
Executive Summary of the Thesis

An approximate analytical method for the performance evaluation
of semiconductor front-end fabrication integrating photolithography
inspection strategies

Laurea Magistrale in Mechanical Engineering - Ingegneria Meccanica

Author: Riccardo Pomi

Advisor: Prof. Tullio Tolio

Co-advisors: Dr. Maria Chiara Magnanini, Prof. Dragan Djurdjanovic

Academic year: 2022-2023

1. Introduction
The Semiconductor Manufacturing system is
recognized as a highly intricate production pro-
cess comprising four fundamental stages: wafer
fabrication, wafer probing, assembly (packag-
ing), and final testing. The initial phase, known
as wafer manufacturing or the front-end, incurs
significant costs. During this phase, circuits are
methodically layered onto the wafer using a se-
ries of sequential procedures. Numerous pro-
cessing steps are involved in this phase. Con-
sequently, the dynamics, performance, and char-
acteristics of both the process and the end prod-
uct are determined by an extensive range of fac-
tors. It becomes imperative to consider struc-
tural reconfigurations, improvement initiatives,
and operational adjustments while thoroughly
evaluating all alternative comparisons to devise
the most optimal system for a multitude of sce-
narios. Photolithography is the crux of IC man-
ufacuring among the entire process in the fab in
a manner that experts in the sector say the fab
is built around the process of photolithography.
To produce an entire semiconductor wafer, many
steps are performed subsequently and each pat-

tern transfer has a very precise position on the
wafer surface. To ensure the correct alignment
between the layers an inspection station is re-
quired.The inspection is considered the bottle-
neck of the line, it takes a way longer time than
the other steps. It could be possible to have a
faster but less reliable inspection station com-
promising the knowledge on the product quality
but decreasing the cycle time of the bottleneck
of the line.
In general, several analytical techniques have
been developed to analyze the behavior of man-
ufacturing systems, utilizing equations that as-
sist in making precise decisions during produc-
tion planning strategies. The good functioning
of analytical methods depends on the ability to
take into account most of the factors that can
affect the behavior of the manufacturing line.
Among all of the variables that need to be con-
sidered, the quality control system represents a
relevant factor for the performance of the sys-
tem. Currently adopted quality control strate-
gies are mainly single-stage strategies as they do
not consider the impact of quality monitoring
actions on the economic, logistics, and quality
performance of the multi-stage systems in which
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they are applied[1]. A deeper understanding of
the impact of quality control systems on both
the actual quality of the process and product
and the performance of the system can be of
real help in taking focused decisions when de-
signing the production system,to develop effec-
tive strategies that maximize overall efficiency
and performance reducing possible unbalances.

2. Scientific and industrial con-
text

Semiconductor front-end fabs are extremely
complex environment. Wafers flow is in constant
movement along hundreds of processing ma-
chines, where inspection stations redirect defec-
tive wafers into rework loops, different threads
or discard them in order to achieve the best yield
as possible. Numerous processing steps are in-
volved in front-end fabrication, some of them
are represented in Fig.1. Photolithography is
one of the most critical among the entire pro-
cess in the fab in a manner that experts in the
sector say the fab is built around the process of
photolithography. Many criticalities are present
during this step mainly because sub-nanometric
precision in the alignment between circuit pat-
terns is required for a correct functionality of
the final product. The alignment of each layer
to the previously laid layer is known as overlay
and a proper alignment is critical to the qual-
ity of the produced devices in order to allow a
correct electric current passage in the IC. To en-
sure the correct alignment between the layers an
overlay metrology station is required. A typical
advanced scheme includes an overlay feedback
loop that allows the parameters of the stepper
to be adjusted and the overlay to be minimized
during the process. The overlay error measure-
ment is the bottleneck of the line, it takes a
way longer time than photolithography machine.
Moreover production flow’s logistics could have
influence on the behaviour of the manufacturing
line, could cause blocking or starvation.

Figure 1: Front-end fabrication steps

At product level, photolithography stage oper-
ates a transformation on the product and may
add product deviations, in this case, in form of
overlays as we can see from Figure 2. In order
to model this phenomena it is used theory based
on stream of variation (SoV)[3].

Figure 2: Overlay and stack-up Overlay
deviations.

Thus, for the scope of controlling this phe-
nomena in Zang, Djurdjanovic [5] used robust
R2R control considering not only overlay, but
stack-up overlay error,that is described by the
summation of the overlay of non-adjacent lay-
ers, by Zernike polynomial based models. The
model relate the tool parameters to overlay er-
rors, produce machine settable inputs to mini-
mize those errors[2][5]. Having defined a mathe-
matical model establish an analytical connection
between quality errors and process parameters
integrating multivariate statistics, control the-
ory as well as manufacturing process knowledge
into a unified framework.

2.1. Optimal Number of Measure-
ment Markers: Modeling back-
ground

This approach allow to develop a strategical
robust measurement point selection model in
which the best combination of a given num-
ber of measurement points is selected for the
robust control of lithography errors, such that
the measure of overlay errors at all the candi-
date measurement points is minimized[6]. By
doing so, wafer’s inspection would not be per-
fect so inspection could not detect Bad wafers
and let them continue along the manufacturing
line. Through [5] is possible to have an estima-
tion of detecting for a certain selected optimal
percentage of measurement markers: the prob-
ability that a wafer produced is bad and and
not detected P(BND) and the probability that
after photolithography a bad wafer is correctly
detected and scrapped P(BD).
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Figure 3: Quality probabilities.

Process model is addressed in a static way so
that it is possible have quality behaviour of the
single lithography&inspection stage. This qual-
ity behaviour is actually decoupled from the real
system, it describe the single-stage without con-
sidering what happens in upstream machines or
how the single-stage influences the downstream
machines. So using this approach is not possible
to describe the true dynamics of the system. It is
necessary a model that describe system dynam-
ics (starvation&blocking) and quality propaga-
tion along the system. Whenever it is selected a
percentage of markers that is not at full capacity
inspection station could leak defective wafers as
good wafers because some markers would have
been outside boundaries, but they were not mea-
sured. Quality propagation is a dynamic be-
haviour that describe the advancement of defec-
tive wafers along the manufacturing thread since
this defective wafers were not detected in previ-
ous inspection stations. If it is set an external
observer in this case at last inspection machine
as shown in Fig. 4, it is possible to notice a part
of the flow being discarded or reworked. It is
possible with the system model to have an esti-
mation of the probability that some wafer that
were defective and was not detected in each pre-
vious inspection stage and keep track of it.

Figure 4: External Observer looking at
outgoing flow at last machine.

3. Problem statement
The goal of this work is to integrate product,
process and system-level models to evaluate the
effect at system level, to jointly optimize opera-
tions. Indeed, the propagation of multi-stage dy-
namics has a clear impact on the responsiveness
of the quality strategy. An optimal measure-
ment allocation derived considering only process
control can be suboptimal when considering the
multi-stage manufacturing system as a whole.
Having more inspections for better modeling of
robust control can create bottlenecks and im-
balances in the production line flow. Moreover,
the quality addressed by the process control area
that looks for the actual magnitude of errors in
the features of the product does not consider
the quality addressed by the system engineering
point of view as the yield and the number of de-
fective parts produced by the system. Therefore,
it is important to evaluate the quality problem
both from the process and system point of view.

3.1. Research questions
More specifically the proposed thesis attempts
to integrate product/process control developed
by Zhang [5] with a system model. The relation
between these three control model at different
levels is really close but still unexplored. The
ultimate goal is to seek jointly optimized perfor-
mances of the overall scheme, to see if proposed
methodology could improve the traditional semi-
conductor inspection, that is considered the bot-
tleneck of the manufacturing system. Indeed
this approach could improve not only production
KPIs, but could be developed as well to study
and optimize system configuration with the right
knowledge of system behaviour such as mainte-
nance schedule and its characterization and vari-
ation on cycle time of intermediate processes.
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4. Methodology
4.1. Schematic system
The production system considered is modeled
by stations which can be photolithography, in-
spection stations, inter-operational buffers in
a serial layout Figure 6. Each photolithogra-
phy stage is followed by an inspection station
without an inter-operational buffer, therefore
these two stages are considered in series and
will be considered as an unique stage ML&I ,
and the system is composed by a total of
M stages: ML&I(1), ...,ML&I(m), ...,ML&I(M).
Each stage is decoupled by M − 1 inter-
operational buffers B(m), of finite capacity
N(m). Both photolithography and inspection
stations are fully reliable, no failures occur in
both stages. Whenever inspection station per-
form the conformity check on the wafer and fine
that the patterned layer is defective a param-
eter tuning of the photolithography station is
performed without any delay, in the meanwhile
the defective wafer is suddenly unloaded from
the inspection machine and rejected from the
line, thus preserve from wasting the capacity of
downstream stations in processing wafers that
are already defective. The inspection approach
adopted is full inspection.

Figure 5: Model Reference System.

4.2. Single-stage model
Each stage is modeled as a Continuous-Time-
Markov-Chain and the state-space representa-
tion is:
• GOOD-(G): represent correct status of

the production.
• BAD DETECTED-(BD): the defective

wafers that are scrapped after inspection
operations.

• BAD NOT DETECTED-(BND): rep-
resent the defective parts measured but not
detected by the inspection station and will
go through other manufacturing stations.

Litho&Inspection stage is considered as two ma-
chines in series, thus cycle time is the summation
of both lithography and inspection times. Cycle

time of lithography is considered equal for each
stage.

CT {m} = CTlitho + CT
{m}
inspection

CT
{m}
inspection = 1.5 · CTlitho ·%markers{m}

The transition from G and BND to BD are equal
and is calculated as in

q
{m}
G→BD = q

{m}
BND→BD =

P (BD){m}

CT {m}

meaning that the mean time to move to BD is
P (BD){m}−1 · CT {m}

The transition from G and BD to BND are equal
and is calculated as in

q
{m}
G→BND = q

{m}
BD→BND =

P (BND){m}

CT {m}

meaning that the mean time to move to BND is
P (BND){m}−1 · CT {m}.
The transition from BND to G is calculated as
in

q
{m}
BND→G =

1− P (BND){m} − P (BD){m}

CT {m}

Instead the transition from BD and BND to G
are equal to production rate, since after each
cycle they could move to a good production.

q
{m}
BD→G =

1

CT {m} = µ{m}

Transition rate matrix for Machine m:

Q{m} =

 0 q
{m}
G→BD q

{m}
G→BND

q
{m}
BD→G 0 q

{m}
BD→BND

q
{m}
BND→G q

{m}
BND→BD 0

 ;

Figure 6: Single-stage Markov model.
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4.3. Multi-stage model
The objective of the approach presented herein
is to provide a method to accurately evaluate the
steady-state performance of multi-stage asyn-
chronous manufacturing systems, it is based on
[4]. Each machine in the line can be described as
Integrated Machine M{m} m = 1, ...,M . Sim-
ilarly, for each buffer in the line B(m),m =
1, ...,M − 1, a two-machine line BB is built.
Hence, the characterization of Integrated Ma-
chines is used to link one Building Block to an-
other, in order to guarantee the homogenization
of the performance evaluation.

4.3.1. Two-level Decomposition
The multi-stage extends the work presented by
Magnanini, Tolio [4]. In Fig.7 is presented
the schematic representation of the proposed
methodology, and the main steps to build this
approach.

Figure 7: Schematic representation of the
proposed method.

4.3.2. Integrated machine
An Integrated machine M [m] takes informa-
tion regarding upstream phenomena limiting
it from BB(m− 1) and information regarding
down-stream phenomena from the BB(m). It
adds to the behavior of the original machine in
isolation, named Local states L[m], three state
partitions:

• The remote Starvation states S[m] repre-
sent the states in which the Integrated Ma-
chine M [m] is upstream limited.

• The remote Blocking states B[m] represent
the states in which the Integrated Machine
M [m] is downstream limited.

• The Non-Quality states NQ[m] represent
the states in which the Integrated Machine

M [m] is processing defective layers that
were still defective in previous machines
and sending them to the downstream stage
BB(m).

Figure 8: General Integrated Machine.

4.3.3. Building Block
The Building Block BB(m) is a two-machine
one-buffer line representing the inflow and out-
flow of the overall system centered on the con-
sidered buffer.
• The joint machine states when no limi-

tation occurs and no quality propagation:
Su
(B,BND,NQ) ⊗Sd

(S,NQ) where Su
(B,BND,NQ)

denotes all possible upstream states exclud-
ing the blocking state B, the upstream Bad
Not Detected state BND as well as up-
stream states of Non-Quality Propagation
NQ , Sd

(S,NQ) denotes all possible down-
stream states excluding the starvation state
S as well as upstream states of Non-Quality
Propagation NQ and ⊗ denotes the Kro-
necker product.

• The joint machine states when downstream
limitations occur, i.e. the upstream ma-
chine is blocked: B ⊗ Sd

(S,NQ)
• The joint machine states when upstream

limitations occur, i.e. the downstream ma-
chine is starved: Su

(B,BND,NQ) ⊗ S.
• The joint machine states that represents the

states of bad production in current stage:
Su
BND ⊗ Sd

• The joint machine states that represents the
states of bad production in previous stages:
Su
NQ ⊗ Sd
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4.3.4. Lumping
The objective of this step is to characterize the
integrated machine based on the output pro-
vided by the building block solution, in particu-
lar, characterization of the state space and char-
acterization of the transition rate matrix. Let us
recall the definition of the transition rate matrix
Q[m]:

Q[m] =


QLL QLS QLB QLNQ

QSL QSS QSB QSNQ

QBL QBS QBB QBNQ

QNQL QNQS QNQB QNQNQ

 ;

The corresponding transition rate matrices can
be computed as:

Q
[m]
LL = Q{m}

Q
[m]
LS = GLS(m− 1)⊙ [ΠL(m− 1)]−1

Q
[m]
LB = GLB(m)⊙ [ΠL(m)]−1

Q
[m]
SL = Q

[m]
LS · [ΠS(m− 1)][ΠL(m− 1)]−1

Q
[m]
BL =

[
0 qBG→BD(m) 0
0 qBBND→BD(m) 0

]
;

Q
[m]
NQL =

 qBND→G(1) 0 0
... ... ...

qBBND→G(m− 1) 0 0

 ;

Q
[m]
LNQ =

 A(1) ... A(k) ... A(m− 1)
0 ... 0 ... 0
0 ... 0 ... 0

 ;

A(k) =
qBND→G(k) · [ΠNQ(k)(k)]

[ΠG(k)]

Q
[m]
SS = Q

[m]
LL

Q
[m]
BB = Q

[m]
LL

Q
[m]
NQNQ = Q

[m]
NQS = Q

[m]
NQBL = [0]

Q
[m]
SB = Q

[m]
SNQ = [0]

Q
[m]
BS = Q

[m]
BNQ = [0]

Due to state lumping, both in NQ and B parti-
tion needs to be updated production rate since
new state is the sum of many others with dif-
ferent characteristics. States that are producing
and delivering bad detected layers

SNQm−1 = {(BND−G), (BND−BD), (BND−
BND)} are lumped into a single state called
NQm−1 and its production rate is scaled con-
sidering that the state (BND − BD) is no-
productive from point of view of BB(m + 1)
because it will discard that wafer.

µNQm−1 =

∑
µ(SNQm−1) ·Π(SNQm−1)∑

Π(SNQm−1)

The downstream limitations has been lumped
since with long lines the number of state would
increase exponentially, more specifically BG is
the lumping of boundary states SBG

= {(G −
G), (G − BD), (G − BND)} and BBND is the
lumping of boundary states SBBND

= {(BND−
G), (BND −BD), (BND −BND)}.
Their production rate are scaled considering
that the states have different production rates
thus:

µBG
=

∑
µ(SBG

) ·Π(SBG
)∑

Π(SBG
)

µBBND
=

∑
µ(SBBND

) ·Π(SBBND
)∑

Π(SBBND
)

4.3.5. Partitioning
Based on the characterization of the machine
level, the input to the buffer level can be defined
in terms of the state space and transition rate
matrix of the pseudo-machines for each building
block BB(m).
In particular, the upstream pseudo-machine
Mu(m) is characterized by state space Su(m) =
[L[m], S[m], NQ[m]]. Similarly, the downstream
pseudo-machine Md(m) is characterized by the
state space Sd(m) = [L[m+1], B[m+1]]. A
schematic representation of the relation between
the pseudomachines at buffer-level and the In-
tegrated Machines at machine-level is provided
Fig. 9.
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Figure 9: Relation between the Markov Chains
of Integrated Machines (machine-level) and

Pseudo-machines (buffer-level).

4.3.6. Convergence Algorithm
Forward and backward analysis is performed fol-
lowing methodology proposed by [4].

1. For m = 1, ...,M , Integrated Machine
M [m] are initialized based on M{m}.

2. For m = 1, ...,M − 1
(a) Characterization of upstream and

downstream pseudo-machines Mu(m)
and Md(m) from M [m] and M [m+1].

(b) Evaluation of Building Block BB(m),
based on Mu(m), Md(m) and B(m).

(c) Characterization of Integrated Ma-
chine M [m + 1] based on the down-
stream pseudo-machine Md(m).

3. For m = M − 1, ..., 1
(a) Characterization of upstream and

downstream pseudo-machines Mu(m)
and Md(m) from M [m] and M [m+1].

(b) Evaluation of Building Block BB(m),
based on Mu(m), Md(m) and B(m).

(c) Characterization of Integrated Ma-
chine M [m] based on the downstream
pseudo-machine Mu(m).

The condition for termination:

Diff(m) =

√∑
j

(Πj(m)−Πj(m− 1))2 < tol

4.4. Performance Measures
It is possible to calculate the throughput of BD
wafers at each lithography&inspection stage as:

TH
[m]
BD = µ(S[m][BD]) ·Π(S[m][BD])

Instead the total rejected wafers:

THBD =
M∑

m=1

TH
[m]
BD

Moreover, NQ states allow to have at the end of
the line an estimate of the throughput of defec-
tive wafers not detected through all manufactur-
ing stages. In last Integrated Machine IM [M ]
states: S = {BND,NQ1, ..., NQM−1} with
production rates µ = {µM , µNQ1 , ..., µNQM−1

}
have a throughput of BND wafers as:

TH
[M ]
BND =

∑
i

µ(S[M ][i]) ·Π(S[M ][i])

with i ∈ S = {BND,NQ1, ..., NQM−1}

Instead throughput of good wafers at the end of
the line is:

TH
[M ]
G = µ(S[M ][G]) ·Π(S[M ][G])

The average buffer level is computed as follow:

x[m] = x[m] ·
∫ N

0
f(x, S)dx

5. Numerical results
Analysis of convergence of decomposition al-
gorithm is assessed and a comparison with
Simulink Discrete event simulator (DES) is per-
formed. For the sake of compactness numerical
results and tables are omitted in this summary.
Convergence of the method is achieved always
and with a maximum of 11 iteration for 9M8B
case, considering a precision of 10−15.This is be-
cause the variability in the system is really low.
Instead error over performance parameters be-
tween model and DES are approximately 2.5%.

6. Real case
In this chapter, the model application to an in-
dustrial case is presented. The real datased is
provided by a semiconductor foundry based in
Austin TX, thus for privacy reason data are
scaled but realistic. The objective is to analyze
the impact of the different inspection policies to
the system performance and dynamics.
Line under study has same structure as in Fig.6
but is a sequence of 4 layers, i.e. 4 photolithog-
raphy&inspection stages and 3 buffers (4M3B
Line).For following analysis has been set up an
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optimization problem to evaluate different sys-
tem configurations, and yet solved by a genetic
algorithm:

maxZ =CG · THG(%, N)− C ′
BD · THBD(%, N)

−CBND · THBND(%, N)

with performance parameters:

• THG: Flow of good wafers at end of line.
• THBND: Flow of bad not detected wafers

at end of line.
• THBD: Flow of Bad Detected Layers at

each inspection machine.
configuration parameters:

• %: Percentage of Markers used in each
inspection station.

40% ≤ %[m] ≤ 100%

• N : Buffer capacity in each B(m).

10 ≤ B(m) ≤ 300

cost parameters:

• CG:Revenue per unit of flow.
• CBND:Cost of BND wafers per unit flow.

CBND = K2 · CG with K1 = 0, 0.25, ..., 8

• CBD: Cost of BD wafers per unit flow in
each inspection stage.

CBD(4) = K1 · CG with K2 = 0, 0.2, ..., 1

CBD(m) =
m

4
· CBD(4) with m = 1, 2, 3

6.1. As-is issues
Current as-is inspection policy is to measure a
certain number of markers at full capacity (100%
markers). As it is shown in Figure 10 there is a
starvation issue due to the out-flowing of parts,
the flow is not conserved and downstream ma-
chines are affected by this behaviour.

Figure 10: Starvation Propagation.

A trade-off between productivity and quality
could be achieved, as an example for fixed K1 =
1,K2 = 7.5 N = 300, optimal configuration
achieved:

M1 M2 M3 M4

%Mrks 96 97 100 100

Table 1: Optimal configuration

That improves system’s performances with a
slight degradation on output quality.

100% conf. opt. conf.

Π4
S% 4.8 2.72

THG[
w
h ] 1.474 1.507

THBND[
w
h ] 0 0.0004

THBD[
w
h ] 0.125 0.1274

Y ield[ THG
THIN

]0.9217 0.9218

Table 2: Performance comparison

6.2. Sensitivity analysis
Sensitivity analysis is performed over cost pa-
rameters K1 and K2. It is well clear that K1

is not influencing the system’s response so that
the only meaningful parameter to be assessed is
K2 (BND cost). It is set an analysis to look
for the overall best configuration given K2, in
which each single machine of the configuration
can have its own percentage of markers,in Fig.
11 results are displayed.
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Figure 11: sensitivity analysis.

Each layer has its own percentage of selected
markers and it is increasing with downstream
layers, this is explainable mainly for two reasons:

• To overcome unbalancing of the line, so to
reduce starvation at last production stage.

• Stack-up overlay error increases along the
manufacturing stages since, mathematically
is the summation of the whole set of over-
lays deposited in each stage, so it is appro-
priate to select more markers in later stages
so that the bad layers will be detected.

6.3. Importance of optimal set of
measurement markers

Given a percentage %obj of the total amount
of markers available it is possible to select any
set/combination of markers F (%obj).
To know details on how optimal selection is per-
formed please refer to [5].
Now, given a %obj , it is presented a compar-
ison of performance results between the tradi-
tional operations, using the best set of mark-
ers F ∗(%obj) and using a generic set of markers
F (%obj).
It is assumed that using a generic set of markers
F (%obj), probability of not detecting a bad
layer P (BND) Fig. 3 will increase by a 20%
from optimal case.
It could be better or even be worse. The
objective is to compare these results to enhance
the importance to make the right decision on
the selection on the best F (%obj).

Figure 12: Throughput endline THG&BND

Fig. 12 shows the throughput of wafers flowing
from the last machine of the system in the three
different configurations where all machines have
the same number of markers selected.
It is evident that inspection of 100% of available
markers increases cycle time thus throughput of
the line is low, on the other hand decreasing per-
centage allows the whole line to produce faster.

Figure 13: Yield: as THG
THINPUT

Fig. 13 highlights how production yield changes
among different configurations: in 100% config-
uration line is the best possible since no BND
are produced in the system.
Configurations with 90% selected markers are
slightly worse but using the optimal set of mark-
ers increases the chances of discovering BND,
scrapping them and not using production capac-
ity on defective wafers.
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Figure 14: Throughput endline of good parts
THG

Lastly it is possible to show that throughput of
Good wafers combining two results above de-
scribed leads to have a higher throughput of
good wafers in the case of selecting 90% instead
of using the complete set of markers only if the
set used is the optimal one Fig. 14.

7. Conclusions
In this thesis, it is developed an approximate
analytical method for performance evaluation of
asynchronous production lines where machines
and lithography machines are controlled through
robust control on the overlay error correction,
where inspection station can statistically evalu-
ate production quality.The method is based on a
continuous-time mixed-state Markov Chain rep-
resentation of the line, with a continuous mate-
rial flow.
Moreover in-process scrap of defective parts is
implemented and system’s propagation of qual-
ity errors is modeled.The final results show that
when considering in a unique framework process
control and system engineering the optimal so-
lution can be different from the one derived con-
sidering only one aspect, and could improve the
the traditional inspection policy.
More specifically it is shown that decreasing in
a optimal way the percentage of selected mark-
ers could be beneficial in terms of productivity
compromising just a little bit the quality out-
put, indeed decreasing this percentage layer-to-
layer allows the line to balance the starvation
brought by the scrapping in process. Therefore,
many possibilities for future developments are
present.
Some are more closely related to the model pro-

posed:
• Integrate intermediate processes in between

photolithography&inspection stages; as a
conglomerate of machines with stochastic
cycle time with no failures.

• Flow splitting to rework stations with
stochastic cycle time decoupled by a finite
buffer. This flow will merge in previous
lithography station.

• Consider flow as batches of N wafers into a
cassette/wafer carriers.
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