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Abstract

Timbre Transfer techniques may find application in several different scenarios, particularly
in music production environments. Having a tool that takes as input a signal of a recorded
instrument and that gives as output the same recording but with a new timbre could be
helpful to music producers.

In this thesis, after giving an overview of the existing techniques and methodologies that
follow this goal, we propose a method which can effectively create a timbre space which
permits to operate one to many timbre transfer. We do this by training a conditional
convolutional beta-VAE architecture on a subset of the NSYNTH dataset build by us.
The system takes as input a spectrogram of a note with a given timbre, namely its time-
frequency representation, and outputs multiple spectrograms of the same note with differ-
ent timbres. It does that by constructing a navigable conditioned latent space represen-
tation of timbres and automatically encoding the pitch information. Given the possibility
to move inside the latent space, we perform timbre interpolation, namely the morphing
between two timbres, generating new samples that go from a starting timbre to an ending
one, exploring the timbral space between them. We evaluate our system from different
perspectives. In particular, we establish a twofold evaluation system based on classifica-
tion and perceptual ratings. The experimental results show that the model is capable of
performing the timbre transfer task having the generated samples that match the ground
truth ones and that the conditioned latent space creates automatically clusters based on
timbre and pitch, giving the possibility to perform timbre interpolation by moving inside
it.

Keywords: Deep Learning, Timbre Transfer, Timbre Interpolation, Variational Autoen-
coder, Latent Space, NSYNTH





Abstract in lingua italiana

Le tecniche di trasferimento di timbro possono trovare applicazione in diversi scenari,
particolarmente negli ambienti di produzione musicale. Avere un sistema che prende in
input un segnale di uno strumento registrato e che dà in output lo stesso segnale ma con
un nuovo timbro può rivelarsi vantaggioso per i produttori musicali.

In questa tesi, dopo aver dato una panoramica sulle tecniche e metodologie esistenti che
perseguono questo scopo, proponiamo un metodo che può efficacemente creare uno spazio
timbrico che permette di realizzare trasferimento di timbro uno a molti. Lo facciamo
allenando un’architettura beta-VAE convoluzionale e condizionata su un sottoinsieme del
dataset NSYNTH costruito da noi. Il sistema prende in input uno spettrogramma di una
nota con un certo timbro, ovvero la sua rappresentazione tempo-frequenza, e restituisce
multipli spettrogrammi della stessa nota con timbri diversi. Lo fa costruendo uno spazio
latente condizionato navigabile di timbri e codificando automaticamente l’informazione
legata all’intonazione. Data la possibilità di muoversi all’interno dello spazio latente, re-
alizziamo interpolazione timbrica, ovvero il passaggio tra due timbri, generando nuovi
campioni che vanno da un timbro iniziale ad un timbro finale, esplorando lo spazio tra
loro. Valutiamo il nostro sistema secondo molteplici prospettive. In particolare, abbiamo
stabilito un duplice sistema di valutazione basato sulla classificazione e su test percettivi. I
risultati evidenziano che il modello è in grado di svolgere il trasferimento di timbro avendo
i campioni generati che coincidono con quelli reali e che lo spazio latente condizionato crea
automaticamente dei cluster basati sul timbro e sul pitch, dando la possibilità di realizzare
interpolazione di timbro muovendosi all’interno di esso.

Parole chiave: Deep Learning, Trasferimento di Timbro, Interpolazione di Timbro,
Variational Autoencoder, Spazio Latente, NSYNTH
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1| Introduction

Artificial Intelligence (AI) has made impressive progress, thanks to the advent of Ma-
chine Learning (ML) and Deep Learning (DL) techniques, affecting almost every field,
one among them being music. Being an art form, music cannot be 100% modeled by
Deep Learning algorithms, however, astonishing results has been achieved. One of the
challenges in the research area of modelling music is the one related to the concept of
timbre. With the term "timbre", we refer to the perceptual qualities of a musical sound
distinct from its amplitude and pitch [8].
Modeling timbre is a hard task: it is a difficult job to define a physical or mathematical
model of timbre since it is a perceptual and subjective characteristic of sound. In the
field of music production, for example, most of state-of-the-art musical sound libraries
used by studio composers are still obtained with high quality records of real instruments.
However, building a music sound library with this methodology can be a very expensive
and time consuming task. For this reason, there is in fact a substantial body of research
in timbre modelling and synthesis. A particular sub-field of research is the one regarding
timbre transfer.
With "timbre transfer" is intended the task of, given an input signal, generate a new
signal that maintains every characteristic of the input one, except for its timbre. Classic
approaches [13, 24, 37, 39, 46, 51, 60] resort to the use of generative Deep Learning mod-
els such as Generative Adversarial Networks (GANs) [18] or Variational Autoencoders
(VAEs) [32] or on the combination of Signal Processing techniques and Deep Learning
architectures such as the DDSP framework [12].
GANs and VAEs are 2 typologies of Generative Deep Learning models. GANs are com-
posed by two neural networks called Generator and Discriminator, one contesting the
other in a zero-sum game. The Generator generates new data while the Discriminator
classifies the output of the Generator as real or fake. VAEs are based on a usually sym-
metrical multi-layer network that compress input data into a low dimension latent space
and then re-construct it inverting the compression procedure.
TimbreTron [24] is one of the first example of architectures performing high quality tim-
bre transfer using Deep Learning models, inspired by Neural Style Transfer successes
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[14, 29, 61] and built upon a GAN framework. An example of timbre transfer on percus-
sive patterns extracted from polyphonic audio using a MelGAN-VC model [42] is given
in [37] where the authors successfully managed to transfer the drum style from hip-hop
to metal. In [60], timbre transfer is performed with a Variational Autoencoder, allowing
composers to synthesize sounds using a latent space of audio that is constrained to the
timbre space of the audio recordings in the training set. In [39] the focus is on learning
disentangled representations of timbre and pitch exploiting a Gaussian Mixture Varia-
tional Autoencoder (GMVAE [10, 27, 33]) architecture.
In this thesis, after giving a deeper overview of the existing techniques and methodologies
that pursue this goal, we propose a method which can effectively create a timbre space
that permits to operate one to many timbre transfer i.e. the task of, given a signal charac-
terized by its timbre, creating a system that outputs different versions of the signal with
everything unchanged except for the timbre. We do this by training a conditional con-
volutional beta-variational autoencoder architecture on a subset of the NSYNTH dataset
[11] built by us. Beta-VAE [23] is an extension of the VAE architecture that introduces
an hyper-parameter which permits a better regularization of the latent space. By condi-
tioning the input, we manage to build a regularized latent space, required to perform the
timbre transfer task.
The system takes as input the module of the Short Time Fourier Transform, also known
as spectrogram, of a signal with a given timbre associated to a specific note and outputs
multiple spectrograms of the same note with different timbres. For this reason we opted
for a convolutional network, suitable for use with image-like inputs. It does that by con-
structing a navigable conditioned latent space representation of timbres and automatically
encoding the pitch information. Given the possibility to move inside the latent space, we
extend the capabilities of the system by performing timbre interpolation, namely the mor-
phing between two timbres, generating new samples that go from a starting timbre to an
ending one, exploring the timbral space between them.
We evaluate our system from different perspectives. In particular, we establish a twofold
evaluation system based on classification and perceptual ratings. The experimental re-
sults show that the model is capable of performing the timbre transfer task having the
generated samples that match the ground truth ones and that the conditioned latent
space creates automatically clusters based on timbre and pitch, giving the possibility to
perform timbre interpolation by moving inside it.

This thesis is organized as follows. In Chapter 2 we provide a compact theoretical back-
ground of the main paradigms that are at the base of this research. We start with
an overview on time-frequency representations of audio signals, then we recap Machine
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Learning and Deep Learning techniques and architectures in order to help the reader with
the comprehension of the subsequent parts of the thesis.
In Chapter 3 we expose the main state-of-the-art works concerning the timbre transfer
and the timbre interpolation problems. We divide the chapter in sections associated to the
architectures used in those works, firstly we present the Generative Adversarial Network
(GAN) based works, then the Variational Autoencoder (VAE) based works and finally we
present briefly the DDSP architecture that combines Deep Leaning and Signal Processing
techniques.
In Chapter 4 we first formalize the timbre transfer and timbre interpolation tasks. After
that we expose the system architecture of our choice, outlining and justifying our choices.
We divide the subsection into Pre-Processing, Network Architecture and Post-Processing
following the pipeline. Finally we dedicate a chapter for the modelling of interpolation
we used.
In the former part of Chapter 5 we delineate our experimental setup along with a de-
scription of the dataset that we used for the task and we present the twofold evaluation
method we adopted to asses the outcomes of the network. In the latter, we present the
results of our experiments dividing them by task.
Finally, Chapter 6 is dedicated to conclusion and to possible future extension of this work.
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2| Theoretical Background

In this chapter we will present how a music signal can be represented in order to be in-
terpreted by machines. Two domains come into play when talking about audio signals’
informatic representation: time and frequency. Normally, in almost any audio repre-
sentation we see in audio-related technologies such as SoundCloud or Whatsapp’s vocal
messages, only the time-domain signal is represented. What we see is the soundwave,
the pressure wave generated by a signal, while the frequency information is discarded. In
1882, Jean Baptiste Joseph Fourier developed the now called Fourier Transform (FT)
that links the time domain of a signal with the frequency domain. Since then, the Fourier
Transform has been studied but most of all adapted for the digital domain: it is known
as Discrete Fourier Transform (DFT) and it’s roughly a sampled and quantized version
of the Fourier Transform. This discretization of the Fourier Transform is indispensable
since computers are, obviously, digital devices.

2.1. Short Time Fourier Transform

Thanks to the FT and the DFT, we can represent signals in the time and frequency
domains. It is advantageous, by the way, to have a compact representation where we can
see both domains: we want to see how the frequency components of the signal vary along
time. This representation consists in an image with time progression on the x-axis and
frequency evolution on the y-axis (or viceversa).

The Short Time Fourier Transform (STFT) is the most common time-frequency repre-
sentation of audio signals. It consists of the calculation of the Discrete Fourier Transform
(DFT) along windowed, fixed length portion of the time signal. Sliding a window function
w[h] along a given signal x[k] with length N at every R time frames we obtain a series of
windowed portions of the signals: xw[k] = h[k]x[k + tR], 0 ≤ n ≤ N − 1 with h, k, R ∈
N. The constant R is known as hop size or hop length. The window could be any finite
signal used to chop the longer signal x[n], although choosing a good h[k] is crucial for the
outcome of the time-frequency representation of the signal we want to obtain since there
are many types of windows which serve different purposes and exhibit various properties.
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The main properties of windows are observable when performing the FT, so investigating
the windows themselves in the frequency domain. Three major properties are the Peak
Sidelobe Amplitude, the width of the main lobe and the Roll off, each one impacting in
a different way on the windowing operation [20]. Performing the DFT for each one of
the windowed portions and "stacking" the results on a time axis, we end up with a 2-D
representation of the signal, defined as:

X[t, f ] =
N−1∑
k=0

xw[k]e
−j(2π/N)fk, f = 0, ..., N − 1, (2.1)

having t representing time bins (or samples), f representing frequency bins and j the
imaginary unit.
The result X[t, f ] of equation 2.1 is complex-valued and usually divided in phase and
magnitude representation of the STFT, defined as ∠X[t, f ] and |X[t, f ]|. The magnitude
component of the STFT can finally be defined as a spectrogram. Squaring the mag-
nitude spectrogram we obtain the power spectrogram, the most common representation
used in computer science’s studies.
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Figure 2.1: Example of Power Spectrogram.



2| Theoretical Background 7

2.2. Contant-Q Transform

The cochlea is the component of our inner ear responsible for converting vibrations into
electrical signals to be delivered and processed by the brain. It is a spiral-shaped cavity
with ≈ 30.000 hair cells which responds to audio frequency in a logarithmic fashion: reso-
nance frequencies doubles every 3.5 mm. This observation leads to perceptually motivated
representations of audio signals such as the Constant Q Transform (CQT). Instead of
using a uniform frequency spacing like in the STFT, frequency bins are now distributed
geometrically. This permits a representation of frequency that follows the equal tempera-
ment notation. Thus, a constant ratio Q between the central frequency of a band fk, and
the frequency resolution (fk – fk−1) for that band, is obtained with:

fk = f0 · 2
k
b , (2.2)

with f0 as the first band central frequency and b the number of frequency bins per octave.
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Figure 2.2: Example of Constant Q Transform. The frequency axis is now marked with
notes instead of frequencies.

Then, the CQT can be defined as:



8 2| Theoretical Background

X[t, f ] =
1

N [f ]

N [f ]−1∑
n=0

W [f, k]x[k]e
−j2πQk

N [f ] , Q =
fk
δfk

, N [f ] = Q
fs
fk

. (2.3)

2.3. Mel Spectrogram

Mel-spectrograms are also a perceptually-based representation of audio signals. Differ-
ently from the CQT, the Mel Spectrogram follow another definition for the frequency
axis based on the Mel scale that corresponds to an approximation of the psychological
sensation of heights of a pure sinusoid.

Since the Mel scale is based on psychoacoustic studies and relies on the outcome of
listening experiments, it has several definitions. One of them is the one proposed by
Stanley Smith Stevens, John Volkman and Edwin Newman [59]:

mel(f) =

 f, f < 1000Hz

2595 · log(1 + f
700

), f ≥ 1000Hz.
(2.4)
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Figure 2.3: Example of Mel Spectrogram.

In practice, to compute the mel spectrogram of a signal, we compute the STFT and mul-



2| Theoretical Background 9

tiply the linear frequency axis by a bank of Nmel ∈ N triangular, 50% overlapping filters
spaced apart uniformly one from another following the mel scale.

2.4. Machine Learning

Machine learning (ML) is a field of Artificial Intelligence based on the usage of statistics
and algorithms with the aim of making machines learn structures and models from ex-
amples of data in an automatic fashion. The concept of experience is the crucial point
of machine learning: with many data samples given as input, it is possible to extract
a statistical model based on features, that could lead to a meaningful learning by the
machine.

There are plenty tasks related to ML in audio and acoustic such as speech recognition,
genre classification, automatic transcription, automatic music composition, etc.

The two main ML algorithmic paradigms are classification and regression. Classifica-
tion assigns each input to one of a given number of discrete categories. An example of
classification task could be, given a set of classes of animals, classifying if the subject of
an image is a cat or a dog or any of the animals of the classes. Regression, instead, finds
a relationship between input variables with the intent of predicting a continuous value
based on past observations. An example of regression is house pricing: we want to predict
the price of a house given a set of its features, like location, size, etc.

The process of learning the statistical model through the analysis of the data constituting
the dataset is called training.
In order to build a powerful model, it is very important to rely the training phase on
high quality data that should be meaningful to solve the task. The optimal deployment
situation is achieved when the data used to train and develop the model matches with
the actual data encountered at the deployment stage.

Depending on the structure of the dataset but also on the type of task we want to solve,
we have two macro categories of learning processes:

• Supervised Learning: when we have a labeled dataset. In the training phase,
we give the model in input the data and its label, namely a value associated to the
defining characteristic of each sample. For example, recovering the classification
case suggested before, we train the model on images of animals whose labels will be
"cat", "dog", "frog" or, more often, a numerical value associated to them such as
"0", "1", "2" and so on. With such a labeled dataset, the computer will be able to
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associate the features of the images to the labels related to them, so when a new
unknown input is presented to the system it will be able to associate its features to
a class of animals and determine what animal is shown in the new image;

• Unsupervised Learning: when we have an unlabeled dataset. The model in this
case can rely only of the features representing the data and from them it can learn
useful, unknown representations. Unsupervised learning can be used to cluster the
input data in classes on the bases of their statistical properties only or to build gen-
erative models, finding the sub-structure of data understanding how it is generated
in terms of a probabilistic model.

Usually, the dataset is partitioned into three subsets, namely:

• Training set: the only part of the dataset used to actually learn the I/O mapping
from data. The training set is the bigger partition so that the model can gather
more information and generalize better;

• Validation set: a smaller set on which we monitor how the model performs while
training;

• Test set: set used to evaluate the model performances after the end of the training
phase. It is used to simulate a real-world application of the algorithm.

2.5. Deep Learning

Deep Learning (DL) is a branch of ML being now the state of the art for most of research
and application tasks in scientific fields. DL is based on layers that embed increasingly
meaningful representation of input data. This mechanism could be seen as an automatic
feature extraction process: every layer will be responsible for modeling a hierarchical
representation of input data with deeper layers describing higher-level features and the
first ones describing lower-level features. And therein lies the power of deep learning: the
layer’s outputs do not necessarily make sense for humans but they do from the machine
point of view. The layers and their connections constitute what we call Artifical Neural
Networks (ANN), so called because inspired by the structure of the human brain. Every
layer in an ANN is characterised by a number of computing units called neurons. A
neuron is a cell containing a real number. The most basic architecture using a single
neuron is the perceptron [49] depicted in figure 2.4.
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Figure 2.4: Graphical representation of the Perceptron.

The perceptron follows the feed-forward model: input are sent into the neuron, processed
and result in an output. Given a generic neuron j and a set of N inputs si, the output sj
of the perceptron will be:

sj = gj(
N∑
i=1

wijsi − bj). (2.5)

In equation 2.5 we introduce three unknown elements:

• g: is the activation function;

• w ∈ R: is the synaptic weight ;

• b ∈ R: is the activation threshold or bias.

For a given perceptron, for every input si we have a weight wij that will be multiplied
by the input itself, and one bias that will be subtracted from the sum of every of the
input-weight multiplication just described.

The activation function g takes as input that and outputs a real number sj. There are
plenty activation functions to be used depending on the application. The most commonly
used ones are:

• Sigmoid:

σ(x) =
1

1 + e−x
, (2.6)

• Rectified Linear Unit (ReLU):

R(x) = max(x, 0), (2.7)
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• Hyperbolic Tangent:

Tanh(x) =
ex − e−x

ex + e−x
, (2.8)

• Logistic:

Log(x) = (1 + e−x)
−
1, (2.9)

• Linear:
L(x) = x, (2.10)

with x ∈ R. All the activation functions just presented, except for the Linear activation
function, are non linear functions. This is essential for the network in order to learn
non-linear structures in data when needed.

As in ML, the learning stage of the model is called training phase. During this phase, the
whole training set is given as input to the network multiple times called epochs. Several
epochs may be needed for a network to learn, depending obviously on the application.
The aim of the network is now to build a statistical model based on the values of the
weights w and biases b on which the network itself is constructed. The parameters of the
network are updated after every epoch, minimizing a loss function L(ŷ, y|w, b), basically
the difference between ground truth outcome of the network (ŷ) and the real outcome (y)
after a given epoch. The process of updating the parameters of the network is performed
by backpropagation [21, 50]: the gradient of the loss function is computed and the error
propagated back through the layers with the aim of finding the best arrangement of values
of the network to have the best possible accuracy for the output.

One of the biggest issues we encounter dealing with ML and DL algorithms is the one of
overfitting. This happens when we the performances of the model achieved in a test phase
of the model aren’t as good as the one achieved in the training phase. In other words,
the model has learnt too well how to perform on the training set, focusing only on that
specific assortment, but when challenged to perform on new, unseen, data it is not capable
to have the same results. Opposed to that, the ability of the model to have comparable
performance in training and testing is called generalization. Overfitting can be caused
from various factors, one of the most common is the use of a network that has too many
parameters. In that case we have too many values that will model the statistical structure
of the training set by the network causing an over-adaptation, leading, in fact, to overfit.
In this case, the solution to the problem could be quite straight forward: implement a
simpler architecture. Other techniques have been discovered during the years to deal with
overfitting, among them:
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• Dropout: [57]: the idea of dropout is to randomly drop a certain percentage of
neurons, along with their connections, of the network during the training phase. By
doing that we ensure that the model will not over-adapt on the training set;

• Early Stopping [45]: this technique is based on the simple idea of stopping the
epochs and save the model as soon as the validation loss stops decreasing (meaning
that the network has finished learning and is starting to over adapt on new data).
This is actually done after a predefined number of epochs after the validation loss
does not improve with respect to the best recorded value;

• Data Augmentation [9]: performing data augmentation means to extend the size
of the training set using and modifying its samples and adding these new examples
to the training set. In audio dataset this could be done by performing time stretch
or pitch shifting the audio file. Another possibility is to add noise to some samples;

• Batch Normalization [25]: this technique is applied to layers and performs nor-
malization of the output for each training mini-batch. By doing this, we solve the
problem of internal covariance shift also allowing faster learning rates;

• Regularization [17]: when we have an excessively complex model, we want, in
a sense, penalize the flexibility of the model so it doesn’t adapt too much to the
training set. We can do it adding a regularization term to the loss function with
the specific aim of penalizing flexibility. The loss function becomes:

LR = L+ γLW (2.11)

with γ known as regularization term controlling how much the factor LW , the reg-
ularization factor, impacts the total loss. There are different regularization factor,
among them the Lasso and the Ridge Regression, with the aim of reducing the values
of the parameters toward zero, in fact lowering down the model complexity.

2.5.1. MLP

When perceptrons are organised in layers, the feed-forward ANN connecting them is called
Multi Layer Perceptron. When all neurons are connected with other being part of the
previous and following layers, we have a Fully Connected Neural Network as shown in Fig.
2.5.
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Figure 2.5: Fully Connected MLP network with input, four hidden layers with five neurons
each and a mono-dimensional output layer. Image taken from [43]

.

The first layer of the network is called input layer, the last one output layer and those in
between, if present, hidden layers.

2.5.2. CNN

Convolutional Neural Networks (CNNs) are feed forward neural networks designed to work
with 2D input data (i.e. matrices) such as images. There are also 1D and multidimensional
CNNs but we will present the 2D case since it is the one deployed in this work.

In audio engineering 2D CNNs are suited when we have time-frequency representation of
signals like spectrograms. The architecture and the concept behind a CNN are similar to
the ones of MLP: the network is still built on input, hidden and output layers. The differ-
ence is that the network is now working with matrices instead of vectors and performing
convolution operations between input data and filters instead of multiplications between
the output of the neurons. The convolution operation on a CNN can be formulated as:

y(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m)(j − n), (2.12)

where y(i, j) is the feature map, I and K are respectively the input and the filter matri-
ces. We have three different types of layers forming the convolutional neural networks:
Convolutional Layers, Pooling Layers and Fully Connected Layers.
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Convolutional layers are responsible for the convolution operation that is performed
between the input and the set of filters (whose parameters represent the learnable pa-
rameters of the network) called kernels. Each filter is convolved with the input along
the x and y axes, ideally capturing a certain pattern of the input. These operations are
performed following a certain configuration of parameters. The most important ones are
the filter size, the depth that indicates the number of filter used in the layer and the
horizontal and vertical stride that represent how far the filter moves from one position to
the next position. We can imagine the filters being able to detect more complex pattern
as we go deeper into the network: the first layers are able to detect general patterns and
the deeper ones are ideally capable of detecting the details.

Pooling layers implement subsampling of a certain output of a convolutional layer so
that deeper layers effectively integrate larger extent of data. There are different non linear
functions performing different kinds of downsampling, the most common are max pooling
(retaining only the max of a certain patch) and average pooling (computing the average).

Fully Connected Layers are the layers explained in section 2.5.1 when describing MLP.
One fully connected layer is usually put at the end of the architecture to compute the
output.

Figure 2.6: Example of CNN network used for classification

2.5.3. Autoencoders

Deep learning is not limited to classification and regression tasks: another important DL
application regards the generation of new data created by exploitinggenerative models.
Autoencoders, implementation of the classical encoder-decoder architecture, are one of
the main models able to generate new data. Actually, the goal of the autoencoder is to
reconstruct exactly the input data by getting its compression in the middle layer.
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Figure 2.7: Generic Autoencoder structure

The Autoencoder (AE) is based on the concept of reducing the dimensionality of a certain
input and decode that compressed representation with the target of reconstructing the
input data, all exploiting the neural network architecture. We have two main blocks
constituting an autoencoder: the Encoder E and the Decoder D, each one implemented
with Fully Connected layers or Convolutional Layers, depending on the application. The
role of the encoder is to encode the input x into a lower dimensional space called latent
space while the role of the decoder is to take this latent space representation of x and
reconstruct it in order to have x̂ that should mimic the input x. Ideally, calling E and D

the operations performed respectively from the encoder and the decoder x̂ = D(E(x)) =

x. The learning process is carried once again by backpropagation, reducing a loss function
also known as reconstruction error that consists on the difference (usually MSE) between
the input and the output of the network. Autoencoders in their standard formulation are
an example of unsupervised learning, since the network has only the aim of reconstructing
the input regardless its semantic description. There are also examples of semi-supervised
learning autoencoders whose latent space is regularized with labelling the input given to
the network.

The latent space of the autoencoder is a powerful representation of the dataset: every
input data is represented as a point in the latent space but sampling other points in that
space and decoding them can lead to the generation of new, different data, still based on
the characteristics of the input dataset.

2.5.4. Variational Autoencoders

Variational Autoencoders (VAEs) [34] are an extension of Autoencoders in which each
sample of the input data is mapped into a Gaussian probability distribution rather than
into a simple point in the latent space. The architecture is still based on Encoder and
Decoder networks working together. Given x as input sample, the encoder network is
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designed to generate a set of parameters for the distribution q(z|x) with z defined as a
latent space variable, i.e. how the input x is represented at the end of the encoder network.
The decoder, on the other hand, generates a set of parameters for p(x|z), that represent
the conditional distribution of the input x given the latent space variable z. The objective
of the VAE architecture is the one of learning the parameters of the network so that the
encoder distribution q(z|x) becomes consistent with the posterior p(z|x). We can infer
the posterior p(z|x) by applying the Bayes theorem, knowing that p(z|x) ∝ p(x|z)p(z).
To model q(z|x), p(x|z) and p(z), we can assume them as Gaussian distributions:

• q(z|x) = N (z|µ(x), diag(σ2(x))),

• p(x|z) = N (x|µ(z), diag(σ2(z))),

• p(z) = N (z|0, I),

with µ(x), σ2(x) the output of the encoder network and µ(z), σ2(z) the outputs of
the decoder network. Therefore, the encoder is now trained to return a mean µ(x)

and a variance vector σ2(x) for each input sample and in order to have a more regular
latent space, the distributions returned by the encoder are forced to be close to normal
distributions. For this reason, the loss function needs an additional term that minimized
the difference between q(z|x) and p(x|z), beside the reconstruction error, that will push
the two distributions to be consistent and will push the distribution calculated from the
input data to have mean = 0 and standard deviation = 1. This term is commonly referred
as KL loss since it is based on the Kullback-Leibler divergence. The "full" loss function
of a VAE can be formulated as:

LOSS = LR + LKL = ||ŷ − y||+KL[q(z|x), p(x|z)], (2.13)

where LR is defined as Reconstruction Loss, namely the difference among the output of
the decoder ŷ and the ground truth output y, most of the time based on Mean Square
Error (MSE) or cross entropy.

The regularization term on the loss function ensures two properties:

1. continuity: two close points in the latent space should not give completely different
contents when decoded, as could happen in a non-variational Autoencoder;

2. completeness: for a chosen distribution, a point sampled from the latent space
should give always meaningful contents.

This regularization prevent the model to encode data far apart in the latent space and
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encourage the returned distributions to overlap.

The decoder will sample a point from that Gaussian distribution and reconstruct the
input by using the reparametrization trick [34]. Defining the reparametrization as:

z = µ(x) + σ(x)⊙ ϵ, (2.14)

having ϵ ≈ N (ϵ|0, I) and with ⊙ indicating the component-wise multiplication, it is
possible to replace the sampling operation from q(z|x) to sampling ϵ. This renders the
computation of the gradient possible, allowing a gradient path through a non-stochastic
node.

Figure 2.8: Generic Variational Autoencoder structure

2.5.5. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [18] are another big family of generative models
based on Deep Learning. A GAN is composed by two neural networks called Generator
and Discriminator, one contesting the other in a zero-sum game. The generator is trained
to generate new data following a certain probability distribution from random noise, sculp-
turing it, to form output similar to the training set as shown in figure 2.9. The output of
the generator is compared with the real data given in same training set. The discriminator
is trained to compare the output of the network with the real data, classifying the output
of the network as "real" or "fake". The two models are trained together in an adversarial,
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zero-sum game in order to fool each other: the generator learns to produce more and
more realistic examples to fool the discriminator that, going forward with the training,
will be more capable to discriminate between real or fake examples. The training process
finishes when the discriminator is fooled about half the time, meaning the generator is
generating plausible examples.

Figure 2.9: GAN architecture for face generation. Image taken from https://www.

pngwing.com/en/free-png-xflrf

2.6. Conclusive Remarks

In this chapter we made a brief summary regarding the most used time-frequency rep-
resentations of audio signals; we gave a summary of Machine Learning paradigms and
categories, ending in Deep Learning models description, categorization and usage along
with theoretical description.
In the next chapter we will present the state of the art concerning timbre transfer methods
with Deep Learning.

https://www.pngwing.com/en/free-png-xflrf
https://www.pngwing.com/en/free-png-xflrf
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Generative models based on Deep Learning embody a consistent part of the latest areas
of research. As computational power has increased and thanks to the spread of big, orga-
nized datasets, deep learning algorithms have become more and more popular, showing
promising results and achievements in various research fields. In the field of audio engi-
neering, Deep Learning models are often combined with Signal Processing algorithms to
investigate sound/music, wanting to extract the most meaningful representation possible
to exploit for a given task. In the generative art field, one example is Neural Style Transfer
[14, 28]: a CNN-based technique used for rendering a content image in different styles as
depicted in figure 3.1.

Figure 3.1: Neural Style Transfer: the landscape (content) is preserved, while the style
is changed with famous paintings of William Turner, Vincent Van Gogh, and Edvard
Munch. Image taken from [15].

Given an image, this technique is then capable of discerning its content from its style.

In this work we want to emulate this concept, applying it to the music domain. What
could represent the content and the style when talking about music? In order to answer
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this question we have to introduce three concepts: amplitude, pitch and timbre:

1. amplitude of a sound wave is the measure of the height of the wave. The ampli-
tude of a sound wave can be defined as the loudness or the amount of maximum
displacement of vibrating particles of the medium from their mean position when
the sound is produced;

2. pitch is a perceptual property of sounds that allows their ordering on a frequency-
related scale [35], or more commonly, pitch is the quality that makes it possible to
judge sounds as "higher" and "lower" in the sense associated with musical melodies
[44];

3. timbre refers to the perceptual qualities of a musical sound distinct from its am-
plitude and pitch. It is timbre that allows a listener to distinguish between a guitar
and a violin both producing a concert C note [8].

That being said, performing Style Transfer in audio/music fields could translate into
performing Timbre Transfer, meaning that the timbre represent the style while the
amplitude and the pitch the content. Another example of Style Transfer applied to music
is the one proposed in [16] where the authors focus the work on music genre transfer.

Timbre depends on a myriad of factors: the acoustic properties of the source, the envi-
ronment in which the sound is propagating, the non-linear dependency on its loudness, in
the case of instruments, also how the performer is playing, and the list goes on. Even if
there is a substantial body of research in timbre modelling and synthesis [6, 48, 55], most
of state-of-the-art musical sound libraries used by studio composers are still obtained with
high quality records of real instruments [24]. This procedure can be however expensive
and time consuming, leading to open research prospects in the field, especially in the
timbre transfer sub-field.

In this chapter we will present the current state-of-the-art works on Timbre Transfer
techniques based on Deep Learning, briefly describing some of the most remarkable works.

3.1. Timbre Transfer using Generative Models

Modeling timbre is a hard task: being defined as "that attribute of auditory sensation
which enables a listener to judge that two nonidentical sounds, similarly presented and
having the same loudness and pitch, are dissimilar" [54]. That is clearly a perceptual
definition so it is a difficult job to define a physical or mathematical model of timbre.
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3.1.1. Timbre Transfer using Generative Adversarial Networks

TimbreTron [24] is one of the first example of architectures performing high quality timbre
transfer using Deep Learning models. It was inspired by Neural Style Transfer successes
[14, 29, 61] adapted in order to work with spectrograms. One of the challenges to face
when dealing with spectrograms is the one of re-synthesis, i.e. passing from a spectrogram
representation to an actual audio signal. To do that we need both the magnitude and
phase information of the STFT and Griffin Lim Algorithm GLA can produce undesirable
artifacts [52]. To overcome this issue, the authors convert the generated spectrograms
to a waveform using a conditional WaveNet synthesizer [62]. The timbre transfer part
is performed using an architecture called CycleGAN [7], a variation of GAN for unsu-
pervised domain transfer able to learn a mapping between two domains without paired
data. It works by learning two generators mapping F : X 7→ Y and G : Y 7→ X and
two discriminators DX : X 7→[0, 1] and DY : Y 7→[0, 1] with X and Y representation of
image-like data belonging to two different classes represented by the numeric labels 0 and
1. The loss function consists of an adversarial loss combined with a a cycle consistency
constraint which forces it to preserve the structure of the input.

Another timbre transfer architecture based on GAN is presented in [37] where the authors
focus on the task of transferring the style of percussive patterns extracted from poly-
phonic audio using a MelGAN-VC model [42] trained on music genres. The MelGAN-VC
architecture is the Mel-Spectrogram adaptation of Transformation Vector Learning GAN
(TraVeLGAN) [3]. It adds a siamese network to the generator and the discriminator and
trains to preserve vector arithmetic between points in the latent space of the siamese
network so it can preserve semantic information. The experiment of this work consists
in transferring the drum style from hip-hop to metal. The model is trained on a sub-
set of GTZAN dataset 1 which contains 100 30-seconds long tracks for 10 music genres.
Only hip-hop and metal folders are retained and used to train the network, after source
separation has been performed by Spleeter [22] to extract only drum tracks.

Generative Adversarial Networks are powerful generative architectures but tend to be
difficult to train. They can suffer the following major problems [4]:

• non-convergence: the model parameters oscillate, destabilize and never converge;

• mode collapse: the generator collapses resulting in limited varieties of samples;

• diminished gradient: the discriminator gets too successful not providing enough
information for the generator to make progress;

1https://www.tensorflow.org/datasets/catalog/gtzan

https://www.tensorflow.org/datasets/catalog/gtzan
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• unbalance between the generator and discriminator causing overfitting;

• highly sensitive to the hyperparameter selection.

These problems are reflected in a lack of a well organized latent space. Since the study
on how a well-trained GAN is able to encode different semantics inside the latent space is
still in progress [53], the motion inside the latent space generated by a GAN can be hard
to handle and interpret, leading to poor generative results and difficulties in the case of
application where we need to move fluidly between latent space samples.

3.1.2. Timbre Transfer using VAEs

As explained in section 2.5.4, Variational Autoencoders are specifically designed to have a
regularised latent space to avoid overfitting and to ensure that the latent space has good
properties that enable generative process. This architecture fits well for timbre transfer
tasks, but especially for the timbre interpolation task which would be that of changing
smoothly the timbre of an audio signal going from a specific timbre to another, discovering
the intermediate timbres. Thanks to their structure based on encoding input data into
a lower dimension space, it is possible to understand the structure beneath the encoded
data. In the 2D and 3D case, it is actually possible to visualize samples inside the latent
space, clustering depending on their properties.

Figure 3.2: VAE 2D latent space. Regularisation tends to create a “gradient” over the in-
formation encoded in the latent space. Image taken from https://towardsdatascience.

com/understanding-variational-autoencoders-vaes-f70510919f73.

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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In [60], timbre transfer is performed with a Variational Autoencoder. The work aims at
helping composers by utilizing an abstract latent timbre space, generated by training an
unsupervised VAE with a set of audio recording, allowing composers to synthesize sounds
using a latent space of audio that is constrained to the timbre space of the audio recordings
in the training set. The framework consists of three modules: calculation of the CQT,
latent audio frame space generation with VAE and inverse synthesis using CQT-based
magnitude spectrogram generated by the decoder of the VAE.

Figure 3.3: Latent Timbre Synthesis framework [60].

A further step towards an even more regularized space can be taken with conditioning the
learning phase, with an architecture called Conditional Variational Autoencoder (CVAE)
[56]. CVAE is a conditional directed graphical model whose input observations modulate
the prior on Gaussian latent variables that generate the outputs, trained to maximize the
conditional log-likelihood. In other words, we are regularizing the conditional probabilities
of both the encoder and the decoder by adding a posterior variable.

CAESYNTH [46] is an audio synthesizer based on a conditional autoencoder. The vari-
able conditioning the autoencoder is the accuracy in timbre classification. In fact, the
regularization is characterized by two terms: an adversarial term to address pitch disen-
tanglement and a classification term aiming to uniformly distribute the timbre quality.
The conditioning is carried out by concatenating the desired one-hot pitch embedding
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along with the inferred latent code. The general workflow consists still of the calculation
of the training set spectrograms, feed them to the model, sample the variables from the
latent space, generate the new spectrograms and re-synthesize, recover back the phase
with the conventional Griffin-Lim Algorithm.

Another example of regularization of the latent space is given in [13]. In this work Esling
et. al. introduce a specific regularization that allows to enforce any given similarity dis-
tances onto latent spaces. Given the continuity of these spaces, they also study how audio
descriptors behave along latent dimensions showing that even if they have a non-linear
topology, they follow a locally smooth evolution. The authors introduced a method for
descriptor-based synthesis showing that they can control the descriptors of an instrument
while keeping its timbre structure. The regularization is, in this case, carried by human
dissimilarity ratings between pairs of audio samples inside a set of instruments collected
in five independent perceptual ratings studies [5, 19, 26, 36, 40] and organised by applying
Multi Dimensional Scaling (MDS), leading to timbre spaces which exhibit the perceptual
similarity between different instruments. They bridge timbre perception analysis and
perceptually-relevant audio synthesis by regularizing the learning of VAE latent spaces so
that they match the perceptual distances collected from the five timbre studies, showing
that perceptually-regularized latent spaces are simultaneously coherent with perceptual
ratings, while being able to synthesize high-quality audio distributions.

Figure 3.4: Architecture proposed in [13].

A slightly different architecture is used in [39] where the focus is on learning disentangled



3| State of The Art 27

representations of timbre and pitch. The main structure is still based on a Variation
Autoencoder, with Gaussian mixture latent distributions (GMVAE [10, 27, 33]). The
difference between regular VAEs and GMVAEs is that the former prior distribution’s
common choice p(z) is an isotropic Gaussian, encouraging each dimension of the latent
variables to capture an independent factor of variation from the data resulting in a disen-
tangled representation [23], not allowing for multi-modal representations while the latter
extends the prior to a mixture of Gaussians assuming the observed data are generated by
first determining the mode from which it was generated. This is needed for learn sepa-
rate latent distributions for timbre and pitch through a model composed of two separate
encoders for pitch and timbre and a shared decoder as shown in figure 3.5.

Figure 3.5: Separate pitch and timbre encoders sharing the decoder.

The model proposed in [51] adopts a VAE-GAN approach. It is motivated by UNIT
[38], a VAE-GAN model that performs neural style transfer in both directions namely
going from the style of the source image to the one of the target image and viceversa.
For each direction they use an encoder-decoder section that follows the reconstructive
objective of VAEs but the whole path follows the adversarial objective of GANs. The
VAE component motivates content persistence while the GAN one the style transfer.
The work follows in the footsteps of [2] that is a VAE-GAN architecture used for voice
conversion, reworked to be used for timbre transfer between instruments. The model
involves one universal encoder that leads to a shared residual block for decoding at a
superficial level and multiple decoder-discriminator pairs specific to target domains. The
overall loss function is composed of four parts:

L = LGAN + LV AE + LCC + LLatent, (3.1)
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where LGAN is the adversarial loss, LV AE the variational encoding loss, LCC the cyclic
consistency loss and LLatent the latent loss between a pair of latent means µA and µB

from different source mel-spectrograms A and B.

3.2. DDSP

Differentiable Digital Signal Processing (DDSP) [12] combines Deep Learning methods
with classic Digital Signal Processing algorithms, having different uses such as blind dere-
verberation of audio through separate modeling of room acoustics, transfer of extracted
room acoustics to new environments and, of course, timbre transfer between disparate
sources.

What differentiates DDSP from other methods is the synthesis part of the architecture.
While previous models aim at reconstructing the spectrogram from which is possible
to compute the audio, DDSP is based on DSP components (expressed as feed-forward
functions, allowing efficient implementation on parallel hardware) such as oscillators,
envelopes and filters, whose parameters are learned during the training phase of the model.
The neural network, in fact, learns the parameters needed for these components to perform
the re-synthesis part of the algorithm. The architecture shown in figure 3.6 is still an
autoencoder one: three encoders (loudness encoder l(t), fundamental frequency encoder
f(t) and timbre encoder z(t)) encode the input audio information. Now the decoder no
longer has the task of directly reconstruct the audio, it rather learns the parameter for the
additive and filtered noise synthesizers. The reconstruction loss between the synthesized
audio and the original one is minimized, in the form of a Multi-Scale Spectral Loss defined
as:

Li = ||Si − Ŝi||1 + α|| logSi − log Ŝi||1, (3.2)

where Si and Ŝi represent respectively the spectrograms of the original and re-synthesized
audio and α a weighting term.
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Figure 3.6: DDSP architecture [12].

3.3. Conclusive Remarks

In this chapter we first described the first examples of Neural Style Transfer for images, the
starting point for extending the concept in order to be applied for music timbre transfer
based on spectrograms. Then we gave a qualitative definition of amplitude, pitch and
timbre, fundamental concepts for our work. Afterwards we have presented some of the
latest architectures used in the literature for the timbre transfer task, starting with GAN
architectures, passing through VAEs and Conditional VAEs ending with the alternative
DDSP framework. In the next chapter we will present our method, explaining structure
and details of the architecture.





31

4| Proposed Method

In this chapter we will first formalize the problems we’re going to address namely the
timbre transfer problem and the timbre interpolation problem. Next, we will present
our system architecture, analyzing in depth the components that structure the model,
presenting the choices made and explaining how the training phase of the network works.
In those sections we will present all the techniques adopted in order to build a system
able to perform an end to end model, starting from the pre-processing phase where we
transform and prepare the input audio files, moving on to the network itself that is the
core of the model, ending up into the post-processing phase that takes the output of the
network and transform back it into the generated audio files. Lastly we will present the
timbre interpolation technique adopted in this work.

4.1. Problem Statement

Before starting with the actual problem statement, it’s important to define some termi-
nology and concepts that we will use throughout this section.
The first important concept is the one of timbral class: with that, we intend the tim-
bre associated to the audio file. Examples of timbre classes are guitar acoustic, organ
electronic. In chapter 5 we’ll present the timbre classes used in this work with technical
details.
The second important concept is the one of target timbre: when performing timbre
transfer, we want to reach a specific timbre for the output of the network that, from now
on will be called target timbre.
In the context of one-to-many timbre transfer, we have multiple timbral classes func-
tioning as target timbres. Precisely, from now on, we will have n ∈ N target timbral
classes.

The problem we want to tackle in this thesis is twofold: firstly, we want to perform one-to-
many timbre transfer from notes of a given timbre class and secondly we want to perform
timbre interpolation between the notes generated performing the timbre transfer task,
exploiting the properties of the latent space derived during the training phase.
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Let us first explicitly define the one-to-many timbre transfer problem. Given a discrete
sound signal xt characterized by a specific timbral class t, we calculate its time-frequency
representation St:

St = |STFT (xt)|. (4.1)

Considering the network as a function f that takes St as input, the output will be:

St1 , . . . ,Stn = f(St), (4.2)

where the apexes t, t1, ..., tn represent a discrete pre-defined set of timbre classes T , with,
as explained before, cardinality n. The set of target timbral classes T is dataset and
application dependent. These representations are transformed back using Griffin Lim
Algorithm (GLA), ending up in a set of discrete audio signals:

xt1 , . . . ,xtn = GLA(St1 , . . . ,Stn), (4.3)

each one representing the audio signal xt with only the timbral characteristic varied.

As anticipated, we also explore the possibility of performing interpolation between dif-
ferent timbres. While the interpolation task is not directly modeled during the training
procedure, it is possible thanks to the latent space ordering. With interpolation we mean
the generation of new notes that perform a gradual morphing between two given notes
belonging to two different timbral classes: given a couple of generated signals xta and xtb

with a, b ∈ T and a ̸= b , the system will produce m ∈ N timbre interpolations between xta

and xtb , with m adjustable. The first and the last of the m outputs will be, by convention,
exactly xta and xtb that can be defined as the starting point and the ending point of
the interpolation. For example, having xta a generic sample with the timbre class a, xtb

a generic sample with the timbre class b and m = 3, we will have a single intermediate
generated sample between the starting point xta and the ending point xtb that will have
a timbre that is a mixture of the class a and the class b revealing, indeed, a new timbre.
A graphic example with m = 5 is depicted in figure 4.1.
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Figure 4.1: Schematic representation of interpolation between violin and piano with m =

5.

4.2. System Architecture

In this section we will present an overview of the system architecture.
Since, as we will deepen, the timbre interpolation task is derived from the timbre transfer
task, in the first three subsections we will analyze the model built to perform the timbre
transfer task and we dedicate the last subsection to explain the timbre interpolation
method.
We start from the input audio signals from which we extract the spectrograms, performing
the STFT. We normalize them and feed them to the network that outputs, for every
normalized input spectrogram, n normalized generated spectrograms, with n ∈ N target
timbral classes. Each of the generated spectrograms is de-normalized and the last step
consists in performing GLA in order to synthesize the new generated audio signals. The
end to end representation of the system is depicted in figure 4.2.
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Figure 4.2: End to end representation of the system.

4.2.1. Pre-Processing

The pre-processing section in our work has two main purposes:

1. transform the audio signals in a truthful, high-quality representation of them;

2. make a transformation of the audio signals so that they are compatible with what
the network requires as input in order to perform the training phase.

VAE architectures are designed for reconstruction and generation. In this work we want
to perform timbre transfer, maintaining the pitch information. Given that, it is essential
for this work that the output of the network can be transformed back in order to get an
acoustically pleasant signal resembling the one of the dataset. The choice of the audio
representation turns out to be crucial to have good results. In Chapter 2 we have seen
that the STFT is the basic form of time-frequency representation while the CQT and the
Mel spectrogram are perceptually based representation. It would then appear that the
CQT and the Mel spectrogram are the best representation for our task. However, these
two representations have each one a problem:

• the CQT is based on the concept of notes (one of the parameters of the CQT is
the "bins per octave"). But we know that sometimes music signals do not follow
exactly the perfect pitch representing the notes. One example could be the bending
technique used by a guitarist: the performer bend one string of the instrument in
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order to achieve a different pitch from the normal one. If we have a slow bend and
use the CQT as audio representation, we won’t have the same number of bins for
all the mid frequencies discovered while bending;

• the Mel-spectrogram representation perform a multiplication of the frequency axis
with a bank of triangular filters. By doing that we are actually losing some infor-
mation along the frequency axis: this is not feasible in our experiments since the
re-synthesis of the new audio files will be in fact lossy.

For this reason we decided to use the STFT as our time-frequency representation of
choice. Precisely we calculated the log spectrogram called STFTdB (since it follows the
dB standard) from the magnitude of the STFT with the following formula:

STFTdB = 10 · log10(STFTmag + 10−5). (4.4)

The 10−5 factor is included into the formula because to avoid log10(0) issues.

Another important operation performed in the pre-processing phase is the one of normal-
ization. Data normalization refers to the organization of data to appear similar across
all dimensions.

In our work, we perform a 0-1 range min-max normalization meaning that for each set
(train set and validation set), we extract the maximum and the minimum values between
all log spectrograms and we re-scale all the log spectrograms of the aforementioned set
so that every single value is between 0 (that correspond to the minimum value) and 1
(that correspond to the maximum value). Formally, given S = {S1, . . . ,SM} one of the
set between training set, validation set and test set containing all M log spectrograms
of all timbre classes, we extract the scalar min(S) = min({S1, . . . ,SM}) and the scalar
max(S) = max({S1, ...,SM}) that are the minumum and maximum values between all
log spectrograms. Given a spectrogram xi, its normalized version N(Si) ∈ S will be:

N(xi) =
xi −min(S)

max(S)−min(S)
. (4.5)

Data normalization has different benefits that are needed for these reasons:

• large values given as input to the network lead to large weights inside the layers of
the network. It is beneficial for the network to have small weights since a model
with large weight values is often unstable, meaning that it may suffer from poor
performance during learning and sensitivity to input values resulting in higher gen-
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eralization error. Large weights lead to sharp transitions in the node functions and
thus big changes in output for small changes in the inputs [47];

• most of the times, datasets contain features that highly vary in magnitudes. This
could be a problem because most of the machine learning algorithms use distances
between two data points in their computations and the features with high mag-
nitudes will weight more than the ones with small ones. Normalization brings all
the features to the same, small level of magnitude making the learning phase more
regular.

4.2.2. Network Architecture

The architecture can be defined as a conditional convolutional beta-VAE.

The beta-VAE architecture [23] adds the adjustable parameter β ∈ R to the VAE loss.
The beta-VAE loss can be formalized as:

LOSS = LR + β · LKL = ||ŷ − y||+ β ·KL[q(z|x), p(x|z)]. (4.6)

It has been proven that beta-VAE with appropriately tuned β > 1 qualitatively out-
performs VAE (β = 1). The parameter β can be considered as a weighting parameter
between the reconstruction loss and the KL loss and finding the perfect balance between
those losses is a delicate exercise. β can be considered as an hyper-parameter of the
network

In this section we will break down the structure of the model used for training. The
model can be split into encoder and decoder, both reported respectively in tables 4.1 and
4.2, together with the full autoencoder architecture reported in table 4.3. The end to end
graphic representation of the network is depicted in Fig. 4.3.
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Layer name Output shape # params Depth Size Stride

encoder_input (512× 256× 1) 0 - - -

encoder_cond_input (512× 256× 1) 0 - - -

encoder_concat_input (512× 256× 2) 0 - - -

encoder_conv_1 (256× 128× 16) 304 16 (3× 3) (2× 2)

encoder_relu_1 (256× 128× 16) 0 - - -

encoder_batch_norm_1 (256× 128× 16) 64 - - -

encoder_conv_2 (128× 64× 32) 4640 32 (3× 3) (2× 2)

encoder_relu_2 (128× 64× 32) 0 - - -

encoder_batch_norm_2 (128× 64× 32) 128 - - -

encoder_conv_3 (64× 32× 64) 18496 64 (3× 3) (2× 2)

encoder_relu_3 (64× 32× 64) 0 - - -

encoder_batch_norm_3 (64× 32× 64) 256 - - -

encoder_conv_4 (32× 16× 128) 73856 128 (3× 3) (2× 2)

encoder_relu_4 (32× 16× 128) 0 - - -

encoder_batch_norm_4 (32× 16× 128) 512 - - -

encoder_conv_5 (16× 16× 256) 295168 256 (3× 3) (2× 1)

encoder_relu_5 (16× 16× 256) 0 - - -

encoder_batch_norm_5 (16× 16× 256) 1024 - - -

flatten (65536) 0 - - -

mu (64) 4194368 - - -

log_variance (64) 4194368 - - -

encoder_output (64) 0 - - -

decoder_cond_input (4) 0 - - -

bottleneck_concat (68) 0 - - -

Table 4.1: Encoder architecture.



38 4| Proposed Method

Layer name Output shape # params Depth Size Stride

decoder_input (68) 0 - - -

decoder_dense (65536) 4521984 - - -

reshape (16× 16× 256) 0 - - -

decoder_conv_trans_1 (32× 16× 256) 590080 256 (3× 3) (2× 1)

decoder_relu_1 (32× 16× 256) 0 - - -

decoder_batch_norm_1 (32× 16× 256) 1024 - - -

decoder_conv_trans_2 (64× 32× 128) 295040 128 (3× 3) (2× 2)

decoder_relu_2 (64× 32× 128) 0 - - -

decoder_batch_norm_2 (64× 32× 128) 512 - - -

decoder_conv_trans_3 (128× 64× 64) 73792 64 (3× 3) (2× 2)

decoder_relu_3 (128× 64× 64) 0 - - -

decoder_batch_norm_3 (128× 64× 64) 256 - - -

decoder_conv_trans_4 (256× 128× 32) 18464 32 (3× 3) (2× 2)

decoder_relu_4 (256× 128× 32) 0 - - -

decoder_batch_norm_4 (256× 128× 32) 128 - - -

decoder_conv_trans_5 (512× 256× 1) 289 16 (3× 3) (2× 2)

sigmoid_layer (512× 256× 1) 0 - - -

Table 4.2: Decoder architecture.

Layer name Output shape # params

encoder_input (512× 256× 1) 0

encoder_cond_input (512× 256× 1) 0

decoder_cond_input (4) 0

encoder (68) 8783184

decoder (512× 256× 1) 5501569

Table 4.3: Full Variational Autoencoder architecture.
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The network can be defined as a function f :

Sc
F×T = f(SF×T ,C

c
F×T ,h

c) (4.7)

where SF×T is the input spectrogram with T the total number of time frames and F

the total number of frequency bins, Cc
F×T is the conditioning matrix concatenated on

the channel axis with SF×T , hc is the one-hot vector concatenated with the input of the
decoder and Sc

F×T is the generated spectrogram with the new timbre. Each entry Cc
f×t

with t = {1, . . . , T} and f = {1, . . . , F} of the conditioning matrix has the same natural
value c ∈ {0, . . . , n − 1} associated to a specific timbral class and the vector hc is the
one-hot representation of that value.

Tables 4.1 and 4.2 can be conceptually divided into sections. Starting from the encoder,
we have a first section representing the inputs of the model. The encoder_input layer
is the one associated to the normalized log spectrograms that we feed the network. The
layer after is encoder_cond_input and has the same shape of encoder_input. The third
layer encoder_concat_input performs concatenation between the spectrograms in the
first layer and the matrices in the second. The concatenation happens along the third
axis, also called the channel axis. The second and the third layer are responsible for the
first of the two mechanism that render the VAE conditional.
After the concatenation, we have five convolutional blocks. Each one is composed by a
convolutional layer followed by ReLU activation and a batch normalization layer.
After the fifth convolutional we have a flatten layer that brings the dimensionality of the
output of the layers from three to one.
After the flatten layer, we have two parallel layers that constitute the latent space of
the network: the mu layer and the log_variance layer with output shape = D that
is the dimensionality of the latent space. The bottleneck of the network is defined by
the encoder_output layer. This layer performs the reparametrization trick [34] that is
needed since the process of sampling from a distribution that is parameterized by a model
is not differentiable. Rewriting our implementation of how we parameterize our Gaussian
sampling, we allow a gradient path through a non-stochastic node as explained in section
2.5.4.

The output of the encoder is then concatenated with the one-hot encoding vector as said
in equation 4.7.

The first layer of the decoder is a dense one followed by a reshape layer that re-establishes
the dimension of the output from one to three so we can perform the transposed convo-
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lutional operations.

The structure of the transposed convolutional blocks of the decoder is symmetrical to the
encoder, except for the last block that doesn’t have the ReLU activation layer and the
batch normalization layer.

The last layer of the decoder is followed by sigmoid activation.

Figure 4.3: End to end graphic representation of the network.ti

4.2.3. Post-Processing

For each normalized log spectrogram given as input, the network produces n normalized
log spectrograms, one for each target timbre. The post-processing part of the pipeline has
the purpose of taking these normalized log spectrograms and transform them ending up
in audio signals. Therefore the post-processing operations occurs only in the inference
phase, namely when the training phase is finished and new data (i.e. the test set) is
presented to the model. Once the post-processing section is done, it is possible to listen
to the audio files and proceed to the evaluation of the model.

The first part of the post-processing phase is the de-normalization of the output of the
network. We have to perform the inverse of formula 4.5. Given a generated spectrogram
Ŝt
i with target timbre t and considering S the same set explained in the pre-processing

section 4.2.1, we perform de-normalization as:
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D(Ŝt
i) = Ŝt

i · (max(S)−min(S)) +min(S), (4.8)

where i is the index of the generated normalized log spectrogram that ranges than from
1 to M . This leads to a de-normalization process that follows the full range of values.

After the de-normalization, we end up having a set of de-normalized log spectrograms.
Before proceeding to re-synthesis we must bring back the de-normalized log spectrograms
to the form of STFTmag by inverting formula 4.4 with:

STFTmag = 10
STFTdB

10 − 10−5). (4.9)

As anticipated, we rely on Griffin-Lim Algorithm to perform the inversion of the STFT
having only the magnitude information. We have seen that Convolutional Neural Net-
works are able to detect patterns in images with the goal of classification, detection or
generation. Looking at the plot of the magnitude and the phase of a STFT as shown in
figure 4.4, we can understand why the phase is usually discarded: its information is way
more articulated than the one contained in the magnitude representation and it is very
difficult for a machine to extract meaningful information and learn from it, especially with
limited computational resources.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [s]

1

512

1024

2048

4096

8192

F
re
q
u
en
cy

[H
z]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [s]

0

200

400

600

800

1000

P
h
as
e
(°
)

Figure 4.4: Magnitude and Phase of the same signal

When phase information is discarded, the Griffin-Lim Algorithm (GLA) is used. The
GLA is a phase reconstruction method based on the redundancy of the short-time Fourier
transform. This algorithm expects to recover a complex-valued spectrogram, which is
consistent and maintains the given amplitude, by the usage of a projection procedure.
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The phase estimation is not always optimal and the estimation of the phase is time
consuming due to the iterative nature of the algorithm. These factors could result in
a bottleneck on the audio quality reconstruction and on the speed of the algorithm in
inference phase.

4.3. Interpolation

In the mathematical field of numerical analysis, interpolation is about the estimation of
a method that aims to find new data points based on the range of a discrete set of known
data points [58].

Our architecture is built to map input audio samples into a D dimensional latent space.
Each input audio sample that goes trough the pre-processing and the conditioned train-
ing phase is represented by n points in the latent space that can be called embeddings.
Formally, in the context of neural networks, embeddings are continuous vector represen-
tations of discrete variables. Embeddings are learned in the training phase and have the
characteristic of being low-dimensional representations of input data. The purpose of the
embedding process is the one of converting high-dimensional data to low-dimensional data
in the form of a vector in such a way that the two are semantically similar. In our case, the
formation of the embeddings has a slightly different course: we are not directly converting
high dimensional data into a smaller space, like it happens when using a VAE with the
sole aim of reconstructing the input data. Our architecture is built to perform timbre
transfer, meaning that the output of the network are actually different from the input.
That’s where the concatenation operation between the normalized log spectrograms and
the conditioning matrices actually renders our model conditional. Thanks to that, the
encoder is able to map the same normalized log spectrogram into n different points in
the latent space that the decoder will transform into n normalized log spectrograms with
the corresponding target timbres. Formally, given an input sample xt

i with timbral class
t, it is mapped into n embeddings et1i , . . . , etni . Each one of the embeddings is actually
represented by a point in the D dimensional latent space constituted by the output of
the mu layer and by another point in the D dimensional latent space constituted by the
output of the log_var layer.

The embeddings et1i , . . . , etni when concatenated with the corresponding one-hot vector,
decoded and post-processed will result, as said before, in audio samples with the tar-
get timbres. It is possible for us to sample new points belonging into the latent space
that aren’t necessarily associated to the input of the networks and that will result in
spectrograms that follow the distribution of the latent space itself.
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By doing that, we define new points in the latent space. It is also possible, from those
points, to perform Algorithm 4.1 again, ending up in newer points representing a mixture
of mixture of timbres. In the next chapter we will explicate and show the results of what
just explained.

Algorithm 4.1 Interpolation of embeddings
1: m = # of interpolations
2: ratios = array of m equally space float numbers ∈ [0, 1]

3: embeddings = []
4: v1 = starting embedding
5: v1 = ending embedding
6: for i = 0 to m− 1 do
7: v = (1.0− ratio[i])× v1 + ratio[i]× v2

8: append v to embeddings

9: end for
10: return embeddings

4.4. Conclusive Remarks

In this chapter, after the problem statement section where we presented and formalize the
objective of this thesis, we presented the method and the building blocks for timbre trans-
fer and timbre interpolation developed in this work. We illustrated the Pre-Processing
phase, justifying the technical choices taken. We then showed the Network Architecture
describing its various layers and after that we reported the Post-Processing phase, re-
sponsible for all the operation to be done after the training phase in order to listen to the
generated samples. Lastly, we formalized the interpolation method, giving a definition of
embeddings and showing the algorithm used to perform the task.
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5| Experiments and Results

In this chapter we will present the results of our experiments aimed at demonstrating
the effectiveness of the timbre transfer technique proposed in this thesis along with the
description of the dataset, the technical details about our experimental setup and the
evaluation methods.
First we will present the hyper parameters related to the training procedure of the pro-
posed beta-VAE architecture. To explain that, we will go through our experimental setup
and we will describe how the dataset has been set up for the tasks of timbre transfer. We
will then illustrate the latent space topology together with explanatory images. Before
presenting the actual results, we will define the evaluation methods that have been chosen
to assess the outcomes of the system. There will be two different designated methodolo-
gies: the first one will rely on a classifier while the second one on perceptual evaluations.
Finally we will show the results obtained in conjunction with observations and conclusions
about the system.

5.1. Experimental setup and Dataset

The dimension of the STFT computed over the audio signals and fed into the network
is of 512 × 256. The chosen parameters for the calculation of the STFT are N_fft =

1024 samples, hop length = 128 samples and window length = 1024 samples. This
configuration has been chosen as a trade-off between the quality of the inversion and the
quantity of data generated from the transform. Each of the audio signals in the dataset
has length l = 4s and it’s sampled at Fs = 16.000kHz . Performing the STFT with the
listed parameters leads to a F×T frequency-time representation, having F = N_fft

2
= 512

the number of frequency bands discarding the negative ones and T = l·Fs

hop length
= 500 the

number of time frames. For computational reasons, we considered the first 2.048s of the
signal, ending up in a 512 × 256 frequency-time representation of it. Only STFTmag,
i.e. the magnitude information of the STFT , has been retained. We discarded the phase
information since we rely on GLA to reconstruct it as explained in section 4.2.3.
In the re-synthesis step, we uses GLA with hop size = 128 (the same used for the
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extraction of the STFT) and the number of iterations to infer the phase information
has been set to 32.

The pre-processing and post-processing phases have been performed with the functions
for feature extraction and re-synthesis provided by the Librosa v0.8.0 library [41] while
the network presented in section 4.2.2 was developed using the TensorFlow v2.3.0 DL
framework [1].

With regard to the network, we empirically found the best arrangement of parameters
for our network with learning rate = 0.0001, batch size = 64, Adam optimizer [31], latent
dimension D = 64 and the parameter β has been set to 2. Having latent dimension D =
64, it is possible to compress the data in an optimal way, resulting in a representation of
the input that is not too small (that could cause an irreversible compression) but neither
too big (that could end up in a sparse representation of the input data which is difficult to
regularize). We imposed an early stopping on the training procedure when the validation
loss did not decrease for more than 20 epochs saving the model with the best validation
loss. The network converged at epoch 396 and the duration of the training has been
around 90 minutes. The experiments have been performed using a workstation equipped
with one Intel® Xeon E5-2630 v2 (12 Cores @2.6GHz), RAM 128 GiB, and two Quadro
P6000 (3840 CUDA Cores @1530MHz), 24GiB, running Ubuntu 20.04.2. LTS.

The dataset is a subset of NSYNTH dataset [11], a large-scale and high-quality dataset
of annotated musical notes. The NSYNTH dataset contains a total of 305,979 musical
notes, each with a unique pitch, timbre, and envelope. Each sample is four seconds long,
monophonic, sampled at 16 kHz and is generated from one over 1,006 instruments taken
from commercial sample libraries. Each note has been held for the first three seconds
and allowed to decay for the final second. Following the MIDI notation, the range of the
pitches goes from 21 to 108 although not all instruments cover the full range, resulting
in an average of 65.4 pitches per instrument and the velocities can have five values (25,
50, 75, 100, 127). Each note is saved inside the dataset with a name describing its
qualities. The first part of the name represent the instrument family and the source.
The family is the macro category of instruments contained into the dataset. There are
11 instrument families, namely bass, brass, flute, guitar, keyboard, mallet, organ, reed,
string, synth lead and vocal. The source represents the method of sound production for
the note’s instrument and can be "acoustic" (recorded from instruments that produce
sound through acoustic means), "electronic" (recorded from instruments that produce
sound using electronic circuitry) or "synthetic" (recorded from synthesizers). The second
part of the name is a triplet of sets of three digits, the first one associated to the specific
instrument inside the family used for recording the sample, the second representing the
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pitch and the third the velocity.

In our work we used a subset of the aforementioned dataset in order to perform the specific
case of one-to-four timbre transfer. As input we used the flute acoustic class and as output
the string acoustic, keyboard acoustic, guitar acoustic and organ electronic classes.
In order to build our dataset, we performed a fine analysis of the samples provided by
the NSYNTH dataset. The first step was the one of discarding all samples that did not
satisfy common sense acoustic standards: some signals, especially in the bottom low and
top high pitch ranges, were or inaudible or so noisy that they were not associative to the
instrument class. We also noticed that a few specific instruments inside some families
were mis-labelled in term of pitches having the pitch label associated to the wrong octave
with respect to the rest of the dataset. These samples has been discarded as well. A
dataset split policy of 80-10-10 was used with 708 samples for training, 88 for validation
and 88 for test for each timbral class. Indeed, the total number of samples in the train
set is 2832, 352 for validation and 352 for test. The input dataset consists in the same
708 samples of flutes concatenated with themselves four times. Following the notation
proposed for the concatenating matrices and vectors in section 4.2.2 we have:

• c = 0 →C0
512×256 and h0 = [1, 0, 0, 0]T for the inputs whose timbre will be transferred

from flute acoustic to string acoustic;

• c = 1 →C1
512×256 and h1 = [0, 1, 0, 0]T for the inputs whose timbre will be transferred

from flute acoustic to keyboard acoustic;

• c = 2 →C2
512×256 and h2 = [0, 0, 1, 0]T for the inputs whose timbre will be transferred

from flute acoustic to guitar acoustic;

• c = 3 →C3
512×256 and h3 = [0, 0, 0, 1]T for the inputs whose timbre will be transferred

from flute acoustic to organ electronic.

In the training phase the input-output spectrogram couples have the same pitch value
enabling the automatic clustering of both timbre and pitch. In order to do that we built
the dataset so it has the same number of samples for each pitch, that, in our case, can
have values that goes from 68 to 100, always following the MIDI notation.

5.2. Latent Space Topology

As a preliminary result, we bring a visual inspection of the latent space of the trained
architecture. The latent space is actually bipartite: VAE architectures [32] map the input
data into a latent space consisting of two 1-D layers, representing the encoded normal
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distributions, so the encoder is trained to return the mean (µ) and the covariance (σ)
that describe these Gaussians.
To visualize the latent space, we used t-SNE dimensionality reduction [63] on the 64-D
µ and σ vectors representing the training set embeddings, respectively shown in Fig.
5.1a and Fig. 5.1b. As we can see, a peculiar form of clustering happens. In the t-SNE
representation of the µ latent vectors there are 33 clusters representing the 33 pitches
ranging from 68 to 100 used in the training set. In the t-SNE representation of the σ

latent vectors, we can clearly identify 4 clusters associated with the four timbre classes
string, keyboard, guitar and organ. From this, we infer that the architecture perform
automatically in the latent space a pitch clustering in the mu layer and a timbre clustering
associated to the log_variance layer. This result enables to navigate the latent space in
both dimensions, namely moving in a timbre space by sampling the σ latent space but
also moving in a pitch space by sampling the µ latent space having conditioned only the
timbre information in the training phase.

(a) µ latent space (b) σ latent space

Figure 5.1: Latent space visualization obtained with t-SNE dimensionality reduction.

One of the applications possible thanks to the topology of the latent space is the one of
building timbral grids. By performing timbre transfer on a given flute normalized log
spectrogram Sf , we obtain 4 generated normalized log spectrograms with the new timbres
Ss, Sk, Sg and So. By performing timbre interpolation between those points, defined as:

• Is→k: interpolation sequence that starts from string sample Ss and ends up in
keyboard sample Sk;

• Ik→g: interpolation sequence that starts from keyboard sample Sk and ends up in
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guitar sample Sg;

• Ig→o: interpolation sequence that starts from guitar sample Sg and ends up in organ
sample So;

• Io→s: interpolation sequence that starts from organ sample So and ends up in string
sample Ss;

and concatenating them, we can obtain a "circular" sequence of generated samples that
explores all the intermediate interpolation points having new timbres between each couple
of instruments’ timbres, forming a timbral path between all target timbre classes.
A graphical representation of a timbral path obtained with m = 5 is shown in figure 5.2
where we arrange the spectrograms in the form of a square with vertexes indicating the
starting points of the interpolations.
Note that each interpolation sequence is symmetrical, namely given two timbral classes a
and b, the interpolations Ia→b and Ib→a lead to the same interpolation points.

Figure 5.2: Interpolation path between predictions generated performing timbre transfer
task, represented by the vertexes of the square.

We can generate new interpolation samples by saving the embeddings of the interpolation
points calculated before and performing again interpolation between them by applying
algorithm 4.1 to the new embeddings. By doing this we achieve what we call interpolation
grids on the output of the network. By doing that we can generate samples with timbres
that are a blend between all the output timbres of the network. In figure 5.3 we expose
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an interpolation grid of the outcomes of the network when given as input a flute sample
with pitch 81.

Figure 5.3: Interpolation grid between predictions.

5.3. Evaluation Methods

In this section we will present the methodologies to evaluate the outcomes of our model.
The main aspects to be evaluated are:

• the quality of the output audio per se, namely the capability of the system to
synthesize new samples that are acoustically pleasant and that resemble the ones
present in the dataset;

• the capacity of the model to build a regularized latent space whose internal explo-
ration leads to meaningful outcomes.

In order to do that, a twofold system evaluation method has been set that combines
an objective assessment based on a timbral classifier and a perceptual one based on
subjective ratings gathered with a questionnaire. The perceptual evaluation is needed
since the timbre of a sound is primarily a perceptual characteristic that can be judged in
its integrity only by a human response.
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5.3.1. Evaluation by Classification

The timbre classifier has the following objective: given as input a normalized log spec-
trogram of an audio sample, it will classify it as belonging to one over a set of timbral
classes, namely what we defined as target timbres. In our specific experiment, we will
have as classes: string, keyboard, guitar and organ.

Considering the classifier as a function C that takes as input a normalized log spectrogram
S, it will output its timbral class, namely t ∈ 0, 1, 2, 3 where we mapped the four output
classes of choice as 0 → String, 1 → Keyboard, 2 → Guitar and 3 → Organ:

t = C(S). (5.1)

Formally, the model is a supervised classifier based on a CNN. The model has been trained
on the same dataset used for timbre transfer task with the sole difference that we used
only the samples of the output classes, namely string acoustic, keyboard acoustic, guitar
acoustic and organ electronic. The model has been trained for 20 epochs reaching a train
accuracy of 0.9979 and a validation accuracy of 1. The perfect validation accuracy is due
to the smallness of the validation set, consisting of only 88 samples, and it is used only
as benchmark to validate the capabilities of the classifier. The structure of the classifier
is exposed in table 5.1.

Layer type Output shape # params

Input (512× 256× 1) 0

Conv2D (256× 128× 32) 320

MaxPooling2D (128× 64× 32) 0

Conv2D (128× 64× 64) 18496

MaxPooling2D (64× 32× 64) 0

Flatten 131072 0

Dense 128 16777344

Dropout 128 0

Dense 1 516

Table 5.1: Timbre classifier architecture

This evaluation method is used to analyze the capacity of the network to generate new
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samples that follow the condition given as input. Each generated normalized log spectro-
gram is labelled based on its conditioning and passed to the classifier to be evaluated.

The classifier can be extended in its functionality by adding a Softmax layer that, for
each normalized log spectrogram given as input, outputs a vector of four probabilities of
the input to belong to each of the four target timbral classes. Formally, defining p0 as the
probability of the normalized log spectrogram to belong to the timbral class String, p1 as
the probability to belong to the timbral class Keyboard, p2 as the probability to belong
to the timbral class Guitar, p3 as the probability to belong to the timbral class Organ
and defining the extended classifier as a function P that takes as input a normalized log
spectrogram S, the output can be defined with the equation 5.2:

[p0, p1, p2, p3]
T = P (S). (5.2)

This vector can be used to evaluate the samples generated during the timbre interpolation
task. Ideally given a starting timbre ta and an ending timbre tb and having m ∈ N ordered
generated interpolation going from timbre ta to timbre tb, the values of the probabilities
of belonging to the class associated to the timbre ta should follow a linear decay from
1 to 0 when analyzing the interpolation points in order. Vice versa, the values of the
probabilities of belonging to the class associated to the timbre tb should follow a linear
ascend from 0 to 1.

5.3.2. Evaluation by Perceptual Tests

Subjects. Forty-three subjects, ranging from 24 to 36 years participated to the perceptual
evaluation with a mean age of 26.3. This group included 33 males, 9 females and a subject
that didn’t want to express the gender. Despite no particular musical background was
required to do the test, the subjects declared to have different musical backgrounds: 34.9%
of them have a "low-level" backgound meaning that they have no experience of playing
an instrument nor composing music. 48.8% have a "medium-level" background having
played one or more instrument or composed music in their lives, not having doing it on a
professional level and not having a music related degree. Finally 16.3% have "high-level"
background, meaning that they have a conservatory degree in one or more instrument or
in musical composition or they have played at a professional level.

Questionnaire. The questionnaire was divided in two parts. In the first one, the subject
is made to listen to 20 (5 strings, 5 keyboards, 5 guitars and 5 organs) couples of samples
consisting each on a ground truth audio sample directly taken from the dataset, followed
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by 2 seconds of silence and a generated sample with the same pitch and belonging to the
same timbral class. The subject is asked to rate the similarity of the two audio samples
on a five point Likert scale [30] where the value 1 corresponds to "not similar" and 5 to
"identical".
In the second one, we perceptually evaluate timbre interpolation. The subject is made
to listen to 12 triplets of generated samples. Each triplet consists of three generated
samples: the first one representing the starting point, the second one the interpolation
and the third one the ending point. Each sample is spaced one second apart from the
others. Since in our experiment we perform interpolation having m = 5, we obtain five
interpolation points where the first one is exactly the starting point of the interpolation
and the last one is the ending point. We denominated the interpolation points as 1, 2, 3,
4 and 5 where the point 1 represents the starting point, point 5 the ending point and the
points 2, 3, 4 the points in between in the latent space, calculated following the Algorithm
4.1.
We asked the subject if the timbre of the sample chronologically in the middle (the second
one), that represent the actual interpolation points between the starting point and the
ending point of the interpolation, is more similar to the timbre of the first sample or to
the timbre of the last one in a Likert scale that ranges from 1 to 5 where 1 means "the
timbre is identical to the one of the first sample" and 5 means "the timbre is identical to
the one of the last sample". The first 3 triplets represent, in order, point 2, point 3 and
point 4 of the interpolation that goes from keyboard samples to the corresponding string
ones. Following this pattern, triplets 4, 5 and 6 represent the interpolations from keyboard
to guitar, triplets 7, 8 and 9 from guitar to organ and finally triplets 10, 11 and 12 from
string to organ.

Procedure. The experimental session had, for each of the two parts of the questionnaire,
a familiarization phase. For the first part, the subject is made to listen to 8 examples of
couple of ground truth-generated notes, similar to the ones he/she would be listening in
the actual part one of the test. For the second part, the subject is made to listen to 4
examples of triplets of generated samples, similar to the ones he/she would be listening
in the actual part two of the test. The questionnaire has been hosted by Google Forms
1. A disclaimer was presented at the beginning of the test, recommending the subjects to
use a good sound system since the quality of the audio is a central factor of the study.

1https://docs.google.com/forms/d/1YdG0VSc6kMY8NTuv_XBkl3liMYpBOWZ50uwkRhSfOhI/edit

https://docs.google.com/forms/d/1YdG0VSc6kMY8NTuv_XBkl3liMYpBOWZ50uwkRhSfOhI/edit
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5.4. Results

In this section we describe the results obtained from the experimental setup just explained.
We first present the timbre transfer results with a confusion matrix representing the
outcomes of the classifier and with a box-plot associated to the scores gathered in the
perceptual test.
Then we present the results on the timbre interpolation task in the form of graphics
showing probabilities of belonging to the starting point class and to the ending point
class for each of the mid-way points constituting the interpolation and finally with a
box-plot with the perceptual scores grouped by interpolation point.

5.4.1. Timbre Transfer

The first evaluation of the timbre transfer outcomes obtained in our experiment happens
via classification. As explained in section 5.3.1, we trained a classifier to discern between
the 4 target timbre classes used in the experiment. Figure 5.4 shows the results of the
classification on the test set outcomes of the network in a form of confusion matrix. As
we can see, we obtained perfect classification for the classes string, keyboard and guitar
and a single misclassified sample for the organ class, interpreted as a guitar sample by
the network. This result indicates that the outcomes the network are properly generated,
meaning that the model has learned to discern between timbral classes and that the
conditioning of the input leads to the expected timbral outcomes.

Figure 5.4: Confusion matrix on timbre transfer predictions. S → String, K → Keyboard,
G → Guitar, O → Organ.
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The first part of the perceptual test is dedicated to the evaluation of timbre transfer,
asking the subjects how the generated and ground truth samples’ timbre sound alike.
The results have been aggregated by timbral class, in order to inspect the quality of the
audio reconstruction depending on the class. As we can see from the box-plots shown in
Figure 5.5, we have quite uniform results, with the keyboard class reaching the best score.
Since the string class is actually composed by recordings of different instruments (violins,
violas, cellos) played with different techniques such as legato, détaché and staccato, the
architecture has a harder time modeling the class, justifying the lowest score of the class.
The white triangle represent the mean score obtained for each class.

Figure 5.5: Perceptual ratings for timbre transfer task.

Both the objective evaluation based on classification and the perceptual test scores confirm
that the model is capable of performing one-to-many timbre transfer. The confusion
matrix shown in Fig. 5.4 expounds the classification on the direct outcomes of the network
namely the frequency-time representation of the actual audio samples. What is evaluated
performing classification is indeed the capability of the model to generate normalized log
spectrograms belonging to a precise timbral class. On the contrary, the perceptual test
measures the outcomes in a qualitative way: the subject is asked to rate the similarity
of timbre between two samples belonging to the same timbral class, one "real" and the
other one generated. In this case we are actually evaluating the quality of the generated
samples as perceptually similar to the ground truth one that is clearly a different task
from the one carried by the classifier since the subjects are not asked to discern among
timbre classes. The combination of these two evaluation methodologies is essential for a
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proper discussion of the results: by investigating two complementary system evaluations
we can have a full perspective on the ability of the model to perform timbre transfer.

5.4.2. Timbre Interpolation

The first evaluation of the timbre interpolation is also obtained via classification. This
time, we get the probability of the outcomes of the network to belong to each one of the
4 timbral classes for each interpolation. With m = 5, as explained in section 5.3.2 we get
5 interpolation points called 1, 2, 3, 4 and 5.
To visualize the results, given a generic interpolation that goes from timbre ta to timbre
tb, we set up a graphic with the evolution of probabilities of the interpolation points
(represented on the x-axis, where the left end represent point 1 and the right end point 5)
to belong to the starting timbre ta (blue line) and the ending timbre tb (orange line). We
show these plots for all the interpolations aggregated in Figure 5.6. From these plot we
infer the fact that, while the point 3 is averagely in the middle between the two classes,
the points 2 and 4 tend to be classified with a strong confidence as belonging respectively
to the starting timbre class and to the ending one. This could be happening because of
the low generalization capabilities of the classifier that, since it is trained on our dataset,
does not have great potential with new unseen data. For this reason also we decided to
do the perceptual tests.

The quality of the timbre interpolations has been evaluated in the second part of the
perceptual test where we asked the subject to rate the similarity, in terms of timbre,
between a generated interpolation point and its correspondent starting point and ending
point of the interpolation. In this case, the results has been aggregated for all points 2, 3
and 4. Figure 5.7 shows the box plots with the results. The scores reveal that perceptually
the interpolation works, having the interpolating points matching the scores given by the
subjects. Ideally the interpolation point number should match the score since the number
of interpolation points matches with the score range both numerically and in meaning.
For example all points 2 should have a score of 2 since that score represents the right spot
in the interpolation, being closer to point 1 than point 5 of the interpolation. We can
notice that the point three has a mean score slightly under 3, while point 2 and point 4
have values respectively near the starting timbre (score = 1) and the ending timbre (score
= 5). A possible explanation for this fact is derived from the topology of the latent space:
two points with different timbres are well separated in the latent space, as depicted in
Figure 5.1b but the path going from one to the other could lead to a non-smooth evolution.
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(a) Keyboard to String (b) Keyboard to Guitar

(c) Guitar to Organ (d) String to Organ

Figure 5.6: Classification on interpolations

Figure 5.7: Perceptual ratings for timbre transfer task.
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Also in the case of timbre interpolation task, the combination of objective and perceptual
evaluation is required. The obtained results from these two evaluation methods are clearly
correlated. In both cases the results demonstrate that the system is capable of performing
timbre interpolation with certain limitations. When we performed the evaluation based
on the classifier, we noticed that the interpolation points near to the extremes of the
interpolations i.e. points 2 and 4 were strongly classified as belonging respectively to the
starting point and to the ending point of the interpolation. For this reason we set up a
perceptual test that, in fact, confirms the outcomes of the classifier with less accentuated
scores: points 2 and 4 are still near respectively to points 1 and 5 but with less intensity
with respect to the classifier’s results. This clarifies the functioning of the classifier that
probably is unable to classify unseen data, except when the normalized log spectrogram
is a clear morphing among two given classes, which happens when taking into exam point
3, the mid point of the interpolation.

5.5. Conclusive Remarks

In this chapter we first presented the experimental setup of the work giving all the technical
details of the implementation, starting from the time-frequency representation of the
signal we adopted, passing through the network parameters and ending on the hardware
and software technologies used to host the experiments. After that we presented the
dataset we built for the task, describing it and mentioning its origin. In the section after,
we outlined the latent space topology with the help of t-SNE dimensionality reduction,
showing the clustering capabilities of our model in both pitch and timbre latent spaces.
Evaluation methods are described immediately afterwards, divided by methodology. We
exposed the design of the classifier we used and we explained how we trained it. We
then delineated the specifics of the perceptual test we adopted. Finally we presented the
results on both timbre transfer and timbre interpolation.
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developments

In this thesis we have developed a Deep Learning based method able to perform one-
to-many timbre transfer on music signal representing single notes, creating a navigable
latent space of features that permits timbre interpolation among a set of pre-defined tim-
bral classes. We used the Deep Learning paradigm following the state-of-the-art works
making use of generative models. VAE architectures have proven to be effective in accom-
plishing the timbre transfer task [13, 39, 46, 56, 60] and can be exploited for the creation
of a latent space that represents input samples in terms of timbral characteristics.
More specifically, we adopted a Conditional Convolutional beta-VAE architecture. The
conditioning of the input is useful in the training phase in order to build a regularized
latent space required to perform both timbre transfer and timbre interpolation tasks. It is
useful also in the inference phase, where we can specify the model which timbral class we
want as output of the system when executing timbre transfer. We opted for a 2D Convo-
lutional architecture since we work with spectrograms, i.e. time-frequency representation
of signals.
To test the methodology, we used a subset of the NSYNTH dataset, accurately built by
us by removing unwanted, noisy samples and normalizing the classes with regard to num-
ber of samples per pitch which is the same for each timbral class. Our dataset consists
in one single timbral class as input, namely flute acoustic and 4 output timbral classes:
string acoustic, keyboard acoustic, guitar acoustic and organ electronic. Operatively, in
order to test the proposed method, we performed, one-to-four timbre transfer and timbre
interpolation between the four output classes.
We evaluated the outcomes of the system for both timbre transfer and timbre interpo-
lation tasks with a twofold evaluation method. A first objective assessment employs a
timbre classifier that, in the case of the timbre transfer task, classifies the outcomes of the
network as belonging to one over the 4 output timbral classes used, while, in the case of
timbre interpolation task, outputs a four value vector with the probabilities of belonging
to each of the four output timbral classes for each generated spectrogram. The second
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evaluation method relies on perceptual tests. Forty-three subjects were asked to evaluate
the outcomes of the network as follows: for the timbre transfer task we asked the subject
to rate on a 5 points scale the quality of a signal over which timbre transfer is performed
with respect to its ground-truth counterpart having the same timbre and pitch. For the
timbre interpolation task, we asked to rate a generated interpolation sample’s timbre as
more similar to the starting timbre or the ending timbre of the interpolation on a 5 points
scale.
The results show that the timbre transfer task reaches high quality outcomes. The classifi-
cation on the test set outcomes reaches remarkable outcomes and the scores gathered with
the perceptual tests fulfill our expectations. The timbre interpolation task also reaches
quite satisfactory results: the output probabilities follow the wanted evolution along the
interpolation points and the same happens with the perceptual test scores.

We can still apply some improvements to the proposed methodology. A bigger dataset
with more samples and more timbral classes could enhance the properties of the latent
space. More samples would increase generalization capabilities of the network, while
having more timbral classes could lead to more possible movements inside the latent space,
leading to more interpolated timbres to discover. Another possible improvement could be
the one of implementing new interpolation techniques such as parabolic interpolation or
spherical interpolation in addition to the one used by us that is linear. New interpolation
techniques could lead to a smoother evolution of the interpolation points or generally to
new outcomes exploring differently the latent space.

There are several future developments of the work here presented. First of all, the ex-
tension of this work for longer samples. This development of the system could lead to an
actual useful software/plugin to be used by musical producers that could record a sample
with a given instrument and then change its timbre or perform a timbre interpolation
with the help of our model. Another possible development could be the adaptation of the
system to perform timbre transfer between human voices in the field of deepfake genera-
tion. Also it would be interesting to apply this method to different music signals such as
unvoiced sounds, for example drum samples and validate the outcomes with new different
metrics.
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Appendix containing the number of pitches for train, validation and test set.
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Pitch Number of samples
068 23
069 20
070 22
071 22
072 22
073 23
074 17
075 23
076 18
077 26
078 28
079 23
080 31
081 25
082 24
083 31
084 24
085 22
086 23
087 22
088 22
089 22
090 21
091 23
092 23
093 24
094 23
095 23
096 24
097 11
098 8
099 9
100 7

Table A.1: Number of pitches for each timbral class of the train set



A| Appendix A 69

Pitch Number of samples
068 3
069 3
070 3
071 3
072 3
073 3
074 3
075 3
076 3
077 3
078 3
079 3
080 3
081 3
082 3
083 3
084 3
085 3
086 3
087 3
088 4
089 4
090 3
091 3
092 3
093 4
094 3
095 2
096 2
097 0
098 0
099 0
100 0

Table A.2: Number of pitches for each timbral class of the validation set



70 A| Appendix A

Pitch Number of samples
068 3
069 3
070 3
071 3
072 3
073 3
074 3
075 3
076 3
077 3
078 3
079 3
080 3
081 3
082 3
083 3
084 3
085 3
086 3
087 3
088 3
089 3
090 2
091 2
092 2
093 2
094 2
095 2
096 2
097 2
098 2
099 2
100 2

Table A.3: Number of pitches for each timbral class of the test set
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