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1. Introduction
Ballistic capture orbits have been receiving
increasing attention throughout the past few
decades. The reason is that they have the ca-
pability to reduce fuel requirements and provide
more flexibility in terms of insertion opportuni-
ties and launch windows as compared to a typi-
cal patched-conics Keplerian approach [4].
An effective method to design ballistic cap-
ture orbits is based on stable sets manipulation,
which revolves around simple algorithmic stabil-
ity definitions [3, 4]. The method relies on sam-
pling the phase space around the target planet
and integrating a large number of orbits while
checking if stability conditions are satisfied. The
basic drawback is the brute-force nature of this
approach, which is in general computationally
intensive.
A new approach to ballistic capture can be found
within the field of fluid dynamics. Lagrangian
coherent structures (LCSs) are time-evolving
structures in the phase space of a generic dynam-
ical system which separate regions with qual-
itatively different dynamic behaviour [2]. La-
grangian descriptors (LDs) were recently intro-
duced as a powerful visual tool capable to un-
veil LCSs [5]. The simple idea behind LDs is

to seed a given phase space region with initial
conditions (ICs) and integrate a bounded, pos-
itive property of the generated trajectories for
a finite time. The boundaries between phase
space regions comprising trajectories of different
dynamical nature should denote singular struc-
tures with discontinuous spatial derivative in the
LD field.
Aim of this study is to analyze to what extent
LDs provide a characterization of the dynamics
in Mars proximity with regard to ballistic cap-
ture. Motivations rely on the fact that LDs have
the potential to be an efficient and easy to be
implemented visual tool that could give a rich
understanding of dynamics around the target
planet. Research objective is to exhibit the cor-
relation between the geometrical template ex-
tracted from LD fields in the phase space and
the boundaries of subsets of ICs with peculiar
behaviour obtained with stable sets manipula-
tion. In this study, the boundaries are denoted
as weak stability boundaries (WSBs), according
to the nomenclature used in literature [3].

2. Dynamical model
The presented study is performed under the as-
sumptions of the elliptic restricted three-body

1



Executive summary Alessio Quinci

problem (ER3BP) [3]. The model describes the
dynamics of a massless particle which moves un-
der the gravitational attraction of two primary
bodies (P1 with mass m1, and P2 with mass m2)
without influencing their motion. The two pri-
maries motion is influenced only by their mutual
attraction, being the solution of the two-body
problem. The ER3BP is a natural generaliza-
tion of the circular problem in which primaries
orbit on ellipses with eccentricity ep around their
barycenter. ER3BP equations of motion can be
expressed in a non-uniformly rotating, barycen-
tric, non-dimensional coordinate frame where P1

and P2 have fixed positions (−µ, 0) and (1−µ, 0),
respectively. µ = m2/(m1 + m2) is the mass
parameter of the system. This reference frame
is also called synodic frame. Assuming planar
motion of the third particle, ER3BP dynamics
expressed in the non-dimensional synodic frame
reads [3] {

x′′ − 2y′ = ωx,

y′′ + 2x′ = ωy.

(1a)
(1b)

Subscripts denote the partial derivatives with re-
spect to x and y of

ω(x, y, f) =
Ω(x, y)

1 + ep cos f
, (2)

where Ω is the potential function of the CR3BP.
Primes in Eq. (1) represent differentiation with
respect to the true anomaly f , which is the in-
dependent variable of the system and covers the
role of time [3].

3. Methodology
LD approach is now applied to the Sun–Mars
ER3BP to show the correlation between dynam-
ics separatrices extracted from LD fields and the
WSBs of classification sets.

3.1. Classification sets definition
The general procedure to categorize a certain
phase space region of ICs in the domain of inter-
est derives from the one described in [4]. An al-
ternative formulation of sets is proposed. While
propagating ICs in the non-dimensional syn-
odic reference frame in the integration interval
[f0, ff ], a classification algorithm computes the
non-dimensional distance r and Kepler energy
H of the particle with respect to Mars. Cat-
egorization is based on the fulfillment of some

conditions that take distance and energy as in-
put and verify if the particle escapes from the
planet or impacts on its surface. With this pro-
cedure every initial state is collocated in one of
three complementary subsets (X , K or W) de-
pending on its dynamics. Classification sets are
defined in the following list:
Escape set X (ff ) contains ICs whose orbits

escape for f ≤ ff . The particle escapes if it
possesses positive Kepler energy and, at the
same time, is located outside planet sphere
of influence. The two conditions that must
be satisfied at the same time are{

H(f) > 0,

r(f) > Rs,

(3a)
(3b)

where Rs is the non-dimensional sphere of
influence radius of Mars.

Crash set K(ff ) contains ICs whose orbits
crash for f ≤ ff . The particle impacts if
its distance from Mars surface is negative,
or equivalently

r(f) < Req. (4)

Req represents the non-dimensional mean
equatorial radius of the planet.

Weakly stable set W(ff ) contains ICs whose
orbits do not escape or crash for f ≤ ff .

In analogy with the capture set definition given
in [4], an alternative formulation of is derived.
A capture set C(fB, fF ) is extracted from the
intersection between an escape set X obtained
propagating dynamics backwards and a weakly
stable set W obtained integrating forwards.

C(fB, fF ) = X (fB) ∩W(fF ). (5)

An IC belonging to C(fB, fF ) generates an or-
bit that escapes from the target planet before
reaching fB if integrated backwards, while re-
mains bounded into the region of influence of
Mars without crashing at least until fF if inte-
grated forwards. ICs inside a capture set can be
exploited to design ballistic capture orbits.

3.2. LDs computation
LD definition adopted in the study case reads

M(x0, f0, fF , fB) =

∫ f0+fF

f0−fB

|F(x(f))|γdf. (6)
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x = [x, y, x′, y′] denotes the state vector of the
problem and it is retrieved rearranging Eq. (1)
as a four-dimensional ordinary differential equa-
tions system expressed as x′ = f(x, f). Each
IC is initially set at the periapsis of an osculat-
ing prograde ellipse around Mars, with a given
eccentricity e = 0.9 at f0 = 0. From this as-
sumption the full initial state x0 of the particle
can be retrieved [3].
Integrand |F(x(f))|γ denotes a bounded, pos-
itive property of the state vector, with γ the
exponent that defines its norm. Different inte-
grands have been implemented and tested. A
F = [x′, y′] with γ = 1/2 gives a clear visual
separation of phase space regions in the LD field.
The associated descriptor is labeled as M3.
LD field is generated evaluating the integral per
each x0 in a computational grid G of ICs in the
domain of interest, so every grid point in the
phase space is linked to a positive scalar value.
M(G, f0, fF , fB) represents the LD field com-
puted for all the grid points. A contour plot in
the position subspace (x, y) is then performed to
underline some boundaries, denoted by "abrupt
changes" of the field. An abrupt change means
that the derivative of M field transverse to the
boundaries is discontinuous on them. These sin-
gular features coincide with phase space struc-
tures that separate orbits with different dynam-
ics. Notice that LD definition M(x0, f0, fF , fB)
can be splitted in two contributions. Forward
contribution M(x0, f0, fF , 0) isolates dynamics
separatrices generated in forward time which are
linked to repelling LCSs of the dynamical sys-
tem. Similarly, M(x0, f0, 0, fB) highlights the
attracting LCSs of the system, isolating separa-
trices in backward time.

3.3. Separatrices extraction
Singular structures revealed by LD fields are ex-
tracted with an edge detection algorithm. Edge
detection is an image processing technique usu-
ally exploited for finding boundaries of objects
within images. An edge is defined as the locus
of points in which there is a rapid change in in-
tensity of the image. There are several edge de-
tection algorithms which differ for their criterion
with whom they detect discontinuities. Some of
them are Sobel, Prewitt, Roberts, Canny and
zero-cross methods [1]. Different methods have
been tested for this study case. Roberts proved

to be the most effective one by revealing the
edges more clearly than the other methods. The
algorithm takes as input the two-dimensional
contour plot of the descriptor field in the (x, y)
subspace of the domain. Then it finds edges at
those points where the gradient magnitude of
the image is higher than a threshold value using
the Robert approximation to the derivative [1].
As previously introduced, an additional input
of edge detection algorithms is the sensitivity
threshold σ. For gradient magnitudes higher
than the threshold, algorithm ignores those
edges. Edge detection gives as output a bi-
nary image of the same size of LD scalar field,
with 1s where the algorithm finds edges and 0s
elsewhere. Per each computed descriptor field
the value of threshold is tuned in order to show
the highest number of structures associated to
abrupt changes in the field. However, too low
values of the threshold itself could generate false
positives in the output binary image when com-
pared to the LD contour plot. Chosen thresholds
associated to computed LD fields are reported in
Tab. 1.

Table 1: Computed descriptor fields and associ-
ated thresholds.

LD field σ

M3(G, 0, π/2, 0) 4 · 10−3

M3(G, 0, π, 0) 6 · 10−3

M3(G, 0, 3π/2, 0) 9 · 10−3

M3(G, 0, 2π, 0) 20 · 10−3

M3(G, 0, 5π/2, 0) 25 · 10−3

M3(G, 0, 3π, 0) 30 · 10−3

M3(G, 0, 0,−π/2) 4 · 10−3

M3(G, 0, 0,−π) 6 · 10−3

3.4. Validation of separatrices
Ideally, extracted dynamics separatrices from
LD fields should match exactly with the WSBs
of classification sets X , K and W for a given inte-
gration interval. Flowchart in Fig. 1 summarizes
the workflow designed to validate extracted pat-
terns. The first step is to build a computational
grid of ICs around Mars. Two basic elements
characterize it: boundaries of the domain of in-
terest and number of grid points. The grid is
built in the synodic frame centered at the tar-
get at f0, which in this study is also referred
as inertial frame for simplicity. The selected
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Figure 1: Validation workflow.

portion of (x, y) domain allow to appreciate the
differences between classification sets computed
at different ff . Selected domain boundaries are
[−6 ·10−4, 6 ·10−4]× [−6 ·10−4, 6 ·10−4]. Number
of grid points is selected as compromise between
computational effort and visual quality of LD
fields and classification sets. A value of 25 · 104
grid points is chosen. Each IC is then integrated
in a given anomalies interval with a 7th/8th order
Runge-Kutta scheme. Integration tolerance is
set to 10−9. Sun–Mars parameters are reported
in Tab. 2.

Table 2: Sun–Mars parameters, taken from [3,
4].

Parameter Value Unit

µ 3.2262008 · 10−7 [−]
ap 1.523688 [AU]
ep 0.093418 [−]
Req 3397 [km]
Rs 170 ·Req [km]

ap and ep are the semi-major axis and eccen-
tricity of Sun–Mars system, respectively. Ini-
tial states are propagated in the [f0, ff ] interval.
LD scalar values are computed and, at the same
time, the classification algorithm categorize each
IC into the subset W(ff ), X (ff ), or K(ff ). Sep-
aratrices are extracted from the contour plot of
the descriptor field with the edge detection al-
gorithm. Patterns are then overlapped to the
computational grid classification, in which each
subset is marked with a different colour. This
allows to perform a visual check of the matching
between WSBs and separatrices extracted from
LD fields.

4. Results
An example of LD field computed for a given
integration interval is shown in Fig. 2. Abrupt
changes in the scalar values of the field corre-
spond to dynamics separatrices. They are ex-
tractred with the edge detection algorithm and
superimposed on the computational grid classi-
fication, as presented in Fig. 3.
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Figure 2: M3(G, 0, 2π, 0) field.

Figure 3: M3(G, 0, 2π, 0) field separatrices over-
lapped to classification sets computed at ff =
2π.

A good match of separatrices with the bound-
aries of classified regions can be noticed. Two
key points deserve mention. LD reveals patterns
if ICs are integrated long enough for dynamic di-
vergences between the orbits to be appreciated.
It may happen that the classification algorithm
divides a particular region of the phase space

4



Executive summary Alessio Quinci

into two different subsets, but the orbits are not
so divergent to generate singular structures in
the LD field. In this case we expect an high gra-
dient in the field in correspondence of the WSB,
but not sufficiently high to be detected by the
edge detection algorithm. Another point is that
LD may detect divergence in dynamic behaviour
even in areas that are classified in the same way.
For instance, two grid points can both generate
crash orbits, but trajectories could be very dif-
ferent from each other. This usually happens
at higher values of the integration limit. As
rule of thumb, the higher the value of fF , the
more structures are revealed. An high value of
fF gives to trajectories enough time to manifest
their qualitative behaviour.
Combining LD structures obtained propagat-
ing dynamics forwards with the ones obtained
propagating backwards, it is possible to re-
veal patterns that rule particles transport in
both time directions. The correlation of a
capture set C(fB, fF ) with extracted patterns
from M3(G, 0, fF , fB) field can be recognized
in Fig. 4. Some regions in the phase space
which are enclosed by LD separatrices corre-
spond, with reasonable approximation, to the
capture set. ICs belonging to this set generate
orbits that approach Mars from outside and re-
main temporary captured at least until fF .
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Figure 4: Extracted separatrices from
M3(G, 0, 3π,−π) field overlapped to cap-
ture set C(−π, 3π). Gray lines are associated
with the forward branch of the integral and
blue lines with the backward one.

Fig. 5 shows the orbit generated from the IC "s"
sampled from Fig. 4. As expected, particle ap-
proaches the planet from outside its sphere of in-
fluence (SOI) and remains bounded in the prox-
imity of Mars at least for three semi-revolutions
of the planet around the Sun.
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Figure 5: Orbit generated from IC "s" in the
Mars-centered inertial frame (red path: back-
ward propagation; blue path: forward propaga-
tion).

5. Conclusions
As shown in the results, structures in the phase
space detected from LD fields are able to dis-
tinguish regions characterized by different dy-
namical behaviour. In particular, the patterns
extracted with the edge detection algorithm de-
limit with good approximation the ICs that gen-
erate differently classified orbits. Extracted dy-
namics separatrices adequately match with the
WSBs. Similarly, the LD approach detects areas
corresponding to capture regions.
The main drawback of the LD approach is that
it does not give information about which, among
the different regions bounded by the structures,
are actually capture or stable sets. This is a
limitation in the application of the presented
methodology to the design of ballistic capture
orbits. The procedure of computing the LD
fields, together with extraction and validation
of the dynamics separatrices have had a positive
response. Thus, based on the obtained results,
a viable strategy to design ballistic capture or-
bits is proposed. A possible solution could be to
categorize the various regions delimited by the
extracted separatrices by sampling a few ICs and
classifying their orbits. In this way, each region
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in the phase space can be classified on the ba-
sis of its qualitative behaviour (weakly stable,
escape, capture, or impact). The assumption
under this procedure is that each IC of a phase
space region bounded by separatrices belongs to
the same classification set.
In conclusion, LD proved to be an intuitive, easy
to implement and computationally efficient vi-
sual tool. Without any a priory knowledge, LD
patterns yield a strong match with the WSB of
classification sets. The LD technique supports
the design of ballistic capture trajectories, en-
riching the dynamics knowledge in proximity of
the target planet.
An important advantage of the LD methodology
is that it can be applied to arbitrary complex
dynamical systems without restrictions. Thus,
the presented approach could be generalized for
the application in real solar systems models such
as the n-body problem including different orbital
perturbations.
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