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Abstract

In the context of medical image analysis, accurate algorithms for automatic segmenta-

tion of organs at risk have the potential of improving disease diagnosis and radiotherapy

treatment planning. In this work we focus on CT Scan images obtained from patients

under treatment and labeled by medics, we perform a series of experiments with CNNs

analyzing also the transferability of features coming from models pretrained on other data

sources. We compared also two approaches in the context of multi-organ segmentation:

the use of ensemble methods made of multiple binary nets, and the creation of a single

network for multi-organ segmentation.

Keywords: Semantic segmentation, Medical image segmentation, CT-Scan, Transfer

learning, Organ at risk





Abstract in lingua italiana

Nel contesto dell'analisi di immagini mediche, algoritmi automatici ad accurati che perfor-

mano la segmentazione degli organi a rischio hanno il potenziale di migliorare la diagnosi

di malattie e il planning dei trattamenti di radioterapia. In questo elaborato ci siamo

concentrati sulle immagini CT Scan ottenute da pazienti in corso di trattamento e anno-

tate dai medici. Abbiamo eseguito una serie di esperimenti usando Reti convoluzionali,

analizzando anche la possibilità di trasferire features da modelli pre-allenati su altre basi

di dati. Abbiamo paragonato anche due approcci nel contesto della segmentazione multi-

organo: l'uso di metodi ensemble costituiti da varie reti binarie, e la creazione di una

singola rete in grado di segmentare multipli organi.

Parole chiave: Segmentazione semantica, segmentazione di immagini mediche, CT-Scan,

Transfer learning, Organi a rischio
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1| Introduction

Radiation therapy is a type of cancer treatment that uses beams of intense energy to kill

cancer cells. The high-energy beams come from a machine outside the patient's body

that aims at a precise target. Radiation therapy damages unhealthy cells by destroying

the genetic material that controls how cells grow and divide. While both healthy and

cancerous cells are damaged by radiation therapy, the goal of the latter is to destroy as

few normal and healthy cells as possible.

To develop an e�ective treatment it's therefore important to correctly identify the regions

to be targeted. In the Medical realm, these regions are called organs-at-risk (OaR), they

are healthy tissues/organs placed near the clinical target volume (CTV) whose irradia-

tion could cause damage that would make changes to the radiotherapy treatment plan.

The heart, for example, in radiotherapy of left breast cancer, is an organ at risk [27].

Is therefore crucial to identify OaR regions in the patient's body before any radiation

treatment. At the moment, in most cases, the contouring of the targets is done manually

by doctors. Manual segmentation poses signi�cant challenges for human experts, both

because of the variability of tumor appearance but also because of the need to consult

multiple images from di�erent CT-Scan sequences in order to classify tissue type cor-

rectly. This laborious e�ort is not only time-consuming but prone to human errors and

results in signi�cant intra- and inter-rater variability [17]. To tackle these limitations,

automatic segmentation systems are developed, these systems aim to provide a cheap and

scalable solution for treatment planning. Automatic multi-organ segmentation techniques

represent a signi�cant innovation in daily practices of radiation therapy, expediting the

segmentation process and enhancing contour consistency. The recent development of AI

and in particular the �eld of Deep Learning allows for more and more powerful algo-

rithms that perform automatic segmentation. In particular, Arti�cial neural networks

have demonstrated high-level performances and promising results in the Computer Vi-

sion realm. However, the performances of these systems are strongly dependent on the

amount and the quality of available data. The data required by these algorithms need

to be labeled and prepared beforehand by doctors. Therefore, it's crucial that the data

provided to the Arti�cial Neural Networks is meaningful, not biased, correct, and various.
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This is the main limitation of NNs and, in particular, in the medical �eld, there are more

challenges like the privacy of patients, the scarcity of certain diseases, and the precision

required for manual segmentation.

Our work falls in the context of the Total Marrow and Lymph node Irradiation (TMLI)

which represents a more targeted form of radiotherapy compared with the standard of

the past: Total Body Irradiation (TBI) having as targets the whole patient's body. The

TBI causes late toxicities like growth impairment, neurocognitive decline and secondary

malignancies but also represents a clinically signi�cant concern for older patients (e.g.,

risk of lung damage) [29]. For these reasons, the use of total body irradiation as part

of conditioning regimens for cancer patients are progressively declining. As opposed to

TBI, the Total Marrow and Lymph node Irradiation in new conditioning regimens allows

making the whole procedure less time-consuming, more streamlined, and easier to inte-

grate into the clinical work�ow. As a drawback, this new technique is dependent on its

technological implementation and requires a complex planning phase in order to classify

the region that will be targeted by radiotherapy.

1.1. Scope

In our work, we evaluate and compare the performances of di�erent segmentation meth-

ods extracting organ-at-risks from CT Scan images. Firstly, we trained binary segmen-

tation models, segmenting organs and clinical target volumes, and training organ-speci�c

networks. Then we evaluate the performance in a transfer learning context from other

datasets. We analyze the e�ect of di�erent scenarios in the transfer learning setting, such

as the possible data scarcity and the variable amount of frozen layers. Finally, we eval-

uate the performance of models used to segment multiple organs at once from the input

CT Scan. In particular, we work on multiclass models able to segment multiple targets

and ensemble method: architecture made out of single binary nets and a fusion layer

that combine the various results in a single multiclass segmentation output. The main

contributions of this work are:

� Evaluation of the segmentation performance of di�erent transfer learning scenarios

over the training from scratch.

� Evaluation and training of di�erent networks over di�erent organs in the body.

Comparison of the single organ Approach over multiple organs.

� Evaluation of the e�cacy of ensemble methods in the multiclass segmentation task.
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1.2. Thesis structure

The rest of the thesis is structured as follows:

� Chapter 2: Here we provide the context of this work in order to give some knowledge

to best understand the following chapters.

� Chapter 3: Here we introduce the CT-Scan images, the dataset used, and the pre-

processing steps carried over the samples.

� Chapter 4: Here we put a detailed presentation of the Neural network model, his

speci�cations (e.g. Loss function, optimizer, ...) and the evaluation metrics used to

properly validate the results.

� Chapter 5: Here we present the various experiments carried out.

� Chapter 6: Here we list the results of the experiments.

� Chapter 7: Here we include a conclusion about the work that has been done, and

suggest some possible future improvements.
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2| State of the Art and

Theoretical background

In this chapter, we present the actual state of research in the �eld of medical image

segmentation, here we put a knowledge base useful to understand the context and the

next chapters. In particular, in Section 2.1 we introduce some theoretical background on

which our work is based, namely, Neural Network, Convolution and Transfer Learning.

After, in Section 2.2 we introduce the context of AI and deep learning, focusing on the

state-of-the-art models and the main problems of the image segmentation task.

2.1. Theoretical Background

Here we present some technicalities required to fully understand the context in which this

work �t.

2.1.1. Total Marrow and lymphoid irradiation

Total body irradiation has been developed more than 60 years ago, and it has been used

in medical treatment to eradicate malignant cells from the bone marrow, lymph nodes,

and blood. However, its usage is declining mainly because of concerns about toxicities and

as a result of the introduction of more targeted intensity-modulated radiotherapy which

enables more control over the radiation dose delivery. The new approach that emerged

as one of the most promising topics for future research is Total Marrow and Lymphoid

Irradiation (TMLI). In fact, the TMLI allows for precise delivery of radiation doses to

complex-shaped organ targets while sparing normal tissue.

In this paper [29], the authors presented a study that aims at showing the e�ects of TMLI

compared with Total Body Irradiation.
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Figure 2.1: Comparison of TMLI vs TBI in terms of therapeutic e�ect, radiation planning,

delivery, and toxicity pro�le.
Plus sign represents a 3-point rating scale, with three-plus signs indicating the best and one plus sign the

worst. TBI=total body irradiation. TMI=total marrow irradiation. TMLI=total marrow and lymphoid

irradiation.

A technological gap currently limits the widespread introduction of TMLI as an alterna-

tive to total body irradiation. Precise radiotherapy still represents a challenge, because

of di�culties in target contouring and sophisticated planning. In this context, an auto-

mated mechanism to generate automatic target contouring is highly bene�cial for clinical

practice.

2.1.2. Arti�cial Neural Networks

Arti�cial Neural networks, ANN for short, are implementations of the idea that the only

form of intelligence that we know is in the brain, so to simulate intelligence we need a

machine that simulates the human brain.

How does the brain work? The modern knowledge of the brain is far from exhaustive

and, also if it was the case, we don't build airplanes by reverse engineering feathers;

we need underlying aerodynamics principles. There are anyway some physical processes
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that we can monitor which give us some clues about the brain's mechanism. Donald

Hebb, a Canadian psychologist, wrote in his 1949 book The Organization of Behavior :

When an axon of cell A is near enough to cell B and repeatedly or persistently takes

part in �ring it, some growth process or metabolic change takes place in one or both cells

such that A's e�ciency, as one of the cells �ring B, is increased [14]. Or, to rephrase it

simpler: neurons that �re together wire together[9]. The brain is an evolving machine

that increases or decreases the connection between neurons, a single mental concept in

this model is represented by a distributed group of neurons and their connections. This

communication between neurons happens in parallel in di�erent parts of the brain, so

we would need highly parallel computation in order to make a powerful neural network.

The number of transistors in the computer is catching up with the number of neurons in

the human brain, but the number of connections between the brain's neurons is orders

of magnitude bigger than the connection between transistors in a microprocessor; this is

mainly due to the planar shape of the semiconductor technology used.

The core of the ANN is the concept of Perceptron developed by Rosenblatt: a perceptron

is an emulator of a neuron, it takes di�erent inputs, and it weights them di�erently. Every

weighted input signal is summed and, after a certain threshold is passed, the perceptron

�res a signal in the output.

(a) (b)

Figure 2.2: Arti�cial perceptron and biological neuron.

As far as we know, neurons in the brain work in the same way: they are connected with

di�erent strengths, and they can �re a signal through the axon giving an output of either

0 or 1. To build a neural network we create a network of neurons connected in di�erent
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ways. This led to networks with di�erent shapes and di�erent capabilities.

2.1.3. Stochastic Gradient Descent

The neural network can simulate the learning process by adjusting the weights that con-

nect the neurons, it needs a dataset of couples <input, output>. For every input, we

measure the di�erence between the expected output (from the dataset) and the actual

output computed by the net in an initialized random state. This di�erence is called Loss

and the objective of the learning algorithm is to minimize it in order to have a network

that produces an outcome as close as possible to the desired one. The learning algo-

rithm is called Stochastic Gradient Descent, a Stochastic approximation of the Gradient

Descent because it performs the algorithm on batches and takes into consideration the

mean result over the batches for every iteration. The Gradient Descent is an optimization

algorithm that aims at �nding the minimum of a di�erentiable function (the loss function,

in our case). It consists of an iterative process, in every iteration, it adjusts the weights

by moving a step (in the weights multidimensional space) in the opposite direction with

respect to the gradient of the function, in this way it is going in the direction of smaller

loss values. The length of the step is called Learning rate. A drawback of this learning

algorithm is that the loss function landscape has not only one minimum, but a lot of local

minima, we should image the loss landscape like a mountain territory with a lot of tops

and valleys (actually, the function landscape has not 3 dimensions like in the following

image, but it's n-dimensional, with n equal to the number of adjustable parameters).

While trying to �nd the optimal solution, the gradient descent will prefer directions that

ensure a lower value of the function when it reaches a valley, the gradient descent will

get stuck in that suboptimal state. To avoid this problem, learning processes incorporate

an Optimizer which adds momentum and past information to the gradient descent's step

and guarantee more exploration of the function's landscape. The problem of local minima

endangers any certainty that gradient descent will �nd the best solution, because of this,

we can reach di�erent solutions based on where the start is placed. For this reason, is

important to initialize the network weights in a way that allows the algorithm to �nd a

good solution.
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Figure 2.3: 3D Visualization of a Loss function landscape.

2.1.4. Convolutional Neural Network

CNN is a type of deep learning model for processing data that has a grid pattern, such

as images, which are inspired by the organization of animal visual cortex and designed

to automatically and adaptively learn spatial hierarchies of features, from low- to high-

level patterns. CNN is a type of network that is typically composed of three types of

layers (or building blocks): convolution, pooling, and fully connected layers. The �rst

two, convolution and pooling layers, perform feature extraction, whereas the third, a

fully connected layer, maps the extracted features into a �nal output. Convolution is a

specialized type of linear operation used for feature extraction, where a small matrix of

weights, called a kernel, is applied across the input. An element-wise product between

each element of the kernel and the input tensor is calculated at each location of the tensor

and summed to obtain the output value in the corresponding position of the output tensor,

called a feature map. The convolution operation is therefore searching for patterns (stored

as weights in the kernel) across the input image. When the image's portion in analysis

is matching the structure stored in the weights, the element-wise product will produce

a higher value, in this sense, the output of a convolution can be considered as a high-

de�nition heatmap for the pattern used in the kernel. This procedure is repeated by

applying multiple kernels to form an arbitrary number of feature maps, which represent
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di�erent characteristics of the input; di�erent kernels can, thus, be considered as di�erent

feature extractors. In digital images, pixel values are stored in a two-dimensional (2D)

grid, i.e., an array of numbers. This grid is fed to the CNN which extracts features thanks

to the convolutional layers. Then, the down-sampling operation is performed: here the

goal is to reduce the spatial dimensions in order to learn position invariant features at

di�erent scales. In general, the down-sampling is performed by a pooling operator which

takes a matrix of pixels from the input image and outputs a single value (in general the

maximum). This operation is applied in all the pixels of the image and leads to an output

with a lower resolution allowing the next layers to learn features at di�erent scales. The

convolutional block made out of convolution and down-sampling is then repeated multiple

times during the encoding phase. Here every convolution increases the number of features

learned while the pooling reduces the image size leading to lower-level features in the

deepest layers. The decoder is in charge of reconstructing the original image resolution

with up-sampling operations, which are, in general, transposed convolutions. [30].

Figure 2.4: CNN composed of Encoder, bottleneck and Decoder.

CNNs are particularly useful with images because they can learn features independently

of their position in the grid of pixels. Moreover, the number of weights used in the Con-

volutional block is by far less than the ones needed to train in a standard fully connected

network allowing for faster training and a lighter model. As we can see in Figure 2.4 these

convolutional blocks are repeated in a down-sampling path which extract features at dif-

ferent levels, then all these features go through a bottleneck and, �nally, an up-sampling

path maps the features learned to the �nal output. This is known as Encoder-Decoder

architecture, and it's the state of the art in the task of image segmentation with CNNs.

2.1.5. Transfer learning

Many machine learning methods work well only under a common assumption: the training

and test data are drawn from the same feature space and the same distribution. When the
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distribution changes, most statistical models need to be rebuilt from scratch using newly

collected training data. In many real-world applications, it is expensive or impossible to

recollect the needed training data and rebuild the models. It would be nice to reduce the

need and e�ort to recollect the training data. In such cases, knowledge transfer or transfer

learning between task domains would be desirable [24]. As a de�nition, transfer learning

aims to extract knowledge from one or more source tasks and applies the knowledge to a

target task. We need to keep in mind three di�erent aspects while deciding whether using

Transfer Learning or not: what to transfer, how to transfer, and when to transfer. "What

to transfer" asks which part of knowledge is generally between the source and destination

tasks, some knowledge may be more transferrable than others. "How to transfer" asks

about the practical way in which we perform the knowledge sharing. "When to transfer"

asks in which situations transferring should be done. We can categorize three di�erent

sub-settings under the Transfer Learning category:

� Inductive transfer learning: the source task and target tasks are di�erent (i.e. Seg-

mentation and Classi�cation).

� Transductive transfer learning: the source and target tasks are the same, while the

source and target domains are di�erent.

� Unsupervised transfer learning: here the source and targets task are di�erent but

related and the target is an unsupervised learning task.

As we will see, this work fall in the Transductive transfer learning sub-setting since we

are trying to transfer knowledge from a di�erent domain for the same task: image seg-

mentation. In the speci�c case of Arti�cial Neural Networks, the knowledge is transferred

directly as a trained model or part of it. Instead of training a model from scratch, we

can take advantage of the knowledge from another domain embedded in a pretrained

model. The learned features are transferred in a Network-based fashion, in order to do

this, the source and target models need to be the same since the learned feature are

technically represented by the weights of the network. After the features are transferred,

we might need to adapt them a bit to the target domain, in order to do so we can train

the network on some target data while using the transferred con�guration as the initial-

ization state of the model. As we have seen, the CNN models are extracting features

at di�erent levels, the deeper the network layer, the more task-speci�c are the feature

extracted. As a consequence of this specialization of the deeper layers, transfer learning

between CNN is typically done only for the more general layers while the deeper ones are

trained from scratch. The layers that are only copied from the source network are called

"frozen" because they will not change during subsequent training. However, there is no
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clear distinction between a transferrable feature and a non-transferrable one.

In this study [31], the authors analyzed the performance of transfer learning based on

the number of layers that are frozen. As suspected, the transfer from di�erent domains

became less e�ective as we increase the number of frozen layers, but surprisingly when

trying to transfer knowledge over a target domain that is the same as the original domain,

the performance drop if we froze only a subset of the layers, as you can see in the following

�gure.

Figure 2.5: The blue lines represent transfer performance using the same source and target

domain, red lines represent transfer over di�erent domains. The light-colored lines are

the result of transfer learning without any frozen layer, the dark-colored lines show the

results of Transfer Learning with some frozen layers.

The explanation for this phenomenon is that some features interact with each other in

a complex or fragile way, they are co-adapted. These linked features could lead to opti-

mization di�culties if only some of them are frozen. And to avoid breaking them during

the transfer, not a single layer should be frozen. In general, results show that initializing

the network with transferred features is better than setting random weights, even if the

distance between the source and destination tasks increases. Furthermore, when dealing

with small datasets we can leverage transfer learning to improve generalization over a few

samples and reach better inference results.
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2.2. Related works

2.2.1. Arti�cial Intelligence and Deep learning

"Arti�cial intelligence" means the science and engineering of making intelligent machines.

[22] An algorithm that is able to reproduce an intelligent behavior, is an AI. Recognizing

objects' presence and location in an image is a task that only intelligent organisms can

perform, so an algorithm doing the same task will be classi�ed as an AI. This is a broad

�eld of research, a subsection of this �eld is Machine Learning (ML): ML teaches a machine

how to make inferences and decisions based on experience. ML involves the ability of an

algorithm to learn and identify patterns in the data. This automation to reach conclusions

by evaluating data saves human time for businesses and helps them make better decisions.

We can think of ML as a way of speeding up the scienti�c method: it's a cyclic process

of generating, testing, and discarding hypotheses; it automates discovery. In our work we

focus on this type of ML algorithms that are able to learn from experience; in particular,

we consider a sub�eld of ML: Deep Learning. DL groups a set of machine learning

algorithms that are able to extract features from data at a di�erent level of abstraction,

they are able to extract "deep" features and gain a better representation of the input.

DL is becoming more and more popular nowadays, in particular in Computer Vision

tasks (tasks that emulate human vision). There are mainly three reasons contributing

to their success: Firstly, the main reason behind the amazing success of deep learning

over traditional machine learning models is the advancements in neural networks, they

learn high-level features from data in an incremental manner, which eliminates the need

of domain expertise and hard feature extraction, and they solve the problem in an end to

end manner. Secondly, the appearance of GPU and GPU-computing libraries make the

training of the model 10 to 30 times faster than on CPUs. And the open-source software

packages provide e�cient GPU implementations. Thirdly, publicly available datasets

such as ImageNet, can be used for training, which allows researchers to train and test

new variants of deep learning models. [33]

2.2.2. AI applied to medical image analysis

In the last two decades, AI has become integrated into some medical work�ows, this

integration has generated an area of research called Computer-aided detection (CAD).

With the development of science and technology and the promotion of medical imaging

applications, manual data interpretation, and analysis has gradually become a challenging

task. Radiologists may misinterpret diseases because of inexperience or fatigue, leading
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to missed diagnosis, that is, false-negative results, non-lesions may be interpreted as

lesions, or benign lesions may be misinterpreted as malignant, that is, false-positive results.

According to statistics, the misdiagnosis rate caused by humans in medical image analysis

can reach 10-30%. In this background, the CAD system can be a great helpful tool for

radiologists in medical image analysis. The work�ow of a typical CAD system (shown in

Figure 2.1) in medical image analysis can be divided into four steps: Image pre-processing,

segmentation, feature extraction and selection, lesion classi�cation. [12]

Figure 2.6: Work�ow of a typical CAD system.

Our work falls into the Image Segmentation phase needed to develop a radiotherapy plan,

we need to know where organs-at-risk are.

Cancer treatment by Radiation therapy consists of high-powered energy beams such as

X-rays or protons are applied to the patient's body to kill cancer cells. It's important,

during cancer treatment, to target only the cancer cells and avoid damage to other organs.

Radiation therapy could lead to damage to the body, in particular, late side e�ects may

�rst occur six or more months after radiation therapy is over. Late side e�ects may

include infertility, joint problems, lymphedema, mouth problems, and secondary cancer.

To target this issue, in the last decades, high precision radiation therapy such as intensity-

modulated radiation therapy (IMRT), volumetric modulated radiation therapy (VMAT),

and proton therapy have been widely used for cancer treatment due to their ability for

highly conformal dose delivery. To minimize post-treatment complications, organs-at-

risks (OARs), such as the spinal cord, eyes, optic nerves heart, and lungs, which must be

accurately delineated. The complexity of OARs morphology and imperfection of imaging

devices such as Magnetic Resonance Imaging or Computed Tomography, make manual

delineation prone to errors and time-consuming. There is therefore a great demand for



2| State of the Art and Theoretical background 15

more accurate OARs delineation and for a considerable reduction in the amount of manual

labor in treatment planning. In this spirit, we propose an Arti�cial Neural Network able

to automatically segment the OaR speeding up the treatment pipeline and lighting the

medics' workload. [16]

Typically, deep learning methods can be divided into four categories: CNN-based meth-

ods, restricted Boltzmann machines (RBMs), or adversarial approach. The best results

are obtained by the CNN-based methods which are also the current direction of research.

CNN could be used in di�erent domains, they have shown promising results in computer

vision, di�erent architectures have been proposed during the recent years to tackle di�er-

ent problems, but the convolutional building block is the same.

In the recent literature, CNNs have been widely used in the context of medical image

segmentation. A lot of research focused on the brain and the segmentation of its various

structures (White Matter, Gray matter, Cerebrospinal Fluid) [18]. The medical images

used are in general Magnetic Resonance Images of various modalities (T1-weighted, T2-

weighted) or CT Scan. From an input data perspective we can identify 3 main approaches:

� 2D: the input is divided into 2-dimensional slices and the network is fed with one

slice at a time.

� 2.5D: the input is divided into 2-dimensional slices, but the network is fed with a

few adjacent slices [26].

� 3D: the input is the whole 3-dimensional structure, and the network is fed with a

small batch of 3D volumes [19].

A huge part of the research is concerned with the identi�cation of lesions, for example, in

this article [32], the authors developed a dilated convolution network to segment COVID-

19 lesions from CT Scan. Other targets are the tumors: in [15], a segmentation process to

identify brain tumors from multimodal MRI images is presented. Regarding the multiclass

case, the research has been conducted with di�erent approaches: in [10], the multiclass

segmentation is performed by a single Unet working on 2.5D input and then the net is

used as a generator in an adversarial setup. Instead, in [11], the segmentation process is

split into a Region Of Interest extraction and, after, a binary network segmentation of

the single structure.
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2.3. Summary

In this section we provided an introduction to the segmentation problem addressed in the

subsequent experiments, we put the focus on the need for this technology from a medical

perspective; then we dive more into the details of how the AI and the Neural Networks

actually work. We also addressed the topic of Transfer learning which will be used too

in the subsequent experiments. Finally, we presented some related works in the �eld of

Image segmentation in the medical realm.
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3| Dataset

In this chapter, we give some information regarding the datasets used for the various

network training and �ne-tuning; in particular, we focus �rstly on what a CT Scan is,

then we move on to describing the structure and some technicalities about the datasets,

and �nally, we describe the preprocessing steps applied before feeding the data to the

various networks.

3.1. Computerized Tomography

Computerized Tomography is an imaging technique used to visualize nearly every part of

the body, it is used by medics to diagnose diseases, analyze injuries, or plan surgical, or

radiation treatment. More technically, CT refers to a computerized x-ray imaging proce-

dure in which a narrow beam of x-rays is aimed at a patient and quickly rotated around

the body, producing signals that are processed by the machine's computer to generate

cross-sectional images�or �slices��of the body. These slices are called tomographic im-

ages and contain more detailed information than conventional x-rays. Once the machine's

computer collects a number of successive slices, they can be digitally �stacked� together

to form a three-dimensional image of the patient that allows for easier identi�cation and

location of basic structures as well as possible tumors or abnormalities. Each time the

x-ray source completes one full rotation, the CT computer uses mathematical techniques

to construct a 2D image slice of the patient which can represent a thickness from 1 to 10

millimeters. When a full slice is completed, the image is stored and the motorized bed is

moved forward incrementally into the x-ray source. The x-ray scanning process is then

repeated to produce another image slice. This process continues until the desired number

of slices is collected [2]. In our target dataset, the slice thickness is 5 millimeters and the

slices cover all the upper body, including the head, chest, abdomen, and the beginning of

the legs.
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3.2. Dataset Technicalities

During the carried experiments, we used pretrained models, the publicly available source

datasets used to pretrain those models were StructSeg and SegTHOR, instead, the private

target dataset used to carry experiment is referred as AUTOMI:

� Structseg 2019: from the "Automatic Structure Segmentation for Radiotherapy

Planning Challenge", part of the MICCAI 2019.

� SegTHOR 2019: "IEEE international Symposium on Biomedical Imaging 2019".

� Target Dataset - AUTOMI: provided by the Humanitas Research Hospital.

3.2.1. StructSeg

The StructSeg dataset contains the source CT Scans for 50 patients and the corresponding

segmentation masks manually delineated by doctors for 6 OARs (Heart, Right lung, Left

lung, trachea, esophagus, marrow). Both the images and masks have 512x512 voxels in

every slice.

(a) Grayscale Patient Slice. (b) Multi Organ manually segmented

slice.

Figure 3.1: An example of slice and mask extracted from a random patient from the

Structseg dataset

3.2.2. SegTHOR

The SegTHOR dataset contains the source CT Scans for 40 patients and the correspond-

ing segmentation masks manually delineated by doctors for 3 OARs (heart, aorta, and
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trachea) and 20 non-annotated patients. Both the images and masks have 512x512 voxels

in every slice.

(a) Grayscale Patient Slice. (b) Multi Organ manually segmented slice.

Figure 3.2: An example of slice and mask extracted from a random patient from the

SegTHOR dataset

3.2.3. Target Dataset

The target dataset contains the source CT Scans of 100 patients and the corresponding

segmentation masks manually delineated by doctors of di�erent OARs and targets.

(a) Grayscale Patient Slice. (b) Single Organ manually segmented

slice.

Figure 3.3: The corresponding image and label from the Target dataset, in this example

the label 'bones' is shown.
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In particular, this dataset doesn't have a complete set of segmented organs for each

patient, instead, every patient has a subset of OARs delineated, so every organ considered

has a variable corresponding amount of data present in the dataset. A complete table of

organs and the number of associated patients is present in the appendix A. The images

have 512x512 voxels in every slice, the total number of slice for a patient is variable,

the images are rotated 90 degrees clockwise with respect to the previous two Datasets.

Di�erently from the previous datasets, here the labels are separated by target, so we

will �nd a single binary label for each of them, instead of the multichannel labels seen

previously.

Apart from labels containing OAR, in this dataset we are provided with other labels

marked as PTV, these represent the target area decided by the medics, and the zones

addressed with these labels will be targeted during the actual radiotherapy. In Particular,

the label PTV Total is the union of all the other PTV labels.

Figure 3.4: 3D model of a random patient showing the PTV Total Label representing the

patient areas that will be exposed to radiotherapy.
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3.2.4. Intensity Analysis

In order to make the transfer learning as e�ective as possible between datasets, we needed

to check the di�erences between them. In particular, we studied the distribution of

intensity values between the dataset's images. The intensity values of the CT Scan images

are mapped to colors between black and white while displaying them, but the absolute

intensity values are not visible from the image. These values are being used as input

for the neural network, is, therefore, important to �nd eventual di�erences in the values'

distribution between datasets since the convolutional kernels will be based on these values

for near pixels.

Figure 3.5: Graph showing intensity values mapped to their frequency in the dataset's

images. Here the intensity values of the Target dataset are shifted to the left of 1000

integers for visualization purpose. For the same reason, the graph has been cut removing

the higher frequency of the darkest values.

As we can see in the graph, the distributions of intensities are mostly the same, apart from

an additive constant of 1000 integers present in the Target Dataset (which is removed

in the graph). The e�ect of this constant shift will be easily removed thanks to the

normalization step presented in the next section. Thanks to this similarity we can be

con�dent about the transferability of features learned in a source dataset and used in the
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target dataset.

3.3. Preprocessing

In order to optimize the e�ectiveness of a neural network's training, a proper clean-up of

the data is needed. In this section, we present the di�erent operations carried out over the

dataset's images before being fed to the ANN. This work is particularly important in the

case of transfer learning between datasets, in order for it to be as e�ective as possible we

need to minimize the di�erence between the ANN's input data in the various scenarios.

3.3.1. Normalization

Among the best practices for training a Neural Network is to normalize your data to

obtain a mean close to 0. Normalizing the data generally speeds up learning and leads to

faster convergence.

Normalizing the intensities of the input image is also an e�ective way of removing the

di�erences from di�erent inputs. In particular, the normalization operation used in our

experiments shifts all the intensity values in order to make them �t into the [0, 1] set.

3.3.2. Cropping

As per the normalization, we introduce the cropping operation in order to feed the net-

works with data samples that are as similar as possible to the source task. In particular:

some networks pretrained in the source datasets (SegThor and StructSeg), use a cropped

image, since the interested region occupies only the central part of the input. In order

to be consistent, we apply the same transformation for the same OARs. In particular,

starting from the original dimension of a slice (512x512p in every dataset) we keep only

the central square of 320x320p when dealing with smaller OARs.
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(a) Original Patient Slice. (b) Cropped Patient Slice.

Figure 3.6: Example of original and cropped slice.

3.3.3. Rotate

The convolution operation is based on a �lter, which operates over a matrix of pixels, if

the image is rotated the values learned by �lters are not useful anymore; in fact, CNNs

are not sensitive to the position of the object to be segmented, but they are sensible with

respect to the rotation. To address this problem, we rotate our dataset samples when

dealing with pretrained model, in order to have an input data-oriented in the same way

as the source datasets.

3.4. Data Augmentation

Data Augmentation is a popular technique used to increase the available data and increase

the generalizability of the model. In practice, this is achieved by creating modi�ed copies

of data and adding them to the dataset. It's important to modify the data properly: if

we just copy the data, this will not improve the model performances, but while modifying

it we should be careful and generate data samples that are meaningful and realistic. In

order to be as close as possible to the work done on the pretrained models, we choose

the same augmentation techniques applied there. The transformations are applied online

with a 50% probability each. More details about the speci�c transformations are provided

in the next sections.
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3.4.1. Elastic Transformation

Elastic transformation is a type of non-rigid transformation that deforms the image's

shapes (Simply put, non-rigid transformations don't preserve the side lengths and angles

in a shape). Technically this is achieved by creating a grid over the image, then a random

displacement is applied over each grid intersection point, �nally, the grid is interpolated

to compute the displacement for every pixel in the image.

(a) (b)

Figure 3.7: Example of original and elastic deformed image.

3.4.2. Grid Distortion

Grid distortion is a type of non-rigid transformation which deform objects along a dimen-

sion in the image. This transformation applies a grid over the image and then randomly

changes the dimension (horizontal or vertical) of the grid cells.

(a) (b)

Figure 3.8: Example of original and grid distorted image.
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3.4.3. Rotation

Rotation augmentation generates copies of the same image with a speci�ed angle of rota-

tion, this is a type of rigid transformation that doesn't change the shapes in the image.

Di�erently from the preprocessing phase, here the angle is tiny, and it has the purpose of

introducing possible misalignment of the patient position while taking the CT Scan.

(a) (b)

Figure 3.9: Example of original and rotated image.

3.5. Summary

In this chapter, we have introduced the imaging technique used by the doctors, then

shared some details regarding the datasets used for the experimental analysis, �nally, we

have shown the preprocessing steps carried out over the input data before feeding it into

the neural network. These steps are in common with all the experiments presented in the

next chapters, apart from some exceptions that will be detailed later.
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4| System design and overview

In this chapter, we give a detailed description of the input pipeline which preprocess and

feed the data to the various nets, we then show the neural network's architectures, after,

we detail the process of re�nements used to increase segmentation performances in smaller

OARs. In later sections, we introduce an Ensemble method used in the source Datasets

that will be replicated in order to perform �ne-tuning in the target dataset. Finally, we

present technical details regarding the execution of the experiment: the training of the

network and the evaluation of the results.

4.1. Input Pipeline

The �les loaded from the target dataset are in the DICOM (Digital Imaging and COmmuni-

cations in Medicine) format. This format contains some useful information regarding the

patients and other technicalities related to the CT Scan and the acquisition method. A

complete example of the data contained in a DICOM �le could be found in Appendix

B. Here we noticed that the patient's slice orientation was not always the same (also if

the Image Orientation attribute wasn't changing) while the manually created labels had

always the same orientation, in order to tackle this problem we created a JSON �le as-

sociating every patient with a direction. Every slice image is then loaded considering the

direction, then the images slices are ordered over the axial plane from the head to the

legs.

The image data is contained in the Pixel Data as an array inside the DICOM �le, and

thus can be easily used programmatically. In the next sections we refer to two types of

experiments:

� Training From Scratch: experiments done without transfer learning, here the Neural

Networks are initialized randomly and trained over the target dataset.

� Fine Tuning: experiments done with transfer learning, here the Neural Networks

are pretrained over the source datasets (StructSeg and SegTHOR); the pretrained

state is loaded in the network which is then �ne-tuned in the target dataset.
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4.1.1. Training from scratch

When training a network from scratch, it is important to initialize its weights in the proper

way, in doing so we allow the model to learn and explore the loss landscape. If weights

are too big, the gradient will continue to grow while computing it in all the layers, in the

opposite case, with too small weights, the gradient will vanish, and the network won't be

able to adjust his weights and, thus, it won't learn anything. Every part of the network

is di�erent, but when it comes to Convolutional Layer, the technique used often is the

so-called Xavier initialization which sets the weights to values extracted from a uniform

distribution in the range: √
6√

ni + ni+1
(4.1)

where n i refers to the number of input of the layer, while n i+1 refers to the number of

output of the layer. The data is preprocessed using only Normalization (3.3.1) and, in

case the organ is tiny with respect to the whole slice, also Cropping (3.3.2) is applied.

Then the data augmentation step (3.4) is executed, and the image is fed to the initialized

network.

4.1.2. Fine-tuning

When �ne-tuning the network, the initialized state is transferred directly in the model,

and it is used as the initial state. The data is preprocessed as described in section 3.3

including all the operations: normalization, cropping (if applied in the pretrained net),

and rotation of 90 degrees to remove the discrepancy between datasets. After this step,

the usual data augmentation generation is carried over the image which is then fed to the

network.

4.2. Networks Used

After having detailed the data loading and preprocessing steps, we move on to the actual

Neural Networks used in the experiments. These base networks are the same as the ones

pretrained on the source datasets:

� Unet, from [23],

� SE-ResUnet, from [7],

� DeepLabV3, from [8].
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4.2.1. Unet

The Unet is a popular NN architecture used all over the literature for segmentation tasks.

The popularity of the net derives from its versatility and simplicity; the network has a 'U'

shape, it's composed of a convolutional encoder that works on 4 levels of down-sampling,

then a bottleneck layer transfers the encoded data to the decoder which has 4 levels of

up-sampling needed to reconstruct the original image dimensions. In particular, in the

encoder, each convolutional block is made of 2 convolution operations in 3x3 kernels each

followed by a Batch Normalization block and a ReLU activation function, then a block of

down-sampling operators (MaxPooling) of factor 2 is applied. In the decoder, the same

structure is repeated in the reverse, instead of the down-sampling operations, the up-

sampling is carried out using Transposed convolutions. Additionally, the Unet has some

direct connections from the decoder to the encoder, these connections are just copies

of features taken from the encoder and concatenated to the decoder. Thanks to these

connections, the information that is inevitably lost in the encoding operation is easily

recovered during the decoding phase. At the end of the net, a 1x1 convolution is applied

to map the �nal features to the desired number of classes predicted.

Figure 4.1: High level architecture of the Unet Neural Network
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4.2.2. SE-ResUnet

SE-ResUnet is another encoder-decoder type architecture, it is similar to the Unet, it

has the same number of down-sampling and up-sampling, and it employs the connecting

paths from the encoder to the decoder. The main di�erence from the Unet is in the

basic building block which in this case is called SE-ResBlock. This building block is

made of 2 Convolutional Blocks at the beginning, then a Squeeze and Excitation block

is applied. The Squeeze and Excitation block has the purpose of weighting di�erently

every feature channel when creating the output feature maps. In order to compute the

weight of the channel, the SE block performs a Global Average Pooling operation that

averages the channel information in a single value, then Fully Connected layers and ReLU

are executed to add non-linearity to the block. Finally, we weight every input channel

with the computed weights. From a higher perspective, into the SE-ResBlock we can

notice a �ow that connects the input, and, skipping the other operations, it's appended

to the output. The purpose of this skip connection is to avoid the problem of vanishing

gradient, at least in the shortest paths, leading to easier optimization processes.

Figure 4.2: SE-ResBlock structure
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4.2.3. DeepLabV3

The last base network used in our work is the DeepLabV3, created by Google in 2016.

The generic structure of the net is the same as before: it has an encoder, a bottleneck,

and a decoder. The main problems addressed by the development of this network are:

� reduced feature resolution: the features learned by CNNs are in general at low res-

olution because of pooling operations or other sub-sampling processes, on the other

hand, this sub-sampling is needed to learn increasingly abstract representations;

� object at multiple scales: it often happens that the objects have di�erent dimensions

into the input image.

In order to address these problems, the Atrous Spatial Pyramid Pooling (ASPP) block has

been developed. The ASPP block is based on Atrous convolution which, di�erently from

the standard convolution, creates a bigger output using an atrous rate r, it inserts r-1

zeroes between two �lter values along each spatial dimension (the French world Atrous

means holes in English). This type of convolution allows us to adaptively modify the

�lter's �eld-of-view by changing the rate value. During the down-sampling phase, in

DeepLabV3, the authors start using a cascade of atrous convolutions after a few normal

down-sample, in this way the net extract features at di�erent levels without decreasing

too much the image resolution. As a basic block, the net uses the ResNet block, composed

of three convolutions (kernel size of 3 x 3) where the last convolution also performs down-

sampling with a stride of 2. The ASPP block incorporates multiple atrous convolutions

at di�erent levels, executed in parallel. This block is placed at the end of the decoder

and allows for fewer down-sampling operations (2 in the net). The ASPP layer is also

fed with context information computed with a global average pooling on the previous

feature map of the model. Then the decoder is composed of standard up-sampling blocks,

but, di�erently from the previous nets, only 2 up-samples are needed to reconstruct the

original size.

Figure 4.3: DeepLabV3 encoder structure
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4.3. Re�nements of Small Organs

In the context of the experiments From Scratch, we developed a speci�c training process

for the binary segmentation of organs that occupy a tiny region of the CT Scan slice

(from now on we refer to them as Small Organs). These targets occupy few pixels in

the image, and they are a cause of imbalance between the classes (one class representing

the organ and the other representing the background). For this reason, the segmentation

performances are lower on these organs. To tackle this problem we designed a speci�c

process that is able to re�ne the predictions and obtain better results.

4.3.1. Solution Architecture

Inspired by the work done in the literature designing the FocusNetv2 architecture [13],

while dealing with the training and inference processes of the segmentation of Small

Organs we perform two main steps: a coarse feature extraction and a re�nement seg-

mentation. In order to obtain better performances and avoid displacements of the Small

Organs we turned o� the rotation and grid distortion operations in the data augmentation

step. The input slices and labels are cropped as described in 3.3.2 reaching the resolu-

tion 320x320. Then, the slices are fed to the �rst NN called Coarse Net : this network

is a Unet that outputs a coarse segmentation of the small organ. After this �rst step, a

smaller area of the input image (containing the small organ in question) is cropped by a

Window retrieval component. The small window is stacked to the raw output of the �rst

network, in this way we are incorporating the context from the bigger input slice into

the small-sized image. The small window with context is then used as input for a second

Neural Network called Re�ned Net which is again a Unet architecture trained on smaller

input sizes. The output of this second network is the actual segmentation result of the

small organ.
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Figure 4.4: Small organ inference architecture

During inference, the whole network is working in cascade, �rst, the coarse net is applied

to retrieve the context information, then the small window is retrieved from the input

and fed to the Re�ned Net together with the context. While training, the two nets are

separated: �rst the Coarse Net is trained over the 320x320 slice, then the Coarse Net is
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trained using the �rst net in inference mode and the extracted slice of smaller dimension

as input.

4.3.2. Small Window retrieval

In order to always feed the Re�ned Net with the right input, a Small Window retrieval

component has been developed. The component crop both the input slice and the context

tensor in two possible modalities:

� Hard-coded

� Smart Window

In Hard-coded mode, the central position of the Small Window to be cropped is retrieved

from a con�guration �le as well as the Small Window dimension. The con�guration �le

contains the central positions of the Small Organs and the window side dimension, both of

which have been visually validated and tuned in order to always include the whole organ

and enough context.

In Smart Window mode, the small window retrieval component uses the coarse prediction

present in the context to �nd the window position, while the window dimension is decided

as an input parameter. In order to �nd the best window position, we apply a sigmoid to

the context image and then a 2D convolution. Using a kernel size equal to the size of the

window to be retrieved and the constant weights having all the values 1, we are creating

the image of the window to be retrieved.
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(a) Coarse segmentation output. (b) Window retrieved by a 100x100 con-

volution.

Figure 4.5: Example of window retrieval starting from the coarse segmentation result of

an esophagus.

A �nal sigmoid layer is applied to push the intensity values to the extremes 0 and 1.

Then the coordinates are extracted using the intensity values of the result; �nally, the

coordinates are used to crop the original image as well as the context, and both are fed

to the re�ned net.

4.4. Ensemble methods

In order to perform multi-organ segmentation, we replicate the ensemble method used in

[25], in particular, we implement the simplest one: argmax; and the best performing one:

Last Layer Feature Fusion.

We replicate the method Argmax as a baseline of results for the multi-organ segmentation

using ensemble methods. In order to merge the results of the single binary networks, this

method simply takes the maximum value between the networks' output, pixel by pixel.

In this way, every region is segmented by the network having the higher output. Notice

also that, in this context, no train nor transfer is needed.

The ensemble methods allow using multiple binary networks trained over speci�c organs

and merging their results to create the �nal multi-class segmentation. In order to better

exploit the results of the single network, we don't only concatenate the results, but we

tune a NN that is going to weight and extract the most useful features from the binary

networks. In particular, the last layer feature fusion method combines the last layers of
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features of the di�erent binary models and fed them into a 1x1 convolution which is trained

to learn which feature weight more and outputs a single dimension array for every pixel:

the i-th element in the array represents the likelihood of the pixel being in the i-th class.

In our case, the last layer is di�erent based on the binary network used: while using SE-

ResUnet or Unet, it is the last convolutional block before the �nal 1x1 convolution; If we

use a DeepLabV3 architecture instead, the last layer is composed of the last convolutional

block before the �nal 1x1 convolution together with the last up-sampling operation.

Figure 4.6: Last Layer Feature Fusion

In detail: the number of features taken from each Unet or SE-ResUnet is 64, and 256 for

every DeepLabV3.

4.5. Training

In this section we present the training of the various neural networks, we �rst lay out

details regarding the Loss function used to drive the training, then we move on to the

evolution of the learning rate parameter during the various epochs, �nally, we add some

�ner technical details of the process.

4.5.1. Loss

The Loss function has the purpose of measuring the di�erence between the expected

results and the actual ones. While working on images it's important to choose the most

useful loss function. If we just compute the number of right-guessed pixels we will end up

with excellent results for the wrong prediction in case tiny organs are being segmented.

In order to take into account also the dimension of the prediction, we need more complex
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functions. We should �rst make a distinction between di�erent types of loss:

� Distribution-based losses: functions that aims at minimize dissimilarity between two

distribution (e.g. Cross-entropy);

� Region-based losses: functions that aims at minimize mismatch between ground

truth and predictions (e.g. Dice loss);

� Boundary-based losses: functions that aims at minimize the distance between ground

truth and predicted segmentation (e.g, Hausdor� Distance).

For our segmentation tasks, we decided to use Region-Based losses, since the qualitative

indicator of quality is the similarity between ground truth and prediction shape and

position. Moreover, when the level of class imbalance increases, loss functions based on

overlap measures are more robust. In particular, while working on binary segmentation,

we used the Dice Loss, which is directly optimizing the Dice similarity coe�cient used in

validation and testing. The Dice Loss has the following de�nition [20]:
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Where gci is the ground truth binary indicator of class c of pixel i, sci is the corresponding

predicted segmentation class; C represents the set containing all the classes and N repre-

sent the total number of pixel. The loss' second term is the dice coe�cient: it computes

the intersection between the ground truth and the prediction, multiply it by two and

divide by the total number of pixels (ground truth + prediction).

In the case of multi-class segmentation, we adopt the extension of the dice loss for multiple

classes, the Generalised Dice Loss [28]:
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The formulation is similar to the previous one, the main di�erence being the term wc

which is used to provide invariance to the di�erent classes' properties. This weighting

factor has the purpose of correcting the contribution of each label by dividing by its

volume squared.
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4.5.2. Learning Rate Scheduler

During training, the most important hyperparameter to be tuned is the learning rate;

adaptive learning rate methods demonstrate better performance than learning rate sched-

ules, and they require much less e�ort in hyperparameter settings while designing the

training process[3]. After some manual tweaking of the param, we ended up with a start-

ing value of 1 ∗ 10−3, big enough to allow the nets to explore more. During the epochs

we wanted the NN to reduce the exploration and improve the stability of the parameters

learned. In order to achieve this, we embedded a scheduler in the learning process; its

contribution consists in changing the value of the learning rate during the various epochs.

Early in the training, the learning rate is set to be large in order to reach a set of weights

that are good enough. Over time, these weights are �ne-tuned to reach higher accuracy

by leveraging a small learning rate. In particular, we choose an exponential decay with a

rate of 0.6 for every epoch.

Figure 4.7: Learning rate decay during the epochs (Shown in logarithmic scale for visu-

alization purposes).
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4.5.3. Implementation details

In all the experiments we choose a batch size of 2 both for train and validation. While the

use of large mini-batches increases the available computational parallelism, small-batch

training has been shown to provide improved generalization performance and training

stability[21]. We trained each network for 50 epochs, using a training-validation data

split of 80% - 20%. We use the Adam optimizer during training and a Scaler which is

used to increase the gradient scale and avoid vanishing the gradient.

We used [6] as the Unet implementation, [5] for SE-ResUnet and [4] for DeepLabV3.

The experiments were implemented in Python (version 3), using the PyTorch library to

handle parallel computation over tensors. We used MatPlotLib to generate the plots

visible in this work and Vedo to generate the 3D results. The experiment's result sum-

mary, the con�guration �les, and the dataset information �les were all written/generated

in JSON format since its high usability and accessibility in almost every programming

language. The training of the models tooks place mainly in the Jupyter environment,

served by a machine running over a GeForce GTX 1060 with 6GB of memory.

4.6. Evaluation

In this section, we present the metrics used in the experiments to assess the prediction

performances. In general, we avoid using the precision metric since the class imbalance

problem makes this metric too optimistic. We start with an introduction to the Confusion

Matrix, then, we present the Dice Similarity Coe�cient (DSC) and the Jaccard Index,

which are used in this work.

4.6.1. Confusion Matrix

If we evaluate the results of a binary segmentation process pixel by pixel, we are regressing

to a binary classi�cation process. In this setup, each pixel could be either in the right

class or in the wrong one. The confusion matrix is generally useful in this context to

evaluate the performances: it is a table with ground truth values as rows and predicted

values as columns. These values are grouped together in order to separate the correct

prediction from the wrong ones. In particular, we de�ne

� True Positive (TP) the values correctly predicted as members of the �rst class;

� False Positive (FP) the values wrongly predicted as members of the �rst class;
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� True Negative (TN) the values correctly predicted as members of the second class;

� False Negative (FN) the values wrongly predicted as members of the second class.

Figure 4.8: Confusion Matrix.

4.6.2. Dice Similarity Coe�cient

The Dice Similarity Coe�cient is a metric that measures the overlap of two sets of data.

This index has become arguably the most broadly used tool in the validation of image

segmentation algorithms created with AI, but it is a much more general concept that can

be applied to sets of data for a variety of applications. It has a value range from 0 to 1 (1

being the perfect overlap), it's also the negative term in the Dice Loss presented in 4.5.1.

If we de�ne it in terms of the classi�cation terminology introduced before:

DSC =
2TP

2TP + FP + FN
(4.5)

4.6.3. Jaccard Index

The Jaccard Index, or Jaccard Similarity Coe�cient, or Tanimoto Coe�cient is another

metric measuring the overlap between sets of data. The Jaccard coe�cient is widely used

in computer science, ecology, genomics, and other sciences, where binary or binarized data

are used. Recalling the classi�cation notation it can be de�ned as:

J =
TP

TP + FP + FN
(4.6)

Another way of seeing the Jaccard Index is the ratio between the area of intersection

(between ground truth and the predicted shape) and the union of them. For this reason,
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it has a behavior similar to the one of the DSC, having the total area at the denominator,

it removes the dependency on the target's size.

Figure 4.9: Jaccard Index seen as Intersection Over Union (IoU).

4.7. Summary

In this chapter we have seen the training process in detail, we have described how the

data is fed to the networks, and shown the architectures used. We dived into the learning

rate scheduling and technicalities regarding the actual implementation of the experiments.

Finally, we presented the evaluation metrics used to assess performances.





43

5| Design of Experiments

In this section, we present how the experimental works were conducted. Firstly, we analyze

the binary segmentation experiments, putting the focus on the small organ process. After,

we detail the Transfer Learning setup and the �ne-tuning experiments, before moving on

to the Multi-Organ experiments and their variations. Finally, we lay out some experiments

conducted using the ensemble method Last Layer Feature Fusion.

5.1. Binary Nets

The �rst category of experiment design involves the binary segmentation of single OaRs

and PTVs. For all these experiments we used the Unet model detailed in 4.2.1, we used

di�erent input sizes depending on the target's dimensions. We choose to segment OaR at

high priority (being de�ned by medics) and high complexity for the manual labeling task,

when the OaR occupied a tiny portion of the input size we adopted instead the Small

Organ strategy described in 4.3. We also segment the di�erent PTVs, in particular, every

PTV label is a section of the total target volume, which is labeled as PTV Total.
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OaR and PTV Center Crop Dimension

1 Oral Cavity 320

2 Ribs 512

3 Heart 512

4 Liver 512

5 Intestine 320

6 Right Lung 512

7 Left Lung 512

8 PTV Abdomen 512

9 PTV Arms 512

10 PTV Legs 512

11 PTV Head 512

12 PTV Chest 512

13 PTV Total 512

14 Rectum 320

15 Stomach 320

16 Testicles 320

Table 5.1: OARs segmented with a standard Unet

5.2. Small organ study

During the experiments' execution, we noticed that smaller organs weren't segmented

with good performances. We present in the following table the organs recognized as

small, together with the small window dimension used by the re�ned net:
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OaR Small Window dimension

1 Esophagus 100

2 Marrow 100

3 Right Eye 100

4 Left Eye 100

5 Right Parotid 120

6 Left Parotid 120

7 Thyroid 140

Table 5.2: OARs identi�ed as Small Organ

For these organs, we developed the speci�c process explained in 4.3.

In order to assess the performance gain, we conducted a study comparing di�erent ex-

perimental setups. The study was conducted over the esophagus, being a tricky organ to

segment both for neural networks and medics. The various setups are presented here in in-

creasing performance order. The changes presented in every step are applied cumulatively

in the successive ones.

5.2.1. Coarse network

Firstly, we perform a standard binary segmentation with an Unet using a center crop

size of 320x320. We obtain validation scores signi�cantly smaller concerning other bigger

organs. This outcome motivates us to re�ne the segmentation process for these tiny OaRs.

5.2.2. Re�nement network

In order to improve performances, we introduced a re�ned net to be used in a cascade

fashion. We choose to use another Unet for the re�nement process; at this point the

segmentation process consists of two Unet in cascade. As a Small Window Retrieval

process, we used a hard-coded window position, with dimensions of 100x100.

5.2.3. Reduce data augmentation

During the previous experiments we noticed that the position of the smaller organ was not

always the same and, supposing this e�ect was reducing the inference performances, we
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decided to reduce some data augmentation e�ects for these smaller organs, keeping only

the Elastic transformation. Also in this case we gained a bit more in validation metrics.

5.2.4. Add Context

In order to provide more information about the full-sized image in the small window, we

added a context channel to the re�ned net's input image. The context is provided by the

coarse net which is working over a 320x320 input size. The context information turned

out to be useful and increased performance.

5.2.5. Use the Smart Window

Finally, we developed the Smart Window mode for the Window Retrieval Component.

This enables the ability to automatically retrieve the best window position for each image

assuring to place the OaR always in the center of the window.

In de�nitive, we see that using two Unet in a cascade fashion with reduced data aug-

mentation, together with context information creates a high-performance segmentation

process in the context of smaller organs.

5.3. Transfer Learning

The experiments carried out in the transfer learning setting are binary segmentation

processes executed over the OaRs that are in common between the source and target

datasets. Moreover, they needed to be executed on di�erent networks, since we need

to transfer the weights from the pretrained models; also the center crop sizing has been

adapted to the ones used in the source dataset. We report here the setting used for each

OaR present both in the source and target datasets:
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OaR Model used Center crop size

1 Left Lung SE-ResUnet 512

2 Right Lung DeepLabV3 512

3 Heart DeepLabV3 320

4 Esophagus SE-ResUnet 320

5 Marrow SE-ResUnet 320

Table 5.3: OaRs used for the transfer learning experiments and the relative experimental

setups.

For each of these OaRs, we evaluate �rstly the performance of the pretrained models in

the target datasets directly, without any �ne-tuning of the nets, in order to ensure that

the transfer learning was actually working. Then, we trained the speci�ed network from

scratch using only the target dataset, in this way we are creating a set of baseline results of

the same nets (These experiments are run in the same set as the Binary net trained from

scratch (5.1), the only di�erences being the network used and the center crop). Notice

also that none of these organs has been trained using the Small Organ approach.

We then move on to the actual �ne-tuning experiments in which we initialize the pre-

trained models and tune them over the target dataset. The only di�erences with the

previous setup are the fact that the networks are initialized with the pretrained models

and that the images and labels loaded from the target DS are rotated by 90 degrees in

order to make them similar to the ones in the source DS.

Finally, we executed more experiments in other tweaked scenarios, as explained below.

5.3.1. Reduced number of patients

After having assessed the performance gain of the �ne-tuning process, we repeated the

experiments in a di�erent scenario, the di�erence being the number of patients used in

the training over the target DS. The motivation for this scenario is to assess the utility

of the transferred knowledge in a context were data scarcity is the main problem and

transfer-learning is seen as a solution. In particular, we adopted three variations:

� Only 50% of the available patients used;

� Only 30% of the available patients used;
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� Only 20% of the available patients used.

We replicated the third scenario also in the baseline models trained from scratch over the

5 OaRs present in all the datasets.

5.3.2. Layer freezing

In order to evaluate the e�ectiveness of transfer learning in di�erent scenarios, we also

executed di�erent experiments freezing some network layers while �ne-tuning the others.

In particular, we de�ned a layer as the set of operations performed in the network's

encoder between two consecutive down-sampling operations. After having initialized the

networks with the pretrained states, we performed �ne-tuning experiments in the following

setups:

� 1 frozen layer;

� 2 frozen layers;

� 3 frozen layers.

5.3.3. Transfer Learning Summary

To summarize, we present here the set of experiments executed in the transfer learning

setting for each of the �ve OaRs:

General Setup Percentage of Patients used Number of frozen layers

1 Train from scratch 100% 0

2 Train from scratch 20% 0

3 Fine-tuning 100% 0

4 Fine-tuning 100% 1

5 Fine-tuning 100% 2

6 Fine-tuning 100% 3

7 Fine-tuning 50% 0

8 Fine-tuning 30% 0

9 Fine-tuning 20% 0

Table 5.4: Summary of the various experiments carried out in the transfer learning setting.
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5.4. Multiclass

The Multiclass experiments have as an objective the ability to make inferences on multiple

organs with a single end-to-end process. Since we are using some pretrained networks

here too, we will run some of these experiments on the same OaRs as in section 5.3. The

di�erence being the fact that we will segment all the �ve OaRs at once.

5.4.1. Single multiclass network

In this �rst set, we train and test the performance of a network having as output multiple

channels, each of which is the inferred segmentation of a speci�c target. We performed

di�erent types of training from scratch in this setting, and we summarize them in the

table below.

Network Used Targets

DeepLabV3 Left Lung, Right Lung, Heart, Marrow, Esophagus

Unet Left Lung, Right Lung, Heart, Marrow, Esophagus

DeepLabV3 Left Lung, Right Lung, Heart, Marrow, Esophagus, PTV Total

DeepLabV3 Ribs, Intestine, Left Parotid, Right Parotid, Liver, Marrow, Testicles

Table 5.5: Summary of the various experiments carried in the multiclass modality.

Apart from the experiment including the PTV Total target which is using an input size

of 512x512, the other networks have been trained with an input image cropped to a size

of 320x320.

5.4.2. Last Layer Feature Fusion Ensemble Method

In the Last layer feature fusion setting, we train and test a multiclass network which

is composed of multiple binary pretrained networks and the feature fusion module (pre-

sented in 4.4). We performed some experiments training the fusion module over di�erent

groups of targets. In particular, we replicated some setups presented in the multiclass

segmentation, and compare the results.
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Center Crop OaRs

320 Left Lung, Right Lung, Heart, Marrow, Esophagus

512 Left Lung, Right Lung, Heart, Marrow, Esophagus, PTV Total

320 Ribs, Intestine, Left Parotid, Right Parotid, Liver, Marrow, Testicles

Table 5.6: Summary of the various experiments carried using the Last Layer Feature

Fusion ensemble method.

5.5. Summary

In this section we went through the design of the various experiments in detail, we lined out

�rstly the base case of the binary segmentation networks, and we analyzed how the Small

Organ segmentation process was developed. After, we move on to the transfer learning

scenarios and their variants; �nally, we presented the Multiclass settings involving the

segmentation of multiple OaRs at the same time.
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6| Results

In this chapter, we present the result of our experiments. We start from the models trained

from scratch, presenting the quantitative results, including some graphs and visualization

over the data, after, we present some qualitative results showing predictions over test input

slices. Then, we proceed presenting the result obtained in the various transfer-learning

setting where each case is presented starting from a quantitative perspective followed by

a qualitative one. The same structure is then repeated for the experiments executed with

the Multiclass networks and the Last Layer Feature Fusion ensemble models. For each

category, we also provide some discussion over the results achieved.

The values presented in the quantitative results are the Dice Score Coe�cient and Jac-

card Index computed over the window of 10 last training epochs. In particular, for every

epoch we compute DSC and Jaccard Index over the validation patients, then, we group

the results of the last 10 epochs. The value shown here are the average, maximum and

minimum of the scores computed over the epochs window. For both DSC and Jaccard in-

dex, we show values in percentage, where 100% represent a value of 1, being the maximum

value achievable in both cases.

6.1. Training from scratch results

We present here the results of binary nets trained from scratch over the target dataset,

as lined out in 5.1. These networks are standard Unet feed with the CT Scan slice and

the binary mask of the single target in consideration. For both the DSC and the Jaccard

Index, we present the average value, the maximum and the minimum values.

For every target, we also show an example of prediction over a meaningful slice, together

with the respective mask annotated by specialists. We start showing some ordinary tar-

gets, segmented using a single Unet, then we move on presenting some targets segmented

in the Small organ setting.
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Quantitative Results

DSC Jaccard Index

Oral Cavity
85.62

(83.22 - 87.29)

75.86
(72.76 - 78.05)

Heart
91.83

(91.20 - 92.60)

85.78
(84.84 - 86.96)

Left Lung
96.39

(96.12 - 96.88)

93.53
(93.15 - 94.23)

Right Lung
96.21

(95.60 - 96.83)

93.39
(92.43 - 94.23)

PTV Total
79.11

(74.17 - 80.70)

67.99
(63.39 - 69.82)

Table 6.1: Result of Binary segmentation from scratch over some targets.

(a) DSC values' evolution. (b) Jaccard Index values' evolution.

Figure 6.1: Validation indexes evolution during training over the target: Oral Cavity.
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(a) DSC values' evolution. (b) Jaccard Index values' evolution.

Figure 6.2: Validation indexes evolution during training over the target: Heart.

(a) DSC values' evolution. (b) Jaccard Index values' evolution.

Figure 6.3: Validation indexes evolution during training over the target: Left Lung.
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(a) DSC values' evolution. (b) Jaccard Index values' evolution.

Figure 6.4: Validation indexes evolution during training over the target: Right Lung.

(a) DSC values' evolution. (b) Jaccard Index values' evolution.

Figure 6.5: Validation indexes evolution during training over the target: PTV Total.

Qualitative Results

Notice that each medical image is �ipped horizontally, this is happening because they are

read from the specialists as though facing the patient. In the following images, the left

lung will therefore appear at the right and viceversa.
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Figure 6.6: The prediction (in green) and the ground truth (in red) of the target: Oral

Cavity. Notice that the overlap between prediction and ground truth is shown in yellow.

Figure 6.7: The prediction (in green) and the ground truth (in red) of the target: Heart.
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Figure 6.8: The prediction (in green) and the ground truth (in red) of the target: Left

Lung.

Figure 6.9: The prediction (in green) and the ground truth (in red) of the target: Right

Lung.
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Figure 6.10: The prediction (in green) and the ground truth (in red) of the target: PTV

Total.

6.1.1. Small Organs

Quantitative Results

We present here some DSC and Jaccard index values showing the segmentation perfor-

mance of the Unet over the targets Esophagus and Marrow, notice that we used a central

crop of 320x320.

DSC Jaccard Index

Esophagus
74.71

(73.07 - 76.51)

61.02
(59.33 - 63.07)

Marrow
82.01

(74.72 - 85.71)

71.06
(65.03 - 75.60)

Table 6.2: Result of Binary segmentation from scratch over the targets: Esophagus,

Marrow.
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(a) DSC values' evolution. (b) Jaccard Index values' evolution.

Figure 6.11: Validation indexes evolution during training over the target Esophagus.

(a) DSC values' evolution. (b) Jaccard Index values' evolution.

Figure 6.12: Validation indexes evolution during training over the target Marrow.

The esophagus and marrow targets, are classi�ed as Small Organ, therefore, we segmented

them using the re�nement net, and we present in the table 6.3 the results achieved. Notice

that the small window size is 100x100 for the re�nement net in both the targets. For better

comparison, we present the values in both the small window retrieval mode: Hard-coded

and Smart.



6| Results 59

DSC Jaccard Index

Hard-coded Window

Esophagus
77.06

(74.88 - 78.90)

63.98
(61.61 - 66.17)

Marrow
82.05

(73.03 - 87.41)

72.36
(63.36 - 78.97)

Smart Window

Esophagus
77.94

(75.41 - 80.46)

64.99
(61.86 - 68.09)

Marrow
83.54

(75.75 - 85.80)

73.16
(66.65 - 75.81)

Table 6.3: Result of Binary segmentation from scratch over the targets: Esophagus and

Marrow.

To avoid redundancy, in the following images, we present the evolution of the validation

scores only in the smart window modality.

(a) DSC values' evolution. (b) Jaccard Index values' evolution.

Figure 6.13: Validation indexes evolution during training of the target Esophagus.
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(a) DSC values' evolution. (b) Jaccard Index values' evolution.

Figure 6.14: Validation indexes evolution during training of the target Marrow.

Qualitative Results

We present the segmentation output together with the manually annotated mask of a

meaningful slice segmented using the small organ approach in smart window mode.

Figure 6.15: The prediction (in green) and the ground truth (in red) of the target: Esoph-

agus. Notice that the overlap between prediction and ground truth is shown in yellow.
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Figure 6.16: The prediction (in green), the ground truth (in red) of the target: Marrow.

Notice that the overlap between prediction and ground truth is shown in yellow.

6.1.2. Esophagus study

We present here the di�erent validation performances for each type of experiment con-

ducted over the target esophagus (detailed in 5.2) in order to design the small organ

segmentation process.

Segmentation Process Dice Score Coe�cient Jaccard Index

1 Coarse network 74.71 61.02

2 Re�nement net 73.79 60.58

4 Reduce data augmentation 77.99 65.44

5 Add Context 78.26 65.66

6 Use the Smart Window 77.94 64.99

Table 6.4: Average Validation Performance of di�erent experimental setups in the small

organ context for the target: Esophagus
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6.1.3. Discussion

We have noticed the di�erent results that the same CNN can achieve over di�erent organs.

We can therefore use these result as indicators of the di�culty in segmenting the di�erent

OaRs. The most complex-to-segment OaRs corresponds to the ones annotated as di�cult

by the medics, this mean that those organs are in fact harder to recognize starting from

the input slice. In particular, our re�nement process developed to tackle the smaller organ

shows improvements over the base results as we saw in 6.1.1. Interestingly, we can notice

that the performance of the segmentation has not relevant changes between the Hard-

coded window mode and the Smart Window one. In fact, the only di�erence between

those approaches is the position of the OaR and, in general, the features learned from a

CNN are position invariant. CNN's �lter slides from left-to-right and top-to-bottom across

an input, and will activate when it comes across a particular edge-like region, corner, or

color blob. Therefore, CNNs can be seen as not caring exactly where an activation �res,

simply that it does �re, and, in this way, we naturally handle translation inside a CNN.

6.2. Fine-tuning results

In this section, we present the results of the experiments conducted �ne-tuning the pre-

trained networks, as lined out in 5.3. For each target in analysis, we show a quantitative

comparison of the results from the di�erent settings, then we share some data visualiza-

tion of the experiment results. We include also the quantitative result obtained training

the networks from scratch, as baseline results obtained with the di�erent architecture

used to match the pretrained one.

In this section, for the DSC and Jaccard index, we show average, minimum and maximum

values; all in the same table cell for visualization purposes.

6.2.1. Left Lung

Quantitative Results

We recall that the left lung segmentation is done with a 512x512 input size and a SE-

ResUnet architecture to match the pretrained model setup.



6| Results 63

General Setup Patients' percentage FL DSC Jaccard Index

Train from scratch 100% 0
95.81

(95.11 - 96.38)

92.69
(91.74 - 93.40)

Train from scratch 20% 0
95.66

(95.16 - 96.07)

92.54
(91.66 - 95.16)

Fine-tuning 100% 0
96.03

(95.18 - 96.74)

93.09
(91.82 - 94.04)

Fine-tuning 100% 1
95.83

(95.20 - 96.27)

92.73
(91.84 - 93.44)

Fine-tuning 100% 2
95.81

(95.38 - 96.31)

92.79
(92.42 - 93.39)

Fine-tuning 100% 3
95.24

(94.15 - 96.12)

91.91
(90.57 - 92.98)

Fine-tuning 50% 0
95.78

(94.90 - 96.68)

92.72
(91.78 - 93.83)

Fine-tuning 30% 0
95.75

(95.00 - 96.39)

92.59
(91.72 - 93.55)

Fine-tuning 20% 0
95.77

(94.93 - 96.67)

92.81
(91.61 - 93.90)

Table 6.5: DSC and Jaccard Index values of the di�erent single class transfer leaning

settings. FL: frozen layers

Qualitative results

The prediction show is obtained using the model trained over the complete �ne-tuning

setting: 100% of available patients and 0 frozen layers.



64 6| Results

Figure 6.17: The prediction (in green) and the ground truth (in red) of the target: Left

Lung. Notice that the overlap between prediction and ground truth is shown in yellow.

6.2.2. Right Lung

Quantitative Results

We recall that the right lung segmentation is done with a 512x512 input size and a

DeepLabV3 architecture to match the pretrained model setup.
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General Setup Patients' percentage FL DSC Jaccard Index

Train from scratch 100% 0
94.17

(93.45 - 95.01)

90.06
(89.24 - 91.18)

Train from scratch 20% 0
93.08

(92.78 - 93.44)

88.34
(87.88 - 88.94)

Fine-tuning 100% 0
95.03

(94.39 - 95.88)

91.45
(90.73 - 92.57)

Fine-tuning 100% 1
95.05

(94.59 - 95.78)

91.44
(90.71 - 92.29)

Fine-tuning 100% 2
94.99

(93.93 - 95.86)

91.35
(89.87 - 92.50)

Fine-tuning 100% 3
94.97

(94.12 - 95.58)

91.29
(90.38 - 91.96)

Fine-tuning 50% 0
94.77

(93.97 - 95.60)

91.10
(90.03 - 92.15)

Fine-tuning 30% 0
94.90

(94.24 - 95.47)

91.31
(90.44 - 92.01)

Fine-tuning 20% 0
94.30

(93.42 - 95.33)

90.52
(89.65 - 91.79)

Table 6.6: DSC and Jaccard Index values of the di�erent single class transfer leaning

settings. FL: frozen layers

Qualitative results

The prediction show is obtained using the model trained over the complete �ne-tuning

setting: 100% of available patients and 0 frozen layers.
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Figure 6.18: The prediction (in green) and the ground truth (in red) of the target: Right

Lung. Notice that the overlap between prediction and ground truth is shown in yellow.

6.2.3. Heart

Quantitative Results

We recall that the heart segmentation is done with a 320x320 input size and a DeepLabV3

architecture to match the pretrained model setup.
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General Setup Patients' percentage FL DSC Jaccard Index

Train from scratch 100% 0
87.91

(86.34 - 89.48)

80.47
(78.68 - 8242)

Train from scratch 20% 0
84.95

(83.44 - 86.25)

76.74
(75.00 - 78.16)

Fine-tuning 100% 0
90.07

(88.59 - 91.44)

83.46
(81.53 - 85.23)

Fine-tuning 100% 1
89.82

(88.83 - 91.03)

83.13
(82.00 - 84.69)

Fine-tuning 100% 2
89.63

(88.39 - 90.61)

82.82
(81.11 - 84.36)

Fine-tuning 100% 3
88.73

(87.16 - 89.64)

81.70
(79.66 - 83.06)

Fine-tuning 50% 0
88.55

(86.84 - 90.03)

81.47
(79.73 - 83.08)

Fine-tuning 30% 0
87.54

(86.09 - 88.91)

80.32
(78.79 - 82.22)

Fine-tuning 20% 0
86.13

(84.74 - 87.21)

78.58
(76.64 - 80.04)

Table 6.7: DSC and Jaccard Index values of the di�erent single class transfer leaning

settings. FL: frozen layers

Qualitative results

The prediction show is obtained using the model trained over the complete �ne-tuning

setting: 100% of available patients and 0 frozen layers.
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Figure 6.19: The prediction (in green) and the ground truth (in red) of the target: Heart.

Notice that the overlap between prediction and ground truth is shown in yellow.

6.2.4. Marrow

Quantitative Results

We recall that the Marrow segmentation is done with a 320x320 input size and a SE-

ResUnet architecture to match the pretrained model setup.
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General Setup Patients' percentage FL DSC Jaccard Index

Train from scratch 100% 0
81.79

(76.25 - 84.72)

70.58
(63.43 - 74.67)

Train from scratch 20% 0
00.67

(00.31 - 01.36)

00.02
(00.01 - 00.02)

Fine-tuning 100% 0
80.26

(70.97 - 85.28)

68.89
(60.51 - 75.10)

Fine-tuning 100% 1
79.71

(69.07 - 84.20)

68.26
(57.60 - 73.57)

Fine-tuning 100% 2
79.97

(69.80 - 84.75)

68.86
(58.96 - 74.24)

Fine-tuning 100% 3
76.76

(69.39 - 80.20)

64.61
(59.03 - 68.43)

Fine-tuning 50% 0
78.64

(70.73 - 83.28)

67.54
(60.25 - 72.18)

Fine-tuning 30% 0
80.89

(73.61 - 83.95)

69.56
(63.38 - 73.10)

Fine-tuning 20% 0
78.64

(70.73 - 83.28)

67.54
(60.25 - 72.18)

Table 6.8: DSC and Jaccard Index values of the di�erent single class transfer leaning

settings. FL: frozen layers

Qualitative results

The prediction show is obtained using the model trained over the complete �ne-tuning

setting: 100% of available patients and 0 frozen layers.
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Figure 6.20: The prediction (in green) and the ground truth (in red) of the target: Marrow.

Notice that the overlap between prediction and ground truth is shown in yellow.

6.2.5. Discussion

We have seen during our experiments in the transfer learning settings that the rotation

of the input image was necessary to be able to have some meaningful results. In general,

unless your training data includes targets that are rotated across the full 360-degree

spectrum, your CNN is not truly rotation invariant [1].

In the transfer learning scenarios, we have con�rmed the utility of the transferred knowl-

edge and the networks' initialization with a pretrained state; in fact, the �ne-tuned nets

showed better performances over the pretrained ones. The experiments carried out with

some frozen layer are not showing a unique tendency; we can see that, in general, the

greater the number of frozen layers, the greater the performance loss will be. This e�ect,

though, is not always present, and, following what we said in 2.1.5, we can suppose that

the feature co-adaptation is responsible for this e�ect. Regarding the experiments carried

out over di�erent subsections of the target dataset, we can see a general trend in which

the fewer the available patients, the poorer the performance will be. However, this e�ect

has di�erent quantitative outcomes based on the OaR analyzed: we have seen a critical

drop in performance in "harder" OaRs like the Marrow and a smaller e�ect in "easier"
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OaR like the Lungs. To explain this e�ect, we can suppose that some patients are more

important than others based on how they were positioned during the scan or based on

the intensity values of their CT Scans.

6.3. Multi Class results

In this section we show the results of the experiments performed in the multi-class setting

as described in 5.4.1. In the following section we present the results obtained from the

di�erent targets considered. As before, we present the DSC and Jaccard Index values

showing average, minimum and maximum in the same table cell.

6.3.1. Multiclass segmentation - 5 targets

We present here the result of a multiclass segmentation performed from scratch using the

DeepLabV3 network over 5 targets: Left Lung, Right Lung, Heart, Marrow, Esophagus.

Every input slice has been cropped to reach the dimension of 320x320.

OaR DSC Jaccard Index

1 Left Lung
95.45

(94.39 - 96.63)

92.29
(90.66 - 93.74)

2 Right Lung
95.46

(93.48 - 97.16)

92.11
(89.51 - 94.61)

3 Heart
87.76

(85.43 - 90.34)

79.77
(76.21 - 83.20)

4 Marrow
83.06

(78.50 - 88.76)

72.02
(65.48 - 80.53)

5 Esophagus
63.62

(57.95 - 67.21)

48.74
(44.34 - 52.20)

Table 6.9: DSC and Jaccard Index values of the di�erent targets segmented from scratch

using the DeepLabV3 model in the multiclass setup.

6.3.2. Multiclass segmentation - 6 targets

We performed a multiclass segmentation experiment using 6 targets, including a target

volume representing the total areas of the body targeted by the planned radiotherapy

treatment. We trained from scratch the DeepLabV3 model over the 512x512 input slice.
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OaR DSC Jaccard Index

1 Left Lung
92.09

(90.51 - 93.51)

86.66
(84.59 - 88.52)

2 Right Lung
91.77

(88.49 - 93.50)

86.29
(82.13 - 88.35)

3 Heart
84.80

(81.93 - 88.96)

76.25
(73.26 - 81.29)

4 Marrow
81.03

(78.97 - 82.68)

68.90
(65.90 - 71.43)

5 Esophagus
61.72

(54.76 - 68.47)

47.17
(40.88 - 53.66)

6 PTV Total
80.21

(74.51 - 84.59)

68.23
(61.33 - 73.80)

Table 6.10: DSC and Jaccard Index values of the di�erent targets segmented from scratch

using the DeepLabV3 model in the multiclass setup.

6.3.3. Multiclass segmentation - 8 targets

We present here another multiclass segmentation setting, we used the DeepLabV3 model

trained over 8 targets: Ribs, Intestine, Left Parotid, Right Parotid, Liver, Heart, Marrow,

Testicles. We used 320x320 as central crop dimension.
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OaR DSC Jaccard Index

1 Ribs
74.53

(66.65 - 77.32)

60.09
(51.88 - 63.34)

2 Intestine
81.78

(78.39 - 84.17)

70.81
(66.93 - 73.49)

3 Right Parotid
66.32

(60.99 - 70.19)

51.97
(47.72 - 55.65)

4 Left Parotid
66.57

(59.37 - 72.77)

51.49
(65.90 - 58.58)

5 Liver
84.32

(81.69 - 87.57)

74.35
(72.01 - 78.56)

6 Heart
86.30

(82.08 - 89.88)

77.93
(72.42 - 82.24)

7 Marrow
82.39

(79.43 - 85.22)

71.21
(68.07 - 74.69)

8 Testicles
75.18

(72.19 - 78.87)

62.23
(57.44 - 66.84)

Table 6.11: DSC and Jaccard Index values of the di�erent targets segmented from scratch

using the DeepLabV3 model in the multiclass setup.

6.3.4. Discussion

In the multiclass scenarios, we see that the performances obtained by the networks are a

bit worse than the ones achieved by the binary networks trained from scratch, the main

motivation for this is the increase in complexity of the segmentation task over the constant

amount of training data. Here we can see that while increasing the number of targets to

be segmented, we lose in segmentation performances. In order to reach better results we

experimented also with the ensemble method in the multiclass segmentation, the results

are presented in the next section.

6.4. Last Layer Feature Fusion results

In this section, we present results of the experiments performed using the ensemble method

Last Layer Feature fusion, as detailed in 5.4.2. As before, the results are presented in

average, maximum, minimum DSC and Jaccard index computed over the last 10 training

epoch.
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6.4.1. Last Layer Feature Fusion - 5 targets

OaR DSC Jaccard Index

1 Right Lung
95.30

(92.99 - 97.52)

92.29
(89.71 - 95.34)

2 Left Lung
96.92

(96.31 - 97.73)

94.50
(93.25 - 95.75)

3 Heart
88.26

(84.35 - 90.87)

80.93
(77.02 - 84.44)

4 Esophagus
71.56

(62.83 - 76.74)

57.84
(49.97 - 63.16)

5 Marrow
79.15

(56.78 - 90.23)

69.71
(49.93 - 82.87)

Table 6.12: DSC and Jaccard Index values of the di�erent targets segmented using the

Last Layer Feature Fusion ensemble method.

6.4.2. Last Layer Feature Fusion - 6 targets

OaR DSC Jaccard Index

1 Right Lung
96.03

(93.22 - 97.94)

93.43
(89.58 - 96.00)

2 Left Lung
96.92

(95.83 - 97.79)

94.33
(92.43 - 95.75)

3 Heart
88.29

(83.19 - 91.60)

81.19
(74.13 - 85.46)

4 Esophagus
71.94

(68.80 - 76.93)

58.00
(54.34 - 63.46)

5 Marrow
84.05

(80.41 - 87.34)

73.62
(68.14 - 78.31)

6 PTV Total
85.26

(79.98 - 88.38)

75.37
(68.41 - 79.67)

Table 6.13: DSC and Jaccard Index values of the di�erent targets segmented using the

Last Layer Feature Fusion ensemble method.
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6.4.3. Last Layer Feature Fusion - 8 targets

OaR DSC Jaccard Index

1 Ribs
78.37

(73.53 - 82.55)

65.61
(60.58 - 70.54)

2 Intestine
85.34

(83.66 - 87.81)

76.02
(74.71 - 78.77)

3 Right Parotid
00.23

(00.17 - 00.31)

00.00
(00.00 - 00.00)

4 Left Parotid
00.27

(00.19 - 00.36)

00.00
(00.00 - 00.00)

5 Liver
91.53

(88.74 - 93.49)

85.07
(81.84 - 87.87)

6 Heart
87.99

(84.38 - 90.28)

80.38
(76.44 - 83.23)

7 Marrow
80.53

(79.08 - 83.57)

68.69
(66.50 - 73.24)

8 Testicles
00.22

(00.11 - 00.87)

00.00
(00.00 - 00.00)

Table 6.14: DSC and Jaccard Index values of the di�erent targets segmented using the

Last Layer Feature Fusion ensemble method.

6.4.4. Discussion

The ensemble methods are, in general, able to obtain higher performances with respect

to the multiclass settings. The reason for this is the use of a pretrained binary net for

each target to be segmented. An exception to this trend is the experiment with 8 targets

where the smaller ones are showing poor performances after the training. The reason for

this is the high unbalance between the targets' sizes, both in terms of area in the single

slice and the number of slices where the target is present. In this unbalanced setting,

the training will focus on the bigger targets that account for a higher portion of the loss

function. We remind also that the training here involves only the fusion layer, while the

binary networks are frozen.
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6.5. Summary

We've seen, in this chapter, the result of the experiments carried out; we've presented

four main setups:

� Binary nets;

� Transfer Learning;

� Multiclass;

� Last Layer Feature Fusion.

For each category, we've shown the quantitative results, some examples of inference over

real data, and a discussion giving insights over the data.
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7| Conclusions and future works

In the previous chapter, we have shown the quantitative and qualitative results of the

work carried over the target dataset. In particular, we have trained various networks to

segment di�erent targets with high performance, using the Unet model we have created

a baseline of results showing how the label's complexity can in�uence the segmentation

result, moreover, we noticed that the targets considered more complex by the specialists

are the ones that are segmented with poorer results. We have also developed a speci�c

pipeline to deal with smaller organs that are known in the literature for being hard to

segment. The architecture composed of two segmentation networks, achieve better results

with respect to the baseline, but it has some minor drawback: higher model complexity

and longer training time. The results of the di�erent transfer learning settings con�rm the

hypothesis that the usage of network pretrained over publicly available dataset is bene�cial

while working on a similar private dataset. The �ne-tuned nets provide, in general, higher

scores with respect to the baseline nets trained from scratch. The variations of these

experiments show that the performances decrease in a way proportional to the number

of frozen layers; this e�ect is even stronger when considering more complex targets (i.e.

esophagus).

In the multiclass setting, we have �rstly generated a set of baseline results, which achieve a

set of per-target performances that are in general lower with respect to the ones obtained

by the binary networks. We took into account the ensemble methods to see if this approach

could improve the segmentation results, by using a binary net for each target and then

merging the results. As a general trend, the ensemble method considered, the last layer

feature fusion, showed a boost in segmentation performance over the baseline multiclass

scenarios for some targets. The ensemble approach has proved to reach segmentation

accuracy as high as the one obtained by the binary nets also in the multiclass scenario

for bigger targets, while the smaller ones are purged during training. This is due to the

unbalanced class used, while optimizing, the fusion module will give priority to the bigger

targets that are responsible for bigger di�erences in the loss values. The drawback of this

setting is also the need for binary networks trained over the single target, on the contrary,

the inference time, with enough parallel computation available, remains similar to the one
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needed by a single binary network allowing fast multi-label segmentation.

To generalize, the results obtained are proof of the ability of the CNNs in the task of

organ segmentation from CT Scan images and the e�ciency of these automated methods

over the handmade segmentation done by specialists.

In this chapter we conclude by presenting some possible problems of our experimental

environment and, �nally, we propose some future evolution of this work.

7.1. Open Problems

Over this section, we present some possible problems not tackled by this work.

� Model used: in our work we mainly focused on Fully Convolutional Neural Networks

(FCN); for our work on the binary networks we used a simple Unet in order to have

a comparison of results from di�erent OaRs, other networks and architectures could

be used in order to achieve better segmentation results. For example, we could think

about some di�erent approaches like Generative Adversarial Networks (GANs).

� Dataset size: the Dataset used, AUTOMI, is composed of 100 patients, but not all

of them present all the manually annotated labels. In some cases, the number of

patients available is less than half with respect to the total (see Appendix A). We

suppose that using a dataset with more annotation available could lead to better

performances.

7.2. Future Development

In this section, we discuss what we think are possible future research directions.

� Training hyperparameters: in this work, we did not tune extensively hyperparam-

eters, we used values often present in the literature, we believe that an extensive

search for the best hyperparameters could lead to an increase in performance.

� Integration into CAD system: possible future development of this work could consist

in the integration of the automatic segmentation networks in a clinical environment,

where the specialists did not need to spend time manually labeling each organ, but

they would only need to supervise and check the results of the automatic processes,

providing corrections if needed.

� Con�dence Estimation: linked to the previous point, a possible evolution of this

work could be the development of an estimation metric for each prediction. It
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consists of a value computed during the segmentation process which will represent

how much the network is con�dent with the result provided. With this setup, it

will be easier for specialists to detect problems and, on the other side, avoid wasting

too much time on robust results. The system could, therefore, highlight di�cult

situations and uncertainty in the results.
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86 A| Humanitas Dataset Information

A| Humanitas Dataset

Information

Number of patient containing speci�c delineated OARs

OAR Number of patients

1 Heart 98

2 Esophagus 64

3 Liver 96

4 Marrow 54

5 Spleen 12

6 Right Lung 86

7 Left Lung 87

8 Right Kidney 95

9 Left Kidney 95

10 Thyroid 89

11 Larynx 85

12 Oral Cavity 95

13 Right Eye 95

14 Left Eye 95

15 Right Crystalline 90

16 Left Crystalline 90

17 Right Parotid 92

18 Left Parotid 92

19 Brain 97

20 Rectum 95

21 Bladder 96

22 Stomach 94

Table A.1: Number of patient containing speci�c delineated OARs
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OAR Number of patients

23 Intestine 93

24 Testicles 57

25 PTV Abdomen 95

26 PTV Arms 93

27 PTV Legs 93

28 PTV Head 95

29 PTV Chest 94

30 PTV Total 91

31 Ribs 36

Table A.2: Number of patient containing speci�c delineated OARs





89

B| DICOM File Information

Dataset . f i l e_meta ===========================

(0002 , 0010) Trans fe r Syntax UID UI : Exp l i c i t VR L i t t l e Endian

=============================================

(0008 , 0005) S p e c i f i c Character Set CS : ' ISO_IR 192 '

(0008 , 0008) Image Type CS : [ 'ORIGINAL' , 'PRIMARY' , 'AXIAL' , 'HELIX ' ]

(0008 , 0012) Ins tance Creat ion Date DA: ' '

(0008 , 0013) Ins tance Creat ion Time TM: ' '

(0008 , 0016) SOP Class UID UI : CT Image Storage

(0008 , 0018) SOP Ins tance UID UI : 2.25.1000777134112839911018461211032725607228

(0008 , 0020) Study Date DA: ' '

(0008 , 0021) S e r i e s Date DA: ' '

(0008 , 0022) Acqu i s i t i on Date DA: ' '

(0008 , 0023) Content Date DA: ' '

(0008 , 0030) Study Time TM: ' '

(0008 , 0031) S e r i e s Time TM: ' '

(0008 , 0032) Acqu i s i t i on Time TM: ' '

(0008 , 0033) Content Time TM: ' '

(0008 , 0050) Access ion Number SH: ' '

(0008 , 0052) Query/Retr i eve Level CS : 'IMAGE'

(0008 , 0054) Ret r i eve AE T i t l e AE: ' '

(0008 , 0060) Modality CS : 'CT'

(0008 , 0070) Manufacturer LO: ' Ph i l i p s '

(0008 , 0080) I n s t i t u t i o n Name LO: ' '

(0008 , 0090) Re f e r r i ng Physic ian ' s Name PN: ' '

(0008 , 1010) Stat i on Name SH: ' '

(0008 , 1030) Study Desc r ip t i on LO: ' '

(0008 , 103 e ) S e r i e s Desc r ip t i on LO: ' '

(0008 , 1040) I n s t i t u t i o n a l Department Name LO: ' '

(0008 , 1048) Phys ic ian ( s ) o f Record PN: ' '

(0008 , 1070) Operators ' Name PN: ' '

(0008 , 1090) Manufacturer ' s Model Name LO: ' B r i l l i a n c e Big Bore '

(0010 , 0010) Patient ' s Name PN: '0 c8aeb38b9^^'

(0010 , 0020) Pat ient ID LO: '0 c8aeb38b9 '

(0010 , 0030) Patient ' s Birth Date DA: ' '

(0010 , 0032) Patient ' s Birth Time TM: ' '

(0010 , 0040) Patient ' s Sex CS : ' '

(0018 , 0022) Scan Options CS : 'HELIX'

(0018 , 0050) S l i c e Thickness DS: "5 .0"

(0018 , 0060) KVP DS: "120.0"

(0018 , 0090) Data Co l l e c t i on Diameter DS: "600.0"

(0018 , 1020) Software Vers ions LO: ' 2 . 3 . 0 '

(0018 , 1100) Reconst ruct ion Diameter DS: "600.0"

(0018 , 1120) Gantry/Detector T i l t DS: "0 .0"

(0018 , 1130) Table Height DS: "148.0"

(0018 , 1140) Rotation Di r e c t i on CS : 'CW'



90 B| DICOM File Information

(0018 , 1151) X=Ray Tube Current IS : "413"

(0018 , 1152) Exposure IS : "300"

(0018 , 1160) F i l t e r Type SH: 'C'

(0018 , 1210) Convolution Kernel SH: 'C'

(0018 , 5100) Pat ient Pos i t i on CS : 'HFS'

(0020 , 000d) Study Ins tance UID UI : 2.25.165845434312740816543162347140247700983

(0020 , 000 e ) S e r i e s Ins tance UID UI : 2.25.2236245083127622133926042666532330381121

(0020 , 0010) Study ID SH: ' '

(0020 , 0011) S e r i e s Number IS : "2"

(0020 , 0012) Acqu i s i t i on Number IS : None

(0020 , 0013) Ins tance Number IS : "104"

(0020 , 0032) Image Pos i t i on ( Pat ient ) DS: [=300 , =193, =70.5]

(0020 , 0037) Image Or i enta t i on ( Pat ient ) DS: [ 1 , 0 , 0 , 0 , 1 , 0 ]

(0020 , 0052) Frame o f Reference UID UI : 2.25.293983793812338344177396391983502987841

(0020 , 1040) Pos i t i on Reference Ind i c a t o r LO: ' '

(0020 , 1041) S l i c e Locat ion DS: "=70.5"

(0020 , 4000) Image Comments LT: ' '

(0028 , 0002) Samples per P ixe l US : 1

(0028 , 0004) Photometric I n t e r p r e t a t i o n CS : 'MONOCHROME2'

(0028 , 0010) Rows US: 512

(0028 , 0011) Columns US: 512

(0028 , 0030) P ixe l Spacing DS: [ 1 . 1 71875 , 1 . 171875 ]

(0028 , 0100) Bi t s Al located US: 16

(0028 , 0101) Bi t s Stored US: 12

(0028 , 0102) High Bit US: 11

(0028 , 0103) P ixe l Representat ion US: 0

(0028 , 1050) Window Center DS: "60 .0"

(0028 , 1051) Window Width DS: "330.0"

(0028 , 1052) Resca le I n t e r c ep t DS: "=1000.0"

(0028 , 1053) Resca le Slope DS: "1 .0"

(7 fe0 , 0010) P ixe l Data OW: Array o f 524288 e lements
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