
Executive Summary of the Thesis

Anomalearn: a modular and extensible library for the development of
time series anomaly detection models

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Marco Petri

Advisor: Prof. Piero Fraternali

Co-advisor: Nicolò Oreste Pinciroli Vago

Academic year: 2021-2022

1. Introduction
Time series analysis is a relevant topic dating
back to the early 20th century. Initially, it in-
volved weather, medical, economic and astro-
nomic data for several purposes. In this thesis,
time series data are handled to build a library for
aiding the creation of new models for anomaly
detection on time series. That is the creation
of models able to identify portions of data dis-
similar from normal data for detection purposes.
These abnormal data may represent dangerous
or faulty behaviour in industrial equipment or
signs of illnesses in medical data. This thesis
does not focus on a specific application field (like
ECG data); it looks at general approaches to
anomaly detection on time series. To this end,
it is possible to observe that there are several
publicly available datasets for this task. Be-
tween these datasets, some contain simply dis-
coverable anomalies, and some include complex
anomalies requiring the adoption of complex and
powerful techniques for detection. Inspired by
the work of [7], this thesis addresses the prob-
lem of analysing the complexity in time series
anomaly detection datasets by employing auto-
matic techniques for the computation of a score
representing the degree of simplicity of datasets.

Then, given the lack of a Python library with
the aim of enabling the data scientist to de-
velop time series anomaly detection methods,
this thesis proposes anomalearn. Anomalearn
is a Python library aimed at minimizing the ef-
fort in the implementation of new methods of
anomaly detection on time series. The library is
compared to scikit-learn [4], Orion [2], and ML-
Blocks [5] for evaluation of the other libraries de-
voted to the development of new machine learn-
ing models.

2. Evaluation of datasets
Datasets are essential for evaluating the effi-
cacy of machine and deep learning methods, and
it is possible to use both public and private
datasets. However, the usage of publicly avail-
able datasets is always encouraged since it makes
the experiment reproducible by other data sci-
entists. Up to now, datasets have been used to
assess the quality of methods, but there is no
commonly established automatic procedure to
evaluate the quality and attractiveness of such
datasets. Consequently, some ordinarily used
and publicly available datasets for anomaly de-
tection contain several trivial anomalies [7] that
are not assisting the scientific community in pur-

1

Executive summary Marco Petri

−4 −2 0 2 4

−4

−2

0

2

4

Simple dataset with some boundaries

Figure 1: Simple dataset that is not linearly
separable. Blue points are normalities, red are
anomalies.

suing scientific progress. Thereupon, there is a
trend in showing that deep learning and complex
methods are not the silver bullets to solve these
tasks; the notable work in [7] assesses the trivial-
ity of publicly available datasets by making con-
siderations regarding whether simple approaches
can solve them (that is, achieving maximum ac-
curacy). In their work, they depict a dataset
as simple if there is a model capable of solving
it whose implementation can be encoded in one
line, excluding libraries implementing machine
or deep learning solutions. Therefore, they pro-
pose the following one-line approach:

x > c1movmean(x,w) + c2movstd(x,w) + b

(1)
Where x is the time series, and w ≥ 1 is the
length of the sliding window. If for any value
of the constants c1, c2, b, this method solves the
dataset; the dataset is labelled as simple. Even
though this description suffices to state trivial-
ity, using it in parallel with the following trivial
approach gives a thorough description:

x < c1movmean(x,w)− c2movstd(x,w)− b

(2)
This approach for evaluating simplicity inspired
the creation and definition of simplicity for time
series anomaly detection datasets. The idea con-
sists in providing a method-agnostic definition
of simple computation. To accomplish the task,
although linear separability seems to fit the re-
quirements, it might not flag as simple datasets

as that in figure 1, in which anomalies and nor-
malities are effortlessly separable. Therefore,
this thesis defines a time series as simple if it is
possible to obtain Accuracy = 1 by comparing at
least one dimension with at most two constants
called upper and lower bounds that classify a
point as normal or anomalous. Figure 1 contains
a simple dataset whose horizontal dimension has
a lower and upper bound, and the vertical di-
mension has only an upper bound. This defi-
nition enables the introduction of a score eval-
uating the degree of simplicity. The degree of
simplicity is max(TPR) @ TNR = 1 by placing
lower and upper bounds on the dimensions of the
dataset, i.e., the percentage of anomalies sepa-
rable from normalities. This problem is analo-
gous to finding the minimum bounding box for
normal points: everything outside the bounding
box is considered anomalous, and the percent-
age of anomalous points outside the bounding
box is the degree of simplicity. The degree of
simplicity is refined to evaluate a score of sim-
plicity of the moving average or moving stan-
dard deviation, i.e., verifying whether some sub-
sequences have an abnormally high or low mean
or standard deviation. These scores give a spa-
tial method-agnostic definition of simplicity, and
allow the computation of such scores on derived
series, such as the differentiation of the time se-
ries. Together with the definition of these scores,
the thesis proposes algorithms for their compu-
tation. The proposed algorithms have worst-
case complexity Θ(NF log(N)+ANF) and best-
case time complexity Θ(NF log(N)), where N
is the number of points in the series, F is the
number of features, and A is the number of
anomalies. Moreover, the algorithms for calcu-
lating the moving average and standard devia-
tion scores introduce a heuristic to define which
lengths of the sliding windows to use in the com-
putation of simplicity; therefore, their time com-
plexities are equal to the previous multiplied by
the number of windows to try. The heuristic is
necessary for efficiency since the exact score can
be obtained only by trying each window from
1 to the length of the series. Figure 2 con-
tains the scores of simplicity of some publicly
available datasets (the moving average score),
showing similar results to those obtained by [7]
stating that Yahoo, SMD, and NASA are simple
datasets.

2

Executive summary Marco Petri

Yahoo UCR SMD NAB MGAB GHL NASA
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

M
ov

in
g

av
er

ag
e

sc
or

e

Violin+Box plot of moving average score

Figure 2: Simplicity scores of publicly available
dataset searched on the series and its differen-
tiations up to the third order. The higher, the
simpler.

3. Anomalearn
Machine and deep learning libraries are benefi-
cial tools for data science. They assist the data
scientist in creating solutions in diverse ways: by
providing the implementation of models and es-
timators in literature, furnishing transformation
objects, and delivering objects for mixing the
previous. Therefore, the data scientist can con-
centrate more on data analysis and modelling
data rather than on implementing known ap-
proaches. However, among the machine learning
libraries in Python, there is still a lack of two ma-
jor components: data readers capable of scan-
ning publicly available datasets and returning a
standardized data structure, and a modular and
extensible API for creating new models and re-
lated processors. Especially, anomaly detection
has a surprisingly low number of published li-
braries: notable examples are Orion [2], PyOD
[8], and Anomalib [1]. Of these three libraries,
only Orion aims at easing the data scientist in
inventing new models for time series anomaly
detection. PyOD is a collection of anomaly de-
tection algorithms mainly for tabular data, and
Anomalib is a collection of deep learning algo-
rithms for anomaly detection in images. There-
fore, the availability of tools for developing new
approaches is limited, and if the data scientist
desires to follow an established technique for de-
veloping machine learning solutions for time se-

use

use reader

applicationsanalysisalgorithmsvisualizer

input

validation

utils exceptions

use use

use use use

use

Figure 3: UML package diagram of the top-level
packages of anomalearn. Blue elements are core
packages, green elements are utility packages.

ries anomaly detection, the choice is forced. This
preamble explains the reasons for creating and
shipping a library aiding the data scientist in de-
veloping end-to-end approaches from data read-
ing to label generation. Anomalearn is designed
to be modular and achieve the lowest level of
coupling. Figure 3 shows the UML package di-
agram of the top-level packages of anomalearn.
There are two types of top-level packages:
• Core packages: they offer the main func-

tionalities of anomalearn ranging from pre-
processing to hyper-parameter tuning.

• Utility packages: they offer utility function-
alities and are mainly introduced for the
needs of other packages or to ship all-in-one
solutions.

For the development of such packages, the design
choices were crucial. Since anomalearn aimed at
supplying a helpful and simple approach, two
strategies have been analysed: scikit-learn [4],
and MLBlocks [5]. The former adopts a duck-
typing structure: an object is described by the
methods it exposes, not by its type. Therefore,
it requires the developer to deeply know the con-
ventions used for an object of a specific type,
e.g., a predictor will always have the method
predict, and there is no interface for that. The
latter approach requires shipping both the code
of the function or class implementing a machine
learning procedure and a description of its en-
try points and outputs in JSON (i.e., an anno-
tation file). The advantage of the second ap-
proach is that for developing a method, there
is no convention regarding the naming of func-
tions, but the data scientist needs to know the
format of the annotation file to make the code
work in the ecosystem. Anomalearn chooses an

3

Executive summary Marco Petri

interface-based approach, trying to mix the ad-
vantages and reduce the disadvantages. Ob-
jects should implement one of the interfaces
shipped with the library (e.g., classifiers im-
plement IClassifier): they are portrayed by
the implemented interfaces. However, interfaces
subclass the behaviour of the subclass check of
Python to consider any class implementing the
same methods its subclass: it allows duck typing
in some cases. Therefore, the developer needs
neither to know any format for annotation files
nor a massive amount of naming conventions:
the interfaces expose methods along with their
documentation with self-descriptive names (e.g.,
IClassifier exposes the method classify).

3.1. Dataset reading
Among the components, anomalearn ships di-
verse interfaces for readers of time series and
time series anomaly detection datasets, together
with some implementations. The output of a
dataset reader is a pandas DataFrame [3, 6] com-
posed of at least three and at most four types of
columns. The three types of recurrent columns
are:
• Index: it is the column containing the index

of the time series.
• Data: it is the column or the set of columns

containing the data of the time series (single
column for univariate, multiple columns for
multivariate).

• Class: it is the column containing the labels
of points.

The optional column consists of the training col-
umn: it states the training points of the time
series. This column is optional because some
datasets do not ship a train/test split, and leave
this duty to the data scientist. Conversely, when
the dataset specifies it, it is reported in the
optional column. Regarding the interface, a
dataset reader is an iterator over the time se-
ries of the dataset: almost all publicly available
time series anomaly detection datasets comprise
multiple time series. The iterator returns the
DataFrame of the series, and the reader also ex-
poses methods to access specific time series, en-
abling the data scientist to define any different
order of iteration. To enhance freedom of it-
eration, the reader exposes both the indexing
operator [] and the method read.

3.2. Experiments
Over the data readers, anomalearn builds an
object called ExperimentLoader for aiding the
data scientist in composing experiments. This
component exposes APIs to specify a sequence
of data readers beside splits and a list of the se-
ries to utilize for each dataset. By default, it
receives a list of data readers and exposes an
iterator over the series of each reader: each se-
ries is returned once. However, since it is com-
mon practice to execute methods over a subset
of the dataset and to define a different split for
diverse datasets, it also allows the selection of
the train/test split and the subset of series to
return for each dataset.

3.3. Pipeline
The primary component of anomalearn is the
pipeline. Among machine learning libraries,
scikit-learn [4] and MLBlocks [5] implement
their own version of a pipeline. Therefore, as
with the interface-based approach, other ap-
proaches are examined to motivate the introduc-
tion of the pipeline of anomalearn. The former
is a sequential pipeline: a sequence of transform-
ers (objects transforming the input) followed by
an estimator at the end (the model). Even
if the approach is simple and intuitive, it has
some drawbacks: a pipeline can contain only
one estimator and cannot comprise transform-
ers after the estimator. In addition, this limita-
tion extends to the composition of pipelines: it
is impossible to have chained pipelines contain-
ing estimators. This constraint hinders the cre-
ation of time series anomaly detection methods
since they usually include postprocessing oper-
ations. The latter technique follows a similar
structure to that of the MLBlocks [5] objects.
A pipeline is a sequence of blocks: a set of an-
notation files. The input of the pipeline flows
sequentially through the layers. To enable the
data to flow between components, they employ
a data structure called context dictionary: a dic-
tionary in which keys are names of variables,
and values are the contents. Each block has in-
put and output variable names annotated in the
JSON file, which makes the pipeline aware of
which variables will be overwritten (by output
variables) and which variables the current layer
needs to execute. This intricate mechanism en-
ables the creation of complex pipelines in which

4

Executive summary Marco Petri

data can undergo any transformation, and the
addition of variables to the context dictionary
such that the following layers will receive them
as input. Again, the annotation files format
must be known such that the overall pipeline
works as expected. Moreover, neither the for-
mer nor the latter pipeline provide a safe saving
method to serialize the learnt weights during the
training. Utilizing pickle is mandatory.
Anomalearn provides a pipeline which does not
require any annotation file, permits multiple
models, and allows the utilization of postpro-
cessing operations after models. These func-
tionalities are offered by employing interfaces
and abstract classes for the pipeline and layers.
Therefore, any object insertable in a pipeline
must inherit from one of the abstract classes for
layers. Because of this abstraction, a pipeline
must be independent of the number and con-
crete type of objects extending them. Inter-
faces and abstract classes suffice for implement-
ing all the functionalities of a pipeline, and con-
crete objects received at run-time must not in-
fluence its operation. In addition, a pipeline
must be a layer itself, enabling the composition
of pipelines. Currently, the only implementation
of the interface for pipelines is Pipeline. It is
a sequential pipeline composed of any number
and type of objects: it can include preprocess-
ing, models, or postprocessing objects in any or-
der and number (provided that they are compat-
ible with each other). Besides its composition,
once a pipeline has been trained, it can be se-
rialized safely to disk thanks to the presence of
two abstract classes for layers: serializable layers
and layers that can only be instantiated. The
realization of this feature agnostic to concrete
types is offered through two utility functions,
allowing to instantiate or load any estimator of
the anomalearn library or any compliant object.
These functions only need the name of the class
and an optional list of class objects not included
as part of anomalearn. Therefore, any object
inheriting anomalearn interfaces not present in
the anomalearn packages, can be added to the
list to enable its loading and instantiation.

4. Conclusions
This thesis presented some methods to evalu-
ate the simplicity of datasets and a library for
developing time series anomaly detection mod-

els. The two contributions are distinct in the
aim and approach: the library is more practical
than theoretical. The methods for evaluating
the simplicity of datasets furnish the data sci-
entist with a set of tools for assessing the sim-
plicity of datasets. These instruments not only
allow the publication of a new dataset accom-
panied by a description of its complexity, but
also permit to execute and evaluate methods on
datasets at varying difficulty levels. Therefore,
the data scientist is aided in the execution of a
deeper analysis of the performance of methods
by relating it to the three types of complexity of
datasets.
The second contribution of this thesis, anoma-
learn, supplies the tools for creating time series
anomaly detection models (or related objects)
by minimizing the amount of code to write.
Pipelines of anomalearn allow the data scien-
tist to use all the implemented preprocessing,
postprocessing, transformations and models for
creating either new models or ensembles. Fur-
thermore, the library ships data reader objects
to ease the process of reading publicly available
datasets and objects for creating experiments on
a sequence of datasets with specified train/test
split in any order. These components can be
used individually and mixed for building exper-
iments without requiring any code beyond that
used to create the object and to iterate on the
supplied iterators.

5. Acknowledgements
I would like to express my gratitude to Politec-
nico di Milano and the teaching staff for the ex-
cellent education I received as a Computer En-
gineer, to my supervisor Professor Piero Frater-
nali, and to my co-supervisor Nicolò Oreste Pin-
ciroli Vago.
Moving on, I would like to acknowledge everyone
who stood by me outside of the university. First
and foremost, I am deeply grateful to my family.

References
[1] Samet Akcay, Dick Ameln, Ashwin Vaidya,

Barath Lakshmanan, Nilesh Ahuja, and
Utku Genc. Anomalib: A Deep Learning
Library for Anomaly Detection, 2 2022.

[2] Sarah Alnegheimish, Dongyu Liu, Carles
Sala, Laure Berti-Equille, and Kalyan Veera-

5

Executive summary Marco Petri

machaneni. Sintel: A machine learning
framework to extract insights from signals.
In Proceedings of the 2022 International
Conference on Management of Data, SIG-
MOD ’22, page 1855–1865. Association for
Computing Machinery, 2022.

[3] The pandas development team. pandas-
dev/pandas: Pandas, February 2020.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[5] Micah J. Smith, Carles Sala, James Max
Kanter, and Kalyan Veeramachaneni. The
machine learning bazaar: Harnessing the ml
ecosystem for effective system development.
arXiv e-prints, page arXiv:1905.08942, 2019.

[6] Wes McKinney. Data Structures for Statisti-
cal Computing in Python. In Stéfan van der
Walt and Jarrod Millman, editors, Proceed-
ings of the 9th Python in Science Conference,
pages 56 – 61, 2010.

[7] R. Wu and E. J. Keogh. Current time series
anomaly detection benchmarks are flawed
and are creating the illusion of progress.
IEEE Transactions on Knowledge and Data
Engineering, 35(3):2421–2429, 2023.

[8] Yue Zhao, Zain Nasrullah, and Zheng Li.
Pyod: A python toolbox for scalable outlier
detection. Journal of Machine Learning Re-
search, 20(96):1–7, 2019.

6

	Introduction
	Evaluation of datasets
	Anomalearn
	Dataset reading
	Experiments
	Pipeline

	Conclusions
	Acknowledgements

