model under study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Steps for the computation of the PDRM nodes and FDRM free-field dis-
placements. Starting from the LGL nodes computed my means of the Mat-
lab scripts read_grid_test.m and lgl_block.m, it necessary to pass through
all the Matlab scripts depicted above. Finally, one gets as outputs the files
pdrm.dat and fdrm.dat that will be inserted in the file mate in order to
run the simulation with SPEED coupled with DRM. . . . . . . . . . . . . 48

3.8 Example of mate file. In addition to the geological properties of each block,
PDRM and FDRM are added to the file in order to perform the simulation
on SPEED coupled with DRM. . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 Example of file SPEED.input. It contains the names of all the files used for
the simulation, as well as folder names to which the output files are placed
inside. Moreover, it is specified the type of damping, the type of output
and the time step used for the simulation. . . . . . . . . . . . . . . . . . . 51

4.1 P and S waves. For the P waves (on the left), the direction of propagation
(red arrow) is parallel to the ground motion caused by the wave (blue
arrow). For the S waves (on the right), instead, the direction of propagation
(red arrow) is perpendicular to the ground motion caused by the wave (blue
arrow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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4.2 Test case 1. Blocks representation of the homogeneous model. The figure
in the top panels represents the mesh of the entire computational model.
Then, all the blocks are isolated one by one, included those regarding the
boundary conditions of the model. . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Test case 1. Monitored points of the simulation. The picture on the left
indicates where the points are located inside the computational domain.
Note that the sketch represents the y section of the entire domain. On the
right, instead, it is provided an entire list of the monitored points with their
respective coordinates, namely the file LS.input. Note that these points are
all taken inside the DRM block of elements. . . . . . . . . . . . . . . . . . 57

4.4 Test case 1: homogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel)
and to the point located at the free surface (bottom panel) due to the
incidence of a vertical (γ = 0◦) plane SV wave. Three solutions are com-
pared: the blue line indicates the semi-analytical solution obtained with the
H-T method, the dashed green line represents the solution obtained with
SPEED coupled with DRM, while the red dashed line the one obtained
with SPEED without DRM. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Test case 1: homogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel)
and to the point located at the free surface (bottom panel) due to the
incidence of a vertical (γ = 0◦) plane P wave. Three solutions are com-
pared: the blue line indicates the semi-analytical solution obtained with the
H-T method, the dashed green line represents the solution obtained with
SPEED coupled with DRM, while the red dashed line the one obtained
with SPEED without DRM. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Test case 1: homogeneous model. Plot of horizontal ux and vertical uz

displacements corresponding to the internal monitored points (top panel)
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