

To my family, who has supported me during these years of intense studies.

Acknowledgements

I would like to sincerely thank my supervisors Ernestina Menasalvas, Roberto

Tedesco and Licia Sbattella, who have demonstrated to be supportive during the

discussion of ideas and methodologies to carry out the thesis.

Moreover, I would like to thank Gofore for allowing me to realize my graduation

project at their company. It was an intense period and I learned a lot from both

the professional and personal point of view. In particular I would like to thank

Raul Martinez Lopez and Milla Siikanen for their availability and effort to make

the process as smooth as possible and all the Madrid office for the hospitality

and kindness shown during the internship.

Finally, I would like to thank the EIT community for the constant effort they

are making to innovate the European education. It is thanks to their vision and

commitment that I have been able to join the master and grow, personally and

professionally.

iii

Abstract

Many different models and services to perform Sentiment Analysis are available.

It is often difficult to choose the right one for the use case of interest. This

thesis analyses relevant techniques that have been successfully applied to classify

sentiment polarity and it proposes a comparison of their performances based on

experiments run on the dataset Sentiment140. Moreover, it proposes an analysis

to understand when the models agree on the correct classification to highlight the

margin of improvement that is possible to achieve in theory. Three main macro-

categories of models are considered: traditional models based on mathematical

theorems or intuitions (Naive Bayes, Support Vector Machine, Logistic Regres-

sion and Random Forest), neural models (ANN, CNN, Bi-LSTM and a hybrid

approach) and classification services offered by top technology companies (AWS

Comprehend, Google Natural Language API and Meaning Cloud). The tested

models produced very similar performances, with the best model represented by

Logistic Regression. Despite the potential of neural models and the advantages of

ready-to-use services, traditional models proved to be the best trade-off and pro-

vided the best performances. Analyzing when the models agree, it was possible

to observe that there is a subset of the dataset that is not correctly classified by

any model, although in theory it is possible to achieve much better performances

than those obtained by individual models.

v

Sommario

Sono disponibili numerosi modelli e servizi per eseguire la Sentiment Analysis.

Spesso è difficile scegliere quello giusto per il caso d’uso di interesse. Questa

tesi analizza un sottoinsieme delle tecniche più utilizzate che sono state appli-

cate con successo per classificare la polarità del sentiment e propone un con-

fronto delle loro prestazioni sulla base di esperimenti condotti sul dataset de-

nominato Sentiment140. Viene inoltre proposta un’analisi per capire quando i

modelli concordano sulla corretta classificazione, al fine di evidenziare il margine

di miglioramento che sarebbe possibile ottenere in teoria. Vengono considerate

tre principali macrocategorie di modelli: modelli tradizionali basati su teoremi o

intuizioni matematiche (Naive Bayes, Support Vector Machine, Logistic Regres-

sion e Random Forest), modelli neurali (ANN, CNN, BiLSTM e un approccio

ibrido) e servizi di classificazione offerti da alcune tra le aziende più attive nel

settore (AWS Comprehend, Google Natural Language API e Meaning Cloud).

I modelli testati hanno generato prestazioni molto simili, con il miglior modello

rappresentato dalla Logistic Regression. Nonostante il potenziale dei modelli neu-

rali e la facilità di utilizzo dei servizi pronti all’uso, i modelli tradizionali si sono

dimostrati il miglior compromesso e hanno fornito le migliori prestazioni. Infine,

si è osservato che esiste un sottoinsieme del dataset che non è classificato corretta-

mente da nessun modello. In teoria, sarebbe però possibile ottenere performance

molto migliori di quelle ottenute dai singoli modelli.

vii

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Context . 3

1.3 Structure of the thesis . 4

2 Research questions and scope 5

2.1 Research questions . 5

2.2 Scope . 6

3 State of the art 7

3.1 Open challenges . 7

3.1.1 Emoticons and emojis . 8

3.1.2 Short informal messages . 8

3.1.3 Semantic, polysemy and sarcasm 9

ix

3.2 Available approaches . 9

3.2.1 Traditional approaches . 10

3.2.2 Neural models . 11

3.2.3 Ready-to-use services . 12

4 Materials and method 15

4.1 Dataset . 15

4.2 Analysis of the dataset and pre-processing 16

4.3 Methodology . 20

4.3.1 CountVectorizer . 20

4.3.2 Tf-idf vectorizer . 21

4.3.3 TensorFlow vectorization 22

4.4 Metrics . 23

4.5 Tools . 25

5 Modelling 27

5.1 Traditional approaches . 27

5.1.1 Naive Bayes . 27

5.1.2 Support Vector Machine . 28

5.1.3 Random Forest . 28

5.2 Neural approaches . 29

5.2.1 Word Embeddings . 29

5.2.2 Simple Artificial Neural Network 30

5.2.3 Convolutional Neural Network 30

5.2.4 Bidirectional Long Short Term Memory 31

5.2.5 Hybrid Neural Network . 32

5.3 Ready-to-use services . 32

5.3.1 Amazon Comprehend . 33

5.3.2 Meaning Cloud . 34

6 Experiments, results and discussion 35

6.1 Traditional models . 35

6.1.1 Encoding with a count vectorizer 36

6.1.2 Encoding with a tf-idf vectorizer 36

6.1.3 Analysis of the agreement 37

6.2 Neural models . 38

6.2.1 Analysis of the agreement 43

6.3 Ready-to-use services . 44

6.3.1 Meaning cloud . 45

6.3.2 Google Cloud Natural Language API 45

6.3.3 Amazon Comprehend . 46

6.3.4 Analysis of the agreement 47

6.4 Final comparison . 48

7 Conclusions 51

7.1 Results . 51

7.2 Further steps . 53

A Dataset analysis 55

B List of stop words 58

Acronyms 61

Glossary 62

Bibliography 67

Chapter 1

Introduction

This first chapter introduces the concept of Sentiment Analysis and aims to raise

awareness about its possible applications. It continues with the definition of the

purpose and ends with the description of the structure of the document.

1.1 Motivations

Sentiment Analysis (SA) is a field of Natural Language Processing (NLP) that

aims at extrapolating the sentiment embedded in a text. Most of the available

text is unstructured [15] and it makes it hard for a machine to detect the proper

polarity of the sentiment. It’s a field that is growing fast under the interest of

more and more researchers mostly because of the big achievements that have been

obtained in recent times regarding computational power, thus enabling much

more complex and time consuming computation that allows the use of neural

models. According to [6] the market value of NLP will rise from 3 billions of US

dollars in 2017 to more than 43 billions in 2025.

Sentiment Analysis is a classification task. Models that focus on polarity use as

1

classes, for example, positive, negative and neutral. Models that focus on feelings

and emotions may use angry, happy, sad, etc. If polarity precision is important to

the application scenario, it can be meaningful to extend the categories to consider

more shades. This approach is referred to as fine-grained sentiment analysis.

Moreover, depending on the goal of the application it is possible to define different

granularity levels [10]. Document level Sentiment Analysis aims at detecting the

sentiment of the whole text, allowing to exploit more data but generalizing on

the content. An entity level approach allows to identify sentiment related to the

entity that causes it. This is valuable, for example, in contexts like reviews of

products because the product owner can understand what are the weaknesses

and the strengths of the product itself and take countermeasures to align it to

the expectations of the customers. Sentence level stands in the middle.

Thanks to social media, people are able to express their thoughts and feelings

more openly than ever before. And they do. They express their thoughts about

a product, a company, a service, political topics, science, events and so on and

so forth.

For this reason Sentiment Analysis is extremely valuable for businesses. It allows

to identify customer sentiment toward products, brands or services in online

conversations and feedback.

Listening carefully to their customers, they are able to capture customers opinions

and to react to them, tailoring a certain product or service to meet their needs

and hence enhancing their value proposition and increasing customer satisfaction.

Proper Sentiment Analysis can help in predicting product sales performance, val-

idating strategic and marketing decisions, brand monitoring, improving customer

service and conducting market research.

Moreover, Sentiment Analysis can be effectively used to understand how the

2

written communications are perceived and then to improve the tone of them.

Businesses can use the service to learn the tone of their customers’ communi-

cations and to respond to each customer appropriately, or to understand and

improve their customer conversations.

Since Sentiment Analysis is a classification activity in its nature, after a correct

encoding of the data it is possible to apply a multitude of techniques available

to determine the output class. Freedom in the selection of different approaches

exposes to choices that must be weighted on the basis of the knowledge of the

approaches themselves and the dataset. A thorough knowledge of the different

methodologies and the results that derive from their application is therefore fun-

damental in order to identify the best approach in each scenario.

1.2 Context

This master thesis is the final paper drawn up at the same time as an internship

at the Gofore company. Gofore is a consultancy company that is mostly tack-

ling digital transformation in the Finnish market and expanding their horizon to

other European countries, like Spain and Germany. The work done may be of

interest to those who deal with Sentiment Analysis and in particular Sentiment

Analysis applied to messages from social platforms like Twitter or similar.

In writing this thesis it has been assumed that the reader has a basic understand-

ing of common concepts in computer science, however, where possible, care has

been taken in describing the critical steps and technologies.

The data considered to perform the analysis are taken from Twitter. Twitter is a

micro-blogging and social networking service. Twitter users share their thoughts,

news, real-time information and jokes in 280 characters of text or less, through

3

messages called Tweets. The social network was launched in 2006 and nowadays

it connects more than 330 million monthly active users. Among them, 152 million

daily active users send 500 million tweets per day.[1] Users are not only individ-

ual people, businesses use Twitter to engage audiences within their sector; not

only posting information about themselves but encouraging discussion, gathering

useful feedback about products or services and offering helpful customer service.

At the same time, customers also use Twitter as a quick and easy way to express

opinions about a business, a product or a service.

1.3 Structure of the thesis

This thesis has been structured as follows. Chapter 2 introduces the research

questions and narrows down the scope of the thesis.

In Chapter 3 the literature review is presented, to give an idea of what is the

state of the art of Sentiment Analysis.

In Chapter 4 the publicly available dataset Sentiment140 is introduced and ana-

lyzed. It is the dataset used for the development and testing of the models.

In Chapter 5 the main techniques available for Sentiment Analysis are grouped

into three distinct categories, determined by the nature of the approach and they

are briefly described. Chapter 6 introduces some relevant information needed

to carry out the experiments and presents the results of the application of the

identified techniques to the dataset Sentiment140. Chapter 7 summarizes the

findings of this study and presents some observations about the possibilities to

enhance the performances of available techniques.

4

Chapter 2

Research questions and scope

This chapter introduces the questions that guided the research and defines the

scope in relation to which the answers are more relevant.

2.1 Research questions

This thesis aims to identify some of the best models, available at the moment, to

perform Sentiment Analysis on Twitter data and establish a structured compari-

son to highlight their advantages and disadvantages compared to the specific task

of detecting the polarity of the Sentiment. Document level sentiment analysis is

considered. However, since tweets are generally short in nature, most of them are

made up of a single sentence. Hence, there is no substantial difference between

sentence level and document level in this specific use case.

The first question can be summarized as follows:

Question 1: What is the best model to apply Sentiment Analysis on Twitter

data?

The best model will be defined on the basis of the methodology introduced in

5

Chapter 4.

A second objective is to compare when the models agree on the correct clas-

sification, to understand if it is potentially possible to combine them in a new

super-model that integrates their capabilities. How to create the model is not

part of this research.

This second question can be defined as follows: Question 2: To what extent do the

models identified as the answer to question 1 agree on the correct classification

of the messages?

2.2 Scope

Restricting the scope in such a context is almost a must, since millions of mes-

sages are exchanged daily in numerous languages on Twitter and referring to the

most varied topics.

Only Tweets belonging to the famous Sentiment140 dataset, strictly in English,

are therefore considered. Further information regarding the dataset and the ap-

plied methodology are available in Chapter 4.

6

Chapter 3

State of the art

This chapter introduces related works that contribute to define the state of the

art of Sentiment Analysis. First of all the main challenges that arise when deal-

ing with Sentiment Analysis on Twitter data are presented. Then, some of the

best available approaches that have been already developed and tested by the

community of researchers and professionals to perform Sentiment Analysis are

considered, distinguished by their nature: techniques focused on statistical meth-

ods, techniques based on neural networks and ready-to-use services offered by top

technological companies.

3.1 Open challenges

In this section some of the most relevant open challenges that should be taken into

consideration when selecting the right model to perform Sentiment Analysis on

Twitter data are introduced. Some models can cope well with the presence of one

of more of these aspects, while others cannot overcome these limitations because

of the nature of the algorithms. In the next section 3.2 and in the chapter 5 the

7

models and some insights related to when a model can be applied are detailed.

3.1.1 Emoticons and emojis

The information contained in a Twitter message is usually represented as textual

content, though it’s not the only possible way to express it.

Emoticons and emojis are effective ways to convey emotional status and inten-

tion of a message and they are recently gaining traction, becoming potentially

useful to improve the quality of the models. [8] claims that many models provide

low accuracy because they do not consider the presence and value of emoticons.

Moreover, they present 3 classifications of sentiment polarity with different gran-

ularity. Eisentein noticed that the overwhelming majority of Twitter messages

are not near the character limit and together with Pavalanathan published a

paper [16] that stresses the rise of the emojis and their importance in the text.

With words related to sentiments replaced by emoticons and emojis, they could

become a key in the understanding of the sentiment.

3.1.2 Short informal messages

According to [18], short informal textual messages are limited in length, usually

spanning one sentence or less. They tend to have many misspellings, slang terms,

and shortened forms of words. They also have special markers such as hashtags

that are used to facilitate search, but can also indicate a topic or sentiment.

Tweets are usually extremely short. The limit is 280 characters, though most

of them does not even hit the half of the limit. The Dataset chapter contains a

detailed analysis of the length of the Tweets analysed.

8

3.1.3 Semantic, polysemy and sarcasm

Most of the approaches fail at capturing the semantic of the sentences because

they just consider the words in it. The order of words is not considered at all.

Moreover, the same words can have different meanings based on the context.

Embeddings are used to collect information about the semantic. Traditional Em-

bedding fails to capture it and Naseem and Musial, in [4], propose a new model

that combines 4 embeddings, each of them aiming at increasing the performances

with respect to a specific threat. Context can completely change the meaning

of the individual words in a sentence. It is for this reason that traditional word

embeddings (word2vec, GloVe, fastText) fall short. They only have one repre-

sentation per word, therefore they cannot capture how the meaning of each word

can change based on surrounding context. The approaches used are Contextual

ELMo, Word GloVe, PoS and Lexicon.

Sarcasm is another semantic-related problem. It is one one the most challenging

issue in Sentiment Analysis.

Different speakers will tend to employ sarcasm regarding different subjects and,

thus, sarcasm detection models ought to encode such speaker information. [13]

introduces user embeddings to improve performances detecting sarcasm. A deep

neural network is then fed with the additional information coming from tradi-

tional embeddings.

3.2 Available approaches

Many approaches have been developed and applied by researchers to address the

use cases of Sentiment Analysis. In this section some of the best approaches

that emerged from the literature review are listed. Models based on approaches

that make explicit use of mathematical theorems and/or mathematical intuitions

are firstly introduced and they are distinguished from models based on neural

9

networks.

3.2.1 Traditional approaches

Before the rise of neural models, facilitated by the increased availability of com-

putational power and data, Natural Language Processing and hence Sentiment

Analysis was mainly based on statistical approaches. The simplest approach is

the so-called “keyword-based”, presented in [23].

[2] applies Decision Tree, Logistic Regression and Support Vector Machine (SVM)

to perform Sentiment Analysis on the Twitter140 dataset. These are highly re-

current algorithms among the non neural approaches. [19] considers the same

models and stresses the importance of pre-processing, proposing a structured

way of doing it.

Yashaswini Hegde and S.K. Padma, in [12], propose the application of random

forest technique to identify the polarity of the sentiment and test the performance

of the same, comparing the results to the application of Naive Bayes to the same

setting. It turned out that random forest performed better.

The aforementioned models, in the original setting, do not allow to capture the

semantic of the sentences. They consider the words that compose the sentence

but they completely ignore the order of the words. A particular succession of

words can convey a totally different meaning than a different succession made up

by the same set of words. This fact suggests to consider the context in which the

word is placed in. In theory this is a highly expensive task from the computational

point of view because to assess the effect of a word, all the other words should

be considered each time. [9] introduces n-gram to face this issue. The principle

on top of which the n-gram approach is built is to consider the text sentence as

a set of sub-sentences made up by n contiguous words. It thus helps reducing

the computation required, as well as the time needed for this operation. In this

10

study, researchers apply n-grams to the input data before performing the analysis

with Naive-Bayes and SVM and they show that it is possible to actually improve

the accuracy of the models. In [23], the authors claim that using only bigrams

as features is not useful because the feature space is very sparse. Combining uni-

gram with bi-gram, they got a small improvement in all the models but SVM.

Part of Speech tags are another way of adding information about the semantic

and they are also considered in the same study. They turn to be not relevant in

that context.

From the literature review, it emerges that the majority of the involved re-

searchers agree on the fact that overall the best traditional models are Naive

Bayes and SVM. Though, Logistic Regression and Random Forest in some cases

give comparable performances. The cited models will be considered for the sub-

sequent analyses.

3.2.2 Neural models

The neural models considered in this section are based on deep neural networks.

In [7], Paliwal, Kumar Khatri and M. Sharma apply the simplest form of artificial

neural network (ANN) to run Sentiment Analysis. Despite in all the previous

papers the results are based on accuracy only, here also precision and recall are

included to measure the performance of the ANN. The authors finally state that

such a type of neural network is very efficient in predicting the result with a high

accuracy.

In [3] Jain & co. apply sentiment analysis on four small datasets, applying

dropout to control overfitting. A hybrid approach made up by a Convolutional

Neural Network (CNN) and Bidirectional Long Short Term Memory neural net-

work (Bi-LSTM) is presented. The proposed method has been compared with var-

11

ious machine learning based methods and the experimental results show that the

proposed method outperforms the existing methods over the considered datasets.

A similar solution is provided by a group of scientists lead by Mathieu Cliche dur-

ing the SemEval 2017 (International Workshop on Semantic Evaluation). They

won the competition using 10 CNN and 10 Bi-LSTM and applying soft-voting

to ensemble the models, boosting the accuracy while reducing the variance [11].

The effect of applying a CNN is similar to using an N-gram approach in a non

neural model.

3.2.3 Ready-to-use services

Recently, several top-tech companies are offering ready-to-use services that per-

form sentiment analysis applying state of the art techniques. Some of these

services are free, or partially free up to a certain monthly use, some others are

offered under pay-per-use plans at competitive prices. Here some of the main

ones are reported and briefly described to allow getting insights about them. It’s

worth of note that sentiment models are defined for a particular language, hence

each service works only with the specific set of languages it has been thought for.

Ready-to-use services are extremely useful when limited expertise is available.

3.2.3.1 Amazon Comprehend

Amazon Comprehend1 is a natural language processing service offered by Ama-

zon Web Services. It is provisioned under a pay-per-use policy and it enables

a broad range of applications that can analyze text exploiting machine learning

techniques. Some of them are, for example, Entity Recognition, Sentiment Anal-

ysis, Syntax Analysis, Key Phrase Extraction, and Language Detection.

1https://aws.amazon.com/comprehend

12

The official description highlights that no experience with machine learning frame-

works and/or models is required.

3.2.3.2 Google Cloud Natural Language API

The Natural Language API, offered by Google Cloud2 , is extremely compre-

hensive for text analysis. It allows to identify the entities present in the text,

it evaluates the polarity of the text at all three levels (document, sentence and

entity level) and it carries out the PoS recognition enhanced by the morpholog-

ical analysis of each identified part and the detection of dependencies between

the words in the sentence. Each API supports different set of languages, though

none of them works with Nordic languages. The Natural Language API supports

17 languages, including the major ones (English, Spanish and Chinese).

3.2.3.3 Meaning Cloud

The Meaning Cloud API3 analyses the text to determine if it expresses a positive,

negative or neutral sentiment. the local polarity of the different sentences in the

text is identified and the relationship between them evaluated. It is possible to

detect the polarity of user-defined entities and concepts, making the service a

flexible tool applicable to any kind of scenarios. Beside the availability of several

common languages, there exist a Nordic pack that includes Danish, Swedish,

Norwegian and Finnish.

2https://cloud.google.com/natural-language
3https://www.meaningcloud.com/developer/documentation

13

14

Chapter 4

Materials and method

In this chapter the methodology, data and tools used to run the analysis are

introduced to the reader in order to explain the main phases that have been

carried out during the research and to facilitate replicability of the entire work.

4.1 Dataset

The dataset considered for the analysis is the famous sentiment140 dataset. It is

a public dataset that contains 1,600,000 Tweets extracted using the twitter API
1. Tweets are classified as positive or negative according to a semi-supervised

classification technique called distant supervision. It uses rule based heuristics

to produce labeled data. It thus allow to annotate a big corpus without manual

labelling that it way more expensive. The process is described in detail in [23].

Each data entry has the following features:

• target: the polarity of the tweet (negative or positive)

1https://developer.twitter.com/en/docs/tweets/search/overview

15

• ids: an integer that represents the id of the tweet;

• date: the timestamp of the tweet;

• flag: the query that has been used to retrieve the Tweet with the Twitter

API. If there is no query, then this value is NO_QUERY.

• user: the username of the user who published the message;

• text: the actual content of the tweet.

This is only a subset of the information that is obtained by using the Twitter

API and it can be useful in other settings. Though, to accomplish the task of

classifying the sentiment, it is enough to consider the fields target and text as

they are the only ones that provide significant information for this purpose. It

is not in the interest of this thesis to research further relationships between the

features that could potentially improve the performance.

A descriptive analysis has been performed to better understand the dataset and

get some insights about it. It is reported in the very next section along with some

pre-processing tricks to reduce the noise of the data.

4.2 Analysis of the dataset and pre-processing

The descriptive analysis has been carried out at both character and word level,

before and after the Pre-processing phase, to identify relevant insights about the

length of the Tweets and the amount of information that is used to feed the

models.

Figure 4.1 shows how the Sentiment140 dataset looks like, before any further

operation performed on it.

16

Figure 4.1: Original Sentiment140 dataset.

To the extent of this thesis there is no interest in looking for relationships among

the features. For example, creating a history of the user and considering it to

understand if the user is biased toward negative or positive writing could help

increasing the performances of the model but it would require a much more

complex processing of the available information. Hence, only target and text

are kept for further analysis. Figure 4.2 shows the subset of feature further

considered.

Figure 4.2: Restricted Sentiment140 dataset.

1600000 labelled messages are available, they are either positive or negative and

the two classes are perfectly balanced as shown in Figure 4.3. This has been done

of purpose by the creators of the dataset to limit the complexities of dealing with

unbalanced classes and it, thus, simplifies the following phases.

17

Figure 4.3: Distribution of the messages.

To understand the effect of pre-processing, a quantitative analysis has been run

before taking any action on the corpus. Key statistics about the length of the

Tweets are shown here in summary in Table 4.1. More detailed information is

available in the appendix A.

Average number of characters 74

Longest tweet 374 characters

Shortest tweet 6 characters

Number of characters, quantile 0.99 141

Average number of words 13

Longest tweet 64 words

Shortest tweet 1 word

Number of words, quantile 0.99 28

Number of unique words 1350598

Table 4.1: Key statistics about the Tweets, before pre-processing

As it is evident, despite the maximum limit for a Tweet is 280 characters, 99%

18

of Tweets is made up by only half of the allowed characters.

Table 4.2 shows the exact same statistics, this time after pre-processing of the

data. Hashtags, mentions and URLs are removed to reduce the noise of the

dataset, since they do not contribute to bring information necessary for the fi-

nal classification. At the same time, punctuation, numbers and stopwords have

been removed. The complete set of stopwords, taken from the Natural Language

Toolkit (NLTK) library, is available in the appendix B.

Average number of characters 40

Longest tweet 189 characters

Shortest tweet 0 characters

Number of characters, quantile 0.99 96

Average number of words 6

Longest tweet 50

Shortest tweet 0

Number of words, quantile 0.99 16

Number of unique words 249145

Table 4.2: Key statistics about the Tweets, after pre-processing

Removing hashtags and mentions, drastically reduced the number of unique words

mostly because mentions refer to usernames that are unique by definition. At

the same time, removing the stop words reduced the total number of words.

Quantitatively, the number of unique words in the corpus dropped by 81.55%

while total words dropped by 48.48%. Dealing with the clean data enabled faster

training and thus allowed to run multiple experiments despite the limited com-

putational resources available.

19

4.3 Methodology

A precise flow have been followed to run the experiments, in order to avoid intro-

ducing bias due to unstructured executions. Starting from the raw dataset, data

have been pre-processed removing hashtags, mentions, punctuation and stop-

words, to reduce the uninformative data, thus reducing the overall size of data

to manage, speeding up the experiments.

To use textual data for predictive modeling, the text must be transformed to

be utilizable by the algorithms that are designed to work with either integers or

real numbers. The transformation consists in two steps: tokenization and vec-

torization. Tokenization refers to the split of the text into words, or tokens, that

represent the atomic unit of information. The text is so seen as a sequence of

tokens and the next step, vectorization, maps tokens to a numerical representa-

tion.

So, before using the data they must be encoded in a proper way. Each encod-

ing technique represents data in a different way and hence it can influence the

performances of the models. Count vectorizer and tf-idf vectorizer have been

identified to satisfy this need when dealing with traditional models. Likewise, for

the neural models, data have been encoded with the TensorFlow vectorizer.

These techniques are shortly described below.

4.3.1 CountVectorizer

CountVectorizer is part of the library Scikit-learn [20]. It allows to convert a

collection of text documents to a matrix of token counts. The result is a sparse

representation of the counts using scipy.sparse.csr_matrix. The new representa-

tion of the data has a number of features equal to the vocabulary size found by

analyzing the data. By the way the messages are composed by only a few words

20

with respect to the total number of tokens, thus, the use of sparse matrices allows

to reduce a lot the space required to store it.

It is a simple yet basic approach that do not considers the order of the words in

a sentence and the importance of each word.

Figure 4.4 shows how it works with a simple example.

Figure 4.4: How CountVectorizer works.

4.3.2 Tf-idf vectorizer

Following the idea that a word that occurs many times is less informative in the

encoded vectors than each other word that occurs less frequently, an alternative

to the count vectorization is to calculate word frequencies. The most popular

method that exploits this approach is called “Term Frequency - Inverse Docu-

ment Frequency”. Each word is assigned a value that is intended to reflect how

important that word is to a document in a collection of documents [21]. This

value, called tf-idf value, is the product of term frequency and inverse document

frequency.

Defining nt as the number of times the term t appears in a document and Nt as

the total number of terms in the document, the term frequency of the term t is

defined as follows:

TF (t) = nt

Nt
(4.1)

21

In the same way, defining Nd at the total number of documents, or messages in

the context of this thesis, and nd,t ad the number of documents that contain the

term t, the inverse document frequency is defined as:

IDF (t) = loge(Nd/nd,t) (4.2)

The final value is nothing but the product of these two factors:

TF -IDF (t) = TF (t) · IDF (t) (4.3)

It increases proportionally to the number of times a word appears in the document

and is offset by the number of documents in the corpus that contain the word,

which helps to adjust for the fact that some words appear more frequently in

general.

4.3.3 TensorFlow vectorization

The vectorization process started with the built-in Tokenizer available in Tensor-

Flow. The process in made up of three steps. The first step creates the vocabulary

of tokens to be used in the next step. This is the transformation of the sentences,

seen as sequences of words, as sequences of tokens, replacing each word with its

representation as token. Finally, since the neural networks need to work with in-

puts of equal size, every sequences of tokens id padded, adding zeros to the right,

until the maximum specified length is reached. While allowing the processing

of the data as integer numbers, it also reduces the overall memory to store the

information since every word, composed by different characters, is mapped to a

single integer. Figure 4.5 shows an example of this kind of vectorization.

22

Figure 4.5: Vectorization with TensorFlow.

Figure 4.6 schematizes the entire process from the raw data to the obtained

models, highlighting the main phases and some key information that is crucial

for each phase.

(a) Traditional models (b) Neural models

Figure 4.6: Overview of the main phases of the whole process

4.4 Metrics

Accuracy, precision and recall are common metrics to measure performances of

classification models. To remind their definition it is useful to introduce the

23

confusion matrix. It is a matrix that summarizes how many input elements

have been correctly classified and how many have not. Each row of the matrix

represents the instances in a predicted class while each column represents the

instances in an actual class. Classified elements fall into the following categories:

• True positives (TP): positive items correctly classified as positive;

• True negatives (TN): negative items correctly classified as negative;

• False positives (FP): negative items wrongly classified as positive;

• False negatives (FN): positive items wrongly classified as negative;

Figure 4.7 helps to visualize how they fit into the four categories. The perfor-

mance metrics are defined with respect to these terms.

Figure 4.7: Confusion matrix for binary classification.

Accuracy represents the percentage of total items correctly classified.

Accuracy = TP + TN

TP + TN + FP + FN
(4.4)

It is meaningful and easy to interpret when the two classes are balanced, like in

the case of the Sentiment140 dataset.

24

Precision represents the percentage of items correctly identified as positive out of

total items classified as positive.

Precision = TP

TP + FP
(4.5)

Recall, also called Sensitivity in binary classification, is the percentage of items

correctly classified as positive out of total positives

Recall = TP

TP + FN
(4.6)

4.5 Tools

The Jupyter Notebook computational environment has been used to implement

the models and run the experiments related to the performances achieved by all

of them. The programming language has been Pyhton 3.7.

To complement the functionalities offered by the built-in Python libraries, Nat-

ural Language Toolkit (NLTK), Scikit-learn, Tensorflow and Keras have been

used. With the last two libraries exclusively considered for the neural models.

The interactive setting of Jupyter notebooks turned to be extremely valuable and

easy to use, especially when dealing with ready-to-use services.

Next chapter introduces the models that have been selected after the literature

review.

25

26

Chapter 5

Modelling

In this chapter, the models selected for the comparison are described. Detailed

information about the parameters used during the training are included, to facil-

itate the replication of the experiments.

5.1 Traditional approaches

Naive Bayes, Logistic Regression, Support Vector Machine and Random Forest

are among the best non neural models for Sentiment Analysis according to the

literature review that has been carried out. The scikit-learn library offers an

implementation of these classifiers.

5.1.1 Naive Bayes

The Naive Bayes classifier is a probabilistic classifier based on Bayes’ theorem

and the assumption that features are independent of one another given some class

[22]. The default scikit-learn implementation of Multinomial Naive Bayes is the

27

one that is used for the experiments. According to [22], Naive Bayes is one of the

most powerful algorithms for classification, and it works well even with millions

of data entries, being fast to train.

5.1.2 Support Vector Machine

A Support vector Machine (SVM) is an efficient supervised machine learning

algorithm used for classification. It is a non-probabilistic linear classifier that

looks for the separating hyper-plane that maximizes the distance between the

hyper-plane itself and the closest data point, namely margin. It performs very

well with a limited amount of data and its effect increases with the increase in

dimensional space [24].

The fit time scales at least quadratically with the number of samples and may

be impractical beyond tens of thousands of samples [20].

After some experiments run with different combinations of kernel and gamma, it

has been decided to use a radial basis function as kernel function. Moreover, the

value of the C parameter, that controls the cost of classification errors, has been

set to 1. In general, a high value of C leads to a tighter margin, trying to avoid

errors, that are heavily penalized and possibly leading to overfitting.

5.1.3 Random Forest

Random forest is an ensemble learning method that can be used for classification

or regression. It works building a multitude of decision trees at training time

and outputting the class that is the mode of the classes of the individual trees.

The version used for the experiments builds 100 trees, also known as estimators.

Generally more estimators correspond to better performance and efficiency. It

exploits the concept of information gain index [12].

28

5.2 Neural approaches

In this section approaches based on neural networks are introduced. TensorFlow

and Keras have been used to write the models. Choices that are valid for all the

implemented networks are presented here, while the specific Keras layers used to

build the networks and the hyper-parameters, optimized through manual tuning

are introduced in the corresponding subsections.

Since output classes are only two, this is a case of binary classification and it is

possible to use binary cross-entropy as loss measure. Being, N the number of

samples, w the weights of the neural network, yi the target label and p(yi) the

predicted label, depending on the weights of the network, the loss is defined as

follows:

L(w) = 1/N ·
N∑

n=1
(yi · log(p(yi)) + (1 − yi) · log(p(1 − yi))) (5.1)

Moreover, the optimizer chosen is the Adam optimizer available within Keras.

Adam optimization is a stochastic gradient descent method that is based on

adaptive estimation of first-order and second-order moments. According to [17],

the method is "computationally efficient, has little memory requirement, invariant

to diagonal rescaling of gradients, and is well suited for problems that are large

in terms of data/parameters". It has been used with default parameters.

5.2.1 Word Embeddings

The vectorial representation is the starting point for the final transformation that

enables the neural networks to learn from the input data. It is referred to as em-

bedding and it is basically a mapping of input data to a vector of real numbers.

The purpose of word embeddings is to capture the semantic meaning, mapping

it to a geometrical space. This is done by associating a numeric vector to ev-

ery word in a dictionary, such that the distance between any two vectors would

29

capture part of the semantic relationship between the two associated words. The

geometric space formed by these vectors is called an embedding space. Ideally,

in a good embedding space, words with similar semantic are placed close to each

other in the space, thus it is possible to classify the overall sentiment of a sen-

tence, analysing the embedding representation of the words contained in it [14].

Keras offers a simple way to generate the embedding space. It is done through the

Embedding layer. It take as input the sequences of integers, that has been gen-

erated through the vectorization, and outputs the new representation exploited

by following layers.

5.2.2 Simple Artificial Neural Network

The simplest neural approach identified after the literature review is a feed-

forward neural network. It is an artificial neural network wherein connections

between the neurons do not form any cycle. The considered version only exploits

1 hidden layer. Figure 5.1 represents graphically the layers of this model.

Figure 5.1: Layers of the artificial neural network.

5.2.3 Convolutional Neural Network

Figure 5.2 represents the layers of a Convolutional Neural Network(CNN). A

CNN is another kind of feed forward neural network. The peculiarity of this

approach is the application of two operations, convolution and pooling, that

produce several changed representations of the input data, allowing to identify

features in it. The obtained representations are a compression of the initial data,

30

aiming at highlighting relevant information.

Figure 5.2: Layers of the convolutional neural network.

5.2.4 Bidirectional Long Short Term Memory

LSTM is a particular typology of recurrent neural network (RNN). The archi-

tecture of a RNN enables cyclic connections, allowing the network to reuse the

output of neurons as input to other neurons backward, in combination with the

current input data, thus establishing relationships among data. Unfortunately,

when the gap between the relevant input data is large, the standard RNN fails

at connecting the relevant information. Moreover, the standard RNN, is able

to process only previous context, so new information can not influence the past

directly. LSTM address the problem of connecting far information, introducing

the ability to keep relevant information "in-memory". The Bidirectional prop-

erty overcomes the other shortcoming allowing training in both time directions

simultaneously, with separate hidden layers [5]. It actually uses two LSTMs, one

LSTM acting in forward direction and the other one in backward direction.

Since it involves much more operations than the other neural models introduced

above, it is way slower to train. Figure 5.3 shows the shows a representation of

the layers of the BiLSTM.

Figure 5.3: Layers of the Bi-LSTM neural network.

31

5.2.5 Hybrid Neural Network

Following the approach presented in [3] a hybrid solution considering both a

CNN and Bi-LSTM has been built. Despite following its intuition, the models

are combined in a different way than the one presented there. The novelty here,

is given by the pipeline of the two processing operations. Instead of using an

ensemble technique, the output of the CNN is provided as input to the Bi-LSTM

in the attempt of catching more information about the semantic of the sentences.

Figure 5.4 clarifies the layers involved in the complete model.

Figure 5.4: Layers of the hybrid neural network.

5.3 Ready-to-use services

Google Cloud Natural Language API

Google Natural Language API follows a modular design that allows to get only

the analysis there is interest in. It provides document and sentence level senti-

ment analysis, entity recognition, entity level sentiment analysis, and other text

annotations independently accessible. The language of the text is automatically

detected at run-time. If the language is not recognized as one of the few that are

supported, an exception is raised. Supported language for Sentiment Analysis at

document or sentence level, at the time of this writing are 17 and all the major

ones are available. English, Japanese and Spanish only are support at an entity

32

level.

The structure of the response is clear and contains the sentiment score for the

document and for each identified sentence. A magnitude value is associated to the

sentiment score and it shows the intensity of that sentence. A “magnitude” is a

number ranging from 0 to infinity. It represents the weight of sentiment expressed

in the statement, regardless of being positive or negative. Longer blocks of text

with heavily weighted statements have higher magnitude values. The “Sentiment

score” is a real number and it ranges from -1 to +1. -1 is really bad to +1 being

very good. Anything close to 0 is a neutral score. Table 5.1 is taken from the

official documentation and shows some sample values and how to interpret them:

Sentiment Sample Values

Clearly Positive "score": 0.8, "magnitude": 3.0

Clearly Negative "score": -0.6, "magnitude": 4.0

Neutral "score": 0.1, "magnitude": 0.0

Mixed "score": 0.0, "magnitude": 4.0

Table 5.1: How to interpret the results of a Google Natural Language API call

5.3.1 Amazon Comprehend

The API of interest for the Sentiment Analysis task is accessible through Boto,

the Amazon Web Services (AWS) SDK for Python that enables easy access to

the API as well as to low-level AWS services.

Comprehend estimates the likelihood of a message to belong to the classes Pos-

itive, Negative, Neutral or Mixed and outputs the one with the highest value.

It allows 50k API calls per month for a few services, among with there is the

Sentiment Analysis one.

33

5.3.2 Meaning Cloud

Meaning cloud offers a handy API that is available for free up to 20000 requests.

Premium plans allow to release the limit. Though even with the free plan it is

possible to have access to the full analysis and to gain evidence of the perfor-

mances of the service. To run the Sentiment Analysis it is necessary to send a

“SentimentRequest”, specifying the text and its language, in this case English.

The results are wrapped into a “SentimentResponse” that includes much more

than the information needed for the purpose of this thesis. For example, entity

level SA is performed within the same API call.

Restricting the information to what is meaningful for the analysis of accuracy,

precision and recall, the only relevant fields are “score_tag” and “confidence”.

Score_tag is the label predicted by the model. It is one of the following values:

• P+: strong positive;

• P: positive;

• NEU: neutral;

• N: negative;

• N+: strong negative;

• NONE: without sentiment;

Confidence represents the confidence associated with the prediction. Its value is

an integer number in the 0-100 range and it depends on the total information

available to take the decision. Full documentation is available in the official

website. 1.

1https://www.meaningcloud.com/developer/sentiment-analysis/doc/2.1/response

34

Chapter 6

Experiments, results and

discussion

This chapter presents the experiments conducted on all the models introduced in

the previous chapter. Accuracy, precision, recall and time needed for the compu-

tation to finish are presented here for each model along with some considerations

on the results obtained. The workflow followed to run the experiments has been

already presented in section 4.

6.1 Traditional models

This section presents the results of the experiments for the traditional models. To

facilitate the analysis of the algorithms given the available computational power,

a subset of 160k Tweets has been randomly selected from the original dataset

that contains 1.6 million messages. Thus, the results should be considered as a

proxy of the real performances over the entire dataset.

Models have been trained on 80% of the sample data and tested on the remaining

35

20%.

To investigate the potential effect of a different representation of the data, two

round of tests have been proposed for these subset of models. The first one,

encoding the data with the count vectorizer and the second one encoding the

data with the tf-idf vectorizer.

6.1.1 Encoding with a count vectorizer

The results of the execution of the experiments after encoding the messages with

the count vectorizer available in the sklearn library are presented in Table 6.1.

Model Accuracy Precision Recall Execution time

Naive Bayes 0.7550 0.7473 0.7710 0.64 s

Logistic Regression 0.7631 0.7761 0.7399 3.79 s

SVM 0.7282 0.7753 0.6430 1521.61 s

Random Forest 0.7482 0.7441 0.7568 332.93 s

Table 6.1: Performances of the traditional models, count vectorizer

6.1.2 Encoding with a tf-idf vectorizer

The same experiments, this time encoding with the tf-idf vectorizer offered by

the sklearn library led to the results shown in Table 6.2.

Model Accuracy Precision Recall Execution time

Naive Bayes 0.7499 0.7408 0.7690 0.61 s

Logistic Regression 0.7664 0.7776 0.7466 1.65 s

SVM 0.7331 0.7525 0.6950 1926.74 s

Random Forest 0.7497 0.7512 0.7458 282.98 s

Table 6.2: Performances of the traditional models, tf-idf vectorizer

36

According to the values of the metrics, it emerges that the encoding of the data

does not actually significantly affect the classification capabilities of the models.

The models provide comparable performances, though Logistic Regression seems

to ensure slightly better accuracy in this setting, requiring extremely low training

time.

SVM required more than 3000x time than Naive Bayes that turned to be the

fastest model.

6.1.3 Analysis of the agreement

Table 6.3 shows when the models agree on the correct classification. The goal

of this analysis is to check how often the different models agree and to try to

understand if there is margin to think about a possible combination of the models

to improve the overall performances. The analysis is limited to the accuracy for

the benefit of display clarity.

Metric Tf-idf Count

Total agreement 60.11% 58.28%

Majority agreement 72.13% 71.96%

At least two 80.23% 80.91%

At least one 87.44% 88.31%

Average accuracy 74.97% 74.86%

Maximum accuracy 76.64% 76.31%

Table 6.3: Comparison of agreement, traditional models

Despite a lower percentage of times when all the models agree on the correct class,

applying a majority voting policy, the accuracy would be close to the average

one obtained by considering models individually. Probably, the most interesting

finding is that even being able to identify the right model for the right input and

37

encoding the data in the luckiest way, there would be 11.69% of wrongly classified

sentences because none of the models catches the right class.

6.2 Neural models

Performances of neural models are here shown. The split chosen for this category

considered also a validation set that has been used to track validation error after

each iteration of the training phase. Hence the split in this case was 60% training

set, 20% validation set and 20% test set, training on 96k samples, validation and

testing on 32k samples each.

Particular attention has been paid to ensure that the test data set is equivalent

to that used for traditional models.

6.2.0.1 Simple ANN

The results of running the simplest of the neural approaches are shown in sum-

mary in Table 6.4. The model has been trained for five epochs to understand

the trend of the loss and the accuracy. Figure 6.1 shows how those two metrics

behaved.

Simple ANN

Accuracy 0.7248

Precision 0.7295

Recall 0.7229

Execution time 634.1 s

Time/epoch 126.82 s

Table 6.4: Performances of the simple ANN

38

(a) Accuracy (b) Loss

Figure 6.1: Accuracy and Loss behaviour during the training phase of the ANN

Despite the model is simple, it overfits just after two epochs, sign that the learning

rate could be too big. Though, running the experiments with a smaller learning

rate over a few epochs, gave a similar plot.

6.2.0.2 Convolutional NN

Table 6.5 shows the same experiments repeated with the CNN. The results turned

to be slightly better. In particular, the increase of the precision is worth of

mention. Figure 6.2 shows the behaviour of the Accuracy and the Loss of this

model.

CNN

Accuracy 0.7434

Precision 0.7638

Recall 0.7340

Execution time 732.51 s

Time/epoch 146.50 s

Table 6.5: Performances of the CNN

39

(a) Accuracy (b) Loss

Figure 6.2: Accuracy and Loss behaviour during the training phase of the CNN

Even in this case, the model seems to overfit the training data after a few epochs,

though the increase of the validation loss is still modest and the validation accu-

racy is steady.

6.2.0.3 Bidirectional LSTM

Bidirectional LSTM classified test samples better than the previous models.

Though, it did not come for free: training time is way longer than the previ-

ous cases. Table 6.6 shows results of the training, while Figure 6.3 shows the

behaviour of the Accuracy and Loss.

Hybrid

Accuracy 0.7546

Precision 0.7439

Recall 0.7602

Execution time 3317.64 s

Time/epoch 663.53 s

Table 6.6: Performances of the bidirectional LSTM

40

(a) Accuracy (b) Loss

Figure 6.3: Accuracy and Loss behaviour during the training phase of the Bi-

LSTM

Analysing the plots, it emerges that initially the loss is huge but just after the

first epoch it converges to values that are comparable to the previous models.

Validation accuracy is steady, despite the constant rise of training accuracy.

6.2.0.4 Hybrid approach

The model composed by a CNN and Bi-LSTM is more complex than the Bi-LSTM

alone, though it requires less time to compute. This is due to the compression

operated by the CNN that forces the Bi-LSTM to work with less data and thus to

be faster. As Table 6.7 shows, its performances are slightly worse than the stand

alone Bi-LSTM and it seems that is not worth making the model more complex,

at least with this setting and hyper-parameters.

41

Bi-LSTM

Accuracy 0.7439

Precision 0.7264

Recall 0.7528

Execution time 2255.36 s

Time/epoch 451.07 s

Table 6.7: Performances of the hybrid NN (CNN + Bi-LSTM)

(a) Accuracy (b) Loss

Figure 6.4: Accuracy and Loss behaviour during the training phase of the hybrid

NN (CNN + Bi-LSTM)

The behaviour of loss and accuracy, shown in Figure 6.4, is similar to the one of

the Bi-LSTM, sign that the recurrent nature on the network prevails even in this

case.

The performances of all the neural models are here summarized in Table 6.8, to

allow a simpler visual comparison. The Bi-LSTM model provided the highest

accuracy and it is highlighted in green. Table 6.9 shows it is also the model that

required the longest training time.

42

Model Accuracy Precision Recall

Simple NN 0.7248 0.7295 0.7229

CNN 0.7434 0.7638 0.7340

Bi-LSTM 0.7546 0.7439 0.7602

Hybrid 0.7439 0.7264 0.7528

Table 6.8: Summary of the performances of the neural models

Model Execution time Time per epoch

Simple NN 634.1 s 126.82 s

CNN 732.51 s 146.50 s

Bi-LSTM 3317.64 s 663.53 s

Hybrid 2255.36 s 451.07 s

Table 6.9: Summary of the time required by neural models

Overall, it seems that nature of the network is not a game changer. It is probably

due to the size of the sample dataset that is considered. Moreover, with neural

approaches the models overfit in a few epochs, even applying dropout with a

relevant ratio. Also in this case the size and/or the nature of the dataset could

be the main cause.

6.2.1 Analysis of the agreement

Table 6.10 shows the same analysis performed for the traditional models, this

time applied to the neural ones. The analysis is limited to the accuracy for the

benefit of display clarity.

43

Total agreement 56.71%

Majority agreement 71.30%

At least two 80.13%

At least one 88.53%

Average accuracy 74.17%

Maximum accuracy 75.46%

Table 6.10: Comparison of agreement, neural models

Similar conclusions to the traditional models case can be extrapolated here. There

are no significant differences with respect to the agreement percentages of the

traditional models.

6.3 Ready-to-use services

This section presents the results obtained by using the ready-to-use services

widely described in the previous chapters. Overall, the services have been easy

to use and interpret, with no machine learning expertise required. After running

the API calls, some further analysis has been done to process the raw information

and generate the confusion matrices and the key performance indicators accuracy,

precision and recall.

In some cases, mapping between classes has been forced to allow having a com-

parison with the "handmade" models. For example, when both strongly positive

and positive shades were available they have been mapped to positive. The same

has been done for the negative counterpart. Messages predicted as Neutral or

with no sentiment have not been considered for the performance calculation to

comply with the initial labelling of the dataset that do not contain neutral values.

44

6.3.1 Meaning cloud

Meaning cloud had a limited free account that allowed to run 20k API calls. The

following results has been obtained running 15k API calls since some calls were

needed to set up the environment and get confidence with the results provided.

Table 6.11 shows an overview of the results obtained.

Average time per call 0.9088 s

Average confidence 99.03%

Classified as Neutral 536 (3.57%)

Classified as "No sentiment" 4717 (31.45%)

Valid entries 10283

Accuracy 0.673

Precision 0.669

Recall 0.720

Table 6.11: Statistics of Meaning Cloud Sentiment Analysis API

31.45% of the analysed messages resulted to do not contain any sentiment accord-

ing to this service. Given the high weight with respect to the total of messages,

the performances are certainly optimistically biased.

6.3.2 Google Cloud Natural Language API

Google Cloud Natural Language API offered a much more flexible free tier that

includes some credits to run a much more significant number of calls. Though,

to simplify the comparison of the performances, even in this case 15k API calls

are considered.

The sentiment is represented as a real value in [-1;+1], with -1 being the strongest

negative and +1 the strongest positive. This scale naturally includes neutral

45

or mixed values that should not be considered in the count according to the

chosen policy. Hence, messages with a predicted sentiment equal to zero are not

considered in the performance evaluation.

Table 6.12 shows an overview of the results.

Average time per call 1.2401 s

Classified as Neutral 1788 (11.92%)

Valid entries 13212 (88.08%)

Accuracy 0.710

Precision 0.694

Recall 0.753

Table 6.12: Statistics of Google Cloud Natural Language API

Even in this case a quite big amount of information is lost to make the com-

parison possible. Anyway the performances of this model are comparable to the

performances of the traditional and neural ones.

6.3.3 Amazon Comprehend

The Sentiment Analysis API within Amazon Comprehend classifies text as either

Positive or Negative or Neutral or Mixed. It outputs both the final predicted

class and an array of likelihood to all the possible labels. In the picture, a sample

response is shown. In this case the message is classified as Positive with more

than 98% of confidence.

Figure 6.5: Sample response to an API call of Amazon Comprehend.

46

Table 6.13 shows an overview of the results obtained testing on 15k samples.

Average time per call 1.3201 s

Classified as Mixed 911 (6.07%)

Classified as Neutral 6068 (40.45%)

Valid entries 8021 (53.47%)

Accuracy 0.769

Precision 0.750

Recall 0.790

Table 6.13: Statistics of Amazon Comprehend Sentiment Analysis API

Even in this case a quite big amount of information is lost to make the allow a

fair comparison. Anyway the performances of this model are comparable to the

performances of the traditional and neural ones, if samples classified as neutral

are skipped.

6.3.4 Analysis of the agreement

Table 6.14 shows the same analysis performed for the traditional models, this

time applied to the neural ones. Even in this case, the analysis is limited to the

accuracy for the benefit of display clarity.

In this case, there is no need to skip neutral values, and values classified as neutral

are considered as wrongly classified.

Total agreement 29.38%

Majority agreement 48.62%

At least one 71.73%

Table 6.14: Comparison of agreement, ready-to-use services

47

The potential accuracy, assuming it would be possible to select the correct pre-

diction in every case, is quite high and it is likely that it is pessimistically biased

since a lot of sentences have been classified as neutral by the considered services.

6.4 Final comparison

Table 6.15 and Table 6.16 summarize the performances of all the models and

highlights the best model by typology of approach.

Model Accuracy Precision Recall

Traditional models (count)

Naive Bayes 0.7550 0.7473 0.7710

Logistic Regression 0.7631 0.7761 0.7399

Support Vector Machine 0.7282 0.7753 0.6430

Random Forest 0.7482 0.7441 0.7568

Traditional models (tf-idf)

Naive Bayes 0.7499 0.7408 0.7690

Logistic Regression 0.7664 0.7776 0.7466

Support Vector Machine 0.7331 0.7525 0.6950

Random Forest 0.7497 0.7512 0.7458

Table 6.15: Summary of the performances of all the models - part 1

Finally, Table 6.17 shows the analysis of the agreement, extended to both tra-

ditional and neural models, to understand if there is a chance of improvement

given the completely different nature of the two typologies of approaches. Since

the performances of ready-to-use services have been assessed on a different subset

of data, it is impossible to include them in this comparison. Moreover, only the

prediction obtained after the tf-idf encoding for the traditional models is consid-

ered, to simplify the visualization and because the outcome of the two modalities

48

Model Accuracy Precision Recall

Neural models

Simple NN 0.7248 0.7295 0.7229

Convolutional NN 0.7434 0.7638 0.7340

Bidirectional LSTM 0.7546 0.7439 0.7602

CNN + Bi-LSTM 0.7439 0.7264 0.7528

Average metrics 0.7467 0.7524 0.7364

Best model LR (tf-idf) LR (tf-idf) NB (count)

Ready-to-use services

Google Cloud NLP API 0.710 0.694 0.753

Amazon Comprehend 0.768 0.750 0.790

Meaning Cloud 0.673 0.669 0.720

Table 6.16: Summary of the performances of all the models - part 2

is not significantly different.

8 different models are so compared: Naive Bayes, Logistic Regression, SVM,

Random Forest, ANN, CNN, Bi-LSTM and the hybrid approach.

Total agreement 48.28%

At least seven 61.50%

At least six 69.10%

At least five 74.69%

At least four 79.17%

At least three 83.33%

At least two 87.79%

At least one 92.72%

Table 6.17: Comparison of agreement, traditional and neural approaches

49

The "irreducible error" drops to 7.28%, but selecting the right model would be-

come more and more difficult in such a context. Applying a majority voting

policy would produce the same average accuracy that is obtained using a single

model. This approach would be hopefully more robust and less sensitive to noise

but at the same time unreasonably complex for ordinary applications of Senti-

ment Analysis. Further research is needed to understand it is possible to reach

that level of accuracy.

50

Chapter 7

Conclusions

This chapter summarizes the conclusions drawn from this research and provides

suggestions for possible further research.

7.1 Results

It is convenient to start from the results deriving from data analysis and then

continue with the models and their performances.

The analysis of the dataset provided interesting insights on the Sentiment140

dataset. First of all, although the maximum limit for a Tweet is 280 characters,

99% of the Tweets is made up of only half the allowed characters. In addition,

the pre-processing carried out reduced the number of unique words in the corpus

by 81.55 % while the total words decreased by 48.48%. Managing clean data

allowed faster training and therefore allowed more experiments to be performed

despite the limited computing resources available.

Regarding the models and their performances, it is appropriate to follow the same

division that guided the drafting of the document. As for traditional models, the

51

model that produced the best accuracy, with an extremely low training time, is

Logistic Regression, which managed to correctly classify 76.64% of the test data.

Furthermore, despite some fluctuations in the exact values of the metrics, encod-

ing with Count vectorizer or the tf-idf vectorizer did not significantly change the

outcome.

Turning to neural models, Bi-LSTM is the best model with 75.46% accuracy.

However, this model requires much more training time than all other models.

Finally, considering the services ready for use, Amazon Comprehend has proven

to be the best with an accuracy of 76.8%. Unfortunately, however, it was not

possible to carry out a highly structured analysis in this case because each ser-

vice proposed a different scale of results, which was adapted to allow comparison.

The use of ready-to-use services has not produced better results than the models

implemented, although they can exploit more complex models, trained on sig-

nificant amounts of data. On the other hand, they require no machine learning

skills or computational power and are available at a very inexpensive price.

In general, the values of the accuracy obtained are more or less equivalent for

each model. The oscillations are almost irrelevant and it should be taken into

account that those values are the result of a fine tuning, even if only manual,

to optimize the performance on the subset of samples extracted from the initial

data set. So there seems to be no clear winner considering just the accuracy.

However, considering the skills required and the time needed for the calculation,

the most promising models for this specific scenario seem to be Logistic Regres-

sion and Naive Bayes.

As for the analysis of when the models agree on the correct final decision, the

results are more interesting.

For traditional and neural models considered separately, the results are similar.

For about 12% of the test data, no model guesses the correct class, therefore it

seems to be an insurmountable limit with current models. By applying a majority

52

voting policy, the accuracy is equal to the average obtained by considering the

models individually.

Considering all the models at the same time the "irreducible error" drops to 7.28

% which leaves room for an accuracy that goes well beyond the capabilities of the

models that currently existed. Again, by applying a majority voting policy, the

accuracy is equal to the average. however, it is reasonable to imagine that such

a model is more robust and less sensitive to noise. At the same time, it would be

unreasonably complex for normal Sentiment Analysis applications. More research

is needed to understand if that level of accuracy can be achieved.

7.2 Further steps

According to the scientific literature analyzed, it seems that the results obtained

by traditional models are in line with the state of the art. As for neural models,

they have the potential to outperform traditional models, although training re-

quires significant expertise and resources. It is clear that the models considered

are influenced by excessive adaptation and it is therefore probable that there is

still room for improvement. A possible improvement for neural approaches con-

sists in using already trained embeddings, instead of training them only on the

single corpus considered. This measure could potentially overcome the limitation

of access to restricted computational resources and therefore the need to consider

a limited dataset. Furthermore, further research, including a more structured

fine-tuning, is necessary to investigate the causes of overfitting and make the

most of their potential.

Finally, by studying the agreement between models, it was shown "when" they

agree. It would be appropriate to investigate whether there are clear reasons

on "why" the models agree or not on the classification of the input data, to

understand if considering a super model composed of various sub-models among

53

those analyzed here, it is possible to improve its overall performance.

54

Appendix A

Dataset analysis

The tables below show some aggregated statistics about the length of the Tweets

at a word and character level before applying any preprocessing techniques.

Average number of words 13

Longest tweet (words) 64

Shortest tweet (words) 1

Number of unique words 1350598

Total number of words 21081841

Number of words, quantile 0.25 7

Number of words, quantile 0.5 12

Number of words, quantile 0.75 19

Number of words, quantile 0.9 23

Number of words, quantile 0.99 28

Number of words, quantile 0.999 31

Table A.1: Full statistics about the Tweets, before pre-processing - word level

55

Average number of characters 74

Longest tweet (characters) 374

Shortest tweet (characters) 6

Number of characters, quantile 0.25 44

Number of characters, quantile 0.5 69

Number of characters, quantile 0.75 104

Number of characters, quantile 0.9 130

Number of characters, quantile 0.99 141

Number of characters, quantile 0.999 151

Table A.2: Full statistics about the Tweets, before pre-processing - character level

The tables below show the same aggregated statistics about the length of the

Tweets at a word and character level after the preprocessing phase.

Average number of words 6

Longest tweet (words) 50

Shortest tweet (words) 0

Number of unique words 249145

Total number of words 10860463

Number of words, quantile 0.25 4

Number of words, quantile 0.5 6

Number of words, quantile 0.75 9

Number of words, quantile 0.9 12

Number of words, quantile 0.99 16

Number of words, quantile 0.999 19

Table A.3: Full statistics about the Tweets, after pre-processing - word level

56

Average number of characters 40

Longest tweet (characters) 189

Shortest tweet (characters) 0

Number of characters, quantile 0.25 22

Number of characters, quantile 0.5 37

Number of characters, quantile 0.75 56

Number of characters, quantile 0.9 73

Number of characters, quantile 0.99 96

Number of characters, quantile 0.999 110

Table A.4: Full statistics about the Tweets, after pre-processing - character level

The quantitative effect of pre-processing is shown in the following table.

Figure A.1: Effect of the pre-processing.

Finally, here is a cloud word representation of the corpus, after the pre-processing.

Figure A.2: Cloud word representation of the corpus after pre-processing.

57

Appendix B

List of stop words

0 - shouldn 36 - themselves 72 - weren 108 - so 144 - theirs

1 - we 37 - now 73 - about 109 - don’t 145 - again

2 - of 38 - each 74 - hasn’t 110 - during 146 - can

3 - am 39 - shan 75 - were 111 - he 147 - been

4 - if 40 - me 76 - shouldn’t 112 - by 148 - wasn

5 - through 41 - them 77 - a 113 - above 149 - up

6 - too 42 - both 78 - does 114 - t 150 - whom

7 - o 43 - it’s 79 - needn 115 - couldn’t 151 - y

8 - or 44 - ll 80 - you’re 116 - be 152 - why

9 - such 45 - won’t 81 - the 117 - few 153 - m

10 - more 46 - didn 82 - him 118 - should’ve 154 - itself

11 - below 47 - don 83 - its 119 - they 155 - i

12 - mustn 48 - wouldn’t 84 - mightn 120 - hadn’t 156 - some

Table B.1: Full list of stopwords removed from the corpus, part 1

58

13 - she’s 49 - do 85 - didn’t 121 - shan’t 157 - wasn’t

14 - doesn 50 - who 86 - she 122 - yourself 158 - aren

15 - at 51 - own 87 - these 123 - being 159 - couldn

16 - you’ll 52 - isn’t 88 - hadn 124 - you 160 - haven

17 - and 53 - then 89 - needn’t 125 - no 161 - after

18 - not 54 - ours 90 - hers 126 - had 162 - doing

19 - are 55 - ourselves 91 - re 127 - ain 163 - into

20 - has 56 - very 92 - ma 128 - as 164 - just

21 - but 57 - all 93 - which 129 - their 165 - herself

22 - in 58 - that 94 - only 130 - here 166 - yours

23 - nor 59 - any 95 - s 131 - myself 167 - how

24 - same 60 - against 96 - down 132 - on 168 - mustn’t

25 - isn 61 - haven’t 97 - over 133 - for 169 - while

26 - that’ll 62 - yourselves 98 - weren’t 134 - himself 170 - to

27 - where 63 - aren’t 99 - there 135 - out 171 - wouldn

28 - did 64 - is 100 - will 136 - hasn 172 - other

29 - d 65 - mightn’t 101 - it 137 - with 173 - her

30 - you’d 66 - our 102 - because 138 - between 174 - most

31 - you’ve 67 - those 103 - once 139 - than 175 - this

32 - when 68 - an 104 - doesn’t 140 - his 176 - should

33 - having 69 - further 105 - under 141 - have 177 - until

34 - before 70 - from 106 - off 142 - my 178 - what

35 - was 71 - ve 107 - won 143 - your -

Table B.2: Full list of stopwords removed from the corpus, part 2

59

60

Acronyms

ANN Artificial Neural Network. 11

API Application Programming Interface. 34

AWS Amazon Web Services. 33

Bi-LSTM Bidirectional Long Short Term Memory. 11

CNN Convolutional Neural Network. 11

NLP Natural Language Processing. 1

NLTK Natural Language Toolkit. 19

RNN Recurrent Neural Network. 31

SA Sentiment Analysis. 1

SDK Software Development Kit. 33

SVM Support Vector Machine. 10

URL Uniform Resource Locator. 19

61

Glossary

Natural Language Processing Subfield of linguistics, computer science, in-

formation engineering, and artificial intelligence concerned with the inter-

actions between computers and human languages. 1

Natural Language Toolkit Suite of libraries and programs for symbolic and

statistical analysis in the field of Natural Language Processing. 19

Pre-processing Processing phase including cleaning, normalization, transfor-

mation, feature extraction and selection. 16

Sentiment A personal positive, neutral or negative feeling. 5

Tweets Messages exchanged on the micro-blogging platform Twitter. Their

maximum length is 280 characters. 4

62

List of Figures

4.1 Original Sentiment140 dataset. 17

4.2 Restricted Sentiment140 dataset. 17

4.3 Distribution of the messages. 18

4.4 How CountVectorizer works. 21

4.5 Vectorization with TensorFlow. 23

4.6 Overview of the main phases of the whole process 23

4.7 Confusion matrix for binary classification. 24

5.1 Layers of the artificial neural network. 30

5.2 Layers of the convolutional neural network. 31

5.3 Layers of the Bi-LSTM neural network. 31

5.4 Layers of the hybrid neural network. 32

6.1 Accuracy and Loss behaviour during the training phase of the ANN 39

6.2 Accuracy and Loss behaviour during the training phase of the CNN 40

63

6.3 Accuracy and Loss behaviour during the training phase of the Bi-

LSTM . 41

6.4 Accuracy and Loss behaviour during the training phase of the hy-

brid NN (CNN + Bi-LSTM) . 42

6.5 Sample response to an API call of Amazon Comprehend. 46

A.1 Effect of the pre-processing. 57

A.2 Cloud word representation of the corpus after pre-processing. . . . 57

64

List of Tables

4.1 Key statistics about the Tweets, before pre-processing 18

4.2 Key statistics about the Tweets, after pre-processing 19

5.1 How to interpret the results of a Google Natural Language API call 33

6.1 Performances of the traditional models, count vectorizer 36

6.2 Performances of the traditional models, tf-idf vectorizer 36

6.3 Comparison of agreement, traditional models 37

6.4 Performances of the simple ANN 38

6.5 Performances of the CNN . 39

6.6 Performances of the bidirectional LSTM 40

6.7 Performances of the hybrid NN (CNN + Bi-LSTM) 42

6.8 Summary of the performances of the neural models 43

6.9 Summary of the time required by neural models 43

6.10 Comparison of agreement, neural models 44

65

6.11 Statistics of Meaning Cloud Sentiment Analysis API 45

6.12 Statistics of Google Cloud Natural Language API 46

6.13 Statistics of Amazon Comprehend Sentiment Analysis API 47

6.14 Comparison of agreement, ready-to-use services 47

6.15 Summary of the performances of all the models - part 1 48

6.16 Summary of the performances of all the models - part 2 49

6.17 Comparison of agreement, traditional and neural approaches . . . 49

A.1 Full statistics about the Tweets, before pre-processing - word level 55

A.2 Full statistics about the Tweets, before pre-processing - character

level . 56

A.3 Full statistics about the Tweets, after pre-processing - word level . 56

A.4 Full statistics about the Tweets, after pre-processing - character

level . 57

B.1 Full list of stopwords removed from the corpus, part 1 58

B.2 Full list of stopwords removed from the corpus, part 2 59

66

Bibliography

[1] J. Clement. Twitter - Statistics & Facts. [Online; accessed 06-April-2020].

Feb. 2020. url: https://www.statista.com/topics/737/twitter/.

[2] A. Gupta et al. “Sentiment Analysis of Twitter Posts using Machine Learn-

ing Algorithms.” In: 2019 6th International Conference on Computing for

Sustainable Global Development (INDIACom). Mar. 2019, pp. 980–983.

doi: https://ieeexplore.ieee.org/document/8991365.

[3] D. Jain, A. Garg, and M. Saraswat. “Sentiment Analysis using Few Short

Learning.” In: 2019 Fifth International Conference on Image Information

Processing (ICIIP). Nov. 2019, pp. 102–107. doi: 10.1109/ICIIP47207.

2019.8985855.

[4] U. Naseem and K. Musial. “DICE: Deep Intelligent Contextual Embedding

for Twitter Sentiment Analysis.” In: 2019 International Conference on Doc-

ument Analysis and Recognition (ICDAR). Sept. 2019, pp. 953–958. doi:

10.1109/ICDAR.2019.00157.

[5] Yong Yu et al. “A Review of Recurrent Neural Networks: LSTM Cells

and Network Architectures.” In: Neural Computation 31.7 (2019). PMID:

31113301, pp. 1235–1270. doi: 10.1162/neco_a_01199. url: https:

//doi.org/10.1162/neco_a_01199.

[6] Shanhong Liu. Revenues from the natural language processing (NLP) mar-

ket worldwide from 2017 to 2025. [Online; accessed 13-April-2020]. Dec.

67

https://www.statista.com/topics/737/twitter/
https://doi.org/https://ieeexplore.ieee.org/document/8991365
https://doi.org/10.1109/ICIIP47207.2019.8985855
https://doi.org/10.1109/ICIIP47207.2019.8985855
https://doi.org/10.1109/ICDAR.2019.00157
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199

2018. url: https://www.statista.com/statistics/607891/worldwide-

natural-language-processing-market-revenues/.

[7] S. Paliwal, S. Kumar Khatri, and M. Sharma. “Sentiment Analysis and

Prediction Using Neural Networks.” In: 2018 International Conference on

Inventive Research in Computing Applications (ICIRCA). 2018, pp. 1035–

1042.

[8] K. Utsu, J. Saito, and O. Uchida. “Sentiment Polarity Estimation of Emoti-

cons by Polarity Scoring of Character Components.” In: 2018 IEEE Re-

gion Ten Symposium (Tensymp). Aug. 2018, pp. 237–242. doi: 10.1109/

TENCONSpring.2018.8691984.

[9] S. Wankhede et al. “Data Preprocessing for Efficient Sentimental Analysis.”

In: 2018 Second International Conference on Inventive Communication and

Computational Technologies (ICICCT). Apr. 2018, pp. 723–726. doi: 10.

1109/ICICCT.2018.8473277.

[10] P. Balaji, O. Nagaraju, and D. Haritha. “Levels of sentiment analysis and

its challenges: A literature review.” In: 2017 International Conference on

Big Data Analytics and Computational Intelligence (ICBDAC). Mar. 2017,

pp. 436–439.

[11] Mathieu Cliche. BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Anal-

ysis with CNNs and LSTMs. 2017. arXiv: 1704.06125 [cs.CL].

[12] Y. Hegde and S. Padma. “Sentiment analysis using random forest ensemble

for mobile product reviews in kannada.” In: IEEE 7th International Advance

Computing Conference (IACC) (2017), pp. 777–782.

[13] Silvio Amir et al. Modelling Context with User Embeddings for Sarcasm

Detection in Social Media. 2016. arXiv: 1607.00976 [cs.CL].

[14] Francois Chollet. Using pre-trained word embeddings in a Keras model. [On-

line; accessed 04-July-2020]. July 2016. url: https://blog.keras.io/

using-pre-trained-word-embeddings-in-a-keras-model.html.

68

https://www.statista.com/statistics/607891/worldwide-natural-language-processing-market-revenues/
https://www.statista.com/statistics/607891/worldwide-natural-language-processing-market-revenues/
https://doi.org/10.1109/TENCONSpring.2018.8691984
https://doi.org/10.1109/TENCONSpring.2018.8691984
https://doi.org/10.1109/ICICCT.2018.8473277
https://doi.org/10.1109/ICICCT.2018.8473277
https://arxiv.org/abs/1704.06125
https://arxiv.org/abs/1607.00976
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

[15] Christie Schneider. The biggest data challenges that you might not even

know you have. [Online; accessed 06-April-2020]. May 2016. url: https:

//www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-

might-not-even-know/.

[16] Umashanthi Pavalanathan and Jacob Eisenstein. Emoticons vs. Emojis on

Twitter: A Causal Inference Approach. 2015. arXiv: 1510.08480 [cs.CL].

[17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-

mization. 2014. arXiv: 1412.6980 [cs.LG].

[18] Svetlana Kiritchenko, Xiaodan Zhu, and Saif Mohammad. “Sentiment Anal-

ysis of Short Informal Text.” In: The Journal of Artificial Intelligence Re-

search (JAIR) 50 (Aug. 2014). doi: 10.1613/jair.4272.

[19] R. de Groot. “Data Mining for Tweet Sentiment Classification.” Utrecht

University, 2012. doi: https://dspace.library.uu.nl/handle/1874/

253766.

[20] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830.

[21] A. Rajaraman and J.D. Ullman. Mining of Massive Datasets. 2011, pp. 1–

17. isbn: ISBN 978-1-139-05845-2. doi: 10.1017/CBO9781139058452.002.

[22] Y. Zhang Y. Ji S. Yu. “A novel naive bayes model: Packaged hidden naive

bayes.” In: 6th IEEE Joint International Information Technology and Arti-

ficial Intelligence Conference (2011), pp. 484–487.

[23] Alec Go, Richa Bhayani, and Lei Huang. “Twitter sentiment classification

using distant supervision.” In: Processing 150 (Jan. 2009).

[24] I. Tsochantaridis et al. “Support vector machine learning for interdependent

and structured output spaces.” In: Proceedings of the twenty-first interna-

tional conference on Machine leaning, ACM (2004), p. 104.

69

https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://arxiv.org/abs/1510.08480
https://arxiv.org/abs/1412.6980
https://doi.org/10.1613/jair.4272
https://doi.org/https://dspace.library.uu.nl/handle/1874/253766
https://doi.org/https://dspace.library.uu.nl/handle/1874/253766
https://doi.org/10.1017/CBO9781139058452.002

	Introduction
	Motivations
	Context
	Structure of the thesis

	Research questions and scope
	Research questions
	Scope

	State of the art
	Open challenges
	Emoticons and emojis
	Short informal messages
	Semantic, polysemy and sarcasm

	Available approaches
	Traditional approaches
	Neural models
	Ready-to-use services

	Materials and method
	Dataset
	Analysis of the dataset and pre-processing
	Methodology
	CountVectorizer
	Tf-idf vectorizer
	TensorFlow vectorization

	Metrics
	Tools

	Modelling
	Traditional approaches
	Naive Bayes
	Support Vector Machine
	Random Forest

	Neural approaches
	Word Embeddings
	Simple Artificial Neural Network
	Convolutional Neural Network
	Bidirectional Long Short Term Memory
	Hybrid Neural Network

	Ready-to-use services
	Amazon Comprehend
	Meaning Cloud

	Experiments, results and discussion
	Traditional models
	Encoding with a count vectorizer
	Encoding with a tf-idf vectorizer
	Analysis of the agreement

	Neural models
	Analysis of the agreement

	Ready-to-use services
	Meaning cloud
	Google Cloud Natural Language API
	Amazon Comprehend
	Analysis of the agreement

	Final comparison

	Conclusions
	Results
	Further steps

	Dataset analysis
	List of stop words
	Acronyms
	Glossary
	Bibliography

